
20 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Structural Properties of a Class of Linear Hybrid Systems and Output Feedback Stabilization / Possieri, Corrado; Teel,
Andrew R.. - In: IEEE TRANSACTIONS ON AUTOMATIC CONTROL. - ISSN 0018-9286. - 62:6(2017), pp. 2704-2719.
[10.1109/TAC.2016.2617090]

Original

Structural Properties of a Class of Linear Hybrid Systems and Output Feedback Stabilization

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/TAC.2016.2617090

Terms of use:

Publisher copyright

©2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2724560 since: 2021-04-12T20:19:15Z

Institute of Electrical and Electronics Engineers Inc.



1

Structural Properties of a Class of Linear Hybrid
Systems and Output Feedback Stabilization

Corrado Possieri and Andrew R. Teel

Abstract—In this paper, we deal with the problem of output
feedback stabilization for a class of linear hybrid systems. This
problem is addressed by characterizing the structural properties
of such a class of systems. Namely, reachability, controllability,
stabilizability, observability, constructibility and detectability are
framed in terms of algebraic and geometric conditions on the data
of the system. Two canonical forms, recalling the classical Kalman
decompositions with respect to reachability and observability,
are given. By taking advantage of this characterization, duality
between control and observation structural properties is estab-
lished and necessary and sufficient conditions for the existence of
a linear time–invariant output feedback compensator are stated.
Compared with previous results, no assumption is needed on the
plant about minimum phaseness, relative degree or squareness.

I. INTRODUCTION

Hybrid dynamical systems provide a comprehensive
framework to characterize processes evolving according to
continuous–time dynamics (flow) and discrete–time dynamics
(jump) (see [1], [2] and references therein). Many tools for
the analysis and control of such a class of systems have
been developed [3]–[9]. For instance, in [10], necessary and
sufficient conditions for reachability and observability of linear
switched system have been stated assuming nonsingularity of
impulsive gain matrices, while, in [11], the same structural
properties have been characterized by removing the latter
assumption. In this work, we focus the attention on a class
of widely studied linear hybrid systems (see [12]–[19] and
references therein) where the clock variable satisfies a constant
dwell–time and is available for feedback. This allows us to
focus our attention on a linear setting and to extend many of
the classical results for non–hybrid linear systems. As a matter
of fact, even if the results given in this paper are formalized
in the modern hybrid formalism, they are strongly related to
the scientific research carried out in the 1980’s, in the context
of multi–rate sampled–data systems, generalized holders and
periodic systems (we refer the interested reader to [20]–[22]
for multirate sampled–data systems, to [23] for generalized
holders, and to [24]–[27] for periodic systems).

One of the main reasons of interest in output feedback
stabilization for such a class of hybrid systems is in com-
pleting a key aspect on necessary conditions for hybrid output
regulation [28]. Such a problem has been also proven rele-
vant in many applications involving hybrid systems, as, for
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Informatica, Università di Roma Tor Vergata, Via del Politecnico 1, 00133
Roma, Italy, possieri@ing.uniroma2.it.

Andrew R. Teel is with the Electrical and Computer Engineering
Department, University of California, Santa Barbara, CA 93106-9560.
teel@ece.ucsb.edu.

instance, billiard systems, juggling and walking robots [29]–
[32]. In this scenario, the objective is to drive the output of
the hybrid plant to zero, despite the presence of a hybrid
disturbance input that is generated by an external exosystem
with known dynamics and unknown initial condition. In [33],
[34], compensator structures are proposed to generate desired
steady–state solutions solving this problem. In [35], [36], it is
shown that a time–invariant compensator is able to generate the
steady state, but stabilization is achieved by exploiting a time–
varying compensator. This paper shows that, under the mere
stabilizability and detectability hypotheses, a linear dynamic
time–invariant output feedback stabilizer actually exists. To
achieve such an objective, the structural properties of this class
of systems are framed in terms of the hybrid system data.
Namely, we propose conditions, wholly similar to the Popov-
Belevitch-Hautus (PBH) tests [37], [38], that guarantee reach-
ability, controllability, and stabilizability of the hybrid system.
Similar conditions are given also for observation objectives,
leading to the characterization of observability, constructibility,
and detectability. Two standard forms, mimicking the classical
Kalman decomposition [39] for non–hybrid linear systems, are
proposed. Taking advantage of this characterization, a linear
dynamic time–invariant output feedback compensator for this
class of hybrid systems is given. Hence, the employment of the
output feedback stabilizer given in this paper with the steady–
state generator designed in [35] allows to solve the output
regulation problem proposed in [33]. Moreover, as shown in
Example 3, the output feedback stabilizer proposed in this
paper can be also employed to achieve stability of a class of
mechanical systems subject to periodic jumps (see also [40]).

The remainder of the paper is organized as follows: In
Section II the considered class of hybrid systems is introduced
and some preliminary results are stated. In Section III, a com-
prehensive characterization of structural properties of these
hybrid systems is given. Namely, in Section III-A, reachability,
controllability, stabilizability, and a new structural property,
called strong reachability, are characterized and a control
standard form is proposed. In Section III-B, observability, con-
structibility, and detectability are framed in terms of the data of
the hybrid system, and an observation standard form is given.
In Section IV, a duality theorem, relating “control” structural
properties of a given system with “observation” properties of
a dual hybrid linear systems, is stated. In Section V, necessary
and sufficient conditions for the existence of a stabilizing
linear dynamic time–invariant output feedback are given and a
compensator structure is proposed. In Section VI the extension
of the results of this paper to arbitrary initial conditions for
the timer variable is analyzed. Conclusions and future work
are discussed in Section VII.
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II. NOTATION AND PRELIMINARIES

Let R, Z and C denote the set of real, integer and complex
numbers, respectively. Define Cg := {s ∈ C : |s| < 1}.
Letting M be a square matrix, Λ(M) denotes the spectrum
of M . Letting S ∈ Rn×`, define Im(S) := {x ∈ Rn : ∃z ∈
R` such that x = Sz} and Ker(S) := {z ∈ R` : Sz = 0}. Let
X 6= {0} be a subspace of Rn; the dimension of X , denoted
dim(X ), is the number of elements in any basis of X .

Consider the hybrid system governed by the flow dynamics

τ̇ = 1, (1a)
ẋ = Ax+BuF , (1b)

whether (τ, x) ∈ [0, τM ]×Rn, and subject to jumps according
to the rules

τ+ = 0, (1c)
x+ = Ex+ FuJ , (1d)

whether (τ, x) ∈ {τM} × Rn, with state x(t, k) ∈ Rn, flow
input uF (t, k) ∈ Rm1 , jump input uJ(k) ∈ Rm2 , initial
conditions x(0, 0) = x0, x0 ∈ Rn, and τ(0, 0) = 0 (in the
subsequent Section VI, extensions of the results of this paper
to τ(0, 0) = τ0, τ0 ∈ [0, τM ] are discussed). In the previous
equations, τM is a positive known constant that imposes a
fixed dwell–time constraint between two consecutive jumps.
Hence, each solution (usually called hybrid arc) to system (1)
is defined on the hybrid time domain

T := {(t, k), t ∈ [kτM , (k + 1)τM ], k ∈ Z>0},

which is then a priori fixed. Solutions to system (1) are hybrid
arcs, i.e., locally absolutely continuous functions mapping
(t, k) ∈ T in the indicated set. For compactness, given
(t, k) ∈ T , the shortcut tk := kτM will be used.

Let ϕ(t, k, x0, uF , uJ) be the solution to system (1)
at hybrid time (t, k) ∈ T , with initial condition x0

and inputs uF (·, ·), uJ(·). With some abuse of no-
tation, we say that the system (1) is Linear Time–
Invariant (briefly, LTI), to underline the fact that, given
x0,1, x0,2 ∈ Rn, uF,1(·, ·), uF,2(·, ·), uJ,1(·), and uJ,2(·),
ϕ(t, k, αx0,1 + βx0,2, αuF1

+ βuF,2, αuJ,1 + βuJ,2) =
αϕ(t, k, x0,1, uF,1, uJ,1) + βϕ(t, k, x0,2, uF,2, uJ,2), for each
α, β ∈ R, and that, for each x0 ∈ Rn, uF (·, ·), uJ(·),
ϕ(t, k, x0, uF , uJ) equals the solution to system (1) at hybrid
time (t+hτM , k+h) ∈ T , with initial condition x(th, h) = x0

and inputs ũF (t, k) = uF (t−hτM , k−h), ũJ(k) = uJ(k−h),
for each (t, k) ∈ T ∩ ([th,∞) × {h, h + 1, · · · }), h ∈ Z>0.
System (1) is stable if for each ε > 0, there exists δε > 0
such that |x0| < δε =⇒ |ϕ(t, k, x0, 0, 0)| 6 ε, ∀(t, k) ∈ T .
System (1) is attractive if limt+k→∞ |ϕ(t, k, x0, 0, 0)| = 0.
System (1) is asymptotically stable if is stable and attractive.
Let EeAτM be the monodromy matrix of system (1). As dis-
cussed in [35], [36], system (1) is asymptotically stable if and
only if all the eigenvalues of the monodromy matrix EeAτM
(or, equivalently, eAτME, because Λ(EeAτM ) = Λ(eAτME)
even if, in general, EeAτM 6= eAτME [41, Ex. 7.1.19]) lie in
the open unit circle in the complex plane Cg .

III. STRUCTURAL PROPERTIES OF HYBRID SYSTEMS

Let yF (t, k) ∈ Rq1 and yJ(k) ∈ Rq2 be the measurable
outputs of system (1), defined as

yF (t, k) := CFx(t, k), (2a)
yJ(k) := CJx(tk, k − 1). (2b)

Note that, as a matter of convenience, we separate the
continuous–time input uF (resp., output yF ) from the discrete–
time input uF (resp., output yJ ), but, by [42], there is no
conceptual difficulty in keeping them together in a single
vector u = [ u′F u′J ]′ (resp., y = [ y′F y′J ]′), by simply
redefining the matrices in (1), (2).

Mimicking the definitions for non–hybrid linear systems,
system (1), (2) is said to be

• stabilizable if, for any initial condition x0 ∈
Rn, there exist inputs uF (·, ·) and uJ(·) such that
limt+k→∞ ϕ(t, k, x0, uF , uJ) = 0;

• controllable if, for any initial condition x0 ∈ Rn, there
exist inputs uF (·, ·), uJ(·), and a finite hybrid time
(θ, κ) ∈ T such that ϕ(θ, κ, x0, uF , uJ) = 0;

• reachable if, for each x ∈ Rn, there exist inputs uF (·, ·),
uJ(·), and a finite hybrid time (θ, κ) ∈ T such that
ϕ(θ, κ, 0, uF , uJ) = x;

• detectable if, for any initial condition x0 ∈ Rn, by using
only measurements of the input functions uF (·, ·), uJ(·)
and of the outputs yF (·, ·), yJ(·), it is possible to deter-
mine an estimate x̂(t, k) of x(t, k) = ϕ(t, k, x0, uF , uJ)
that is such that limt+k→∞ x̂(t, k)− x(t, k) = 0;

• constructible if, for any initial condition x0 ∈ Rn, there
exists a hybrid time (θ, κ) ∈ T such that, by using only
measurements of the input functions uF (·, ·), uJ(·) and of
the outputs yF (·, ·), yJ(·, ) up to time (θ, κ), it is possible
to determine ϕ(θ, κ, x0, uF , uJ).

• observable if, for any initial condition x0 ∈ Rn, there
exists a hybrid time (θ, κ) ∈ T such that, by using only
measurements of the input functions uF (·, ·), uJ(·) and of
the outputs yF (·, ·), yJ(·, ) up to time (θ, κ), it is possible
to determine x0.

The goal of this section is to frame the structural properties
defined above in terms of algebraic and geometric conditions
on the data of the hybrid system. Namely, we present simple
tests, wholly similar to the Popov-Belevitch-Hautus (PBH)
tests for non–hybrid linear systems, characterizing the struc-
tural properties of such a class of systems. It is worth pointing
out that, by the definitions given above, if system (1), (2) is
controllable it is also stabilizable, while if it is observable
it is also constructible and if it is constructible, it is also
detectable. On the other hand, as shown in the subsequent
Example 2, reachability does not imply controllability and
stabilizability for this class of hybrid systems. Therefore,
in order to reestablish these classical implications, a new
structural property, called strong reachability, is defined in the
subsequent Definition 1.
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A. Reachability, controllability and stabilizability

Define the reachable set

Xr := {x ∈ Rn : ∃uF (·, ·), uJ(·) s.t.
ϕ(θ, κ, 0, uF , uJ) = x, for some (θ, κ) ∈ T }.

