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Abstract

Clustering real-world data is a challenging task, since many real data collec-
tions are characterized by an inherent sparseness and variable distribution.
The complexity of clustering such data increases with the data volume. In
this study we are concerned with using clustering algorithms in a multiple
level fashion to address these issues. The aim is to iteratively focus on differ-
ent dataset portions and locally identify groups of objects sharing common
properties. This paper proposes a clustering framework which exploits a
variety of clustering algorithms according to this strategy. Five clustering al-
gorithms, based on K-means, K-medoids and DBSCAN methods, have been
integrated into the framework and a comparative study has been conducted
on a real dataset of patients with overt diabetes. Experiments compared
clustering results in terms of cluster quality, execution time, and cluster con-
tent from a medical perspective. Diverse quality indices have been used to
effectively support cluster validation.
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1. Introduction

Cluster analysis is an exploratory technique which aims at grouping a data
object collection into subsets (clusters) based on object properties, without
the support of additional a priori knowledge (Pang-Ning T. and Steinbach M. and Kumar V.,
2006). Nevertheless clustering is a widely studied data mining problem, clus-5

tering real-world data collections may impose new challenges. Real datasets
are usually characterized by an inherent sparseness and variable distribution,
since they are generated by a large variety of events, and high data dimen-
sionality because features used to model real objects and human actions may
have very large domains. The variability in data distribution grows with data10

volume, thus increasing the complexity of mining such data. For example,
health care data collections can have large volume due to the large cardinal-
ity of patient records. Because of the variety of medical treatments usually
adopted for the different degrees of severity of a given pathology, patient
data collections are also usually characterized by high dimensionality, vari-15

able data distribution and inherent sparseness. However, at present, most
clustering algorithms perform better with uniform data distribution, while
their performance as well as the quality of the extracted knowledge tend to
decrease in non-uniform collections.

Aimed at addressing the above issues, this paper presents a Multiple-20

Level C lustering (MLC) framework, which exploits clustering algorithms
in a multiple-level fashion. MLC iteratively focuses on different dataset
portions and locally identify groups of correlated objects, thus easing the
computation of cohesive clusters on each of them. In this study, five different
multiple-level clustering algorithms have been integrated into MLC, based25

on K-means (i.e., bisecting and refined K-means (Steinbach et al., 2000)), K-
medoids (i.e., bisecting and refined K-medoids (Kashef & Kamel, 2008)), and
DBSCAN methods (i.e., multiple-level DBSCAN (Antonelli et al., 2013)).
These algorithms were selected because they cover different clustering strate-
gies (i.e., density and representative based methods) and they showed better30

performance than standard (not multiple-level) clustering algorithms in var-
ious applications domains (Antonelli et al., 2013; Steinbach et al., 2000). In
this paper a comparative study has been conducted on these selected algo-
rithms based on the quality of discovered cluster sets, the computational time
for the clustering process, and the cluster content.35

For the experimental analysis, we considered as a reference case study
a real dataset including the examination log data of (anonymized) patients
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with overt diabetes. Diabetes describes a group of metabolic diseases in
which the patient has high blood glucose and it may increase the risk for
many serious health problems, such as cardiovascular disease, retinal dam-40

age, kidney disease, and foot complications. The considered data collection is
characterized by an inherently sparse distribution due to the variety of possi-
ble examinations, covering both routine tests and more specific examinations
for different degrees of severity in diabetes.

Before to apply the clustering analysis, in theMLC framework patient ex-45

amination data are represented in the Vector Space Model (VSM) (Salton G.,
1971) using the TF-IDF method (Pang-Ning T. and Steinbach M. and Kumar V.,
2006) with the aim of highlighting the relevance of specific examinations for
a given clinical condition. Clustering results have been then analyzed and
compared using some well-established quality indices, as SSE, Silhouette and50

overall similarity, and Rand Index (Pang-Ning T. and Steinbach M. and Kumar V.,
2006). The cluster content, i.e., the patient examination histories included
in each cluster, is concisely represented in terms of the most frequent exam-
inations appearing in each cluster and association rules (Han et al., 2000)
modeling correlations among them.55

The experimental evaluation showed that interesting clusters containing
patients with a similar examination history (with standard or more specific
examinations) can be discovered. It also pointed out that, nevertheless both
the multiple-level DBSCAN and the refined k-means algorithms generate
cluster sets with good quality and agreement, from a medical perspective the60

multiple-level DBSCAN algorithm appears as the more suitable approach for
patient analysis in the considered case study.

This paper is organized as follows. Section 2 describes previous work
using clustering techniques in the medical care scenario. Section 3 presents
the MLC framework and how the selected clustering algorithms have been65

tailored to MLC. Section 4 reports the experimental study on a real dia-
betic patient dataset, while Section 5 compares algorithm performance and
analyses the cluster sets from a medical perspective. Section 6 includes the
conclusions.

2. Related work70

Clustering algorithms find application in a wide range of different do-
mains, including sensor network data (Abbasi & Younis, 2007), biological
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data (Au et al., 2007), and network traffic data (Eriksson et al., 2008). Clus-
tering algorithms have been also widely used to analyse medical data (Esfandiari et al.,
2014). Many studies addressed the identification of correlated groups of75

patients affected by different diseases. For example, (Sengur & Turkoglu,
2008) reviewed the cluster methods used to diagnose heart valve diseases.
In (Zheng et al., 2014), clustering techniques were used to diagnose breast
cancer based on tutor features, by recognising hidden patterns of benign and
malignant tumors. Authors in (Khaing, March 2011) exploited the K-means80

algorithm to cluster a collection of patient records aimed at identifying rele-
vant features of patients subjected to heart attack.

Some research efforts have been devoted to exploiting clustering tech-
niques on data related to diabetic patients (Esfandiari et al., 2014). Dif-
ferent issues have been addressed as food analysis (Phanich et al., 2010),85

gait patterns (Sawacha et al., 2010), discovering relationships among dia-
betes and risk factors (Chaturvedi, 2003), analyses of various imputation
techniques (Purwar & Singh, 2015), and discovering similar medical treat-
ments (Antonelli et al., 2013). (Purwar & Singh, 2015) focuses on diabetes
datasets using the K-means algorithm aimed at analysing various imputation90

techniques. Different from (Purwar & Singh, 2015), in this work we aim at
identifying groups of patients with similar examination histories.

The idea of exploiting a clustering algorithm in a multiple-level fashion
was first introduced in (Antonelli et al., 2013) and used in (Baralis et al.,
2013b) to analyze twitter messages. A first study towards a combined dis-95

tance measure for clustering medical records has been presented in (Bruno et al.,
2014). A parallel effort devoted to clustering documents proved that bisect-
ing K-means was preferable to other clustering methods as standard K-means
and hierarchical approaches (Steinbach et al., 2000).

