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Stochastic Robust Simulation and Stability
Properties of Chemical Reaction Networks

Corrado Possieri and Andrew R. Teel

Abstract—In this paper, a novel algorithm to perform robust
stochastic simulations of chemical reaction networks is proposed.
Such a procedure relies on the definition of a stochastic difference
inclusion, whose trajectories match those of the chemical reaction
network. By taking advantage of the correspondence between
chemical reaction networks and stochastic difference inclusions,
mathematical tools available for the latter discrete–time systems
are used to characterize stability properties of chemical reaction
networks. Namely, Lyapunov conditions are given to guarantee
asymptotic stability in probability, global strong recurrence, and
global weak reachability of a given set for the reaction network.
Practical examples of application of the given algorithm and of
the Lyapunov approach are reported.

I. INTRODUCTION

In spatially homogeneous systems of chemical reactions,
the time evolution of the concentrations of the involved
molecules are usually computed by solving a large set of
coupled Ordinary Differential Equations [1], [2], [3], [4]. This
framework is widely adopted to represent a large setting of
chemical reactions (see, for instance, [5], where a detailed
differential model for the lac operon was developed to study
diauxic growth on glucose and lactose). Such an approach is
based on the so called “deterministic formulation” of chemical
reactions [6], in which the concentrations of the involved
species are considered as continuous function of time and
reactions are viewed as rates of consumption or generation
whose evolution is governed by a wholly predictable process.
Even if such a deterministic approach is adequate in many
cases of practical interest, some other interesting models
for such reaction networks are receiving a growing interest
as: Bayesian networks [7], cluster analysis [8], information–
theoretic approaches [9], Boolean Networks [10], [11], [12].

One of the main limitations of the deterministic approach
is that it does not take into account the stochastic nature of
many chemical reactions. As a matter of fact, experimental
evidences [13], [14] highlighted the fact that, when some
species involved in the chemical reaction are present in very
few numbers, the stochastic effects have a crucial role in
the evolution of the reaction network. By this reasoning,
stochastic models for chemical networks have received an
increasing interest (see, e.g., [15], [16], [17], [18]). In such
a stochastic approach, the chemical species concentrations
evolve according to a sort of random–walk process, gov-
erned by a single Partial Differential Equation (the so called
Chemical Master Equation [19]). This stochastic approach
has a basis that relies on the actual physics of the system,
but the Chemical Master Equation is often mathematically
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intractable. By this reasoning, in [20], a procedure (namely,
the Stochastic Simulation Algorithm) has been proposed to
carry out exact numerical simulations of the given chemical
network. Several methods have been proposed to execute such
a procedure (see [21], [22] for a comparison of the differ-
ent formulations of Gillespie’s algorithm), including specific
toolkits (e.g., the software StochKit presented in [23]). Such
algorithms received increasing interest since they provide a
deeper understanding of the dynamics of complex reaction
networks [24], [25], allowing to quantify the dependence of
the system behavior on the reaction parameters [26].

The Stochastic Simulation Algorithm is considered exact
because it does not approximate infinitesimal time increments
by finite time steps and because it is based on the same
physical principles of the Chemical Master Equation. It is
worth stressing that, in the literature, also inexact stochastic
simulation algorithm have been proposed (see, e.g., [27], [28]),
but in this paper we focus just on exact methods.

The Stochastic Simulation Algorithm is a Monte Carlo type
method and it can be easily employed to generate trajectories
of the chemical reaction system and hence to compute statistics
of the values of the variables. The main limitation of such
a method is that it requires the exact knowledge of the
propensity functions, i.e., those functions relating the current
concentration of chemical species with the propensity that
a certain reaction occurs. One of the main objectives of
this paper is to propose an algorithm to perform stochastic
simulation of chemical reaction networks without an exact
knowledge of the propensity functions. Namely, by employing
the modern theory about stochastic difference inclusions (see
[29] and references therein), an algorithm is proposed to per-
form simulations of the chemical network when the reaction
kinetics are not known exactly and are, possibly, time–varying.
Practical examples of application of the proposed algorithm to
models taken from the literature are given.

By taking advantage of this correspondence between chem-
ical reaction networks with partially known kinetic constants
and stochastic difference inclusions, the mathematical tools
specifically developed for the latter class of systems can be
employed to characterize stability properties of the chem-
ical network. Namely, by employing Lyapunov arguments,
conditions are given for asymptotic stability in probability,
global strong recurrence, and global weak reachability of
the chemical reaction network (for the formal definitions of
these stability properties, see Section V). These properties
are particularly interesting for biochemical reaction networks,
since the presence of a certain chemical species above or below
a given threshold may determine cell life or death [30], [31].

The remainder of the paper is organized as follows. The



2

notation employed in the paper is summarized in Section II.
In Section III, stochastic methods used to model spatially
homogeneous chemical reaction networks are reviewed. In
Section IV, an algorithm to perform Robust Stochastic simu-
lations of chemical reaction networks is given. In Section V,
stability properties of the chemical reaction network are stud-
ied. Finally, conclusions are formulated in Section VI.

II. NOTATION

We adopt the same notation used in [29]. R>0 and Z>0

denote the set of real and integer numbers that are greater than
or equal to zero, respectively. Given k ∈ Z>0, the symbol
Z<k is used to denote the set {1, 2, . . . , k}. Given a closed
set A ⊂ R` and x ∈ R`, |x|A = infy∈A |x − y| denotes the
Euclidean distance to A. The symbols B and Bo represent
the closed and open unit ball of appropriate dimensions,
respectively. The symbol IA(x) denotes the indicator function
of A, i.e., IA(x) = 1, if x ∈ A, or IA(x) = 0, otherwise. A
function α : R>0 → R>0 is of class K, denoted α ∈ K, if it
is continuous, strictly increasing and α(0) = 0. A function
α : R>0 → R>0 is of class K∞, denoted α ∈ K∞, if
α ∈ K and it is unbounded. A function φ : R` → Rs is
upper semicontinuous if for each sequence xi converging to
x, lim supi→∞ φ(xi) 6 φ(x). A function φ : R` → Rs
is lower semicontinuous if −φ is upper semicontinuous. A
set–valued mapping G : R` ⇒ Rs is a relation assigning
to each point x in R` a set G(x) in Rs. A set–valued
mapping G : R` ⇒ Rs is outer semicontinuous at x̄ ∈ R` if
lim supx→x̄G(x) ⊂ G(x̄), where lim supx→x̄G(x) := {y ∈
Rs : ∃xν → x̄, ∃yν → y, with yν ∈ G(xν)}. A mapping
G : R` ⇒ Rs is locally bounded if, for each bounded
set S ⊂ R`, G(S) :=

⋃
x∈S G(x) is bounded. A mapping

G : R` ⇒ Rs is measurable if, for every open set O ⊂ Rs,
the set G−1(O) := {y ∈ R` : S(y) ∩ O 6= ∅} is measurable.