The following theorem characterizes the set Xr in terms of
the data (A,B,E, F, τM ) of the hybrid system (1).

Theorem 1. The set Xr is given by

Xr =
⋃

t∈[0,τM ]

(
Im(eAtREeAτM ,F̄ ) + Im(δtRA,B)

)
,

where REeAτM ,F̄ = [ F̄ EeAτM F̄ · · · (EeAτM )n−1F̄ ],
F̄ = [ F ERA,B ], RA,B = [ B · · · An−1B ], and
δt = 0 if t = 0, or δt = 1, if t ∈ (0, τM ].

Proof. Define the reachable set with fixed final time (t, k) ∈ T

X (t,k)
r := {x ∈ R,∃uF (·, ·), uJ(·) s.t. ϕ(t, k, 0, uF , uJ) = x}.

Clearly, the reachable set Xr is given by
⋃

(t,k)∈T X
(t,k)
r

[43]. By classical results about reachability of continuous–
time dynamical systems [44], X (t,0)

r = Im(RA,B), for all
t ∈ (0, τM ]. Therefore, for each x ∈ X (τM ,0)

r , there exists
v such that x = RA,Bv. Consider the set X (τM ,1)

r . For each
x ∈ X (τM ,1)

r , there exist vectors u1, v1 such that x = Fu1 +
ERA,Bv1. Consider now the set X (t,1)

r , for all t ∈ (τM , 2τM ].
Since system (1) is LTI, for each x ∈ X (t,1)

r , there exist vectors
u1, v1, v2 such that x = eA(t−τM )(Fu1+ERA,Bv1)+RA,Bv2.
As a matter of fact, since system (1) is LTI, ϕ(t, 1, 0, uF,1 +
uF,2, uJ,1) = ϕ(t, 1, 0, ūF,1, uJ,1) + ϕ(t, 1, 0, ūF,2, 0), where

ūF,1(t, k) =

{
uF,1(t, k) + uF,2(t, k), if t 6 τM ,
0, otherwise,

ūF,2(t, k) =

{
0, if t 6 τM ,
uF,1(t, k) + uF,2(t, k), otherwise.

Hence, for each x1 ∈ Rn such that there exist ūF,1(·, ·),
uJ,1(·) such that x1 = ϕ(t, 1, 0, ūF,1, uJ,1), there exist vectors
u1, v1 such that x1 = eA(t−τM )(Fu1 + ERA,Bv1), while,
for each x2 ∈ Rn such that there exists ūF,2(·, ·) such that
x2 = ϕ(t, 1, 0, ūF,2, 0), there exists a vector v2 such that
x2 = RA,Bv2, for all t ∈ (τM , 2τM ]. By iterating such a
procedure, one obtains that, for each x ∈ X (t,k)

r , t ∈ (tk, tk+1],
k ∈ Z>0, there exist vectors u1, . . . , uk, v1, . . . , vk+1 such that

x = eA(t−tk)
k∑
h=1

(EeAτM )k−hF̄

[
uh
vh

]
+RA,Bvk+1, (3)

while, for each x̄ ∈ X (tk,k)
r , k ∈ Z>0, there exist vectors

u1, . . . , uk, v1, . . . , vk such that

x̄ =

k∑
h=1

(EeAτM )k−hF̄

[
uh
vh

]
.

Hence, by considering that, by the Cayley-Hamilton theo-
rem [44], there exist a0, . . . , an−1 ∈ R such that (EeAτM )n =∑n−1
i=0 ai(Ee

AτM )i, one has that x ∈ Xr if and only if (at
least) one of the following two conditions holds:

• ∃t ∈ (0, τM ] and vectors w1, . . . , wn, vn+1, such that x =
eAt

∑n
h=1(EeAτM )n−hF̄wh +RA,Bvn+1.

• ∃w1, . . . , wn such that x =
∑n
h=1(EeAτM )k−hF̄wh.

Therefore, Xr =
⋃

(t,k)∈T X
(t,k)
r = Im(REeAτM ,F̄ ) ∪

(
⋃
t∈(0,τM ] Im([ eAtREeAτM ,F̄ RA,B ])). Thus, the fact that

Im(REeAτM ,F̄ ) = Im([ eAtREeAτM ,F̄ δtRA,B ]
∣∣
t=0

) con-
cludes the proof.

Corollary 1. The reachable set with fixed time X (t,k)
r , (t, k) ∈

T , t > tn, k > n, is a subspace of Rn and is given by

X (t,k)
r =

{
Im([ eA(t−tk)REeAτM ,F̄ RA,B ]), if t 6= tk,
Im(REeAτM ,F̄ ), if t = tk.

Note that, even if the reachable set in fixed time X (t,k)
r is a

subspace of the state space Rn of system (1) for all (t, k) ∈ T ,
the set Xr needs not be a subspace of Rn (see also [43]).

Example 1. Consider system (1) with data n = 3, τM = 1,

A =

 0 0 0
1 0 0
0 1 0

 , B =

 0
0
0

 ,
E =

 0 0 0
0 0 0
0 0 0

 , F =

 1
0
0

 .
For such a system, Im([ eAtREeAτM ,F̄ RA,B ]) =

Im([ 1 t t2/2 ]′). Therefore, the points xa =
[ 1 0 0 ]′ and xb = [ 1 1 1/2 ]′ are in Xr, but
xa + xb /∈ Xr, whence Xr is not a subspace of Rn. The
reachable set Xr for such a system is depicted in Figure 1. 4
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Fig. 1. Set Xr for the hybrid system given in Example 1.

The following technical lemma characterizes the reachable
set of LTI continuous–time non–hybrid systems.

Lemma 1. Let x ∈ Rn. There exists a vector v such that
x = RA,Bv if and only if, for each θ ∈ R, there exists a
vector vθ such that eAθx = RA,Bvθ.

Proof. Trivially, if, for each θ ∈ R, there exists vθ such that
eAθx = RA,Bvθ, then there exists v such that x = RA,Bv.
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Consider the LTI continuous–time system ẋ = Ax + Bu,
and let φ1(t, x0, u) be the solution to such a system with input
u(·) and initial condition x0. If there exists a vector v such
that x = RA,Bv, then there exists an input u(·) and a time
t ∈ R such that φ1(t, 0, u) = x (i.e., x is in the reachable set
of ẋ = Ax+Bu) [44]. Hence, x̃θ = φ1(θ, x, 0) is reachable,
i.e., there exists vθ such that x̃θ = eAθx = RA,Bvθ, ∀θ > 0.

Consider now the LTI continuous–time system ẋ = −Ax+
Bu, and let φ2(t, x0, u) be the solution to such a system
with input u(·) and initial condition x0. Define the matrix
T = diag(1,−1, 1,−1, . . . ). Note that, if there exists a
vector v such that x = RA,Bv, then there exists a vec-
tor v̄ = Tv such that x = R−A,B v̄, where R−A,B =
[ B −AB A2B · · · (−A)n−1B ]>. Thus, if there ex-
ists a vector v̄ ∈ Rn such that x = R−A,B v̄, then there exists
an input u(·) and a time t ∈ R such that φ2(t, 0, u) = x
(i.e., x is in the reachable set of ẋ = −Ax + Bu). Hence,
there exists a vector v̄θ such that e−Aθx = R−A,B v̄θ, for
all θ > 0. Therefore, the vector vθ = T v̄θ is such that
eAθx = R−A,B v̄θ = RA,Bvθ, for all θ 6 0.

By taking advantage of Lemma 1, the following proposition
gives a sufficient condition for system (1) to be reachable.

Proposition 1. If rank([ REeAτM ,F̄ RA,B ]) = n, then
X (t,k)
r = Rn, for all t > tn, t 6= tk, k > n.

Proof. If rank([ REeAτM ,F̄ RA,B ]) = n, then
rank(eAt[ REeAτM ,F̄ RA,B ]) = n, for all t ∈ R.
As a matter of fact, by Lemma 1, for any vector v of
suitable dimensions and any t ∈ R, there exists a vector
v̄ of suitable dimensions such that eAtRA,Bv = RA,B v̄.
Therefore, one has that rank([ eAtREeAτM ,F̄ RA,B ]) =
rank([ eAtREeAτM ,F̄ eAtRA,B ]). Thus, since eAt is
a nonsingular matrix for every t ∈ R, by Corollary 1,
X (t,k)
r = Rn, for all t > tn, t 6= tk, k > n.

Note that, if there exists a hybrid time (t, k) ∈ T such
that X (t,k)

r = Rn, then system (1) is reachable. However,
such a condition is only sufficient to guarantee reachability
of system (1) (see the subsequent Example 2).

Consider now the controllable set

Xc := {x ∈ Rn : ∃uF (·, ·), uJ(·) s.t.
ϕ(θ, κ, x, uF , uJ) = 0, for some (θ, κ) ∈ T }.

The following proposition states that, differently from Xr,
the set Xc is a subspace of the state space Rn.

Proposition 2. The set Xc is a subspace of Rn.

Proof. Let xa, xb ∈ Xc. Hence, there exist (ta, ka), (tb, kb) ∈
T , uF,a(·, ·), uJ,a(·), uF,b(·, ·), and uJ,b(·) such that
ϕ(ta, ka, xa, uF,a, uJ,a) = 0 and ϕ(tb, kb, xb, uF,b, uJ,b) = 0.
Assume, without loss of generality, that ta > tb and ka >
kb. Note that system (1) is causal, i.e., that the solution
ϕ(tb, kb, xb, uF,b, uJ,b) depends only on the input uF,b(t, k),
for all times (t, k) ∈ T such that t < tb and k < kb, and on
uJ,b(k), for all k ∈ Z>0, k 6 kb. Hence, we can assume, with-
out loss of generality, that uF,b(t, k) = 0, for all (t, k) ∈ T
such that t > tb and k > kb and that uJ,b(k) = 0, for all

k ∈ Z>0, k > kb. Thus by the linearity of system (1), one
has that ϕ(ta, ka, αxa+βxb, αuF,a+βuF,b, αuJ,a+βuJ,b) =
αϕ(ta, ka, xa, uF,a, uJ,a) + βϕ(tb, kb, xb, uF,b, uJ,b) = 0, for
any α, β ∈ R. Hence, if xa, xb ∈ Xc, then αxa + βxb ∈ Xc,
for any α, β ∈ R, i.e., Xc is a subspace of Rn.

The following lemma states that if x ∈ Xc, then there exist
inputs uF (·, ·) and uJ(·) that drive the system to zero after (at
most) n jumps of the state of system (1).

Lemma 2. If x ∈ Xc, then there exist uF (·, ·) and uJ(·) such
that ϕ(t, n, x, uF , uj) = 0, for some t ∈ [tn, tn+1].

Proof. Define the controllable set in k steps, k ∈ Z>0,

X kc := {x ∈ Rn,∃uF (·, ·), uJ(·) s.t.
ϕ(τ, k, x, uF , uJ) = 0, for some τ ∈ [tk, tk+1]}.