The MLC data analysis framework presented in this study enhances the100

methodology proposed in (Antonelli et al., 2013) by providing a more general
approach which (i) integrates different clustering algorithms, (ii) uses more
indices to evaluate cluster quality, and (iii) concisely represents the cluster
content through association rules. MLC does not exploit the distance mea-
sure proposed in (Bruno et al., 2014) because information on patient profiles105

(i.e., patient age and gender) are not available on the real data collection used
in the discussed comparative study. Among the different categories of clus-
tering algorithms, i.e., prototype (e.g., K-means (Juang & Rabiner, 1990),
K-medoids (Kaufman, L. and Rousseeuw, P. J., 1990)), density (e.g., DB-
SCAN (Ester et al., 1996)), model (e.g., EM (G. McLachlan and T. Krishnan,110
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Figure 1: The MLC framework

1997)), and hierarchical based methods (Pang-Ning T. and Steinbach M. and Kumar V.,
2006), in this study we focused on the two popular categories of prototype
and density based methods for the development of the MLC framework.

3. Proposed method

The MLC framework in Figure 1 adopts a multiple-level clustering strat-115

egy to analyse data collections characterized by a variable data distribution.
Information about patient examinations are collected and data are pre-

pared for the subsequent cluster analysis (Section 3.1). Patient datasets
are tailored to the Vector Space Model (VSM) representation (Salton G.,
1971), where each vector corresponds to a patient and represents his/her ex-120

amination history. The patient examination history lists the examinations
undergone by the patient, and the weighted number of times the patient
underwent each examination. Unweighted examination frequencies do not
properly characterize the patient condition, since standard routine tests usu-
ally appear with high frequency, while more specific tests may appear with125

lower frequency. To address this issue, in the MLC framework the patient
examination frequencies have been weighted using the TF-IDF weighting
score (Pang-Ning T. and Steinbach M. and Kumar V., 2006).

Prepared data are analyzed through a multiple-level clustering approach
to identify, in a dataset with a variable distribution, groups of patients with130

a similar examination history (Section 3.2). In this study, five multiple-
level clustering algorithms have been integrated intoMLC. Clustering results
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are validated through an internal, unsupervised, evaluation (Section 3.3).
Each cluster is then compactly described through the most representative
examinations occurring in their patient histories and the association rules135

modeling correlations among these examinations (Section 3.4).

3.1. Data representation

In the considered collection of patient records, each record corresponds
to a medical examination done by a patient in a given date. For instance,
Table 1 shows a toy example dataset listing the medical examinations under-140

gone by two patients p1 and p2 in year 2014. A more formal definition of a
collection of patient records is given in Definition 3.1.

Table 1: Example of a collection of patient records

PatientID Examination Date PatientID Examination Date

p1 Glucose level 2014-02-10 p2 Urine test 2014-12-01
p2 Fundus oculi 2014-01-06 p2 Triglycerides 2014-11-30
p2 Urine test 2014-02-28 p2 Urine test 2013-04-16
p1 Fundus oculi 2014-03-10 p1 Urine test 2014-09-06
p2 Urine test 2014-04-11 p2 Triglycerides 2014-08-01
p1 Glucose level 2014-04-15 p2 Urine test 2014-07-25
p2 Electrocardiogram 2014-06-16 p1 Fundus oculi 2014-07-10
p1 Glucose level 2014-06-21 p1 Urine test 2014-11-23

Table 2: VSM representation for dataset in Table 1

PatientID Glucose level Fundus oculi Electrocardiogram Urine test Triglycerides

p1 3 2 0 2 0
p2 0 1 1 5 2

Table 3: VSM representation using the TF-IDF weighting score for dataset in Table 1

PatientID Glucose level Fundus oculi Electrocardiogram Urine test Triglycerides

p1 0.347 0 0 0 0
p2 0 0 0.077 0 0.154

Definition 3.1. Collection of patient records. A collection of patient
records D is a set of records, such that Σ = {e1, . . . , ek} is the set of exami-
nations in D and Θ = {p1, . . . , pn} is the set of patients in D. Each record145
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rk in D models an examination ej ∈ Σ done by a patient pi ∈ Θ in a given
date.

To enable the mining process and discover valuable knowledge, in the
MLC framework the collection of patient records is tailored to the Vec-
tor Space Model (VSM) representation (Salton G., 1971) and the Term Fre-150

quency (TF) - Inverse Document Frequency (IDF) scheme (Pang-Ning T. and Steinbach M. and Ku
2006) has been adopted to weight the examination frequency. In this study,
we neglect the information on when an examination has been done because
we focus on the frequency of performed examinations. The VSM representa-
tion has been applied in previous works (Salton G., 1971) to represent text155

documents, while the TF-IDF scheme has been used to weight the relevance
of words appearing in the document.

In the VSM representation, each patient pi is a vector in the examination
space. This vector represents the patient examination history. The vector
cell (pi, ej) corresponds to examination ej done by patient pi. Cell (pi, ej) is160

a weight describing the relevance of examination ej for patient pi. A more
formal definition of the patient examination history follows.

Definition 3.2. Patient examination history. Let D be a collection of
patient records, Σ = {e1, . . . , ek} the set of examinations in D and Θ =
{p1, . . . , pn} the set of patients in D. Each patient pi in D is represented by165

a weighted examination frequency vector vpi of |Σ| cells. Each cell vpi[j] of
vector vpi reports the weighted frequency wpi,ej of examination ej, ej ∈ Σ, for
patient pi, pi ∈ Θ. Thus, vpi = [wpi,e1, . . . , wpi,e|Σ| ].

Table 2 reports a base VSM representation for the example dataset in
Table 1. Table 2 has one row for each patient in Table 1, and a number170

of columns equal to the number of different examinations in Table 1. Each
cell (pi, ej) in Table 2 reports the weight of examination ej for patient pi.
In this base VSM representation the weight is simply given by the number
of times examination ej was repeated by patient pi. However, a patient
data representation as in Table 2 may not properly characterize the patient175

condition. In fact, it may give more relevance to standard routine tests, which
usually appear with higher frequency, than to more specific tests, which
often appear with lower frequency. The adoption of the TF-IDF scheme
allows highlighting the relevance of specific examinations for a given patient
condition. The TF-IDF value increases proportionally to the number of times180
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an examination has been done by the patient, but it is offset by the frequency
of the examination in the examination dataset, which helps to control the
fact that some examinations are generally more common than others. The
definitions of TF and IDF are given below.

Definition 3.3. Term Frequency (TF) and Inverse Document Fre-185

quency (IDF). Let D be a collection of patient records, Σ = {e1, . . . , ek}
the set of examinations in D, and Θ = {p1, . . . , pn} the set of patients in D.

1. For each pair (pi,ej) in D, the Term Frequency TFpi,ej is the rela-
tive frequency of examination ej for patient pi. It is computed as
fpi,ej/

∑
1≤k≤|Σ| fpi,ek, where fpi,ej is the number of times patient pi un-190

derwent examination ej and
∑

1≤k≤|Σ| fpi,ek is the total number of ex-
aminations done by pi.