III. STOCHASTIC MODELING OF CHEMICAL REACTIONS

In this section, we review stochastic methods for modeling
(spatially homogeneous) systems of chemical reactions follow-
ing the exposition given in [20], [6], [32], [33].

The problem considered in this paper is the following:
‘Consider a fixed volume V that contains a spatially uniform
distribution of n molecules which can interact through m
chemical reactions. Given the numbers of molecules of each
species present at some initial time, what will these molecular
population levels be at any later time?’ Before turning to a
quantitative solution to such problem, we need to introduce
some terminology related to the chemical reaction network,
that is usually characterized by the following two properties:
• Stoichiometry: specifies the species that participate in a

chemical reaction, together with the molar ratio in which
they are produced or consumed.

• Reaction kinetics: describe the dynamics of the reaction
based on its mechanism and the enzyme properties.

In structural analysis of biochemical network, since
metabolic reactions are usually characterized by fast kinetic,
the dynamics of the reactions are usually neglected [34]. This

led to the following formal description of the structure and
stoichiometry of a reaction network:

• n: number of (internal) chemical species;
• m: number of chemical reactions;
• S: a matrix in Zm×n, whose (i, j)–th entry si,j represents

the stoichiometric coefficient of specie j in reaction i,
with the following convention: si,j > 0, if i produces j,
si,j < 0, if i consumes j.

Note that, in such a framework, a reversible reaction can
be modeled as two separate reactions proceeding in opposite
directions and that the structure of any reaction network can
be modeled through such a formalism. Furthermore, sim-
ple linear algebra techniques can be employed to efficiently
perform Stoichiometric Network Analysis (briefly, SNA). In
fact, conservation relations (i.e., weighted sums of reagent
concentrations which remain constant in the system) can be
computed as row vectors y ∈ Z1×m lying in the left null–
space of the stoichiometric matrix S. Moreover, by applying
the quasi steady state assumption [35], the right null–space of
the matrix S provides the set of all flux distributions such that
the production (sum of positive fluxes) and the consumption
(sum of negative fluxes) of a reagent are equal.

The analysis tools reported so far can be efficiently em-
ployed to perform analysis of biochemical networks where
the concentration of biomolecules is sufficiently high to guar-
antee that the network dynamics behave deterministically.
However, many biological processes are triggered by random
collisions of molecules. Especially when the concentration of
biomolecules is low (and hence a particular reaction happens
infrequently), these random collisions could lead to substantial
fluctuations, which may affect other reactions and hence
propagate through the network. This aspect led to the necessity
of developing a tool able to deal with such randomness.

In [20], Gillespie proposed a simple digital computer algo-
rithm which uses a rigorously derived Monte Carlo procedure
to numerically simulate the time evolution of the given chem-
ical system. Namely, let n be the number of chemical species
involved, m be the number of chemical reactions, and S be the
stoichiometric matrix corresponding to the reaction network.
Define the vector x = [ x1 · · · xn ]> ∈ Zn>0, whose j–th
entry xj denotes the number of molecules of specie j. The
rate of occurrence of reaction i is characterized by the i–th
propensity function ri : Zn>0 → R>0, which depends only on
the current state of the system. In fact, letting θi be the kinetic
coefficient of the i–th reaction and letting

Ni := {j ∈ {1, . . . , n} : `i,j 6= 0},

where `i,j denotes the molar ratio in which the j–th specie is
consumed by the i–th reaction, the i–th propensity function is

ri(x) =

{
θi
∏
j∈Ni

(
xj
`i,j

)
, if Ni 6= ∅,

θi, if Ni = ∅. (1)

It is worth remarking that the stoichiometric matrix S
encodes also the change of the number of molecules due to
the i–th reaction. Namely, reaction i changes component j
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from xj to xj + si,j , i = 1, . . . ,m, j = 1, . . . , n. Thus, the
probability that some reaction occurs can be characterized by

r0(x) =

m∑

i=1

ri(x).

By employing these observations, Gillespie defined a simple
algorithm (formalized through Algorithm 1) for generating
individual paths of the random process [36].

Algorithm 1 Stochastic Simulation Algorithm.
Input: Functions r1(x), . . . , rm(x), stoichiometric matrix S,

initial time t0, final time tf , initial condition x0 ∈ Zn>0 of
the reaction network, and a sufficiently small ε > 0.

Output: A stochastic simulation of the reaction network.
1: Define the sequences t := {t0} and x := {x0}.
2: while t 6 tf do
3: Let x = [ x1 · · · xn ]> be the last element of the

sequence x, and let r̄i = ri(x), i = 1, . . . , n.
4: Compute r̄0 :=

∑n
i=1 r̄i.

5: Pick a random number v1 from Uniform(0, 1).
6: Pick a random number v2 from Uniform(ε, 1).
7: Compute τ = 1

r0
ln( 1

v2
).

8: Find µ ∈ {1, . . . ,m} such that
µ−1∑

i=1

ri(x) < v1r0 6
µ∑

i=1

ri(x).

9: Let t be the last element of t and append t+ τ to t.
10: Append [ x1 + sµ,1 · · · xn + sµ,n ]> to x.
11: end while
12: return The sequences t and x.

The output of Algorithm 1 is two sequences t and x
representing the times tk in which a chemical reaction has
occurred and the state xk(t) of the biological reaction network
for all times t ∈ [tk, tk+1).

IV. ROBUST STOCHASTIC SIMULATION

In this section, the results reviewed in Section III are
extended to cope with uncertainties in the kinetic parameters
θi, i = 1, . . . ,m. Namely, one limitation of the Stochastic
Simulation Algorithm 1 is that the θi’s, employed in (1)
to compute the propensity functions ri’s, have to be time–
invariant and exactly known. One of the main objectives of
this paper, achieved in this section, is to formalize a robust
stochastic simulation algorithm where such a requirement may
not be satisfied. This goal is attained by exploiting a class of
stochastic difference inclusions, taken from [29], [37], that
appears particularly suitable for such a scope.