By the same reasonings given in the proof of Proposition 2,
X kc is a subspace of Rn for any k ∈ Z>0. The subspaces
X kc are such that X κc ⊂ X κ+1

c , ∀κ ∈ Z>0. As a matter of
fact, if x ∈ X κc , then there exist uF (·, ·) and uJ(·) such that
ϕ(θ, κ, x, uF , uJ) = 0, for some θ ∈ [tκ, tκ+1]. Thus, inputs

ūF (t, k) =

{
uF (t, k), if t 6 θ,
0, otherwise,

ūJ(k) =

{
uJ(k), ∀k ∈ {1, . . . , κ},
0, otherwise,

are such that ϕ(θ, κ + 1, x, uF , uJ) = 0, ∀θ ∈ [tκ+1, tκ+2],
i.e., x ∈ X κ+1

c . Thus, the sets X κc are such that

dim(X 0
c ) 6 dim(X 1

c ) 6 · · · 6 dim(Xnc ) 6 dim(Xn+1
c ). (4)

Additionally, if X κc = X κ+1
c , for some κ ∈ Z>0, then

X κc = X κ+j
c , j ∈ Z>0. Indeed, assume that X κc = X κ+1

c , and
consider a point x ∈ X κ+2

c . Since x ∈ X κ+2
c , there exist func-

tions ûF (·, ·) and ûJ(·) such that x̃ = ϕ(τM , 1, x, ûF , ûJ) ∈
X κ+1
c = X κc . Thus, there exist functions ũF (·, ·) and ũJ(·)

such that ϕ(θ, κ, x̃, ũF , ũJ) = 0, for some θ ∈ [tκ, tκ+1].
Hence, since system (1) is LTI, one has that the functions

ǔF (t, k) =

{
ûF (t, k), if (t, k) ∈ [0, τM ]× {0},
ũF (t, k), otherwise,

ǔJ(k) =

{
ûJ(k), k = 1,
ũJ(k), otherwise,

are such that ϕ(θ, κ + 1, x, ǔF , ǔJ) = 0, for some θ ∈
[tκ+1, tκ+2], i.e., x ∈ X κ+1

c . Therefore, by iterating such a
procedure, one has that if X κc = X κ+1

c , for some κ ∈ Z>0,
then X κc = X κ+j

c , j ∈ Z>0. Hence, by considering that
dimX κc 6 n, for any κ ∈ Z>0, κ > 1, one has that, in (4), at
most the first n inequality signs hold, whence Xnc = Xn+1

c ,
and thus Xn+j

c = Xnc , j ∈ Z>0.

The following theorem gives geometric conditions that char-
acterizes the subspace Xc in terms of the data (A,B,E, F, τM )
of the hybrid system (1).

Theorem 2. The set Xc is the subspace of Rn given by

{x ∈ Rn : (EeAτM )nx ∈ Im([ ReAτM ,F̄ RA,B ])}. (5)

Proof. By Lemma 2, if x ∈ Xc, then there exist uF (·, ·)
and uJ(·) such that ϕ(t, n, x, uF , uj) = 0, for some t ∈
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[tn, tn+1]. By Corollary 1, for a fixed t > tn, k > n,
the set of all the x such that ∃uF (·, ·), uJ(·) such that
ϕ(t, k, 0, uF , uJ) = x is Im([ eA(t−tk)REeAτM ,F̄ RA,B ]),
if t 6= tk, or Im(REeAτM ), if t = tk, k ∈ Z>0. Hence,
since ϕ(t, k, x, uF , uJ) = ϕ(t, k, 0, uF , uJ) + ϕ(t, k, x, 0, 0)
and ϕ(t, k, x, 0, 0) = eA(t−tK)(EeAτM )kx, x ∈ Xc if and
only if there exist vectors w, v and t ∈ [0, τM ] such that

eAt(EeAτM )nx− eAtREeAτM ,F̄w − δtRA,Bv = 0.

By considering that the matrix eAt is invertible for any t ∈ R
and that, by Lemma 1, for any t ∈ R and any vector v, there
exists a vector v̄ such that e−AtRA,Bv = RA,B v̄, one has that
x ∈ Xc if and only if there exist vectors w, v̄ such that

(EeAτM )nx−REeAτM ,F̄w −RA,B v̄ = 0.

Thus x ∈ Xc if and only if (EeAτM )nx ∈
Im([ ReAτM ,F̄ RA,B ]).

Corollary 2. System (1) is controllable if and only if

rank([ (EeAτM )n REeAτM ,F̄ RA,B ]) =

rank([ REeAτM ,F̄ RA,B ]). (6)

A direct consequence of Corollary 2 is that if E is
nonsingular, then system (1) is controllable if and only if
rank([ REeAτM ,F̄ RA,B ]) = n. On the other hand, if E is
singular, then the condition rank([ REeAτM ,F̄ RA,B ]) = n
still guarantees that system (1) is controllable. Note that,
differently from classical non–hybrid linear systems, even if
system (1) is reachable, it may not be controllable, as shown
in the following example.

Example 2. Consider system (1) with data n = 2, τM = π,

A =

[
0 −1
1 0

]
, B =

[
0
0

]
,

E =

[
1 0
0 1

]
, F =

[
1
0

]
.

For such a system, Im([ eAtREeAτM ,F̄ RA,B ]) =
Im([ cos(t) sin(t) ]′), whence the set of the reachable state
Xr =

⋃
t∈[0,π] Im([ cos(t) sin(t) ]′) = R2. However,

there does not exist a hybrid time (t, k) ∈ T such that
X (t,k)
r = R2. As a matter of fact, for each t ∈ [0, τM ], one

has that rank([ eAtREeAτM ,F̄ RA,B ]) < n. Additionally,
since rank([ (EeAτM )n REeAτM ,F̄ RA,B ]) = 2, while
rank([ REeAτM ,F̄ RA,B ]) = 1, system (1) is not control-
lable, even if it is reachable. 4

Define the subspace N of Rn,

N := Im([ REeAτM ,F̄ RA,B ]).

Lemma 3. The subspace N is EeAτM –invariant.

Proof. Let x ∈ N and let x̄ = EeAτMx.
By considering that F̄ = [ F ERA,B ] and
REeAτM ,F̄ = [ F̄ · · · (EeAτM )n−1F̄ ], there
exist vectors v1, . . . , vn, w1, . . . , wn, wn+1 of suitable
dimensions such that x =

∑n
h=1(EeAτM )n−hFvh +∑n

h=1(EeAτM )n−hERA,Bwh + RA,Bwn+1. Hence,
the vectors v1, . . . , vn, w1, . . . , wn, wn+1 are

such that x̄ =
∑n
h=1(EeAτM )n−h+1Fvh +∑n

h=1(EeAτM )n−h+1ERA,Bwh+EeAτMRA,Bwn+1. By the
Cayley–Hamilton theorem, there exist a0, . . . , an−1 ∈ R such
that (EeAτM )n =

∑n−1
h=0 ah(EeAτM )h, while, by Lemma 1,

there exists w̄n+1 such that eAτMRA,Bwn+1 = RA,Bw̄n+1,
for all wn+1. By these reasonings, there exist vectors
v̄1, . . . , v̄n, w̄1, . . . , w̄n of suitable dimensions such that
x̄ =

∑n
h=1(EeAτM )n−hF v̄h+

∑n
h=1(EeAτM )n−hERA,Bw̄h.

Hence, x̄= EeAτM ∈ N , i.e., N is EeAτM –invariant.

Since the subspace N is EeAτM –invariant, classical results
about Kalman decomposition for non–hybrid linear systems
can be mimicked. Consider the following proposition.

Proposition 3. Assume that rank([ REeAτM ,F̄ RA,B ]) =
ν < n. Let νc = dim(Im(RA,B)) 6 ν. There exists a matrix
T ∈ Rn×n such that

M̂ := TEeAτMT−1 =

 M̂r1,r1 M̂r1,r2 M̂r1,u

M̂r2,r1 M̂r2,r2 M̂r2,u

0 0 M̂u,u

 , (7a)

F̃ := T F̄ =

 F̃r1
F̃r2
0

 , F̂ := TF =

 F̂r1
F̂r2
0

 , (7b)

Â := TAT−1 =

 Âr,r Âr,u1
Âr,u2

0 Âu1,u1
Âu1,u2

0 Âu2,u1
Âu2,u2

 , (7c)

B̂ := TB =

 B̂r
0
0

 , (7d)

where M̂r1,r1 ∈ Rνc×νc , M̂r1,r2 ∈ Rνc×ν−νc , M̂r1,u ∈
Rνc×n−ν , M̂r2,r1 ∈ Rν−νc×νc , M̂r2,r2 ∈ Rν−νc×ν−νc ,
M̂r2,u ∈ Rν−νc×n−ν , M̂u,u ∈ Rn−ν×n−ν , F̂r,1 ∈ Rνc×m2 ,
F̂r,2 ∈ Rν−νc×m2 , and B̂r ∈ Rνc×m1 . Additionally, by letting

Mr,r =

[
M̂r1,r1 M̂r1,r2

M̂r2,r1 M̂r2,r2

]
and F̃r =

[
F̃r,1
F̃r,2

]
, one has

rank
([

RM̂r,r,F̃r
R̂Â,B̂

])
= ν, (8)

with R̂Â,B̂ = [ R
′
Âr,r,B̂r

0′ ]′, RM̂r,r,F̃r
=

[ F̃r · · · (M̂r,r)
n−1F̃r ] and RÂr,r,B̂r =

[ B̂r · · · (Âr,r)
n−1B̂r ].

Proof. Let e1, . . . , eνc be a basis of the subspace Im(RA,B),
and let eνc+1, . . . , eν be such that e1, . . . , eν is a basis of the
subspace N . Thus, let eν+1, . . . , en be such that e1, . . . , en is
a basis of Rn. Note that the vectors e1, . . . , en are all chosen
linearly independent. Let T = [ e1 · · · en ]−1. Hence,
consider the vector x̂ = Tx, x̂ = [ x̂′r x̂′u ]′, where x̂r ∈ Rν ,
x̂u ∈ Rn−ν . Note that, by construction, a vector x̂ ∈ Rn is
in N if and only if the corresponding sub–vector x̂u = 0.
Consider the matrix

M̂ := TEeAτMT−1 =

[
M̂r,r M̂r,u

M̂u,r M̂u,u

]
,
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with M̂r,r ∈ Rν×ν , M̂r,u ∈ Rν×n−ν , M̂u,r ∈ Rn−ν×ν , and
M̂u,u ∈ Rn−ν×n−ν . One has that

M̂x̂ =

[
M̂r,rx̂r + M̂r,ux̂u
M̂u,rx̂r + M̂u,ux̂u

]
.

By Lemma 3, the subspace N is EeAτM –invariant. Hence,
M̂u,rx̂r = 0, for all x̂r, i.e., M̂u,r = 0. Moreover, since
Im(F̃ ) ∈ N , letting F̃ := T F̄ = [ F̃ ′r F̃ ′u ]′, one has that
F̃u = 0. Thus, by considering that e1, . . . , eνc is a basis of
RA,B , the matrix T is such that (7c)–(7d) hold. Additionally,
by considering that the rank of a matrix is invariant with
respect to a change of basis, (8) holds.

Proposition 3 provides a control standard form to represent
the dynamics of the hybrid system (1). By taking advantage
of this standard form, the following corollary provides an al-
gebraic condition wholly similar to the classical PBH (Popov-
Belevitch-Hautus) test to verify controllability of system (1).

Corollary 3. System (1) is controllable if and only if

rank([ EeAτM − sI F RA,B ]) = n, (9)

∀s ∈ Λ(EeAτM ), s 6= 0.

Proof. By Corollary 2, system (1) is controllable if and
only if (6) holds. Therefore, in order to prove the statement
of this corollary, it suffices to prove that (6) and (9) are
equivalent. Assume that (6) holds but (9) does not. Hence,
there exists a vector v 6= 0 such that v′EeAτM = λv′,
with λ 6= 0 and such that v′F = 0, v′RA,B = 0. Thus,
v′[ (EeAτM )n REeAτM ,F̄ RA,B ] = [ v′λn 0 0 ] and
v′[ REeAτM ,F̄ RA,B ] = 0. As a matter of fact, by
Lemma 1, for each x such that x = RA,Bw there ex-
ists w̄ such that x = eAτMRA,Bw̄. Hence, v′ERA,Bw =
v′EeAτMRA,Bw̄ = λv′RA,Bw̄ = 0, for each w ∈ Rnm1 ,
and thus v′ERA,B = 0. Therefore, since λ 6= 0, (6) does not
hold, leading to a contradiction.

On the other hand, assume that (9) holds,
but (6) does not. If (6) does not hold, then
rank([ REeAτM ,F̄ RA,B ]) < n. Thus, by Proposition 3,
there exists a matrix T such that (7) hold. It can be
easily checked that rank([ EeAτM − sI F RA,B ]) =

rank([ M̂ − sI F̂ RÂ,B̂ ]). Note that,

RÂ,B̂ =

[
B̂r Âr,rB̂r · · · (Âr,r)

n−1B̂r
0 0 · · · 0

]
.