2. The Inverse Document Frequency IDFej for examination ej is the fre-
quency of ej in D. It is computed as Log[|Θ|/|pk ∈ Θ : fpk,ej �= 0|]
where |Θ| is the number of patients in D and |pk ∈ Θ : fpk,ej �= 0| is the195

number of patients in D who underwent (at least once) examination ej.

Mathematically, the base of the log function for IDF computation in
Definition 3.3 does not matter and constitutes a constant multiplicative factor
towards the overall result.

The TF-IDF weight wpi,ej for the pair (pi, ej) is high when examination200

ej appears with high frequency in patient pi and low frequency in patients in
the collection D. When examination ej appears in more patients, the ratio
inside the IDF’s log function approaches 1, and the IDFej value and TF-
IDF weight wpi,ej become close to 0. Hence, the approach tends to filter out
common examinations. A more formal definition of TF-IDF weight follows.205

Definition 3.4. TF-IDF weight. For each pair (pi,ej) in D, the TF-IDF
weight wpi,ej is computed as wpi,ej = TFpi,ej ∗ IDFej , where TFpi,ej is the
Term Frequency and IDFej is the Inverse Document Frequency.

Table 3 reports the VSM representation using the TF-IDF scheme for the
example dataset in Table 1. The TF-IDF weights for examinations Fondus210

oculi and Urine Test are equal to 0 since they are performed by both patients.
Instead, TF-IDF weights are different than zero for the other examinations,
which are performed by only one of the two patients.
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3.2. Data clustering using a multiple-level strategy

The MLC framework applies clustering algorithms in a multiple-level215

fashion to progressively focus on different dataset portions and locally com-
pute clusters. The pseudocode of the multiple-level clustering strategy is in
Algorithm 1. It performs multiple runs over the considered data collection.
Initially, the whole dataset is analysed. Then, at each subsequent iteration,
the clustering algorithm is applied on a selected portion of the dataset, and220

clusters are locally identified on it. Clustering algorithm parameters can be
properly set at each iteration according to the local data distribution of the
considered dataset portion. Clusters computed at each iteration contribute
to the final cluster set. The approach is iterated until the target objective
is achieved, as the minimum threshold value of a given quality index or the225

maximum allowed number of clusters in the final cluster set.

Data: Initialize D with the whole initial data object collection
repeat

if first iteration then
select D as target dataset;

else
select a portion of D as target dataset;

end
apply basic clustering algorithm on the target dataset;
update the final cluster set;
evaluate the quality of the final cluster set;

until target objective is verified ;
Algorithm 1: Multiple-level clustering strategy

Clustering algorithms currently integrated in MLC are described in Sec-
tion 3.2.1. Data objects in the analysed data collection corresponds to pa-
tients in our application scenario. For patient clustering, patient examination
histories are compared using the cosine distance measure (see Section 3.2.2).230

3.2.1. Multiple-level clustering algorithms

Clustering algorithms integrated in the MLC framework are described in
the following. Their main characteristics are summarized in Table 4, by high-
lighting the improvement with respect to the corresponding (not multiple-
level) standard algorithms. Based on this evaluation, they appear as good235

9



candidates for the analysis considered in this study. Objects in the analyzed
data collection correspond to patients in our application scenario.

Bisecting K-means (Steinbach et al., 2000) applies the standard K-means
algorithm in a multiple-level fashion. K-means (Juang & Rabiner, 1990) dis-
covers K clusters modeled by their representatives, named centroids, given240

by the mean value of the objects in the clusters. Initially, K objects of the
dataset are randomly chosen as centroids. Then, each object is assigned to
the cluster whose centroid is the nearest to that object. Finally, centroids
are relocated by computing the mean of the objects within each cluster. The
process iterates until centroids do not change or some objective functions are245

achieved.
Nevertheless K-means is a widely used clustering method, it is biased to

spherical clusters and it is sensitive to the initial choice of centroids. Aimed
at overcoming this second limitation, the bisecting K-means algorithm adopts
a multiple-level clustering approach based on a bisecting strategy. Instead250

of looking for all representative centroids (and corresponding clusters) at the
same time, it iteratively focuses on a dataset portion and locally identifies
centroids (and their clusters). More in detail, two clusters are initially gen-
erated using the standard K-means algorithm. Then, at each subsequent
iteration level, a cluster is selected among those generated up to the current255

step. The selected cluster is split into two subclusters using K-means. K-1
level iterations are needed for discovering the desired K clusters. Different
criteria can be exploited to choose the cluster to split: (i) The cluster size
(i.e., the number of objects in the cluster), (ii) the cluster SSE (Sum of
Squared Errors), which measures the squared total distances among cluster260

objects and cluster centroid, and (iii) a criterion based on both cluster size
and SSE. In this study, the cluster with the largest SSE value is split.

Bisecting K-medoids (Kashef & Kamel, 2008) relies on the standard K-
medoid algorithm (PAM) (Kaufman, L. and Rousseeuw, P. J., 1990) for im-
plementing a multiple-level clustering technique similar to bisecting K-means.265

K-medoid works similarly to K-means, but clusters are in this case repre-
sented by an object (medoid) instead of a mean point (centroid). As for bi-
secting K-means, bisecting K-medoids is less susceptible to the initialization
problems than standard K-medoids. K-medoids methods were also investi-
gated in this study, since they can be less sensitive to outliers than K-means270

methods.
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Refined K-means and refined K-medoids(Steinbach et al., 2000). Both
bisecting strategies described above use the standard (K-means and K-medoids)
clustering algorithms to bisect individual clusters. It follows that the final
cluster set does not represent a local minimum with respect to the total275

SSE value over the whole cluster set. To deal with this problem, the cluster
set generated by bisecting K-means and bisecting K-medoids can be refined
as follows. The centroids (resp. medoids) in the computed cluster set are
used as the initial centroids (resp. medoids) for the standard K-means (resp.
K-medoids) algorithm.280

Multiple-Level DBSCAN (Antonelli et al., 2013) progressively applies
the standard DBSCAN (Ester et al., 1996) algorithm on different (disjoint)
dataset portions. DBSCAN separates dense regions (with a similar density)
from a sparse one in the dataset, driven by the user-specified parameters Eps
and MinPts. A dense region in the data space is a n-dimensional sphere with285

radius Eps and containing at least MinPts objects. Objects are classified
as being (i) in the interior of a dense region (a core point), (ii) on the edge
of a dense region (a border point), or (iii) in a sparsely occupied region (an
outlier point). A cluster contains any two core points close within a distance
Eps, and any border point close within a distance Eps to at least one core290

point in the cluster. Outlier points are filtered out and they are unclustered.
Standard DBSCAN can discover clusters with different sizes and shapes,

but it is weak in recognizing clusters with variant density. The multiple-
level DBSCAN algorithm allows overcoming this limitation, by decomposing
the clustering process into subsequent steps. The whole original dataset is295

clustered at the first level. Then, at each subsequent level, objects labeled as
outliers in the previous level are re-clustered using the standard DBSCAN.
With the multiple-level approach, parameters Eps and MinPts can be set at
each level by adapting the definition of dense region to the local data density.
Furthermore, the number of unclustered outlier points progressively reduces300

at each iteration level. Consequently, the multiple-level DBSCAN algorithm
can finally provide a more homogenous but also richer cluster set, because
it includes a larger portion of the original dataset. The number of iteration
levels can be tuned based on the final number of unclustered objects and the
number of computed clusters.305
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Table 4: Comparison of multiple-level clustering algorithms
Bisecting and Refined Bisecting and Refined Multiple-level