Let ξ = [ x> θ> t ]> ∈ Rn+m+1, where x =
[ x1 · · · xn ]> denotes the concentration of the molecules
of each specie involved in the chemical reaction, θ denotes the
current parameter that is employed to carry out the simulation
and t is the reaction time. Let ε > 0 be a sufficiently small
parameter related to the maximum dwell time between two
chemical reactions. Let v = [ v1 v2 ]> be the input and

assume that the only available knowledge about θi is that
θi ∈ [θi, θi] ⊂ R>0, i = 1, . . . ,m. Hence, define the set

Θ = [θ1, θ1]× [θ2, θ2]× · · · × [θm, θm] ⊂ Rm>0. (2)

Remark 1. In order to define the set Θ in (2), upper and
lower bounds on the kinetic coefficients θ1, . . . , θm have to
be determined. Several computational methods are available
in the literature to determine such constants [38], [39]. As an
example, by using the Bennett–Chandler procedure [40], [41],
define the correlation function Fi of the i–th reaction,

Fi(t) :=
〈IAi(0)IBi(t)〉
〈IAi〉

,

where Ai are the reactants, Bi are the products, IAi(t)
(respectively, IBi(t)) equals 1 if the system at time t is in
state Ai (respectively, Bi) or 0 if it is not, and 〈·〉 denotes
equilibrium averages (for further details, see [42]). Then, the
rate of the reaction from Ai to Bi is given by

θi = Ḟi, i = 1, . . . ,m.

Since Fi(t) need not be constant during the reaction, the upper
and lower bounds in (2) can be defined as

θi = inft>0Ḟi(t), θi = supt>0Ḟi(t).

Letting si,j , `i,j , and Ni be defined as in Section III, let
r̃i : Zn>0 ×Θ→ R>0, i = 0, . . . ,m,

r̃i(x, θ) =

{
θi
∏
j∈Ni

(
xj
`i,j

)
, if Ni 6= ∅,

θi, if Ni = ∅, (3a)

r̃0(x, θ) =

m∑

i=1

r̃i(x, θ), (3b)

and define s : Zn>0 ×Θ× [0, 1]⇒ Zn>0 as




{S>µ−1, S
>
µ }, if

µ−1∑

i=1

r̃i(x, θ) = vr̃0(x, θ) =

µ∑

i=1

r̃i(x, θ),

S>µ if
µ−1∑

i=1

r̃i(x, θ) < vr̃0(x, θ) 6
µ∑

i=1

r̃i(x, θ),

where Sµ = [ sµ,1 · · · sµ,n ]>. Hence, define the set–
valued mapping G : Rn+m+3 ⇒ Rn+m+1 as follows:
(a) if x ∈ Rn\Zn>0, or θ ∈ Rn\Θ, or t /∈ R>0, or v1 /∈ [0, 1],

or v2 /∈ [ε, 1], then

G(x, θ, t, v) = ∅; (4a)

(b) if (x, θ) ∈ Zn>0 ×Θ is such that r̃0(x, θ) = 0, then

G(x, θ, t, v) = ∅, (4b)

for each v ∈ R2;
(c) if both items (a) and (b) do not hold, then

G(x, θ, t, v) =




x+ s(x, θ, v1)
Θ

t+ 1
r̃0(x,θ) ln( 1

v2
)


 . (4c)

Thus, consider the stochastic difference inclusion with state
ξ ∈ Rn+m+1 and random input v ∈ R2

ξ+ ∈ G(ξ, v), (5)
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where the first three arguments of the set–valued mapping G
have been lumped together in the vector ξ. In order to define
random solutions, we add a probability structure to (5). Let
(Ω,F ,P) be a probability space and let v = {vk}∞k=0 be a
sequence of independent, identically distributed (i.i.d.) input
random variables defined on (Ω,F ,P). Namely, letting vk :
Ω → R2, k ∈ Z>0, denote the elements of such a sequence,
P({ω ∈ Ω : vk(ω) ∈ A}) is well defined and independent of
k for each A in the Borel σ–field over R2, denoted B(R2).
Therefore, the distribution function µ : B(R2) → [0, 1], is
defined as µ(A) := P({ω ∈ Ω : vk(ω) ∈ A}). We use Fk to
denote the collection of sets {ω ∈ Ω : (v0(ω), . . . ,vk(ω)) ∈
A}, A ∈ B((R2)k), which are the sub–σ–fields of F that form
the minimal filtration of v [43].

The graph of a sequence {φk}K−1
k=0 is defined as grp(φ) :=⋃K−1

k=0 {k}×{φk}. A sequence {(ξk,uk)}K−1
k=0 with (ξk,uk) ∈

Rn+m+1×R2 is a regular solution to (5) starting at ξ if ξ0 = ξ
and ξk+1 ∈ G(ξk,uk) for all k ∈ {0, . . . ,K − 2}. A map ξ
from Ω to sequences in Rn+m+1 is a random solution to (5)
starting at ξ if the following two conditions hold:
• for each ω ∈ Ω, the sequence {(ξk(ω),uk(ω))}Kξ(ω)−1

k=0

is a regular solution to (5) starting at ξ, where Kξ : Ω→
Z>0 ∪ {∞} denotes the length of the sequence ξ;

• for all k ∈ Z>0, the map ω 7→ ξk+1(ω) is Fi–measurable,
where (F0,F1, . . .) is the minimal filtration of v.

The first condition guarantees that for each outcome of
the random sequence v, {(ξk(ω),vk(ω))}Kξ(ω)

k=0 is a regular
solution to the difference inclusion (5), while the second
condition prevents the k–th value of the state sequence from
anticipating the values of the random input at future times.

A random solution x is maximal, denoted x ∈ Sr(x), if
there does not exist another random solution y to (5) starting
at x such that domxk ⊂ domyk, for all k ∈ Z>0, yk(ω) =
xk(ω) for all ω ∈ domxk and all k ∈ Z>0, and domxk 6=
domyk, for some k ∈ Z>0.

It is worth noticing that fixing ω ∈ Ω corresponds to
selecting a sequence of inputs v. With such fixed inputs,
system (5) can be viewed as a time–varying, deterministic
difference inclusion that can be studied through classical tools
[44]. On the other hand, the main objective of this paper is
to study the properties of the network induced by the given
probability structure.