Hence, let λu ∈ Λ(M̂u,u), and let vu 6= 0 be such that
v′uM̂u,u = λuv

′
u. One has that

[ 0′ v′u ][ M̂ − λuI F̂ RÂ,B̂ ] =

v′u[ 0 M̂uu − λuI 0 0 ] = 0,

leading to a contradiction, because if λu ∈ Λ(M̂u,u), then
λu ∈ Λ(M̂) = Λ(EeAτM ).

The condition given in (9) is usually known in classical
non–hybrid control theory as PBH test. As shown in Exam-
ple 2, such a condition may not be satisfied by a reachable

hybrid system. To reestablish classical implications for non–
hybrid linear systems (as, for instance, “reachability implies
controllability”), consider the following structural property.

Definition 1. System (1) is strongly reachable if, for each
x ∈ Rn, there exist a finite κ ∈ Z>0 such that, for all
t ∈ (tκ, tκ+1), there exist inputs uF (·, ·) and uJ(·) such that
ϕ(t, κ, 0, uF , uJ) = x.

It is worth noticing that a non–hybrid linear system is
reachable if and only if it is strongly reachable. As a matter of
fact, if A = 0 and B = 0, (i.e., if the system is purely discrete),
ϕ(t, κ, 0, uF , uJ) = ϕ(tκ, κ, 0, uF , uJ), for all t ∈ (tκ, tκ+1),
and hence the system is strongly reachable if and only if it is
reachable. On the other hand, if E = I and F = 0 (i.e.,
the system is purely continuous), for each x ∈ Rn, there
exist t̄ ∈ R and uF (·, ·) such that x = ϕ(t̄, 0, 0, uF , 0) if
and only if for each t ∈ R>0 there exists an input ũF (·)
such that x = ϕ(t, 0, 0, ũF , 0). Moreover, by definition, if the
system (1) is strongly reachable it is also reachable. In the
following theorem, a PBH test wholly similar to (9) is stated
for strong reachability.

Theorem 3. The hybrid system (1) is strongly reachable if
and only if

rank([ REeAτM ,F̄ RA,B ]) = n, (10)

or, equivalently, ∀s ∈ Λ(EeAτM ),

rank([ EeAτM − sI F RA,B ]) = n. (11)

Proof. By Corollary 1, for each κ > n,
t ∈ (tκ, tκ+1), there exist uF (·, ·), uJ(·) such
that x = ϕ(t, κ, 0, uF , uJ), if and only if
x ∈ Im([ eA(t−tκ)REeAτM ,F̄ RA,B ]). By Proposition 1, if
(10) holds, then Im([ eA(t−tn)REeAτM ,F̄ RA,B ]) = Rn
for all t ∈ (tn, tn+1) and hence, for each x ∈ Rn and
t ∈ (tn, tn+1), there exist inputs uF (·, ·), uJ(·) such that
x = ϕ(t, n, 0, uF , uJ), i.e., system (1) is strongly reachable.

Assume now that the system is strongly reachable, but that
(10) does not hold. By Theorem 1 and (3), X (τ+tk,k)

r ⊂
X (τ+tk+1,k+1)
r , for all τ ∈ (0, τM ), k ∈ Z>0, and X (τ+tn,n)

r =

X (τ+tn+h,k+h)
r , for all τ ∈ (0, τM ), h ∈ Z>0. Therefore,

if the system (1) is strongly reachable (i.e., X (t,k)
r = Rn

for some k ∈ Z>0 and for all t ∈ (tk, tk+1)), for all
x ∈ Rn and t ∈ (tn, tn+1), there exist inputs uF (·, ·)
and uJ(·) such that ϕ(t, n, 0, uF , uJ) = x. Hence, for
each x ∈ Rn and t ∈ (tn, tn+1), there exists a vector
w such that x = [ eA(t−tn)REeAτM ,F̄ RA,B ]w. Thus,
by Lemma 1, there exists a vector w̄ such that x =
eA(t−tn)[ REeAτM ,F̄ RA,B ]w̄. By considering that the ma-
trices eA(t−tn) and e−A(t−tn) are nonsingular for each t ∈
(tn, tn+1) and that Im(e−A(t−tn)) = Rn, this is in contra-
diction with [ REeAτM ,F̄ RA,B ] being rank deficient. The
equivalence of (10) and (11) follows by the same arguments
given in the proof of Corollary 3.

It is worth pointing out that if the system (1) is strongly
reachable, and hence (11) holds, then, by Corollary 3, the



7

system (1) is also controllable (and hence stabilizable). There-
fore, thanks to Definition 1, we reestablished the classical
implications “strong reachability implies controllability” and
“strong reachability implies stabilizability”. Furthermore, by
considering that, by Corollary 3, the system is controllable
if and only if (6) holds and that, if E is nonsingular, (6)
holds if and only if (10) holds, then, if E is nonsingular,
the system (1) is controllable if and only if it is strongly
reachable. Thus, strong reachability reestablish, in the hybrid
framework of this paper, the equivalence stated in [10, Thm. 7]
for switched linear systems. Moreover, in the subsequent
Section IV, we show that strong reachability is the “dual
property” of observability.

The following proposition extends the results given in [45,
Cor. 1], by stating necessary and sufficient conditions for
assigning the eigenvalues different from zero of the closed
loop system to an arbitrary autoconjugate set of n complex
values with a time–invariant dynamic linear state feedback.

Proposition 4. There exist matrices KF and KJ such that

Ξ := Λ(eAτME + eAτMFKJ +RA,BKF ) (12)

is an arbitrary autoconjugate set of n complex values if and
only if the system (1) is strongly reachable. Additionally,
by letting K̄F be such that RA,BKF = G(τM )K̄F , where
G(τM ) :=

∫ τM
0

eA(τM−t)BB′eA
′(τM−t)dt is the reachability

Gramian of system (1) during flow, the time–invariant dy-
namic state feedback with flow dynamics

τ̇ = 1, (13a)
ξ̇ = −A′ξ, (13b)

whether (τ, x) ∈ [0, τM ]× Rn, jump dynamics

τ+ = 0, (13c)
ξ+ = eA

′τM K̄Fx, (13d)

whether (τ, x) ∈ {τM} × Rn, output

uF = B′ξ, (13e)
uJ = KJx, (13f)

and initial conditions τ(0, 0) = 0, ξ(0, 0) = ξ0, ξ0 ∈ Rn,
is such that the resulting closed loop monodromy matrix has
spectrum Ξ ∪ {0}.

Proof. By Theorem 3, the system (1) is strongly reachable
if and only if (11) (or, equivalently, (10)) holds. By classical
results about discrete–time dynamical systems [46], if (11)
holds, then here exist matrices KF and KJ such that the set
Ξ given in (12) is an arbitrary autoconjugate set of n complex
values (see also [45, Cor. 2]).

Assume now that the set Ξ can be assigned arbitrarily, but
that (10) does not hold. Then, rank([ REeAτM ,F̄ RA,B ]) =
ν < n. Let νc = dim(Im(RA,B)) and let T be the matrix
given in Proposition 3. Consider the matrix M̂ given in (7a).
Let N̂ = eÂτM = TeAτMT−1. Since Â satisfies (7c), N̂ is
such that there exist matrices N̂1 ∈ Rνc×νc , N̂2 ∈ Rνc×ν−νc ,

N̂3 ∈ Rνc×n−ν , N̂4 ∈ Rν−νc×ν−νc , N̂5 ∈ Rν−νc×n−ν N̂6 ∈
Rn−ν×ν−νc , and N̂7 ∈ Rn−ν×n−ν such that

N̂ =

 N̂1 N̂2 N̂3

0 N̂4 N̂5

0 N̂6 N̂7

 . (14)

By considering that det(N̂) = det(N̂1) det
([

N̂4 N̂5

N̂6 N̂7

])
6=

0, one has that det(N̂1) 6= 0, i.e., N̂1 is a nonsingular matrix.
Consider now the matrix

Ê := TET−1 =

 Ê1 Ê2 Ê3

Ê4 Ê5 Ê6

Ê7 Ê8 Ê9

 , (15)

where Ê1 ∈ Rνc×νc , Ê2 ∈ Rνc×ν−νc , Ê3 ∈ Rνc×n−ν ,
Ê4 ∈ Rν−νc×νc , Ê5 ∈ Rν−νc×ν−νc Ê6 ∈ Rν−νc×n−ν
Ê7 ∈ Rn−ν×νc Ê8 ∈ Rn−ν×ν−νc , and Ê9 ∈ Rn−ν×n−ν .
Consider the matrix, M̂ = TEeAτMT−1 = ÊN̂ given
in (7a). Since N̂1 is nonsingular, one has that Ê7 = 0,
M̂u,u = Ê8N̂5 + Ê9N̂7, and Ê8N̂4 + Ê9N̂6 = 0.

Let K̄F ∈ Rm1×n and KJ ∈ Rm2×n and let K̂F :=
KFT

−1 = [ K̂F,r K̂F,u ], K̂F,r ∈ Rm1×νc , and K̂J =

KJT
−1 = [ K̂J,r K̂J,u ], K̂J,r ∈ Rm2×ν . By (7c)–(7d),

RÂ,B̂K̂F =

[
RÂr,r,B̂rK̂F,r RÂr,r,B̂rK̂F,u

0 0

]
,

for any K̄F ∈ Rm1×n. Consider now the matrix (Ê + F̂ K̂J).
It can be easily checked that, for any KJ ∈ Rm2×n,

Ē := Ê + F̂ K̂F =

 Ē1 Ē2 Ē3

Ē4 Ē5 Ē6

0 Ê8 Ê9

 ,
where Ê8 and Ê9 are the ones given in (15). Consider now
the matrix M̄ := ĒN̂ = (Ê + F̂ K̂J)eÂτM . Since M̂u,u =
Ê8N̂5 + Ê9N̂7, and Ê8N̂4 + Ê9N̂6 = 0, one has that

M̄ =

 M̄1 M̄2 M̄3

M̄4 M̄5 M̄6

0 0 M̂u,u

 . (16)

Therefore, Λ(M̂u,u) ⊂ Λ(EeAτM + FKJe
AτM + RA,BKF ),

for every KF ∈ Rm1×n and KJ ∈ Rm2×n. Since
eAτM is invertible, it defines a change of basis. There-
fore, Λ(EeAτM + BKJe

AτM + RA,BKF ) = Λ(eAτME +
eAτMBKJ +eAτMRA,BK̃F ), where K̃F = KF e

−AτM . Thus,
since, by Lemma 1, Im(RA,B) = Im(eAτMRA,B) and the
matrix e−AτM is nonsingular, Λ(M̂u,u) ⊂ Λ(eAτME +
eAτMBKJ + RA,BKF ), for every KF ∈ Rm1×n and KJ ∈
Rm2×n, leading to a contradiction. The fact that the time–
invariant dynamic state feedback (13) is such that the resulting
closed loop monodromy matrix has spectrum Ξ∪{0} follows
by [45, Prop. 1].

By (14), (15), and (16), it can be easily proved that, if
there exists λ ∈ Λ(M̂u,u), λ /∈ Cg , then it is not possible to
stabilize the system with a static time–invariant state feedback.
The following theorem states that such a condition is indeed
necessary for the stabilizability of system (1) and that it is, in
fact, equivalent to [45, (7)].
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Theorem 4. System (1) is stabilizable if and only if @λ ∈
Λ(M̂u,u) such that λ /∈ Cg , where M̂u,u is the matrix given
in (7a), or, equivalently, ∀s ∈ Λ(EeAτM ), s /∈ Cg ,

rank([ EeAτM − sI F RA,B ]) = n. (17)

Proof. By Propositions 3, 4, and (8), if @λ ∈ Λ(M̂u,u) such
that λ /∈ Cg , then there exists a dynamic time–invariant state
feedback such that the closed loop monodromy matrix has
spectrum contained in Cg . Hence, then there exist uF (·, ·)
and uJ(·) such that limt+k→∞ ϕ(t, k, x0, uF , uJ) = 0, i.e.,
system (1) is stabilizable [36, Prop. 1].