K-means K-medoids DBSCAN
Initialization problem Reduced Reduced No
Sensitivity to outliers Reduced Reduced No

Unclustered data objects No No Reduced
Need of convex shape Yes Yes No
Parameter specification K K Eps, MinPts

Num. of iterations
Num. of iterations K-1 K-1 To be specified

Dealing with variable Improved Improved Improved
data distribution

3.2.2. Comparing patient examination histories

For all clustering algorithms described above, the weighted examination
frequency vectors representing the patient examination histories are com-
pared using the cosine distance measure (Pang-Ning T. and Steinbach M. and Kumar V.,
2006). In our reference case study, let pi and pj be two arbitrary patients310

in the collection D. Let vpi and vpj be the corresponding weighted exami-
nation frequency vectors. The cosine distance between patients pi and pj is
computed as

dist(pi, pj) = arccos (cos(vpi, vpj)) (1)

where the cosine similarity between patients pi and pj is computed as

cos(vpi, vpj) =
vpi • vpj

‖vpi‖
∥∥vpj

∥∥ =

∑
1≤k≤|Σ| vpi[k]vpj [k]√∑

1≤k≤|Σ| vpi[k]
2
√∑

1≤k≤|Σ| vpj [k]
2
. (2)

The cosine distance in Equation 1 verifies the triangle inequality. The co-315

sine similarity is in the range [0,1]. cos(vpi, vpj) equal to 1 describes the exact
similarity of examination histories for patients pi and pj , while cos(vpi, vpj)
equal to 0 points out that patients have complementary histories (i.e., the
sets of their examinations are disjoint).

3.3. Cluster evaluation320

For the (internal) validation of clustering results, MLC adopts the quality
indices typically used for the considered algorithms. The Total SSE index
(Pang-Ning T. and Steinbach M. and Kumar V., 2006) is used for K-means
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and K-medoids methods, while the Silhouette coefficient (Rousseeuw, 1987)
for the multiple-level DBSCAN approach. Similar to (Steinbach et al., 2000),325

the overall similarity measure is used to compare cluster sets computed by
different algorithms. Finally, the Rand Index (Rand, 1971) has been used to
evaluate the agreement between different clustering results.

The Sum of Squared Error (SSE) is used to evaluate the cluster cohesion
for center-based clusters, as clusters generated using K-means and K-medoids330

methods (Pang-Ning T. and Steinbach M. and Kumar V., 2006). For an ar-
bitrary patient, its error is computed as the squared distance between the
patient and the centroid (resp. medoid) in the cluster including the patient.
The SSE for a cluster Ci is computed as

SSE(Ci) =
∑
pj∈Ci

dist(ci, pj)
2 (3)

where dist(ci, pj) is the distance between the centroid (resp. medoid) ci of335

cluster Ci and a patient pj in Ci. The cosine distance metric in Equation 1
has been used for distance evaluation. The smaller the SSE, the better the
quality of the cluster. The Total SSE on a set of K clusters is computed by
summing up the SSE values of the K clusters.

The Silhouette index measures both intra-cluster cohesion and inter-cluster340

separation to evaluate the appropriateness of the assignment of a data object
to a cluster rather than to another one (Rousseeuw, 1987). The silhouette
value for a given patient pi in a cluster C is computed as

s(pi) =
b(pi)− a(pi)

max{a(pi), b(pi)} , s(pi) ∈ [−1, 1], (4)

where a(pi) is the average distance of patient pi from all other patients
in cluster C, and b(pi) is the smallest of average distances from its neigh-345

bour clusters. The silhouette value for cluster C is the average silhouette
value on all patients in C. Silhouette values in the range [0.51,0.70] and
[0.71,1] show that a reasonable and a strong cluster structure has been found
(Kaufman, L. and Rousseeuw, P. J., 1990). Lower silhouette values progres-
sively indicate clusters with a weak structure until a no substantial structure.350

The cosine distance metric in Equation 1 has been used for silhouette eval-
uation.
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The Overall Similarity index evaluates the cluster quality. In this study,
it has been adopted for comparing the cluster sets from the algorithms in-
tegrated into the MLC framework. Specifically, it is used to measure the355

cluster cohesiveness based on the pairwise cosine similarity of patients in a
cluster. For each cluster C, the overall similarity is computed as

Overall Similarity(C) =
1

|C|2
∑
vpi∈C

vpj∈C

cos(vpi, vpj) (5)

where |C| is the cluster size, cos(vpi, vpj) is the cosine similarity between two
patients pi and pj in C represented by their weighted examination frequency
vectors vpi and vpj . The overall similarity on a set of K clusters is computed360

as the weighted similarity of the clusters

Overall Similarity =

K∑
i=1

|Ci|
N

Overall Similarity(Ci) (6)

where N is the total number of patients in the cluster set.

The Rand Index computes the number of pairwise agreements between
two partitions of a set (Rand, 1971). It is exploited to measure the similarity
between the cluster sets obtained by two different clustering techniques. In365

our case study, let O be a set of N patients, and X and Y two different
partitions of set O to be compared. The Rand Index R is computed as

R =
a + b(

N
2

) (7)

where a denotes the number of pairs of patients in O which are in the same
cluster both in X and Y , and b denotes the number of pairs of patients in O
which do not belong to the same cluster neither in X nor in Y . Therefore,370

the term a+b is the number of pair wise agreements of X and Y , while
(
N
2

)
is

the number of different pairs of elements which can be extracted from O. The
Rand Index ranges from 0 to 1, where 0 indicates that the two partitions do
not agree for any patient pair, and 1 that the two partitions are equivalent.

3.4. Cluster content characterization375

In the MLC framework, each computed cluster is concisely described
through the most representative examinations occurring in their patient his-
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tories and the association rules modeling correlations among these exami-
nations (Han et al., 2000). In our analysis, association rules identify sets
of examinations that are statistically related in the underlying collection380

of patient histories. Association rules are usually represented in the form
X → Y , where X and Y are disjoint conjunctions of examinations. The
quality of an association rule X → Y is usually measured by rule sup-
port and confidence. Rule support is the percentage of patient histories
containing both X and Y . Rule confidence is the percentage of patient385

histories with X that also contain Y , and describes the strength of the
implication. To rank the most interesting rules, we also used the lift in-
dex (Pang-Ning T. and Steinbach M. and Kumar V., 2006), which measures
the (symmetric) correlation between sets X and Y . Lift values below 1 show
a negative correlation between sets X and Y , while values above 1 indicate390

a positive correlation.

