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promoting coexistence in a spatially explicit prisoner’s

dilemma

Andrew E.F. Burgessa,1, Tommaso Lorenzic,1, Pietà G. Schofieldb, Stephen
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Abstract

The emergence of cooperation is a major conundrum of evolutionary bio-
logy. To unravel this evolutionary riddle, several models have been developed
within the theoretical framework of spatial game theory, focussing on the in-
teractions between two general classes of player, “cooperators” and “defect-
ors”. Generally, explicit movement in the spatial domain is not considered in
these models, with strategies moving via imitation or through colonisation of
neighbouring sites. We present here a spatially explicit stochastic individual-
based model in which pure cooperators and defectors undergo random motion
via diffusion and also chemotaxis guided by the gradient of a semiochemical.
Individual movement rules are derived from an underlying system of reaction-
diffusion-taxis partial differential equations which describes the dynamics of
the local number of individuals and the concentration of the semiochemical.
Local interactions are governed by the payoff matrix of the classical pris-
oner’s dilemma, and accumulated payoffs are translated into offspring. We
investigate the cases of both synchronous and non-synchronous generations.
Focussing on an ecological scenario where defectors are parasitic on cooper-
ators, we find that random motion and semiochemical sensing bring about
self-generated patterns in which resident cooperators and parasitic defectors
can coexist in proportions that fluctuate about non-zero values. Remark-
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ably, coexistence emerges as a genuine consequence of the natural tendency
of cooperators to aggregate into clusters, without the need for them to find
physical shelter or outrun the parasitic defectors. This provides further evid-
ence that spatial clustering enhances the benefits of mutual cooperation and
plays a crucial role in preserving cooperative behaviours.

Keywords: Spatial games, Random motion, Chemotaxis, Prisoner’s
dilemma, Spatial patterning

1. Introduction

An enduring puzzle in a wide range of biological disciplines is to identify
the principles underpinning the evolution of cooperation. In this regard,
much attention has been given to the prisoner’s dilemma as a possible con-
ceptual apparatus to shed some light on the way cooperative behaviours
emerge and are maintained (Roca et al., 2009).

In the classical prisoner’s dilemma, individuals belonging to a well-mixed
population interact through a two-player game in which each individual can
adopt one of two strategies: Cooperator (C) or Defector (D). The outcome
of the game is determined by the following payoff matrix

C D
C R S
D T P

(1.1)

If both players cooperate, they get the ‘reward’ (R) payoff. If one player
defects while the other cooperates, the former gets the ‘temptation’ (T ) payoff
and the latter gets the ‘sucker’s’ (S) payoff. Finally, if the two players defect
they both get the ‘punishment’ (P ) payoff. If T > R > P > S, defectors will
necessarily outcompete cooperators. In fact, whether an opponent decides to
cooperate or defect, the strategy D is unbeatable, by virtue of the fact that
T > R and P > S. However, if both players choose to defect they will end
up with the payoff P , which is lower than the payoff R that they would get
by playing the strategy C.

In their pioneering papers published in the nineties (Nowak et al., 1994a,b;
Nowak and May, 1992, 1993), Nowak & May developed the idea, first sug-
gested by Axelrod (1984), of extending game theory, in general, and the
standard version of the prisoner’s dilemma, in particular, to include spatial
interactions between the players. Using a cellular-automaton approach in
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which individual players are distributed over a two-dimensional array, they
demonstrated that cooperators and defectors can coexist in the prisoner’s
dilemma, even if T > R > P > S, on condition that a spatial structure is
introduced.