In order to define a stochastic simulation algorithm through
the stochastic difference inclusion (5), in the remainder of this
paper we will assume the following distribution of the entries
of the input: v1 ∼ Uniform(0, 1) and v2 ∼ Uniform(ε, 1). As
a matter of fact, with such a choice for the random input, if
the parameters θi’s of the chemical reaction are known exactly,
i.e., θi = θi = θi, i = 1, . . . ,m, then Θ = {θ1} × {θ2} ×
· · ·×{θm} and hence ξ(ω) ∈ Sr([ x> θ1 · · · θm 0 ]>)
corresponds to the output of the Stochastic Simulation Al-
gorithm 1 with initial condition x0 = x, provided that
solutions exist. Moreover, thanks to its structure, the stochastic
system (5) allows to cope with partially known and time–
varying kinetic coefficients.

The following theorem allows to guarantee the existence of
random solutions to the stochastic difference inclusion (5).

Theorem 1. The set valued mapping G : Rn+m+3 ⇒
Rn+m+1 is locally bounded and the mapping v 7→
grp(G(·, v)) := {(ξ, y) ∈ Rn+m+3 × Rn+m+1 : y ∈ G(x, v)}
is measurable with closed values.

Proof. For each (ξ̄, v̄) ∈ Rn+m+1×R2 such that G(ξ̄, v̄) 6= ∅,
there exists a neighborhood U of (ξ̄, v̄) and δ ∈ R>0 such
that G(ξ, v) ⊂ δB, for all (ξ, v) ∈ U . Hence, the set
valued mapping G is locally bounded. Furthermore, for each
(x, θ, t, v) such that both items (a) and (b) do not hold,
the mapping (x, θ, v) 7→ s(x, θ, v) is outer semicontinuous
and hence the map v 7→ grp(G(·, v)) has closed values.
The measurability of the mapping v 7→ grp(G(·, v)) follows
from the measurability of the mappings v1 7→ grp(s(·, ·, v1)),
v2 7→ grp( 1

r̃0(·,·) ln( 1
v2

)) and the same arguments employed in
the proofs of [37, Prop. 3] and [45, Ex. 1].

Theorem 1 guarantees that the stochastic difference inclu-
sion (5) satisfies Standing Assumption 1 of [29], [46] and
hence that, for each (ξ, v) ∈ Rn+m+1 × R2 G(ξ, v) is a
compact (possibly, empty) set and that random solutions to (5)
exist. Taking advantage of the latter result, in the following
proposition we provide a characterization of maximal solution
to the stochastic difference inclusion (5).

Proposition 1. Let ξ ∈ Zn>0 × Θ × R>0 be given and let
ξ ∈ Sr(ξ). Then, the length Kξ of ξ is bounded if and only
if ξKξ(ω)(ω) is such that no chemical reaction can occur.

Proof. By Theorem 1 and [37, Prop. 15], maximal random
solutions to (5) exist. Then, by the definition of the set–valued
mapping G : Rn+m+3 ⇒ Rn+m+1, if ξ ∈ Zn>0 × Θ × R>0

then item (a) does not hold for any k ∈ Z>0 because G(ξ ∈
Zn>0 ×Θ× R>0 × [0, 1]× [ε, 1]) ⊂ Zn>0 ×Θ× R>0. Hence,
since (b) holds if and only if no chemical reaction can occur,
then the length Kξ(ω) is bounded for some ω ∈ Ω if and only
if ξKξ(ω)(ω) is such that no chemical reaction can occur.

The following two examples show how to compute a
random solution x(ω) for some ω ∈ Ω to the system (5).

Example 1. Consider a simple auto–catalytic system consist-
ing of two homogeneously distributed chemical species C1,
C2, and four reactions:

R1 : ∅ → C1,
R2 : 2C1 + C2 → 3C1,
R3 : C1 → C2,
R4 : C1 → ∅,

where ∅ denotes arbitrary external sources and sinks for the
reactions. Define the state x = [ x1 x2 ]> ∈ Z2

>0, where xj
counts the number of copies of the j–th specie Cj . In such a
reaction network the propensity functions are given by

r̃1(θ, x) = θ1,

r̃2(θ, x) = θ2
x1(x1−1)

2 x2,
r̃3(θ, x) = θ3x1,
r̃4(θ, x) = θ4x1.
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Let θi be the kinetic parameter corresponding to reaction
Ri, i = 1, . . . , 4, and define the stoichiometric matrix

S :=

[
1 1 −1 −1
0 −1 1 0

]>
.

Assume that the kinetic parameters are known with uncer-
tainty, i.e., Θ = [9.8, 10.1]× [0.9, 1.01]× [49, 50]× [0.8, 1.2].
The following Algorithm 2 allows to compute a random
sample from solutions belonging to Sr(ξ).

Algorithm 2 Robust Stochastic Simulation Algorithm.
Input: stoichiometric matrix S, number of steps K, initial

condition ξ0 ∈ Zn>0 ×Θ× {0} and ε > 0.
Output: A stochastic simulation of system (5).

1: Define the sequence ξ := {ξ0} and let k = 0.
2: while k 6 K do
3: Let ξk = [ x> θ> t ]> be the last element of ξ.
4: Use (3) to compute ri(x, θ) for i = 0, . . . ,m.
5: Pick a random number v1 from Uniform(0, 1).
6: Pick a random number v2 from Uniform(ε, 1).
7: Use (5) to compute ξk+1.
8: if ξk+1 = ∅ then
9: return The algorithm has been interrupted because

no reaction will occur.
10: end if
11: Append ξk+1 to ξ and set k = k + 1.
12: end while
13: return The sequence ξ.

It is worth remarking that the output of Algorithm 2 is
not a random solution to system (5), which is a function
mapping ω ∈ Ω to sequences in Rn+m+1. In fact, such an
output is the value of a random solution ξ(ω) computed for
some ω ∈ Ω (namely, one of the ω’s corresponding to the
values of the random inputs picked at Steps 5 and 6 for all
k ∈ {0, . . . ,K}). However, since a closed-form expression for
random solutions to system (5) cannot be easily determined,
Algorithm 2 is a powerful tool to analyze the behavior of
the chemical reaction network. In fact, as Algorithm 1, by
repeating such a procedure until a sufficient amount of data is
gathered, statistically correct estimates of the system behavior
can be obtained.

0 20 40 60 80 100
0

20

40

60

80

100

t

 

 

C1(t)
C2(t)

Fig. 1: Simulation corresponding to the output of Algorithm 2
in the first example.