Assume that system (1) is stabilizable and that there exists
λ ∈ Λ(M̂u,u) such that λ /∈ Cg . Let ϕ̂(t, k, x̂, uF , uJ) denote
the solution to system (1) with initial condition x̂ and inputs
uF (·, ·), uJ(·) in the coordinates x̂ = [ x̂′r x̂′u ]′ = Tx, i.e.,
ϕ̂(t, k, x̂, uF , uJ) := Tϕ(t, k, Tx, uF , uJ). It can be easily
checked that, for all uF (·, ·), uJ(·), the dynamics of x̂u(tk, k),
k ∈ Z>0, are given by

x̂u(tk+1, k + 1) = M̂u,ux̂u(tk, k). (18)

Let γ(k,wu) be the solution to (18) with initial condition wu.
Hence, since λ /∈ Cg and |ϕ̂(tk, k, [ x̂

′
r x̂′u ]′, uF , uJ)| >

|γ(k, x̂u)|, for all k ∈ Z>0, one has that there exists an initial
condition w such that limt+k→∞ ϕ̂(t, k, w, uF , uJ) 6= 0, for
all uF (·, ·), uJ(·), leading to a contradiction.

We conclude the proof by showing that the set Θ = {λ ∈
Λ(EeAτM ) : rank([ EeAτM − sI F RA,B ]) 6= n} equals
Λ(M̂u,u). Assume that ∃λr ∈ Θ such that λr /∈ Λ(M̂u,u).
Then, λr ∈ Λ(EeAτM ) \ Λ(M̂u,u) is such that there exists
v = [ v′r v′u ]′ 6= 0 such that[

vr
vu

]′ [
M̂r,r − λrI M̂r,u F̂r R̂Â,B̂

0 M̂u,u − λrI 0 0

]
= 0,

where R̂Â,B̂ = [ R
′
Âr,r,B̂r

0′ ]′. By considering that, by
Proposition 3, rank([ RM̂r,r,F̃r

R̂Â,B̂ ]) = ν, and hence, by
Corollary 3 and (11), rank[ M̂r,r − λI F̂r R̂Â,B̂ ] = ν,
one has that vr = 0, for all λ ∈ Λ(M̂r,r). Thus, there
exists vu 6= 0 such that v′u(M̂u,u − λrI) = 0, leading to
a contradiction. Therefore, Θ ⊂ Λ(M̂u,u). Consider now
λu ∈ Λ(M̂u,u), and let vu 6= 0 be such that v′uM̂u,u = λuv

′
u.

One has that

[ 0′ v′u ][ M̂ − λuI F̂ RÂ,B̂ ] =

v′u[ 0 M̂uu − λuI 0 0 ] = 0,

and hence Λ(M̂u,u) ⊂ Θ.

B. Observability, constructibility and detectability

Consider system (1), with the measurable outputs (2). By
the linearity of such a system it can be easily checked that, for
any initial condition x0 and any control inputs uF (·, ·), uJ(·),

yF (t, k) = CFϕ(t, k, x0, 0, 0)+
CFϕ(t, k, 0, uF , uJ),

yJ(k) = CJϕ(tk, k − 1, x0, 0, 0)+
+CJϕ(tk, k − 1, 0, uF , uJ).

Note that, since the inputs uF (·, ·) and uJ(·) are assumed to
be known, it is always possible to compute the forced response
ϕ(t, k, 0, uF , uJ) of system (1) to such inputs. Therefore,
system (1), (2) is observable, constructible, or detectable if
and only if the hybrid system with flow dynamics

τ̇ = 1, (19a)
ẋ = Ax, (19b)

whether (τ, x) ∈ [0, τM ]× Rn, jump dynamics

τ+ = 0, (19c)
x+ = Ex, (19d)

whether (τ, x) ∈ {τM} × Rn, outputs

yF (t, k) = CFx(t, k), (19e)
yJ(k) = CJx(tk, k), (19f)

and initial conditions τ(0, 0) = 0, x(0, 0) = x0, is observable,
constructible, or detectable, respectively. Note that the free
response ϕ(t, k, x0, 0, 0) of system (1) with initial condition
x0 ∈ Rn is given by ϕ(t, k, x0, 0, 0) = eA(t−tk)(EeAτM )kx0.
Hence, the outputs yF (t, k) and yJ(k) defined in (19e) and
(19f), respectively, are given by

yF (t, k) = CF e
A(t−tk)(EeAτM )kx0, (20a)

yJ(k) = CJe
AτM (EeAτM )k−1x0. (20b)

Consider the unobservable set

Xi := {x ∈ Rn : CF e
A(t−tk)(EeAτM )kx = 0 and

CJe
AτM (EeAτM )k−1x = 0,∀(t, k) ∈ T }.

As for classical non–hybrid linear systems, if there exists
x ∈ Xi, x 6= 0, then system (19) is not observable, while if
Xi = {0}, then system (19) is observable.

Lemma 4. Xi is an EeAτM –invariant subspace of Rn.

Proof. Let xa, xb ∈ Xi, i.e., CF eA(t−tk)(EeAτM )kxa = 0,
CJe

AτM (EeAτM )k−1xa = 0, CF eA(t−tk)(EeAτM )kxb = 0,
and CJe

AτM (EeAτM )k−1xb = 0, for all (t, k) ∈ T . Hence,
one has that CF eA(t−tk)(EeAτM )k(αxa + βxb) = 0 and
CJe

AτM (EeAτM )k−1(αxa + βxb) = 0, for any α, β ∈ R
and for all (t, k) ∈ T . Thus, Xi is a subspace of Rn.

Consider now x ∈ Xi. One has that
CF e

A(t−tk)(EeAτM )kx = 0, CJeAτM (EeAτM )k−1x = 0,
for all (t, k) ∈ T . Let x̄ = EeAτMx. One has that
CF e

A(t−tk)(EeAτM )kx̄ = CF e
A(t−tk)(EeAτM )k+1x = 0

and CJe
AτM (EeAτM )k−1x̄ = CJe

AτM (EeAτM )kx = 0.
Thus, if x ∈ Xi, then x̄ = EeAτMx ∈ Xi, i.e., Xi is
EeAτM –invariant.

Let OA,CF be the observability matrix of
the continuous–time LTI system (19b)–(19e),
OA,CF := [ C ′F · · · (CFA

n−1)′ ]′, and let
C := [ (CJe

AτM )′ O′A,CF ]′. The following
theorem characterizes the set Xi in terms of the data
(A,E,CF , CJ , τM ) of the hybrid system (19).

Theorem 5. The set Xi is the subspace of Rn given by

Xi = Ker(OEeAτM ,C), (21)
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with OEeAτM ,C := [ C ′ · · · (C(EeAτM )n−1)′ ]′.

Proof. Define the matrix OEeAτM ,CJeAτM :=
[ (CJe

AτM )′ · · · (CJe
AτM (EeAτM )n−1)′ ]′. By

classical results about non–hybrid linear systems, one
has that yF (t, k) = 0 for all (t, k) ∈ T if and only
if (EeAτM )kx0 ∈ Ker(OA,CF ), for all k ∈ Z>0,
while yJ(k) = 0, for all k ∈ Z>0, if and only
if x0 ∈ Ker(OEeAτM ,CJeAτM ). By the Caylely–
Hamilton theorem, there exist a0, . . . , an−1 ∈ R
such that (EeAτM )n =

∑n−1
h=0 ah(EeAτM )h. Hence,

yF (t, k) = 0, for all (t, k) ∈ T , if and only if
(EeAτM )kx0 ∈ Ker(OA,CF ), for all k ∈ Z>0, k 6 n − 1.
Hence, by considering that (EeAτM )kx0 ∈ Ker(OA,CF )
if and only if x0 ∈ Ker(OA,CF (EeAτM )k), one has that
x0 ∈ Xi if and only if x0 ∈ Ker(OEeAτM ,CJeAτM ) ∩
Ker([ O′A,CF · · · (OA,CF (EeAτM )n−1)′ ]′), i.e. if and
only if x0 ∈ Ker(OEeAτM ,C).

Corollary 4. The system (19) is observable if and only if

rank(OEeAτM ,C) = n, (22)

or, equivalently, ∀s ∈ Λ(EeAτM ),

rank([ (EeAτM )′ − sI (CJe
AτM )′ O′A,CF ]′) = n. (23)

By the same reasonings given in Proposition 4, there exist
matrices LF ∈ Rn×q1 and LJ ∈ Rn×q2 such that

Υ = Λ((E + LJCJ)eAτM + LFOA,CF ). (24)

is an arbitrary autoconjugate set of n complex values if and
only if the system (19) is observable.

Define the observability Gramian of the system during flow

W (τM ) =

∫ τM

0

eA
′tC ′FCF e

Atdt.

For each LF ∈ Rn×q2 , there exists L̄F ∈ Rn×q2 such that
LFOA,CF = L̄FW (τM ), since, for each t 6= 0, Ker(W (t)) =
Ker(OA,CF ). Hence, consider the system with flow dynamics

τ̇ = 1, (25a)
˙̌x = Ax̌, (25b)
ζ̇ = C ′F (CF x̌− yF )−A′ζ, (25c)

whether (τ, x̌, ζ) ∈ [0, τM ]× Rn × Rn, jump dynamics

τ+ = 0, (25d)
x̌+ = Ex̌+ LJ(CJ x̌− yJ) + L̄F e

A′τM ζ, (25e)
ζ+ = 0, (25f)

whether (τ, x̌, ζ) ∈ {τM} × Rn × Rn, and initial conditions
τ(0, 0) = 0, x̌(0, 0) = x̌0, x̌0 ∈ Rn, ζ(0, 0) = ζ0, ζ0 ∈ Rn.

Let LF be such that LFOA,CF = L̄FW (τM ). Let
ψ(t, k, x0) be the solution to system (19) with initial con-
dition x0, and let [ ψ̌′(t, k, x̌0, ζ0) µ′(t, k, x̌0, ζ0) ]′ be the
solution to system (25), with initial condition [ x̌′0 ζ ′0 ]′.
The following proposition shows that if LJ , LF are such that
Υ ⊂ Cg , then limt+k→∞ ψ̌(t, k, x̌0, ζ0)− ψ(t, k, x0) = 0, for

all x0, x̌0, ζ0 ∈ Rn, i.e., system (25) is a state observer for
system (19).

Proposition 5. Let Υ be the set given in (24), let LJ and
LF be matrices such that Υ ⊂ Cg , and let L̄F be such that
LFOA,CF = L̄FW (τM ). Then, limt+k→∞ ψ̌(t, k, x̌0, ζ0) −
ψ(t, k, x0) = 0, for all x0, x̌0, ζ0 ∈ Rn.

Proof. Define the estimation error x̃(t, k) := x̌(t, k)−x(t, k).
Since yF = CFx and yJ = CJx, the flow dynamics of
[ x̃′ ζ ′ ]′ are given by

τ̇ = 1, (26a)
˙̃x = Ax̃, (26b)
ζ̇ = C ′FCF x̃−A′ζ, (26c)

whether (τ, x̃, ζ) ∈ [0, τM ]×Rn×Rn, and the jump dynamics
of [ x̃′ ζ ′ ]′ are given by

τ+ = 0, (26d)
x̃+ = (E + LJCJ)x̃+ L̄F e

A′τM ζ, (26e)
ζ+ = 0, (26f)

whether (τ, x̃, ζ) ∈ {τM}×Rn×Rn. Define χ = [ x̃′ ζ ′ ]′,

H :=

[
A 0

C ′FCF −A′
]
, J :=

[
E + LJCJ L̄F e

A′τM

0 0

]
.

Clearly, χ̇ = Hχ and χ+ = Jχ. By considering that

eHτM =

[
eAτM 0

e−A
′τMW (τM ) e−A

′τM

]
,

one has that the monodromy matrix of system (26) is

JeHτM =

[
(E + LJCJ)eAτM + L̄FW (τM ) L̄F

0 0

]
.

Hence, the matrix JeHτM has spectrum Υ ∪ {0}. Thus, by
[36, Prop. 1], limt+k→∞ x̃(t, k) = 0.

The state observer given in (25) employs the observability
Gramian W (τM ) to estimate the state of the system (1)
from the outputs yF (·, ·) and yJ(·) given in (19e) and (19f),
respectively. It is worth noticing that Gramian–based observers
have been used in the literature (see [36], [47]) to estimate
the state of system (1) when just continuous–time outputs
are available. Proposition 5 generalizes such results for hybrid
systems having both continuous– and discrete–time outputs.