4. Experimental results

This section presents the results of the experiments with the MLC frame-
work regarding (i) quality evaluation for the computed cluster sets, (ii) execu-
tion time for cluster set computation, and (iii) impact of data dimensionality,395

given by the number of different examinations used to describe patient his-
tories, on the quality of the cluster sets. The MLC methodology has been
validated on a real collection of examination log data for diabetic patients.

4.1. Dataset

As a reference case study we considered a real dataset of (anonymized)400

diabetic patients collected by an Italian Hospital. It contains the examina-
tion log data of a set of 6,380 patients with overt diabetes, covering the time
period of one year. Both male and female patients in a wide age range are
included. The domain of the examinations includes 159 different examina-
tion types. Table 5 lists the most frequent examinations including routine405

examinations as well as more specific diagnostic tests for diabetes compli-
cations with varying degrees of severity. Complications due to diabetes can
affect for example the cardiovascular system, eyes, and liver. The diagnostic
and therapeutic procedures are defined using the ICD 9-CM (International
Classification of Diseases, 9th revision, Clinical Modification) (ICD-9-CM,410

2011).
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Table 5: Most frequent examinations for each category in the diabetes dataset

Category Examination Freq.(%)CategoryExamination Freq.(%)

Routine Glucose level 85 Liver Alanine aminotransferase enzyme (ALT) 30
Venous blood 79 Aspartate aminotransferase enzyme (AST) 30
Capillary blood 75 Gamma GT 15
Urine test 75 Bilirubin 2
Glycated hemoglobin 46 Upper abdominal ultrasound 2
Complete blood count 18 Kidney Culture urine 25

CardiovascularCholesterol 36 Uric acid 23
Triglycerides 36 Microscopic urine analysis 23
HDL Cholesterol 35 Microalbuminuria 21
Electrocardiogram 23 Creatinine 20

Eye Fundus oculi 27 Creatinine clearance 16
Retinal photocoagulation 2 Carotid ECO doppler carotid 3
Eye examination 2 Limb ECO doppler limb 3
Angioscopy 2 Vibration sense thresholds 1

4.2. Evaluation setup and parameter configuration

The MLC framework has been implemented as follows. To perform the
multiple-level cluster analysis, the DBSCAN, K-means and K-medoids algo-
rithms available in the RapidMiner toolkit have been used, and they have415

been applied in a multiple-level fashion. RapidMiner is an open-source plat-
form including a number of data mining algorithms (Rapid Miner Project,
2013). For a more accurate evaluation of the multiple-level strategy, also the
standard (not multiple-level) K-means, K-medoids, and DBSCAN algorithms
have been considered for performance comparison.420

We developed in Java programming language the procedures for trans-
forming the patient examination log data into the corresponding VSM rep-
resentation using the TF-IDF weighting score, and for cluster evaluation
through the SSE, silhouette, and overall similarity measures. Procedures
for cluster evaluation have been implemented as a RapidMiner plugin. The425

procedure for Rand Index computation has been developed in Python pro-
gramming language.

For K-means and K-medoids methods, experiments have been run by
varying the K parameter, corresponding to the number of clusters in the final
cluster set. For bisecting algorithms, this set is computed with K-1 iteration430

levels of the bisecting approach. For refined algorithms, the refinement pro-
cess has been run for each final cluster set provided by bisecting algorithms.
The usual approach has been adopted to address the problem of centroids
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and medoids initialization for bisecting algorithms, and for standard K-means
and K-medoids when considered for performance comparison. Multiple runs,435

each with set of randomly chosen initial centroids (resp. medoids) have been
performed, and then the cluster set with the minimum SSE has been selected.
Specifically, RapidMiner parameters maximum number of random initialisa-
tions and maximum number of iterations for each initialisation have been
set to 50 and 300, respectively, for K-means methods. The same parameters440

have been set to 10 and 100 (default values in RapidMiner) for K-medoids
methods because of their relevant execution time on the considered use case
(see Section 4.4).

For the multiple-level DBSCAN, in setting the number of iterations, and
the Eps and MinPts values at each iteration level, we aimed at avoiding445

clusters with few patients, to discover representative examination sets, and
at limiting the number of outlier patients, to take into account the contri-
bution of various examination histories. Clusters should show good cohesion
and separation (i.e., silhouette values greater than 0.5). Different Eps and
MinPts values have been selected at each iteration level due to the differ-450

ent data distribution of the dataset portion locally analyzed. This portion
tends to be progressively sparser because it includes subsets of patients with
more and more specific examinations (see Section 5). Consequently, at each
subsequent iteration level, smaller MinPts values are progressively selected
to define a dense area region. The Eps value has been then locally tuned by455

trading-off the quality of the cluster set and the number of outlier patients.

4.3. Cluster quality evaluation

The quality for the computed cluster sets has been evaluated based on
the SSE (for K-means and K-medoids methods), Silhouette (for DBSCAN
methods), and overall similarity (for all methods) measures.460

4.3.1. Evaluation of K-means methods

For all K-means methods, the total SSE measure progressively decreases,
and the overall similarity measure progressively increases, when growing the
value of K and thus the number of clusters (see Figure 2). The bisecting K-
means algorithm always provides the worst results for both measures, i.e., the465

cluster sets with the highest total SSE and the lowest overall similarity values.
Nevertheless, the refined K-means algorithm always provides better results
than bisecting K-means, showing that the use in a subsequent clustering
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Figure 2: K-means methods: quality of the cluster set when varying the number of clusters

phase of the “centroids” computed with the bisecting K-means algorithm
can improve the quality of the final cluster set.470

Compared to standard K-means, the refined K-means algorithm provides
better results when increasing K (about K> 30, i.e., more than 30 clusters).
It is worse than standard K-means when a lower value of K is considered
(5≤K≤15, i.e., between 5 and 15 clusters). It follows that the final cluster
set can benefit from a multiple-level clustering strategy when the number475

of iteration levels, and thus the final number of clusters, increases. The K
parameter can be selected based on the desired number of clusters and the
expected quality of the cluster set.

4.3.2. Evaluation of K-medoids methods

The experimental results reported in Figure 3 show that K-medoids meth-480

ods exhibit a similar behavior to K-means ones. The bisecting K-medoids
algorithm always provides the worst results in terms of overall similarity and
total SSE values. The refined K-medoids algorithm always improves bisecting
K-medoids and provides comparable results to standard K-medoids.

K-medoids methods showed a very high computational cost which limited485

their applicability in the MLC framework (see Section 4.4). Due to this cost,
solution sets with a larger number of clusters have not been generated.