Figure 1 depicts a simulation of the chemical reaction
network obtained through Algorithm 2 with input S, K =
105, ξ0 = [ x>0 θ>0 0 ]>, x0 = [ 10 5 ]>, θ0 =
[ 10 1 50 1 ], ε = 10−12, and the next value of θ is
chosen uniformly randomly in Θ. 4

In order to carry out Step 7 of Algorithm 2, a vector in
G(ξk, v) (that generically is not a singleton) has to be selected.
In Example 1, such a selection has been made by choosing
the next value of θ uniformly randomly in Θ, but, in principle,
any other selection can be made.

The following example illustrates the possible interruption
of Algorithm 2 due to the fact that no reaction can occur
and highlights its similarities with Algorithm 1 in the case of
perfectly known reaction coefficients.

Example 2. Consider the following predator–prey model,
consisting of two species C1 and C2 and three reactions:

R1 : C1 → 2C1,
R2 : C1 + C2 → 2C2,
R3 : C2 → ∅,

Define the state vector x = [ x1 x2 ]> ∈ Z2
>0 and define

the stoichiometric matrix

S :=

[
1 −1 0
0 1 −1

]>
.

For this reaction network, the propensity functions are

r̃1(θ, x) = θ1x1,
r̃2(θ, x) = θ2x1x2,
r̃3(θ, x) = θ3x1.

Let Θ = {0.2} × {0.1} × {0.2} (i.e., the kinetic pa-
rameters for such a reaction are known exactly). Algo-
rithm 2 has been employed with input S, K = 200,
ξ0 = [ 5 2 0.2 0.1 0.2 0 ]>. ε = 10−12 to simu-
late the behavior of the reaction network. Note that, since
the set Θ is a singleton, Θ = {θ̄}, for almost all x ∈
Rn, t ∈ R>0, v1 ∈ [0, 1], and v2 ∈ [ε, 1], the set
G([ x> θ̄> t ]>, [ v1 v2 ]>) is a singleton. Therefore,
for almost all the initial conditions ξ0 of the reaction network,
the Robust Stochastic Simulation Algorithm 2 reduces to
Algorithm 1 since the steps that have to be carried out in
the two procedures are, in this case, the same.

Figure 2 depicts two simulations of the behavior of the
chemical reaction network obtained through Algorithm 2.

In the first simulation, depicted in Figure 2(a), Algorithm 2
has not been interrupted since, for the selected ω, there does
not exist k ∈ {0, . . . ,K} such that ξk(ω) is such that no
reaction can occur. On the other hand, in the second simula-
tion, depicted in Figure 2(b), Algorithm 2 has been interrupted
at k = 85 because, for the selected ω, ξ85(ω) is such that
no reaction can occur. In fact, in such a latter simulation,
ξ85(ω) = [ 0 0 0.2 0.1 0.2 0 ]> and hence, since

r̃0(x, θ) = 0,

no reaction will occur for all future times. 4
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(a) Algorithm 2 has not been interrupted.
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(b) Algorithm 2 has been interrupted.

Fig. 2: Simulations corresponding to the output of Algorithm 2
in the second example.

Note that the set–valued nature of system (5) can be
exploited to deal with reactions with unknown mechanisms
and intermediate species, as shown in the following example.

Example 3. Consider the reaction network consisting of two
species C1 and C2 and two reactions:

R1 : C1 → C2,
R2 : C2 → C1,

where there is a possible intermediate specie C3 in R1. To cope
with such intermediate specie, define the additional reactions

R3 : C1 → C3,
R4 : C3 → C2,

that substitute R1 if the intermediate specie is present. Thus,
define the (extended) state vector xe = [ x1 x2 x3 ]> ∈
Z3
>0, the stoichiometric matrix S1 involving R1 and R2,

S1 =

[
−1 1 0
1 −1 0

]
,

and the stoichiometric matrix S2 involving R3, R4 and R2,

S2 =



−1 0 1
0 1 −1
1 −1 0


 .

Let θe ∈ R4
>0 be the extended vector of reaction rates, let

Θe ⊂ R4
>0, let ξe = [ x>e θ>e t ]> ∈ R8 and define the

set valued mapping Gi : R10 ⇒ R8 by using (3) and (4)

with S substituted by Si, i = 1, 2. Thus, consider the set–
valued mapping G(ξe, u) = G1(ξe, u)∪G2(ξe, u). Clearly, G
is locally bounded and by [43, Prop. 14.11(b)] the mapping
v 7→ grp(G(·, v)) is measurable with closed values, thus
ensuring existence of random solutions to

ξ+
e ∈ G(ξe, u). (6)

Note that the stochastic difference inclusion (6) encodes both
the networks composed by R1, R2 and by R3, R4, R2, thus
accounting for the possibility of an intermediate specie.

Assuming that the kinetic parameters are known,

Θe = {1} × {0.3} × {0.2} × {0.8},

Algorithm 2 has been used to simulate the behavior of the
reaction network with K = 98 ξ0 = [ x>0 θ>e 0 ]>,
x0 = [ 20 10 0 ]>, and ε = 10−12. Note that, even if the
kinetic parameters are known, in this case, Algorithm 2 does
not reduce to Algorithm 1 because G need not be a singleton.
Figure 3 depicts the results of such a simulation. 4
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Fig. 3: Simulation obtained through Algorithm 2 for an
uncertain reaction network.

The following example illustrates the application of Algo-
rithm 2 to a real reaction network.

Example 4. Consider the reaction network for the combustion
of propane presented in [47]. The network consists of 83
reactions and 29 chemical species, including C3H8, CO, HO2,
H2O2, and a catalyst M. By [47], the kinetic coefficients of the
reaction can be expressed as a function ψ : R>0 → R83

>0 of the
temperature T of the combustion process, which is in the range
1150–2600K. Therefore, letting Θ := ψ([1150, 2600]) =⋃
T∈[1150,2600] ψ(T ), Algorithm 2 can be used to simulate the

behavior of such a chemical reaction network.
Figure 4 depicts the average of the outcomes of 1000

simulations of the combustion reaction performed with Algo-
rithm 2, assuming that, at the initial time, 500, 600, and 200
molecules of C3H8, O2, and H2O are present, respectively,
whereas all the other chemical species are absent.

Figure 5 depicts the average of the outcomes of 1000
simulations of the same chemical reaction network, with the
same initial conditions, apart from the number of molecules
of the catalyst M that are assumed to be 300 (in the previous
simulation they where assumed to be absent).
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Fig. 4: Simulation of the combustion without catalyst.
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Fig. 5: Simulation of the combustion with catalyst.