In the remainder part of this section, hybrid systems such
that (22) (or, equivalently, (23)) does not hold are considered.

Proposition 6. Assume that dim(Ker(OEeAτM ,C)) = ν > 0.
Let νc = dim(Ker(OA,CF )) > ν. There exists a matrix T ∈
Rn×n such that

M̂ := TEeAτMT−1 =

 M̂i,i M̂i,o1
M̂i,o2

0 M̂o1,o1 M̂o1,o2

0 M̂o2,o1
M̂o2,o2

 , (27a)

ĈJ := CJe
AτMT−1 =

[
0 ĈJ,o1 ĈJ,o2

]
, (27b)

Â := TAT−1 =

 Âi1,i1 Âi1,i2 Âi1,o
Âi2,i1 Âi2,i2 Âi2,o

0 0 Âo,o

 , (27c)

ĈF := CFT
−1 =

[
0 0 ĈF,o

]
, (27d)
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with M̂i,i ∈ Rν×ν , M̂i,o1
∈ Rν×νc−ν , M̂i,o2

∈
Rν×n−νc , M̂o1,o1 ∈ Rνc−ν×νc−ν , M̂o1,o2 ∈ Rνc−ν×n−νc ,
M̂o2,o1 ∈ Rn−νc×νc−ν , M̂o2,o2 ∈ Rn−νc×n−νc , ĈJ,o1 ∈
Rq2×νc−ν , ĈJ,o2

∈ Rq2×νc−ν , and ĈF,o ∈ Rq1×n−νc .

Additionally, by letting M̂o,o =

[
M̂o1,o1

M̂o1,o2

M̂o2,o1 M̂o2,o2

]
and Ĉ =

[
ĈJ,o1

ĈJ,o2

0 OÂo,o,ĈF,o

]
, where OÂo,o,ĈF,o :=

[ Ĉ ′F,o · · · (ĈF,oÂ
n−1
o,o )′ ]′, one has that

dim(Ker(OM̂o,o,Ĉ
)) = 0, (28)

where OM̂o,o,Ĉ
:= [ Ĉ ′ · · · (ĈM̂n−1

o,o )′ ]′.

Proof. Let e1, . . . , eν be a basis of the subspace
Ker(OEeAτM ,C) and let eν+1, . . . , eνc be such that e1, . . . , eνc
is a basis of Ker(OA,CF ). Thus, let eνc+1, . . . , en be such
that e1, . . . , en is a basis of Rn. Note that the vector
e1, . . . , en are chosen linearly independent. Hence, let
T = [ e1 · · · en ]−1. Define the vector x̂ = Tx,
x̂ = [ x̂′i x̂′o ], where x̂i ∈ Rν , x̂o ∈ Rn−ν . Note that, by
construction, x̂ ∈ Xi if and only if x̂o = 0. Consider

M̂ := TEeAτMT−1 =

[
M̂i,i M̂i,o

M̂o,i M̂o,o

]
,

where M̂i,i ∈ Rν×ν , M̂i,o ∈ Rν×n−ν , M̂o,i ∈ Rn−ν×ν , and
M̂o,o ∈ Rn−ν×n−ν . One has that

M̂x̂ =

[
M̂i,ix̂i + M̂i,ox̂o
M̂o,ix̂i + M̂o,ox̂o

]
.

By Lemma 4 the subspace Xi is EeAτM –invariant, whence
M̂o,i = 0. Since CJe

AτM is in the orthogonal comple-
ment of Xi, letting ĈJ = CJe

AτMT−1 = [ ĈJ,i Ĉj,o ],
one has that ĈJ,i = 0. Additionally, by considering that
e1, . . . , eνc is a basis of Ker(OA,CF ), by classical analysis,
the matrix T is such that (27c)–(27d) hold. Moreover, since
dim(Ker(OEeAτM ,C)) = dim(Ker(OM̂,Ĉ)), (28) holds.

Note that the results given in Proposition 6 with respect to
observability of system (19) are similar to the results given in
Proposition 3 with respect to strong reachability of system (1).
Consider the following theorem.

Theorem 6. System (19) is constructible if and only if

Xi ⊂ Ker((EeAτM )n). (29)

Proof. Let ψ(t, k, x0) be the solution to system (19) at time
(t, k) ∈ T with initial condition x0, i.e., ψ(0, 0, x0) = x0.
By (20), one has that CFψ(t, k, x0) = CFψ(t, k, x̄0) and
CJψ(tk, k, x0) = CJψ(tk, k, x̄0), for all (t, k) ∈ T , k ∈ Z>0,
if and only if x̄ := x0−x̄0 ∈ Xi. Therefore, if (29) holds, then
(EeAτM )nx̄ = 0, whence ψ(t, k, x0) = ψ(t, k, x̄0), for all
(t, k) ∈ T with t > tn and k ∈ Z>0, k > n. Thus, system (19)
is constructible, because by using only measurements of the
outputs yF (·, ·), yJ(·, ) up to time (tn, n), it is possible to
determine ψ(tn, n, x0).

Assume now that system (19) is constructible and that
(29) does not hold. Hence, there exists x̄0 ∈ Xi such that
(EeAτM )nx̄0 6= 0. By classical results about discrete–time

linear systems, if (EeAτM )nx̄0 6= 0, then (EeAτM )hx̄0 6= 0,
for each h ∈ Z>0, h > n. Hence, consider the solu-
tions to system (19) ψ(t, k, x0) and ψ(t, k, x0 + x̄0). Since
x̄0 ∈ Xi, one has that Cψ(t, k, x0) = Cψ(t, k, x0 + x̄0), but
ψ(th, h, x0) 6= ψ(th, h, x0 + x̄0), h ∈ Z>0, h > n, because
(EeAτM )hx̄0 6= 0, i.e., system (19) is not constructible,
leading to a contradiction.

Note that (29) holds if and only if Ker(OEeAτM ,C) =

Ker([ O′EeAτM ,C
((EeAτM )n)′ ]′), or, equivalently,

rank

([
EeAτM

OEeAτM ,C

])
= rank(OEeAτM ,C). (30)

By taking advantage of (30), in the following corollary, we
provide a PBH test for constructibility of system (19).

Corollary 5. The system (19) is constructible if and only if
for all s ∈ Λ(EeAτM ), s 6= 0,

rank([ (EeAτM )′ − sI (CJe
AτM )′ O′A,CF ]′) = n. (31)

Proof. By Theorem 6, the hybrid system (19) is constructible
if and only if (29) (or, equivalently, (30)) holds. Hence, in
order to prove the statement of this corollary, it suffices to
prove that (30) is equivalent to (31). Assume that (30) hold,
but (31) does not. Hence, there exists v 6= 0 such that
EeAτM v = λv, Cv = 0, with λ 6= 0. Thus, OEeAτM ,Cv = 0,
while [ (EeAτM )′ O′

EeAτM ,C ]′v = [ λnv′ 0 ]′, leading
to a contradiction.

Assume now that (31) holds, but (30) does not. If (30) does
not hold, then rank(OEeAτM ,C) < n, whence, by Proposi-
tion 6, there exists a matrix T such that (27) holds. Note that
rank([ (EeAτM )′ O′

EeAτM ,C ]′) = rank([ M̂ ′ O′
M̂,Ĉ

]′).

Hence, let λi ∈ Λ(M̂i,i) and let vi be such that
M̂i,ivi = λivi. One has that [ M̂ ′ − λiI Ĉ ′ ]′[ v′i 0′ ]′ =

[ ((M̂ii − λiI)vi)
′ 0′ ]′ = 0, leading to a contradiction.

The following two results characterize the detectability of
system (19) in terms of the data (A,E,CF , CJ , τM ).

Theorem 7. The system (19) is detectable if and only if
@λ ∈ Λ(M̂i,i) such that λ /∈ Cg , or, equivalently, for all
s ∈ Λ(EeAτM ), s /∈ Cg ,

rank([ (EeAτM )′ − sI (CJe
AτM )′ O′A,CF ]′) = n. (32)

Proof. If rank(OEeAτM ,C) = n, then system (19) is detectable
(indeed, observable) and there exists no λ ∈ Λ(M̂i,i) such
that λ /∈ Cg . Assume now that rank(OEeAτM ,C) < n. The set
of all the s such that (32) does not hold is Λ(M̂i,i). Hence,
@λ ∈ Λ(M̂i,i) such that λ /∈ Cg if and only if (32) holds for
all s ∈ Λ(EeAτM ), s /∈ Cg .

Assume that (32) holds. Hence, there exist matrices LF ∈
Rn×q1 and LJ ∈ Rn×q2 such that the set Υ in (24) is contained
in Cg . Thus, by Proposition 5, for any x0 ∈ Rn, by using only
measurements of yF (·, ·), yJ(·), it is possible to determine an
estimate x̂(t, k) of x(t, k) that is such that limt+k→∞ x̂(t, k)−
x(t, k) = 0, i.e., system (19) is detectable.

Assume now that there exists λ ∈ Λ(M̂i,i) such that
λ /∈ Cg . Let ψ̂(t, k, x̂) denote the solution to system (19)
with initial condition x̂ = Tx, i.e., ψ̂(t, k, x̂) := Tψ(t, k, Tx).



11

Hence, there exists w ∈ Rn such that ĈF ψ̂(t, k, w) =
ĈF ψ̂(t, k, 0) = 0, ĈJ ψ̂(tk, k−1, w) = ĈJ ψ̂(tk, k−1, 0) = 0,
and limt+k→∞ ψ̂(t, k, w) 6= 0. Hence, since ψ̂(t, k, w) is
indistinguishable from 0 by using only measurements of the
outputs yF (·, ·) and yJ(·), it is not possible to determine an
estimate x̂(t, k) of x(t, k) that is such that limt+k→∞ x̂(t, k)−
x(t, k) = 0, i.e., system (19) is not detectable.

IV. DUALITY

In this section, a duality theorem for the hybrid system (1),
(2) is stated to characterize its “control” structural properties in
terms of “observation” structural properties of a dual system.
In order to achieve such a result, parity between “control”
and “observation” properties has to be established. In fact, in
Section III, four “control” and three “observation” structual
properties have been defined and framed in terms of algebraic
and geometrical conditions on the data of the hybrid system.
As highlighted in Section III, the classical implications “strong
reachability implies controllability”, “controllability implies
stabilizability”, “observability implies constructibility”, and
“constructibility implies detectability” hold for the hybrid
system (1), (2), while there is not direct implication between
reachability and the other structural properties. By this rea-
soning, in this section, a duality principle is stated neglecting
the latter structural property.

Define the monodromy discrete–time, LTI system

z(k) = Āz(k) + B̄v(k), (33a)
w(k) = C̄z(k), (33b)

where Ā := EeAτM , B̄ := [ F RA,B ],
and C̄ := [ (CJe

AτM )′ O′A,CF ]′, where
RA,B := [ B · · · An−1B ] and OA,CF :=
[ C ′F · · · (CFA

n−1)′ ]′. The following proposition
characterizes the structural properties of the hybrid system (1),
(2) in terms of the ones of the monodromy system (33).

Proposition 7. The system (1), (2) is strongly reachable (resp.,
controllable, stabilizable, observable, constructible, detectable)
if and only if the system (33) is reachable (resp., controllable,
stabilizable, observable, constructible, detectable).

Proof. By classical results about discrete–time LTI sys-
tems [44], the monodromy system (33) is reachable if and
only if rank[ B̄ · · · Ān−1B̄ ] = n, or, equivalently,
rank[ Ā− sI B̄ ] = n, for all s ∈ Λ(Ā). By considering
that [ Ā− sI B̄ ] = [ EeAτM − sI F RA,B ] and that
the system (1) is strongly reachable if and only if (11) holds,
the system (1), (2) is strongly reachable if and only if the sys-
tem (33) is reachable . The necessary and sufficient conditions
for controllability, stabilizablity, observability, constructibility,
and detectability of the system (1), (2) given in Corollaries 3,
4, 5 and in Theorems 3, 4, 7, conclude the proof.