4.3.3. Evaluation of DBSCAN methods

As reported in Table 6, when iterating the multiple-level DBSCAN ap-
proach for four levels, 32 clusters are computed in total showing good overall490
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Figure 3: K-medoids methods: quality of the cluster set when varying the number of
clusters

similarity and silhouette values (greater than 0.5). These clusters globally
includes 3,510 patients (about 55% of the diabetes dataset). Most patients
belong to clusters computed at the first level, while a comparable number of
patients is included in clusters computed at the next levels. After four iter-
ations, 2,870 patients are labeled as outliers and remain unclustered. Note495

that these patients can be additionally clustered by iterating the approach
for more levels.

Clustering about 55% of the patients using the standard DBSCAN algo-
rithm generates a lower quality cluster set than when using the multiple-level
DBSCAN approach. To deepen into the analysis of this point, Figure 4 plots500

the silhouette and overall similarity values, and number of outlier patients,
when the whole patient collection is analyzed using the standard DBSCAN.
With parameters Eps=0.36 and MinPts=30, a cluster set is generated in-
cluding almost the same number of patients than the cluster set from the
multiple-level DBSCAN approach, but with a significantly lower quality. The505

overall similarity value is 0.73 and the silhouette is 0.4 (i.e., lower than 0.5),
while these values are 0.85 and 0.55, respectively, for the multiple-level DB-
SCAN when iterated for four levels (see Table 6). It follows that, also for
the DBSCAN method, the final cluster set can benefit of the multiple-level
strategy.510

4.4. Execution time

Experiments were performed on a 2.66-GHz Intel(R) Core(TM)2 Quad
PC with 8 GBytes of main memory, running linux (kernel 3.2.0).
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Table 6: Clustering results for multiple-level DBSCAN
1st level 2nd level 3rd level 4th level

(MinPts, Eps) (30, 0.3) (30, 0.5) (20, 0.5) (10, 0.35)
Number of clusters 11 5 4 12
Number of patients 2,872 260 104 274
Silhouette 0.54 0.61 0.66 0.6
Overall similarity 0.85 0.86 0.89 0.94

Whole cluster set
Number of clusters 32
Number of clustered patients 3,510
Number of outliers 2,870
Silhouette 0.55
Overall similarity 0.86

Figure 4: DBSCAN algorithm: quality of the cluster set and number of outlier patients
when varying the Eps value (MinPts=30)

For the multiple-level DBSCAN algorithm, the total run time for com-
puting a solution with 32 clusters is 13min 40s. The first, second, third and515

fourth iteration level require 3min 34s, 3min 8s, 3min, and 2min 58s, respec-
tively. The time tends to progressively reduce at each level because a smaller
dataset portion is progressively analysed.

The run time for bisecting and refined K-means algorithms for computing
a solution with 32 clusters is (slightly) lower than for the multiple-level DB-520

SCAN approach. Bisecting k-means requires 10 min, while refined K-means
requires 7s in addition for the refinement of centroids (i.e., to run K-means
after having initialized centroids). The time for K-means is about 2 minutes.

The run time is significantly higher for bisecting K-medoids, making the
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approach not suitable for datasets with many examinations as the one con-525

sidered in this study. The time is approximately 38 hours for generating a
set of 20 clusters, while refined K-medoids requires 34min in addition for the
refinement of medoids. The time for K-medoids is about 5 hours and a half.

4.5. Impact of data dimensionality on cluster sets

In the patient data representation considered in this study, the data di-530

mensionality is given by the set of examinations describing the patient ex-
amination history. When the cardinality of this set increases, a larger set
of facets characterizes patient care plans. Besides routine tests, also more
specific examinations are considered, which are progressively undergone by
a reduced number of patients. Consequently, the patient distribution tends535

to become increasingly sparser, and the computation of cohesive clusters
becomes more complex.

To evaluate how data dimensionality impacts on the quality of the cluster
set, in addition to the whole diabetes dataset (with 159 examinations), two
other configurations of this dataset have been considered, including about540

60% and 40% of the most frequent examinations (i.e., 60 and 30 exami-
nations, respectively). The three datasets contain the same number of pa-
tients, showing that patient histories include various examinations, possibly
repeated a different number of times by each patient. The multiple-level DB-
SCAN and the refined K-means algorithms have been considered as reference545

example methods for this analysis.
For refined K-means, given a number of clusters, the overall similarity

value decreases, and the total SSE increases, as the number of examinations
(and thus the dataset sparsity) increases (see Figure 5). Consequently, when
the number of examinations increases, a larger number of clusters should be550

generated to discover cohesive groups of patients. For example, the over-
all similarity value gradually tends to 0.8 when considering 20 clusters for
dataset with 30 examinations and 40 clusters for datasets with 60 and 159
examinations.

The multiple-level DBSCAN has been iterated for four levels for all three555

datasets, aimed at generating cluster sets with comparable good quality in
terms of overall similarity and silhouette values. As the number of examina-
tions increases (and thus the dataset sparsity), the final number of patients
labeled as outliers, and thus unclustered, decreases. After four iterations,
the final number of outliers is 2,573, 2,678 and 2,870 for datasets with 30,560

60, and 159 examinations, respectively (see Tables 6 and 7). It follows that

21



Figure 5: Refined K-means on the three datasets: quality of the cluster set when varying
the number of clusters

when the dataset sparsity increases, more iterations are needed to cluster a
larger subset of patients but preserving the quality of the cluster set.

Table 7: Clustering results for multiple-level DBSCAN on datasets with 30 and 60 exam-
inations

30 examinations 60 examinations
1st level 2nd level 3rd level 4th level 1st level 2nd level 3rd level 4th level

(MinPts, Eps) (50, 0.3) (20, 0.45) (10, 0.4) (15, 0.25) (30, 0.3) (30, 0.55) (15, 0.25) (10, 0.6)
Number of clusters 6 12 7 10 11 6 10 14
Number of patients 2,837 617 147 206 2,891 358 186 267
Silhouette 0.56 0.60 0.72 0.64 0.54 0.54 0.70 0.6
Overall similarity 0.84 0.89 0.90 0.98 0.85 0.83 0.99 0.65

Whole cluster set
Number of clusters 35 41
Number of clustered patients 3,807 3,702
Number of outliers 2,573 2,678
Silhouette 0.57 0.55
Overall similarity 0.86 0.84

5. Discussion

Here we discuss the clustering results discovered through theMLC frame-565

work. The discussion addresses the performance comparison for clustering
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methods, the comparison from a medical perspective for discovered cluster
sets, and the cluster characterization in terms of association rules.