Several models have been considered within this theoretical framework
since the original works proposed by Nowak and May [vid., for instance,
Alonso-Sanz (2014); Fogarty et al. (2012); Fu et al. (2010); Gianetto and
Heydari (2015); Grim (1997); Grujić et al. (2014); Kirchkamp (2000); Qin
et al. (2008); Lindgren and Nordahl (1994); Nakamaru et al. (1997); Oliphant
(1994); Pereira et al. (2008); Roca et al. (2009); Schweitzer et al. (2002);
Szabó and Fath (2007); Vainstein and Arenzon (2001); Xia et al. (2015)].
Traditionally, explicit motion is not included in these models, with strategies
moving via imitation or colonisation of neighbouring sites. More recently,
increasing attention has been given to models that incorporate individual
movement. For instance, Dugatkin and Wilson (1991) and Enquist and Lei-
mar (1993) allowed individuals to migrate between patches without spatial
structure. Diffusion-based dispersal of offspring was considered in Hamilton
and Taborsky (2005); Koella (2000); Le Galliard et al. (2005); Van Baalen
and Rand (1998). Ferriere and Michod (1995) studied an explicit diffusive
process in the context of the replicator equation, and then extended their ap-
proach by including a diffusive term (Ferriere and Michod, 1996). Stochastic
cellular-automaton models in which individuals can jump to a nearest empty
site were developed in Jian-Yue et al. (2007); Sicardi et al. (2009); Vainstein
et al. (2007). A dynamical system of reaction-diffusion type was investigated
by Durrett and Levin (1994). Aktipis (2004) proposed a walk-away strategy
to avoid repeated interactions with defectors. In De Andrade et al. (2009), a
conditional mobility model on a lattice was presented in the context of the
Chicken Game. Helbing and Yu (2008) introduced a model of success-driven
migration, where individuals move to the sites with the highest estimated
payoffs. Chen et al. (2011) explored the effects of mobility when individu-
als interact with neighbours within a prescribed view radius. The case of
heterogenous view radii was analysed by Zhang et al. (2011). An aspiration-
induced migration mechanism – inducing individuals to move to new sites
if their payoffs are under their aspiration level – was investigated by Yang
et al. (2010) and Lin et al. (2011). Meloni et al. (2009) focused on the case
where individuals are situated on a two-dimensional plane, and each indi-
vidual moves to a randomly chosen position with a certain speed.

To complement these earlier studies, in this paper we present a spatially

3



explicit stochastic individual-based model in which pure cooperators and de-
fectors diffuse through space and follow semiochemical cues. We believe these
two generalisations to be important, because many common biological situ-
ations involve diffusion-based dispersal and/or chemotaxis guided by semio-
chemical gradients. In our model, individuals occupying the same position
can undergo binary interactions. When interacting, they play a round of
the prisoner’s dilemma game, and are awarded a payoff according to their
strategy. The accumulated payoff determines the reproductive fitness of in-
dividuals, and thus the number of their offspring. We investigate the case
of synchronous and non-synchronous generations. Following the modelling
strategy that Schofield et al. (2002, 2005) developed from the original ap-
proach proposed by Anderson and Chaplain (1998), we derive the individual
movement rules from a system of parabolic equations describing the dynam-
ics of the local number of individuals and the dynamics of the concentration
of a semiochemical. This is a further novelty that distinguishes our work
from the existing literature on spatial games.

To carry out numerical simulations, we consider a form of the prisoner’s
dilemma in which defectors are parasitic on cooperators – i.e., the S entry
of the payoff matrix (1.1) is set to zero and defectors invade a resident pop-
ulation of cooperators. Our main results show that allowing individuals to
diffuse through space, and move up semiochemical gradients, brings about
self-organised patterns in which resident cooperators and parasitic defectors
can coexist in proportions that fluctuate about non-zero values. This is in
stark contrast to the expected catastrophic effect that the introduction of
even a small contingent of pure defectors into a population of pure cooper-
ators would have in a well-mixed scenario. In our spatial model, coexistence
has its roots firmly in spontaneous spatial organisation, without the need for
individuals to remember past encounters or play elaborate strategies. This
makes the results of our study applicable to a broad range of real organisms.

2. The model

We study the interaction dynamics between pure cooperators and de-
fectors which move in a square domain Ω := [−`, `] × [−`, `]. Individual
movement is seen as the superposition of spatial diffusion and chemotaxis.
The former is due to random motion, whilst the latter is guided by the
gradient of a semiochemical emitted by individuals themselves. Individuals
occupying the same position can interact with each other and the outcome
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of interactions is determined by the payoff matrix (1.1). To keep the model
as simple as possible, we make the prima facie assumption that individuals
cannot keep memory of past interactions. Moreover, we assume that the
semiochemical is equally released from and sensed by cooperators and de-
fectors. Despite these simplifications, the model captures a wide spectrum
of biological scenarios.