These two simulations suggest that the presence of the
catalyst M increases the final concentration of H2 and H2O in
the combustion of propane, thus highlighting how Algorithm 2
can be used to analyze the behavior of real reactions. 4

V. STABILITY, RECURRENCE AND REACHABILITY FOR
CHEMICAL REACTIONS NETWORK

In Section IV, a stochastic difference inclusion able to
reproduce the behavior of a chemical reaction network with
partially known and time–varying kinetic parameters network
has been given. In this section, we exploit such a difference
inclusion to characterize stability properties of the chemical
network by exploiting the results given in [37], [45], [46].

In order to perform stability analysis of a given chemical
reaction network, consider the stochastic difference inclusion

χ+ ∈ G̃(χ, u), (7)

where χ = [ x> θ> ]>, u ∼ Uniform(0, 1), and
G̃ : Rn+m+1 ⇒ Rn+m is such that G̃(χ, u) equals
the projection onto Rn+m of the set–valued mapping
G([ χ> 0 ]>, [ u 1 ]>), for all (χ, u) ∈ Rn+m × R.

The following theorem guarantees that the set–valued map-
ping G̃ satisfies the basic assumptions stated in [37].

Lemma 1. The set valued mapping G̃ : Rn+m+1 ⇒ Rn+m

is locally bounded and the mapping u 7→ grp(G̃(·, u)) is
measurable with closed values.

Proof. Since G̃ is the projection onto Rn+m of the
mapping G([ χ> 0 ]>, [ u 1 ]>), it is trivially locally

bounded. Furthermore, since grp(G̃(·, u)) is the projection of
grp(G(·, v)), [48, Thm. 14.11(a)] guarantees that the mapping
u 7→ grp(G̃(·, u)) is measurable with closed values.

Lemma 1 guarantees that the stochastic difference inclu-
sion (7) is well posed and hence the existence of maximal
random solution. Furthermore, since the stochastic difference
inclusion (7) is essentially the projection of the system (5) onto
Rn+m, then the result stated in Proposition 1 applies also to
such a system. Namely, letting χ ∈ Zn>0 × Θ be given and
letting χ ∈ Sr(χ), the length Kχ of χ is bounded if and only
if χKχ(ω)(ω) is such that no chemical reaction can occur.

Taking advantage of Lemma 1 and of the results given in
[46], [37], [45], in the remainder of this section, we provide
tools to establish stability properties for system (7).

Before introducing the stability properties that will be
characterized in the remainder of this section, consider the
following technical lemma.

Lemma 2. Every bounded set A ⊂ Zn>0 ×Θ is compact.

Proof. Every bounded A ⊂ Zn>0×Θ is given by a finite union
of sets of the form {xν}×Θ, with xν ∈ Zn>0. Since such sets
are compact and the union of a finite sequence of compact
sets is compact [49], A is compact.

A bounded set A ⊂ Z>0 × Θ is stable in probability for
the stochastic difference inclusion (7) if for each ε > 0 and
η > 0 there exists δ > 0 such that

χ ∈ A+ δB, χ ∈ Sr(χ) =⇒
P(grp(χ) ⊂ (Z>0 × (A+ εBo))) > 1− η. (8)

On the other hand, a bounded set A ⊂ Z>0×Θ is strongly
globally recurrent for (7) if

χ ∈ Rn+m, ε > 0,χ ∈ Sr(χ) =⇒
lim
k→∞

P((grp(χ) ⊂ Z<k × Rn+m)

∨ (grp(χ) ∩ (Z6k × (A+ εBo)) 6= ∅)) = 1, (9)

where ∨ denotes the logical OR operator.
A bounded set A ⊂ Z>0 × Θ is globally asymptotically

stable in probability for (7) if it is stable in probability for (7)
and it is strongly globally recurrent for (7). Finally, a bounded
set A ⊂ Z>0 × Θ is globally weakly reachable for (7) if for
each χ ∈ Z>0 ×Θ there exists χ ∈ Sr(χ) such that

lim
k→∞

P((grp(χ) ∩ (Z6k ×A) 6= ∅)) = 1. (10)

Informally speaking, a compact set A is stable in probability
for (7) if the probability that solutions starting close to A stay
close to A for all k is close to 1; a compact set A is strongly
globally recurrent for (7) if the probability that all maximal
solutions eventually reach the set A as time goes to infinity
is 1; finally, a compact set A is globally weakly reachable for
(7) if for each χ ∈ Z>0 × Θ the probability that there exists
at least a random solution to (7) starting at χ that eventually
reaches the set A as time goes to infinity is 1.
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An upper semicontinuous function V : Zn>0 ×Θ→ R>0 is
a Lyapunov function relative to the bounded set A ⊂ Z>0×Θ
for (7) if there exists α1, α2 ∈ K∞ and % ∈ PD(A) such that

α1(|χ|A) 6 V (χ) 6 α2(|χ|A), (11a)∫ 1

0

max
g∈G̃(χ,v)

V (g)dv 6 V (χ)− %(χ), (11b)

for all χ ∈ Zn>0 × Θ. The following proposition states that
the existence of a Lyapunov function relative to A for (7)
is a necessary and sufficient condition for global asymptotic
stability in probability of A for (7). Such a proposition relies
on the results for stochastic difference inclusions given in [29],
[37], where it is established that the existence of a Lyapunov
function is a necessary and sufficient condition for global
asymptotic stability in probability of a compact set.

Proposition 2. The bounded set A ⊂ Z>0 × Θ is globally
asymptotically stable in probability for (7) if and only if there
exists a Lyapunov function relative to A for (7) that is smooth
on (Zn>0 ×Θ) \ A.

Proof. By Lemma 1, the set–valued mapping G̃ : Rn+m+1 ⇒
Rn+m satisfies [29, Stand. Ass. 1]. Therefore, since, by
Lemma 2, A is compact, by [29, Thm. 1 and 2], if there exists
an upper semicontinuous function V such that (11) holds, then
the compact set A is globally asymptotically stable for (7).
Moreover, always by Lemma 1, the mapping G̃ satisfies [37,
Stand. Ass. 1] and hence, by [37, Thm. 1], if A is globally
asymptotically stable in probability for (7) then there exists
a Lyapunov function relative to A for (7) that is smooth on
(Zn>0 ×Θ) \ A.