5.1. Performance comparison

Concerning K-means methods, refined K-means in particular benefits of570

the multiple-level strategy. The quality of the final cluster set is at least
comparable to the cluster quality of standard and bisecting K-means algo-
rithms, but it outperforms them when the approach is iterated for more levels.
Also the multiple-level DBSCAN algorithm pointed out the improvement in
adopting a multiple-level strategy with respect to the standard DBSCAN575

in the considered case study. On the contrary, K-medoids methods do not
seem suitable to be used in a multiple-level fashion in our case study, because
they provide cluster sets with lower quality. For example, for the solution
with 21 clusters, the overall similarity is 0.67 and total SSE is 3,200 for K-
medoids methods (see Figure 3), while these measures are 0.71 and 2,275 for580

K-means methods (see Figure 2). In addition, the high computational time
of K-medoids methods limits the possibility of iterating them for more levels,
thus progressively improving cluster quality.

Based on the discussion above, we focused our attention on comparing
the refined K-means and the multiple-level DBSCAN algorithms. Let us585

consider, as a reference example, the solutions with 32 clusters generated by
the two algorithms on the whole dataset with 159 examinations. The follow-
ing considerations hold. (i) Both cluster sets exhibit good quality in terms
of overall similarity, even if this value is higher for multiple-level DBSCAN
(0.86, see Table 6) than for refined K-means (0.75, see Figure 2). (ii) In both590

cases, the clustering process requires a comparable and acceptable execution
time, slightly lower for refined K-means (about 10min) than for multiple-level
DBSCAN (about 13min). Thus, (iii) in both cases the multiple-level strategy
can be potentially iterated for more levels by further increasing the quality
of the final cluster set. Specifically, the unclustered outlier patients can be595

progressively reduced for multiple-level DBSCAN, while clusters can be split
into more cohesive subclusters for refined K-means.

To deepen into the comparison of the two algorithms, the agreement be-
tween the two cluster sets is evaluated using the Rand Index. While refined
K-means clusters the whole dataset, the multiple-level DBSCAN clusters a600

subset, since outlier patients are grouped into a separate cluster. The follow-
ing two options are considered to guarantee the same number of patients in
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the compared cluster sets. The separate cluster of outlier patients is (a) ex-
cluded from, or (b) it is included in, the final cluster set generated by the
multiple-level DBSCAN algorithm. In case (a), the outlier patients are also605

removed from clusters computed by the refined K-means algorithm. The
Rand Index value shows a good agreement between the two clustering re-
sults, higher in option (a) (Rand Index = 0.83) than in option (b) (Rand
Index = 0.73). It follows that the two cluster sets mainly differ on the pa-
tients labeled as outliers. While they are isolated by multiple-level DBSCAN,610

they are clustered together with other patients by refined K-means.

5.2. Comparison from a medical perspective

Discovered cluster sets are also analysed from a medical perspective. Fol-
lowing the discussion on performance comparison in Section 5.1, we focused
on the multiple-level DBSCAN and the refined k-means algorithms, and we615

analysed and compared the solutions with 32 clusters computed on the whole
dataset with 159 examinations.

Nevertheless the two algorithms generate cluster sets with good qual-
ity and agreement, from a medical perspective the multiple-level DBSCAN
appears as the more suitable approach for patient analysis. The refined K-620

means algorithm is less effective in partitioning the initial data collection into
subsets with different data distributions, i.e., including patients with (signif-
icantly) different examination histories. Instead, the multiple-level BSCAN
algorithm isolates these outlier patients, and separately analyzes them in a
subsequent clustering phase. Since refined K-means computes a cluster set625

including all the patients in the original dataset, these outlier patients are
always assigned to some clusters, thus increasing the variety of examinations
in each cluster.

More in detail, unlike refined K-means, the multiple-level DBSCAN ap-
proach computed clusters including, on average, a limited number of different630

examinations. These clusters contain from 2 to 35 different examinations and
about 12 on average (see Table 8), while clusters from refined K-means in-
clude from 18 to 67 different examinations and about 38 on average (see
Table 9). In addition, clusters from refined K-means mostly contain patients
with diversified examination histories, including both routine and more spe-635

cialized examinations to test different diabetes complications. Instead, in
clusters from multiple-level DBSCAN, the number of examinations tend to
increase with the iteration levels, thus progressively including more special-
ized examinations.

24



Table 8: Detailed clustering results for multiple-level DBSCAN
First-level

C11 C21 C31 C41 C51 C61 C71 C81 C91 C101 C111

Number of patients 1,764 223 140 294 144 110 42 43 35 36 41
Number of examinations 10 6 8 7 6 2 7 8 9 19 2
Silhouette 0.48 0.53 0.62 0.50 0.56 0.99 0.83 0.66 0.85 0.71 1.00
Overall similarity 0.82 0.87 0.94 0.88 0.92 1.00 0.96 0.94 0.97 0.94 1.00

Second-level Third-level
C12 C22 C32 C42 C52 C13 C23 C33 C43

Number of patients 75 73 49 30 33 32 29 21 22
Number of examinations 35 27 15 16 8 22 19 14 15
Silhouette 0.61 0.52 0.70 0.62 0.63 0.71 0.54 0.73 0.69
Overall similarity 0.84 0.85 0.91 0.89 0.86 0.9 0.83 0.92 0.91

Fourth-level
C14 C24 C34 C44 C54 C64 C74 C84 C94 C104 C114 C124

Number of patients 19 19 100 12 14 14 24 30 10 10 12 10
Number of examinations 7 3 20 9 8 19 12 12 9 16 4 19
Silhouette 0.69 1 0.42 0.88 0.79 0.53 0.48 0.50 0.73 0.51 0.93 0.72
Overall similarity 0.93 1 0.91 0.98 0.95 0.94 0.94 0.92 0.94 0.94 0.99 0.95

Whole cluster set
Silhouette 0.55
Overall similarity 0.86

Table 9: Detailed clustering results for refined K-means
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

Number of patients 96 172 169 97 124 239 233 206 13 88 38 376
Number of examinations 42 39 25 18 52 51 44 40 31 34 38 60
SSE 67.6 112 39.9 8.72 43.3 105 88.7 65.5 5.17 22.4 14.7 134
Overall similarity 0.51 0.50 0.80 0.92 0.70 0.63 0.67 0.72 0.70 0.79 0.67 0.69

C13 C14 C15 C16 C17 C18 C19 C20 C21 C22 C23 C24

Number of patients 18 78 402 231 351 50 47 26 201 182 226 146
Number of examinations 33 30 56 44 67 28 34 51 37 41 46 54
SSE 7.43 38.3 137 100 149 24.2 17.6 15.7 98.7 48.9 76.3 113
Overall similarity 0.66 0.61 0.70 0.63 0.64 0.60 0.69 0.54 0.59 0.77 0.71 0.45

C25 C26 C27 C28 C29 C30 C31 C32

Number of patients 74 1,126 509 61 169 170 257 205
Number of examinations 39 35 35 40 20 24 28 30
SSE 58.7 55.3 57 34.2 22.5 65.5 43.9 55.8
Overall similarity 0.43 0.96 0.90 0.57 0.88 0.76 0.85 0.76

Whole cluster set
Total SSE 1,926.01
Overall similarity 0.75
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For both methods, the content of some example clusters, in terms of the640

most frequent examinations in the cluster, is reported in Table 10. For the
multiple-level DBSCAN, first-level clusters contain patients who mostly per-
formed standard routine tests to monitor diabetes conditions (cluster C21).
Second-level clusters contain patients tested with an increasing number of
specific examinations, showing that patients can be affected by a particular645

disease complication or by more disease complications (e.g., on cardiovas-
cular and eye system in cluster C52). Examinations become progressively
more numerous and specific in third- and fourth-level clusters, indicating
patients that can have diabetes complications of increasing severity (clusters
C13 and C124). Instead, in clusters from refined K-means, examinations cover650

most categories. Thus, patients with different disease complications can be
included in the same cluster (clusters C2, C5, C11 and C21).