By [48, Sec. 3.1.A.3], the monodromy system (33) is reach-
able (resp., controllable, stabilizable, observable, constructible,
detectable) if and only if the dual monodromy system

zD(k) = ĀDz(k) + B̄Dv(k), (34a)
wD(k) = C̄Dz(k), (34b)

where ĀD := Ā′, B̄D := C̄ ′, and C̄D := B̄′, is observable
(resp., constructible, detectable, reachable, controllable, stabi-
lizable). Thus, consider the hybrid system with flow dynamics

τ̇ = 1, (35a)
ẋD = ADxD +BDuD,F , (35b)

whether (τ, xD) ∈ [0, τM ]× Rn, jump dynamics

τ+ = 0, (35c)
x+
D = EDxD + FDuD,J , (35d)

whether (τ, xD) ∈ {τM} × Rn, and measurable outputs

yD,F (t, k) = CD,FxD(t, k), (35e)
yD,J(k) = CD,JxD(tk, k − 1). (35f)

The following theorem is known for non–hybrid linear
system as duality theorem.

Theorem 8. The system (1), (2) is strongly reachable
(resp., controllable, stabilizable, observable, constructible, de-
tectable) if and only if the system (35) with data

AD = A′, BD = C ′F ,

ED = eA
′τME′e−A

′τM , FD = eA
′τMC ′J ,

CD,F = B′, CD,J = F ′e−A
′τM ,

is observable (resp., constructible, detectable, strongly reach-
able, controllable, stabilizable).

Proof. By Proposition 7, the system (35) is strongly reachable
(resp., controllable, stabilizable, observable, constructible,
detectable) if and only if the discrete–time system (34)
with ĀD = EDe

ADτM , B̄D = [ FD RAD,BD ],
and C̄D = [ (CD,Je

ADτM )′ O′AD,CD,F ]′,
where RAD,BD := [ BD · · · An−1

D BD ] and
OAD,CD,F := [ C ′D,F · · · (CD,FA

n−1
D )′ ]′ is

reachable (resp., controllable, stabilizable, observable,
constructible, detectable). Therefore, if the data of the hybrid
system (35) are the ones given above, one has that ĀD :=
EDe

ADτM = eA
′τME′e−A

′τM eA
′τM = eA

′τME′ = Ā′,
FD = eA

′τMC ′J , RAD,BD = [ C ′F · · · (A′)n−1C ′F ] =
O′A,CF , CD,Je

ADτM = F ′, and OAD,CD,J =

[ B · · · An−1B ]′ = R′A,B . Hence, since ĀD = Ā′,
B̄D = [ FD RAD,BD ] = [ (CJe

AτM )′ O′A,CF ] = C̄ ′,
and C̄D = [ F RA,B ]′ = B̄′, and the monodromy
system (33) is reachable (resp., controllable, stabilizable,
observable, constructible, detectable) if and only if the dual
system (34) is observable (resp., constructible, detectable,
reachable, controllable, stabilizable), then, by Proposition 7,
the system (1), (2) is strongly reachable (resp., controllable,
stabilizable, observable, constructible, detectable) if and
only if the system (35) is observable (resp., constructible,
detectable, strongly reachable, controllable, stabilizable).
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V. OUTPUT FEEDBACK STABILIZATION

Consider the dynamic time–invariant output feedback with
flow dynamics

τ̇ = 1, (36a)
˙̌x = Ax̌+BuF , (36b)
ζ̇ = C ′F (CF x̌− yF )−A′ζ, (36c)
ξ̇ = −A′ξ, (36d)

whether (τ, x̌, ζ, ξ) ∈ [0, τM ]×Rn×Rn×Rn, jump dynamics

τ+ = 0, (36e)
x̌+ = Ex̌+ FuJ + LJ(CJ x̌− yJ) + L̄F e

A′τM ζ, (36f)
ζ+ = 0, (36g)

ξ+ = eA
′τM K̄F x̌, (36h)

whether (τ, x̌, ζ, ξ) ∈ {τM} × Rn × Rn × Rn, output

uF = B′ξ, (36i)
uJ = KJ x̌, (36j)

and initial conditions τ(0, 0) = 0, x̌(0, 0) = x̌0, x̌0 ∈ Rn,
ζ(0, 0) = ζ0, ζ0 ∈ Rn, ξ(0, 0) = ξ0, ξ0 ∈ Rn.

The following theorem is known for non–hybrid linear
system as separation principle.

Theorem 9. Let G(τM ) and W (τM ) be, respectively, the
reachability and observability Gramian of system (1) during
flow. Let matrices KF and LF be given, and let K̄F and
L̄F be such that RA,BKF = G(τM )K̄F and LFOA,CF =
L̄FW (τM ), respectively. The time invariant dynamic output
feedback (36) is such that the closed loop monodromy matrix
has spectrum Ξ∪Υ∪ {0}, where Ξ and Υ are the sets given
in (12) and (24), respectively.

Proof. Let χ = [ x ξ′ x̌′ ζ ′ ]′ and let

AΣ =


A BB′ 0 0
0 −A′ 0 0
0 BB′ A 0

−C ′FCF 0 C ′FCF −A′

 ,

EΣ =


E 0 FKJ 0

0 0 eA
′τM K̄F 0

−LJCJ 0 E + FKJ + LJCJ L̄F e
A′τM

0 0 0 0

 .
Clearly, the dynamics of the closed loop system are given by
χ̇ = AΣχ, χ+ = EΣχ. Define the matrices

T :=


I 0 0 0
0 I 0 0
−I 0 I 0
0 0 0 I

 ,

ÂΣ =


A BB′ 0 0
0 −A′ 0 0
0 0 A 0
0 0 C ′FCF −A′

 ,

ÊΣ =


E + FKJ 0 FKJ 0

eA
′τM K̄F 0 eA

′τM K̄F 0

0 0 E + LJCJ L̄F e
A′τM

0 0 0 0

 ,

where ÂΣ = TAΣT
−1 and ÊΣ = TEΣT

−1. Note that the
matrix eÂΣτM equals

eAτM G(τM )e−A
′τM 0 0

0 e−A
′τM 0 0

0 0 eAτM 0

0 0 e−A
′τMW (τM ) e−A

′τM

 .
Hence, by computing the closed loop monodromy matrix
ÊΣe

ÂΣτM , it can be easily checked that the spectrum of such
a matrix is Ξ ∪Υ ∪ {0}.

The main goals of this section are formalized in the follow-
ing problem.

Problem 1. Let system (1) with outputs (2) be given. Find,
if any, a linear dynamic time–invariant output feedback with
state η(t, k) ∈ RnK , flow dynamics

τ̇ = 1, (37a)
η̇ = AKη +BKyF , (37b)

whether (τ, η) ∈ [0, τM ]× RnK , jump dynamics

τ+ = 0, (37c)
η+ = EKη + FKyJ , (37d)

whether (τ, η) ∈ {τM} × RnK , output

uF = CK,F η, (37e)
uJ = CK,Jη, (37f)

and initial condtions τ(0, 0) = 0, η(0, 0) = η0, η0 ∈ RnK ,
such that, letting MΣ be the closed loop monodromy matrix,

(I) Λ(MΣ) ⊂ Cg;
(II) Λ(MΣ) ⊂ {s ∈ C : |s| < %}, for a given 0 < % < 1.

(III) Λ(MΣ) = {0};

Note that, if one is able to find a solution to Problem 1.I,
then the dynamic time–invariant output feedback (37) is such
that the closed loop system is asymptotically stable [36,
Prop. 1]. On the other hand, if one is able to find a solution to
Problem 1 II, then, letting χ = [ x′ η′ ]′, there exists a con-
stant c ∈ R, c > 0, such that, for any initial condition χ(0, 0)
of the closed loop dynamical system, |χ(t, k)| 6 c%k|χ(0, 0)|.
Finally, if one is able to find a solution to Problem 1.III, then
the controller (37) is such that the state of the closed loop
system is driven to 0 in finite time.

The following three propositions give conditions to guaran-
tee the existence of a solution to Problem 1.

Proposition 8. There exists a solution to Problem 1.I if and
only if system (1), (2) is stabilizable and detectable.

Proof. If system (1) is stabilizable, then, by Theorem 4, there
exist matrices KJ and K̄F such that the set Ξ given in (12) is
contained in Cg . On the other hand, if system (1) with outputs
(2) is detectable, then, by Theorem 7, there exist matrices
LJ and L̄F such that the set Υ given in (24) is contained in
Cg . Hence, by Theorem 9, the dynamic time–invariant output
feedback (36) is such that the monodromy matrx of the closed
loop system has spectrum contained in Cg .
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Assume now that there exists a dynamic time–invariant
output feedback (37) that solves Problem 1.I, but system (1) is
not stabilizable. Hence, by Proposition 3, there exists a matrix
T such that (7) holds. Additionally, since system (1) is not
stabilizable, by Theorem 4, there exists λ ∈ Λ(M̂u,u) such
that λ /∈ Cg . By letting x̂ = Tx, one has that the state
of the closed loop system is χ̂ = [ x̂′r x̂′u η′ ]′. Thus,
there exists w ∈ Rν such that, by letting the initial condition
of the closed loop system be χ̂(0, 0) = [ 0 w′ 0 ]′,
|x̂u(t, k)| 6 |χ̂(t, k)|. By assumption, the closed loop system
has all eigenvalues in Cg , whence limt+k→∞ χ̂(t, k) = 0.
However, since ∃λ ∈ Λ(M̂u,u) such that λ /∈ Cg , one
has that limk→∞ x̂u(tk, k) is not equal to zero, leading to
a contradiction. On the other hand, assume that there exists
a dynamic time–invariant output feedback (37) that solves
Problem 1.I, but system (1) with output (2) is not detectable.
Hence, by Proposition 6, there exists a matrix T such that
(27) holds. Moreover, since the system is not detectable, by
Theorem 7, there exists λ ∈ Λ(M̂i,i) such that λ /∈ Cg .
Thus, by a reasoning wholly similar to the one given for
stabilizability, this leads to a contradiction.

Proposition 9. There exists a solution to Problem 1.II if and
only if system (1), (2) is such that, ∀s ∈ Λ(EeAτM ), |s| > %,

rank([ EeAτM − sI F RA,B ]) = n, (38a)

rank([ (EeAτM )′ − sI (CJe
AτM )′ O′A,CF ]′) = n. (38b)

Proof. If system (1) is such that (38a) holds, then, by Propo-
sition 4, the set Ξ given in (12) can be chosen so that
Ξ ⊂ {s ∈ C : |s| < %}. On the other hand, if system (1)
with outputs (2) is such that (38b) holds, then the set Υ given
in (24) can be chosen so that Υ ⊂ {s ∈ C : |s| < %}. Thus,
given % > 0, let K̄F , KJ , L̄F and LJ be matrices such that
Ξ ∪ Υ ⊂ {s ∈ C : |s| < %}. Hence, by Theorem 9, the
dynamic time–invariant output feedback (36) is such that the
monodromy matrx of the closed loop system has spectrum
contained in {s ∈ C : |s| < %}.