Let a compact set A ⊂ Z>0 × Θ be given. An up-
per semicontinuous function V : Zn>0 × Θ → R>0 is a
recurrence–Lyapunov function relative to A for (7) if it is
radially unbounded and there exists a continuous function
% : Zn>0 ×Θ→ R>0 such that, for all χ ∈ Zn>0 ×Θ,

∫ 1

0

max
g∈G̃(χ,v)

V (g)dv 6 V (χ)− %(χ) + IA(χ). (12)

The following proposition states that the existence of a
recurrence–Lyapunov function is a necessary ad sufficient
condition for strong global recurrence of the set A. Such a
proposition relies on [46], where it is established that the
existence of a recurrence–Lyapunov function is a necessary
and sufficient condition for global strong recurrence.

Proposition 3. The bounded set A ⊂ Z>0 × Θ is glob-
ally strongly recurrent for (7) if and only if there exists a
recurrence–Lyapunov function relative to A for (7) that is
smooth on (Zn>0 ×Θ) \ A.

Proof. By Lemma 1, the set–valued mapping G̃ : Rn+m+1 ⇒
Rn+m satisfies [29, Stand. Ass. 1]. Therefore, since, by
Lemma 2, A is compact, by [46, Thm. 1 and 2], the set
A is strongly globally recurrent if and only if there exists a
recurrence–Lyapunov function V relative to A for (7) and by
[37, Prop. 5], V can be made smooth on (Zn>0 ×Θ) \A.

We conclude this section by studying a sufficient condition
for global weak reachability. Let a compact set A ⊂ Z>0×Θ
be given. A lower semicontinuous function V : Zn>0 × Θ →
R>0 is a reachability–Lyapunov function relative toA for (7) if
it is radially unbounded and there exists a continuous function
% : Zn>0 ×Θ→ R>0 such that, for all χ ∈ (Zn>0 ×Θ) \ A,

∫ 1

0

max
g∈G̃(χ,v)

V (g)dv 6 V (χ)− %(χ), (13)

and, for all χ ∈ Zn>0 ×Θ,

∫ 1

0

max
g∈G̃(χ,v)

V (g)dv <∞. (14)

The following proposition, whose proof follows directly
from [45, Prop. 1], provides a necessary condition that allows
the existence of a set A that is globally weakly reachable.

Proposition 4. If there exists an interval Q ⊂ [0, 1] such that∫
Q 1dv 6= 0 and G̃(x, θ, u) = ∅ for some (x, θ) ∈ Zn>0 × Θ

and for all u ∈ Q, then there does not exist a compact set
A ⊂ Z>0 ×Θ that is globally weakly reachable.

Note that if there exists Q ⊂ [0, 1] such that the assumptions
of Proposition 4 hold, then there exists (x, θ) ∈ Zn>0 × Θ

such that, letting χ = [ x> θ> ]>, each random solution
in χ ∈ Sr(χ) consists of only its initial condition χ, with
positive probability, thus ruling out the existence of a set A
that is globally weakly reachable.

The statement of Proposition 4 clearly does not apply for
strong global recurrence. As a matter of fact the latter con-
dition is just about maximal solutions that are also complete
(e.g., if all the maximal solutions of a given reaction network
are defined on a bounded time domain, than any set is strongly
globally recurrent). The conditions considered for global weak
reachability require, instead, that there exists a solution that
actually visits the set A from any initial condition, and hence
one has to require that maximal solutions are also complete.

The following proposition provides a sufficient condition to
ensure global weak reachability of a bounded set A. Such a
statement relies on the results given in [45], where it is shown
that the existence of a reachability–Lyapunov function is a
sufficient condition for global weak reachability of the set A.

Proposition 5. If there here exists a reachability–Lyapunov
function relative to the bounded set A ⊂ Z>0 × Θ for (7),
then the set A is globally weakly reachable for (7).

Proof. By Lemma 1, the set–valued mapping G̃ : Rn+m+1 ⇒
Rn+m satisfies [45, Stand. Ass. 1]. Therefore, by [45,
Thm 1], if the assumptions of Proposition 4 do not hold and
there exists a reachability–Lyapunov function relative to the
bounded set A ⊂ Z>0 ×Θ for (7), then the set A is globally
weakly reachable for (7).

The following example shows how the techniques proposed
in this section can be employed to characterize stability
properties of a chemical reaction network.
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Example 5. Consider the following reaction network com-
posed by two species C1 and C2 and two reactions:

R1 : C1 → C2,
R2 : C2 → ∅,

Define the state vector x = [ x1 x2 ]> ∈ Z2
>0 and define

the stoichiometric matrix

S :=

[
−1 0

1 −1

]>
.

For this reaction network, the propensity functions are

r̃1(θ, x) = θ1x1,
r̃2(θ, x) = θ2x2.

Let Θ be any compact subset of R2
>0. The set A = {0} ×

Θ is globally asymptotically stable in probability for (7). In
fact, letting r0(θ, x) = θ1x1 + θ2x2, consider the set–valued
mapping G̃ : Zn>0 ×Θ× [0, 1]→ Zn>0 ×Θ given by

G̃ =





∅, if r0(θ, x) = 0,

x1 − 1
x2 + 1

Θ


 , if r0(θ, x) 6= 0 ∧ ur0(θ, x) 6 θ1x1,




x1

x2 − 1
Θ


 , if r0(θ, x) 6= 0 ∧ ur0(θ, x) > θ1x1.

Hence, the function V : Zn>0 ×Θ→ R>0,

V (x, θ) = x1 + 1
2x2

is such that (11a) holds and
∫ 1

0

max
g∈G̃(χ,v)

V (g)dv = θ1x1

θ1x1+θ2x2
((x1 − 1) + 1

2 (x2 + 1))

+ (1− θ1x1

θ1x1+θ2x2
)(x1 + 1

2 (x2 − 1)),

and hence (11b) holds with %(x, θ) = 1
2 .

We tested global asymptotic stability of the set A through
numerical simulations. Namely, Algorithm 2 has been used
to carry out 105 simulations of the behavior of the chemical
network assuming Θ = {1} × {1}, x0 = [ 10 10 ]> and
ε = 10−12. Figure 6 depicts the results of such a simulation.

7

it is radially unbounded and there exists a continuous function
ϱ : Zn

!0 × Θ → R>0 such that, for all χ ∈ (Zn
!0 × Θ) \ A,

∫ 1

0

max
g∈G̃(χ,v)

V (g)dv ! V (χ) − ϱ(χ). (11)

The following proposition provides a necessary condition
that allows the existence of a set A ⊂ Z!0×Θ that is globally
weakly reachable.