Being clusters computed using the multiple-level DBSCAN algorithm
rather homogeneous in their patient examination histories, clinical domain
experts can inspect the cluster content from a medical perspective to sup-655

port various analysis as for example those reported below. (a) Discover,
for each cluster, the examinations actually prescribed to diabetic patients
included in the cluster. (b) Check the coherence between the underwent ex-
aminations in each cluster and the existing medical guidelines for diabetes
disease (ICD-9-CM, 2011). (c) Provide feedbacks to health care organiza-660

tions to improve the application of the existing medical guidelines, but also
to enrich these guidelines or assess new ones.

5.3. Cluster characterization using association rule analysis

The cluster content has been concisely described using association rules,
which represent correlated examinations within each cluster. As an example665

of the type of information which can be mined using these patterns, some
association rules are reported in Table 11 for the multiple-level DBSCAN
clusters in Table 10.

Rules in the first-level cluster C21 show strong correlations among rou-
tinely checked examinations, being rules mostly characterized by high sup-670

port and confidence values and lift greater than 1. For example, rule R1

reports that Urine test and Capillary blood examinations appear together
in 72% of patients in the cluster. Moreover, being rule confidence 100%,
all patients with Urine test underwent Capillary blood. In the second-level
cluster C52 , rule R4, with lift value lower than 1, highlights an inverse impli-675
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Table 10: Multiple-level DBSCAN and refined K-means: most frequent examinations in
some example clusters (examination frequencies are in %)

Multiple-level DBSCAN Refined K-means

Category Examination
1st level 2nd level 3rd level 4th level

C2 C5 C11 C21C21 C52 C13 C124

Routine Glucose level 78 100 75 100 68 94 63 90
Capillary blood 72 97 72 100 58 69 61 57
Urine test 72 100 72 100 60 68 61 55
Venous blood 96 91 69 70 56 98 68 96
Glycated Hemoglobin 100 76 16 10 24 90 40 79
Complete Blood Count - - - - 5 73 16 100

Cardiovascular Cholesterol - - 13 10 10 85 37 70
Triglycerides - - 13 1 11 84 37 69
HDL Cholesterol - - 13 10 10 84 37 67
Electrocardiogram - 79 25 - 20 25 26 15

Eye Fundus oculi - 100 - 20 26 34 45 20
Retinal photocoagulation - - - - - 1 3 -
Eye examination - - - - 1 7 8 1
Angioscopy - - 100 - - 2 8 -

Liver ALT - - - 10 9 95 26 50
AST - - - 10 10 97 29 49
Gamma GT - - - 10 5 83 18 10
Bilirubin - - - - - 95 - -
Upper abdominal ultrasound - - - - 1 6 3 2

Kidney Culture urine - - - - 7 52 37 20
Uric acid - - - 10 6 65 21 33
Microscopic urine analysis - - - 10 4 69 13 50
Microalbuminuria - - - - 6 44 26 11
Creatinine - - - - 4 61 13 29
Creatinine clearance - - - 10 6 29 18 11

Carotid ECO doppler carotid - - - - 67 4 11 2
Limb ECO doppler limb - - - 10 53 2 16 2

Vibration sense thresholds - - - 100 - 2 - 2

cation between Electrocardiogram and examinations Venous blood and Gly-
cated Hemoglobin. These two examinations occur with probability 65% (cor-
responding to the rule confidence value) in the subset of patients having
Electrocardiogram. Instead, the probability of the two examinations grows to
72.7% when all patients in the cluster are considered, regardless of whether680

they performed Electrocardiogram (72.7% is the frequency in the cluster of
the pair of examinations). Thus, patients tested with Electrocardiogram tend
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to follow less than expected Venous blood and Glycated Hemoglobin.
Rules tends to be characterized by lower support values in the next-level

clusters, being patient histories more diversified. Correlations among exami-685

nations Electrocardiogram, Angioscopy, and Venus blood are reported for the
third-level cluster C13 in rules R7 and R8. 25% of patients in the cluster
performed all three examinations but, based on the rule confidence value,
there is a stronger correlation between Electrocardiogram and examinations
Angioscopy and Venus blood than vice-versa. While all (100%) patients with690

Electrocardiogram also had Angioscopy and Venus blood (rule R7), fewer
(36%) patients with Angioscopy and Venus blood also had Electrocardiogram
(rule R8). In the fourth-level cluster C124 , containing more diversified exam-
inations, more diversified association rules are discovered. These rules may
model strong correlations, but usually occur with (quite) low frequency in695

the cluster.

Table 11: Example association rules for some clusters from multiple-level DBSCAN

ClusterAssociation rules Sup.(%)Conf.(%)Lift

C21 R1: Urine test ⇒ Capillary blood 72 100 1.39

R2: Venous blood ⇒ Glycated Hemoglobin, Capillary blood 72 75 1.04

C52 R3: Capillary blood ⇒ Venous blood, Electrocardiogram 69 72 1.03

R4: Electrocardiogram ⇒ Venous blood , Glycated Hemoglobin 52 65 0.90

C13 R5: Triglycerides ⇒ HDL Cholesterol 13 100 8

R6: Glucose level ⇒ Angioscopy, Urine test 72 96 1.33

R7: Electrocardiogram ⇒ Angioscopy, Venous blood 25 100 1.46

R8: Angioscopy, Venous blood ⇒ Electrocardiogram 25 36 1.46

C124 R9: Uric acid ⇒ Triglycerides 10 100 10

R10: Microscopic urine analysis ⇒ HDL Cholesterol 10 100 10

R11: Vibration sense thresholds, Venous blood ⇒ Fundus oculi 20 29 1.43

6. Conclusion

This paper presented the multiple-level strategy to effectively cluster real
data with variable data distribution. We presented and discussed the cluster
analysis performed on a real collection of diabetic patients records through700

five different clustering algorithms integrated into the MLC framework. This
work can be extended in different research directions. For example, MLC can
be used on more complex and heterogeneous real data as patient data also
including additional aspects of the medical treatments (e.g., pharmaceutical
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drug therapies) or sports data including athlete profile and data on exercise705

execution (Baralis et al., 2013a). This research direction should touch vari-
ous aspects of the framework as distance measure, data exploration strategy,
and quality indices.
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