Assume now that there exists a dynamic time–invariant
output feedback (37) that solves Problem 1.II, but system (1)
is not such that (38a) holds. Thus, by Theorem 4, there exists
λ ∈ Λ(M̂u,u) such that λ /∈ {s ∈ C : |s| < %}. By Proposi-
tion 3, there exists a matrix T such that (7) holds. By letting
x̂ = Tx, one has that the state of the closed loop system is
χ̂ = [ η′ x̂′r x̂′u ]′. Let ĈF = [ ĈF,r ĈF,u1

ĈF,u2
] =

CFT
−1 and ĈJ = [ ĈJ,r ĈJ,u1

ĈJ,u2
] = CJT

−1. By
defining matrices

AΣ :=


AK BKĈF,r BKĈF,u1

BKĈF,u2

B̂rCK,F Âr,r Âr,u1 Âr,u2

0 0 Âu1,u1
Âu1,u2

0 0 Âu2,u1 Âu2,u2

 ,

EΣ :=


EK FKĈJ,r FKĈJ,u1

FKĈJ,u2

F̂r1CK,J Ê1 Ê2 Ê3

F̂r2CK,J Ê4 Ê5 Ê6

0 0 Ê7 Ê8

 ,
one has that, by (15), the dynamics of the closed loop system
are given by ˙̂χ = AΣχ̂, χ̂+ = EΣχ̂. Clearly, the closed loop

monodromy matrix is given by MΣ = EΣe
AΣτM . Hence,

by (14), (15) and (16), one has that the eigenvalues of the
matrix M̂u,u are eigenvalues of MΣ, i.e., Λ(M̂u,u) ⊂ Λ(MΣ).
Hence, the controller (37) is not such that (II) holds, leading
to a contradiction. On the other hand, assume that there
exists a dynamic time–invariant output feedback (37) that
solves Problem 1.II, but system (1) is not such that (38b)
holds. Thus, by Theorem 7, there exists λ ∈ Λ(M̂i,i) such
that λ /∈ {s ∈ C : |s| < %}. By Proposition 6, there
exists a matrix T such that (27) holds. By letting x̂ = Tx,
one has that the state of the closed loop system is χ̂ =
[ x̂′i x̂′o η′ ]′. Let B̂ = [ B̂′i1 B̂′i2 B̂′o ]′ = TB and
F̂ = [ F̂ ′i1 F̂ ′i2 F̂ ′o ]′ = TF . By defining matrices

AΣ :=


Âi1,i1 Âi1,i2 Âi1,o Bi1CF,K
Âi2,i1 Âi2,i2 Âi2,o Bi2CF,K

0 0 Âo,o BoCF,K
0 0 BKĈF,o AK

 ,

EΣ :=


E1 E2 E3 F̂i1CJ,K
E4 E5 E6 F̂i2CJ,K
0 E7 E8 F̂oCJ,K
0 ĈJ,o1

FK ĈJ,o2
FK EK

 ,
one has that the dynamics of the closed loop system are given
by ˙̂χ = AΣχ̂, χ̂+ = EΣχ̂. By a reasoning wholly similar to
the one given for strong reachability, this is in contradiction
with the existence of a controller (37) such that II holds.

Proposition 10. There exists a solution to Problem 1.III if
and only if system (1), (2) is controllable and constructible.

Proof. The proof of this proposition is wholly similar to the
proof of Proposition 9, by replacing {s ∈ C : |s| < %} with
{0}, (38a) with (9), and (38b) with (31).

By Propositions 8, 9, and 10, by choosing the matrices K̄F ,
KJ , L̄F , and LJ so that Ξ∪Υ ⊂ Cg , Ξ∪Υ ⊂ {s ∈ C : |s| <
%}, or Ξ ∪ Υ = {0}, one has that the closed loop system
is asymptotically stable, converge to zero exponentially with
decrease rate %, or is driven to zero in finite time, respectively.
It is worth pointing out that matrices K̄F , KJ , L̄F , and LJ
can be computed by using any design technique that ensures
either Ξ ∪ Υ ⊂ Cg , Ξ ∪ Υ ⊂ {s ∈ C : |s| < %}, or
Ξ ∪ Υ = {0} . For instance, one can use the separation
principle of Theorem 9. In fact, one can compute disjointly
matrices K̄F , KJ such that Ξ ⊂ Cg and matrices L̄F , LJ
such that Υ ⊂ Cg . Thus, by Theorem 9, one has that the
closed loop system has eigenvalues Ξ∪Υ∪{0} ⊂ Cg , i.e., the
linear dynamic time–invariant output feedback (37) stabilizes
the hybrid system. Note that if system (1), (2) is strongly
reachable and observable, then there exists a solution to (I),
(II), and (III) of Problem 1.

Example 3. The mechanical system analyzed in this example
is used in [47] to illustrate some issues in regulation for the
class of hybrid systems analyzed in this paper. Consider a
disk of radius r, total mass m, and inertia I, moving on an
horizontal plane between two parallel walls, orthogonal to the
plane of motion and infinitely massive. Let l+2r, l > 0, be the
distance between the two walls, let (xc, yc) be the coordinates
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of the center of mass of the disk, and let α denote the angular
position of the disk (Fig. 2).

r

yc

xc

α

l + 2r

Fig. 2. A rotating disk bouncing between two walls.

Assume that all the impacts are elastic and occur with pre–
impact conditions such that the infinitesimal interval in which
the disk is in contact with the wall consists in a first interval
of sliding followed by a second interval of rolling, i.e.,

|ẏc(tk, k − 1) + rα̇(tk, k − 1)| 6 2ζµ|ẋc(tk, k − 1)|, (39)

where ζ = r2m
I and µ is the coefficient of kinetic friction

characterizing the infinitesimal sliding phase [47]. Assuming,
additionally, that xc(0) = 0, |ẋc(t)| = |ẋc(0)| = v > 0, a
hybrid state–space description of this mechanical system, with
state χ = [ yc ẏc α α̇ ]′ and input u = [ u1 u2 ]′, is

χ̇ =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

χ+


0 0
1
M 0
0 0
0 1

I

u, (40a)

χ+ =


1 0 0 0
0 1− ζ−1 0 −ζ−1r
0 0 1 0
0 −r−1(1− ζ−1) 0 ζ−1

χ,(40b)

and χ(0, 0) = [ yc,0 ẏc,0 α0 α̇0 ]′. Assume that the only
measurable outputs of the system (40) are the pre–impact
vertical and angular positions yc(tk, k − 1) and α(tk, k − 1),
k ∈ Z>0, i.e.,

CF = 0, CJ =

[
1 0 0 0
0 0 1 0

]
. (40c)

By (11), (23), and (31), the system (40) is strongly reachable
and controllable, but not observable. Thanks to the separation
principle stated in Theorem 9, matrices K̄F , KJ , and L̄F , LJ
such that Ξ ∪ Υ ∈ Cg can be computed disjointly. Namely,
let Ã = eAτME and let B̃ = [ eAτMF RA,B ]. In order to
compute matrices KF and KJ such that the set Ξ given in (12)
is a subset of Cg , a possible approach is to solve the following
equation (usually known as Algebraic Riccati Equation [49])

P = I + Ã′PÃ− Ã′PB̃(I + B̃′PB̃)−1B̃′PÃ.

By considering that the discrete–time linear system with data
(Ã, B̃, I) is stabilizable and detectable, the matrix

K̃ = −(I + B̃′PB̃)−1B̃′PÃ,

is such that Λ(Ã + B̃K̃) ⊂ Cg . Therefore, letting
[ K ′J K ′F ]′ = K̃, one has that the set Ξ given in (12) is a
subset of Cg [49]. By exploiting the duality principle stated
in Theorem 8, a wholly similar procedure can be carried out
to compute LF and LJ such that the set Υ given in (24)
is a subset of Cg . Hence, by Theorem 9, the time–invariant
dynamic output feedback (36) is such that the eigenvalues of
the closed loop system are in Cg , and hence the closed loop
system is asymptotically stable [36, Lem. 1].

A numerical simulation of the solution to closed loop
system with the time–invariant dynamic output feedback (36)
have been carried out assuming the following data: m =
0.22Kg, r = 0.5m, v = 1m/s, and l = 1m, χ(0, 0) =
[ 0.1m −0.2m/s −0.1rad 0.2rad/s ]′, and null initial
conditions of the feedback controller. Figure 3 depicts the time
history of the state χ(t, k), the estimation error χ(t, k)−χ̌(t, k)
and the applied control input u(t, k) = [ u1(t, k) u2(t, k) ]′.
The admissible motion condition (39) is satisfied in such a
simulations with µ > 0.025. 4
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ẏc
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α̇

−0.15

0

0.15
yc − y̌c
ẏc − ˇ̇yc
α− α̌
α̇− ˇ̇α

0 2 4 6 8 10 12 14 16

−0.25

0

0.25

t

u1
u2

Fig. 3. Numerical simulations of the closed loop system.

Remark 1. The robustness of the proposed compensator re-
lies on the same continuity arguments of non–hybrid linear
systems. Namely, if matrices K̄F , KJ , L̄F , and LJ are such
that Ξ ∪ Υ ⊂ Cg , then small perturbations of the nominal
parameters of the hybrid systems are such that the eigenvalues
of the monodromy matrix of the closed loop system remains
in Cg . Namely, if the parameters of the hybrid system vary
in a sufficiently small neighborhood of their nominal values,
continuity implies preservation of asymptotic stability of the
closed loop system.

VI. ARBITRARY INITIAL CONDITIONS FOR THE TIMER τ

All throughout this paper, we have assumed that the initial
condition of the timer τ governing the jumps of system (1) is



15

τ(0, 0) = 0. In this section, we discuss the extension of the
results given in this work to arbitrary initial conditions of the
timer variable τ(0, 0) = τ0, τ0 ∈ [0, τM ].

Given τ0 ∈ [0, τM ], all the solutions to the hybrid system (1)
are defined over the hybrid time domain

T (τ0) := {(t, k) : t ∈ [t̃k, t̃k+1], k ∈ Z>0}, (41a)

t̃k :=

{
0, if k = 0,
kτM − τ0, if k ∈ Z>0.

(41b)

Let φ(t, k, τ0, x0, uF , uJ) be the solution to system (1) at
hybrid time (t, k) ∈ T (τ0), with initial conditions τ(0, 0) =
τ0, x(0, 0) = x0, x0 ∈ Rn, and inputs uF (·, ·), uJ(·). By
redefining the inputs uF (·, ·) and uJ(·) so that the domain of
such functions is T (τ0), it can be easily checked that the sys-
tem (1) with initial condition τ(0, 0) = 0 is reachable (resp.,
strongly reachable, controllable, stabilizable) if and only if the
system (1) with initial condition τ(0, 0) = τ0, τ0 ∈ [0, τM ] is
reachable (resp., strongly reachable, controllable, stabilizable).

More attention is needed when dealing with “observation”
structural properties. In fact, consider the hybrid system (19)
with initial condition τ(0, 0) = τM and x(0, 0) = x0. If the
matrix E is singular and the pair (E,CJ) is not observable
(in the classical sense), then there exists an initial condition
x0 6= 0 such that yF (t, k) = 0 and yJ(k) = 0, for all (t, k) ∈
T (τ0), even if (23) holds. Therefore, it can be easily proved
that, if the matrix E is singular, the hybrid system (19) is
observable for any initial condition τ(0, 0) = τ0, τ0 ∈ [0, τM ],
x(0, 0) = x0, if and only if the pair (E,CJ) is observable.
On the other hand, if the matrix E is nonsingular, for any
τ0 ∈ [0, τM ], the hybrid system (19) with τ(0, 0) = τ0 is
observable if and only if the hybrid system (19) with τ0 = 0
is observable. As a matter of fact, if the latter condition holds,
then there exists a hybrid time (θ, κ) ∈ T (τ0) such that, by
using only measurements of the outputs yF (t, k), yJ(t, k) for
all the times T (τ0)∩ [t̃1, θ]×{1, κ}, it is possible to determine
x(t1, 1). Hence, since E is nonsingular, the initial condition
can be determined by letting x0 = (EeAt̃1)−1x(t1, 1).

VII. CONCLUSIONS AND FUTURE WORK

In this work, we focus the attention on a class of linear
hybrid systems where the clock variable satisfies a fixed dwell–
time and is available for feedback. This allows us to focus
the attention on a linear setting and to extend many of the
classical results for non–hybrid linear systems. Namely, the
main contributions of this paper are the following:
• provide simple tests to analyze structural properties of

hybrid systems;
• provide two standard forms to represent the dynamics of

the hybrid system;
• provide a duality theorem, relating structural properties

of a given system with the structural properties of a dual
linear hybrid system.

• provide necessary and sufficient conditions guaranteeing
the existence of a linear dynamic time–invariant output
feedback that stabilizes the system;

• propose a structure for such a linear dynamic time–
invariant output feedback;

• provide a separation principle showing that the observer
and the state feedback controller can be designed inde-
pendently.

Robustness of the proposed compensator with respect to
small variations of the parameters of the nominal hybrid
system is discussed.

Future work will take advantage of this algebraic and
geometric characterization of structural properties to solve
challenging problems for this class of linear hybrid systems
as, for instance, linear quadratic optimal control over finite and
infinite horizon [50], characterization of the L2 gain properties,
robust output regulation, and disturbance decoupling.
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[12] L. Menini and A. Tornambè, “Asymptotic tracking of periodic trajecto-
ries for a simple mechanical system subject to non-smooth impacts,” in
39th Conf. Decision and Control, vol. 5, pp. 5059–5064, IEEE, 2000.
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