Proposition 4. If there exists an interval Q ⊂ [0, 1] such that∫
Q 1dv ̸= 0 and G̃(x, θ, u) = ∅ for some (x, θ) ∈ Zn

!0 × Θ
and for all u ∈ Q, then there does not exist a compact set
A ⊂ Z!0 × Θ that is globally weakly reachable.

Proof. The proof follows directly from [34, Prop. 1].

The statement of Proposition 4 clearly does not apply for
strong global recurrence. As a matter of fact the latter con-
dition is just about maximal solutions that are also complete
(e.g., if all the maximal solutions of a given reaction network
are defined on a bounded time domain, than any set is strongly
globally recurrent). The conditions considered for global weak
reachability require, instead, that there exists a solution that
actually visits the set A from any initial condition, and hence
one has to require that maximal solutions are also complete.

The following proposition provides a sufficient condition to
ensure global weak reachability of a bounded set A.

Proposition 5. Let the stochastic difference inclusion (5) be
given and assume that there does not exist an interval Q
such that the conditions of Proposition 4 hold. Then, if there
here exists a reachability–Lyapunov function relative to the
bounded set A ⊂ Z!0 × Θ for (5), then the set A is globally
weakly reachable for (5).

Proof. By Theorem 2, the set–valued mapping G̃ :
Rn+m+1 ⇒ Rn+m satisfies [34, Stand. Ass. 1]. Therefore,
by [34, Thm 1], if the assumptions of Proposition 4 do not
hold and there exists a reachability–Lyapunov function relative
to the bounded set A ⊂ Z!0 × Θ for (5), then the set A is
globally weakly reachable for (5).

The following example shows how the techniques proposed
in this section can be employed to characterize stability
properties of a chemical reaction network.

Example 3. Consider the following reaction network com-
posed by two species C1 and C2 and two reactions:

R1 : C1 → C2,
R2 : C2 → ∅,

Define the state vector x = [ x1 x2 ]⊤ ∈ Z2
!0 and define

the stoichiometric matrix

S :=

[
−1 0

1 −1

]⊤
.

For this reaction network, the propensity functions are

r̃1(θ, x) = θ1x1,
r̃2(θ, x) = θ2x2.

Let Θ be any compact subset of R2
>0. The set A = {0} ×

Θ is globally asymptotically stable in probability for (5). In

fact, letting r0(θ, x) = θ1x1 + θ2x2, consider the set–valued
mapping G̃ : Zn

!0 × Θ × [0, 1] → Zn
!0 × Θ given by

G̃ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∅, if r0(θ, x) = 0,⎡
⎣

x1 − 1
x2 + 1

Θ

⎤
⎦ , if r0(θ, x) ̸= 0 ∧ ur0(θ, x) ! θ1x1,

⎡
⎣

x1

x2 − 1
Θ

⎤
⎦ , if r0(θ, x) ̸= 0 ∧ ur0(θ, x) # θ1x1.

Hence, the function V : Zn
!0 × Θ → R!0,

V (x, θ) = x1 + 1
2x2

is such that (9a) holds and
∫ 1

0

max
g∈G̃(χ,v)

V (g)dv = θ1x1

θ1x1+θ2x2
((x1 − 1) + 1

2 (x2 + 1))

+ (1 − θ1x1

θ1x1+θ2x2
)(x1 + 1

2 (x2 − 1)),

and hence (9b) holds with ϱ(x, θ) = 1
2 .

We tested global asymptotic stability of the set A through
numerical simulations. Namely, Algorithm 2 has been used
to carry out 105 simulations of the behavior of the chemical
network assuming Θ = {1} × {1}, x0 = [ 10 10 ]⊤ and
ε = 10−12. Figure 3 depicts the results of such a simulation.
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Fig. 3: Simulation in the third example.

As such a simulation confirms, A is globally asymptotically
stable in probability for (5), because both (6) and (7) hold.

It is worth stressing that, despite the existence of a set A that
is globally asymptotically stable for the stochastic difference
inclusion (5), there does not exist a set A that is globally
weakly reachable for (5). As a matter of fact each maximal
solution starting from x0 = [ 0 0 ]⊤ has a bounded time
domain and hence (8) is not satisfied. △

VI. CONCLUSIONS

In this paper, an algorithm is proposed to perform robust
stochastic simulations of chemical reaction networks with
kinetic parameters not known exactly. Such a goal is achieved
by defining a set–valued mapping such that the trajectories
of the corresponding stochastic difference inclusion matches
with the ones of the chemical reaction network. Since such
a set–valued mapping satisfies some regularity assumptions
(namely, [31, Stand. Ass. 1]), the Lyapunov theory devel-
oped for stochastic difference inclusion allows us to obtain

Fig. 6: Simulation for the third example.

As such a simulation confirms, A is globally asymptotically
stable in probability for (7), because both (8) and (9) hold.

It is worth stressing that, despite the existence of a set A that
is globally asymptotically stable for the stochastic difference

inclusion (7), there does not exist a set A that is globally
weakly reachable for (7). As a matter of fact each maximal
solution starting from x0 = [ 0 0 ]> has a bounded time
domain and hence (10) is not satisfied. 4

VI. CONCLUSIONS

In this paper, an algorithm is proposed to perform robust
stochastic simulations of chemical reaction networks with
kinetic parameters that are not known exactly. Such a goal
is achieved by defining a set–valued mapping such that the
trajectories of the corresponding stochastic difference inclu-
sion match those of the chemical reaction network. Since such
a set–valued mapping satisfies some regularity assumptions
(namely, [29, Stand. Ass. 1]), the Lyapunov theory developed
for stochastic difference inclusion allows us to obtain condi-
tions guaranteeing stability of the chemical reaction network.
In fact, asymptotic stability in probability, strong recurrence
and weak reachability are framed in terms of the existence of
monotonically decreasing functions.

The complexity of the proposed algorithm is comparable
with the direct formulation of the stochastic simulation algo-
rithm, which has been proved to be more efficient than the
next reaction method [22]. In fact, if Step 7 of Algorithm 2
is performed efficiently (e.g., through the extremum–seeking
technique given in [50]), such a procedure requires the gener-
ation of just a single additional random number.

Examples of application of the given technique and of the
theoretical results have been reported all through the paper.
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