2.1. Individual movement rules

At each time instant t ≥ 0, the concentration of semiochemical and
the number of individuals at position (x, y) ∈ Ω are characterised by the
functions K(t, x, y) ≥ 0 and I(t, x, y) ≥ 0, respectively. The evolution of
K(t, x, y) is governed by the following reaction-diffusion equation

∂K

∂t
= βK ∇2K + ν I − γ K (2.1)

along with no-flux boundary conditions. Eq.(2.1) relies on the assumptions
that the semiochemical is produced by all individuals at the same rate ν ≥ 0,
undergoes a linear decay process at rate γ > 0, and diffuses with diffusion
coefficient βK > 0.

To describe the movement of cooperators and defectors, we make use of
the following strategy:

(i) We introduce the taxis-diffusion equation below

∂I

∂t
= βI ∇2I − χ ∇ · (I ∇K), (2.2)

along with reflective (no-flux) boundary conditions. In Eq.(2.2), the
diffusion term models the tendency of individuals to diffuse through
space with motility βI > 0. The advection term accounts for the fact
that both cooperators and defectors move up the semiochemical gradi-
ent, and the parameter χ > 0 is the chemotactic sensitivity coefficient.

(ii) We fix a time step ∆t and set tn = n∆t, we discretise the square Ω
with a uniform mesh as

∆x =
`

L
, xi = i∆x, i ∈ [−L,L] ⊂ Z, (2.3)

∆y =
`

L
, yj = j∆y, j ∈ [−L,L] ⊂ Z, (2.4)
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and thereafter we approximate K(tn, xi, yj) and I(tn, xi, yj) by discrete
values Kn

i,j and Ini,j, respectively.

(iii) Following Schofield et al. (2002, 2005), we discretise Eq.(2.2) by using
an explicit five-point central difference scheme to obtain the following
algebraic equation for In+1

i,j , i.e., the number of individuals at grid-point
(xi, yj) at the time step n+ 1:

In+1
i,j = P0I

n
i,j + P1I

n
i+1,j + P2I

n
i−1,j + P3I

n
i,j+1 + P4I

n
i,j−1, (2.5)

where the coefficients P0, . . . ,P4 are given by

P0 : Pn
i,j := 1− ∆t

(∆x)2
[
2βI − χ(Kn

i+1,j +Kn
i−1,j − 2Kn

i,j)
]

− ∆t

(∆y)2
[
2βI − χ(Kn

i,j+1 +Kn
i,j−1 − 2Kn

i,j)
]
,

P1 : Pn
i−1,j =

∆t

(∆x)2

[
βI −

χ

4
(Kn

i+1,j −Kn
i−1,j)

]
, (2.6)

P2 : Pn
i+1,j =

∆t

(∆x)2

[
βI +

χ

4
(Kn

i+1,j −Kn
i−1,j)

]
,

P3 : Pn
i,j−1 =

∆t

(∆y)2

[
βI −

χ

4
(Kn

i,j+1 −Kn
i,j−1)

]
,

P4 : Pn
i,j+1 =

∆t

(∆y)2

[
βI +

χ

4
(Kn

i,j+1 −Kn
i,j−1)

]
.

These coefficients are proportional to the probabilities of an individual
being stationary (P0), or moving left (P1), right (P2), down (P3) or
up (P4), and hence the above system may be used to generate the
movement of individuals from grid-point to grid-point.

In this framework, at any step n > 1, the algorithm for moving individuals
from grid-point to grid-point is as follows:

(i) The value of Ini,j is identified by counting the number of individuals
at every grid-point (xi, yj), and the semiochemical concentration is
computed by calculating the numerical solutions of the mathematical
problem defined by completing Eq.(2.1) with zero Neumann boundary
conditions and suitable initial conditions.
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(ii) The probabilities Pn
i,j are evaluated at each grid-point by substituting

the local semiochemical concentrations into Eqs.(2.6).

(iii) At each grid-point (xi, yj), the values of the spatial-transition probab-
ilities are used to define five intervals as

R0 := [0,P0] and Rp :=

p−1∑
q=0

Pq,
p∑

q=0

Pq

 , p = 1, 2, 3, 4.

(iv) For each individual at a given grid-point, a random real number between
0 and 1 is generated, and a comparison of this number with the above
ranges yields the direction of movement of the individual. Namely, the
individual will not move if the random number belongs to R0, or it will
move left if the number belongs to R1, right if the number belongs to
R2, down if the number belongs to R3, and up if the number belongs
to R4.

2.2. Individual interaction and reproduction rules

We let binary interactions occur between individuals that occupy the same
position. When two individuals interact, they engage in a single round of the
prisoner’s dilemma game and are awarded a payoff, in terms of reproductive
fitness, according to their strategy.

At any step n > 1, we allow each individual to play M rounds of the game,
either with the same individual or with different individuals. We assume that
all individuals have the same lifetime τ , and consider two possible underlying
models for the reproduction rules:

(i) a synchronous model, where reproduction occurs at the end of an indi-
vidual’s life based on its reproductive fitness (i.e., the payoff accumu-
lated throughout the course of previous interactions);

(ii) a non-synchronous model, where reproduction occurs at each time step
with an individual producing a number of offspring equal to the integer
part of its current accumulated payoff, and the reproductive fitness
being then decreased by this same number.

In both cases, offspring are initially located at the same site as the parent
individual, and they inherit its strategy (i.e., no mutations occur). In this
setting, the constraint on the maximum number of interactions introduces an
indirect limitation on the number of individuals, since it limits the potential
maximum gain in reproductive fitness.
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3. Computational simulation results

To perform numerical simulations, we choose ` = 100 and use the mesh
defined by (2.3)-(2.4) with L = 100 (i.e., ∆x = ∆y = 1) to discretise the
spatial domain. Focussing on the case where a single defector invades a
population of cooperators, we let the initial system to consist of 1 defector
located at the centre of a randomly scattered population of 49.999 × 103

cooperators. Moreover, we assume that there is no semiochemical inside the
system at t = 0, i.e., we set

K(t = 0, ·, ·) = 0. (3.1)

The method we use to construct numerical solutions of the mathematical
problem defined by endowing Eq.(2.1) with (3.1) and zero Neumann bound-
ary conditions is based on an explicit five-point central scheme for the dis-
cretisation of the diffusion term.

We focus on a set of parameter values that is representative of an extensive
range of simulation results. In particular, we choose the entries of the matrix
(1.1) to have the values R := 0.02 and P := 0.001. Moreover, we set S := 0
to translate into mathematical terms the idea that the payoff for a cooperator
against a defector is to be unproductive in terms of its contribution to future
progeny. Finally, unless otherwise stated, we define T := 0.07. In this
setting, mutual cooperators each score 0.02, and mutual defectors 0.001. If
a cooperator and a defector interact, the former scores 0 whilst the latter
scores 0.07. As mentioned earlier, the setting under consideration reproduces
the biological scenario in which defectors are parasitic on cooperators, since
defectors invade a resident population of cooperators and S = 0.

In analogy with the choice made by Schofield et al. (2002), we define the
semiochemical diffusion coefficient βK := 5× 10−4, the semiochemical decay
constant γ := 1, the chemotactic sensitivity coefficient χ := 2 × 10−4, and
the individual motility βI := 5× 10−3. To study the dynamics of the system
with or without semiochemical secretion, we alternatively use the definition
ν := 1 or ν := 0.

We set the number of interactions per individual per iteration M = 4,
and we define the individual lifetime τ := 100∆t. We select ∆t = 0.05
to meet the CFL condition, and thus ensure the stability of the numerical
scheme. We run simulations for 5 × 105 time steps, which corresponds to
5× 103 generations and t ∈ [0, 25× 103]. We begin by examining the effects
of semiochemical secretion and synchronous or non-synchronous generations
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on the spatio-temporal dynamics of cooperators and defectors. We will then
investigate how the dynamics change in response to variations in the value
of the temptation-to-reward ratio T/R (i.e., the relative payoff advantage of
defectors over cooperators).

3.1. Dynamics without semiochemical secretion

In the absence of semiochemical secretion (i.e., when ν := 0) and with
synchronous generations, the progeny of the single central defector becomes
progressively organised into an almost circular expanding wavefront (vid.
Fig.1). The wavefront is relatively thin, and leaves in its wake a few cooper-
ators that coexist with a few defectors. The spatial domain remains sparsely
populated. Cooperators form expanding clusters which are followed closely
by flocks of parasitic defectors. The interaction between cooperators and de-
fectors induces a severe and rapid decline in the local number of cooperators,
yielding dynamic and fluctuating spatial patterns.
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Figure 1: Snapshots summarising the time-evolution of the spatial distribution
of cooperators (top panels) and defectors (bottom panels), in the absence of se-
miochemical secretion (i.e., when ν = 0) and with synchronous generations. The
colour scale ranges from blue (low density) to yellow (high density).

As highlighted by the results presented in Fig.2, the total numbers of
cooperators and defectors both fluctuate about well defined non-zero values.
The time average of the total number of cooperators is 82.141 × 103, while
that of defectors is 24.011 × 103. From extensive longer-term simulations
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it appears that fluctuations do not threaten the long term viability of the
coexistence between cooperators and defectors. Therefore, we can conclude
that the two strategies coexist in a stable way. It is worth noting that
the carrying capacity of the C population in the absence of D individuals
– which we estimated through additional numerical simulations carried out
by letting cooperators evolve in the absence of defectors – is around a value
of 336× 103. The time average of the total number of cooperators reported
in Fig.2 corresponds to some 24% of this value. Hence, the proliferation of
cooperators appears to be significantly limited by the presence of defectors.
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Total number of cooperators (in units of 104)

12,500 25,000
t
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1
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3

4
Total number of defectors (in units of 104)

Figure 2: Plot of the total number of cooperators (left panel) and defectors (right
panel) as a function of time, in the absence of semiochemical secretion (i.e., when
ν = 0) and with synchronous generations. The time average of the total number of
cooperators is 82.141×103±45.46%, while that of defectors is 24.011×103±13.91%.

Analogous considerations hold when generations are non-synchronous
(vid. Fig.3 and Fig.4), although the results presented in Fig.3 suggest that,
compared with the synchronous case, the initial D wavefront expands faster
into the C population. The wake of the expanding front is populated by both
cooperators and defectors, which move and interact to yield a dynamic pat-
tern studded by expanding clusters of cooperators, whose growth is curtailed
by fragmented vortexes of defectors. Defectors are more sparsely distributed
than in the case of synchronous generations. Furthermore, as also highlighted
by Fig.10, the mean (with respect to time) of the total number of defectors is
smaller compared with the case of synchronous generations, while the equi-
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valent mean becomes slightly larger for cooperators. On the other hand, the
values of the standard deviations show no appreciable variations.
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Figure 3: Snapshots summarising the time-evolution of the spatial distribution of
cooperators (top panels) and defectors (bottom panels), in the absence of semio-
chemical secretion (i.e., when ν = 0) and with non-synchronous generations. The
colour scale ranges from blue (low density) to yellow (high density).

3.2. Dynamics with semiochemical secretion

When semiochemical is secreted by individuals (i.e., when ν = 1) and
generations are synchronous, the spatial dynamics of cooperators and defect-
ors are similar to those observed in the case when there is no semiochemical
secretion (compare the results in Fig.5 with the snapshots in Fig.1), and the
two strategies coexist in a stable way (vid. the results presented in Fig.6).
However, as time goes by, the clusters of C individuals become larger com-
pared with the case without semiochemical secretion, while the distribution
of D individuals becomes sparser and leaves a larger fraction of empty space.
Although there may be algorithms and statistical methods that could allow
one to quantify the clustering of the distribution of C individuals and the
sparseness of the distribution of D individuals more formally, a precise quan-
tification of clustering/sparseness of the spatial patterns obtained is beyond
the scope of this paper.

If generations are non-synchronous, the wavefront created by the offspring
of the initial defector travels outward slightly faster than in the case without
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Figure 4: Plot of the total number of cooperators (left panel) and defectors (right
panel) as a function of time, in the absence of semiochemical secretion (i.e.,
when ν = 0) and with non-synchronous generations. The time average of the
total number of cooperators is 104.170 × 103 ± 29.44%, while that of defectors is
15.131 × 103 ± 15.38%.
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Figure 5: Snapshots summarising the time-evolution of the spatial distribution
of cooperators (top panels) and defectors (bottom panels), in the presence of se-
miochemical secretion (i.e., when ν = 1) and with synchronous generations. The
colour scale ranges from blue (low density) to yellow (high density).
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Figure 6: Plot of the total number of cooperators (left panel) and defectors (right
panel) as a function of time, in the presence of semiochemical secretion (i.e., when
ν = 1) and with synchronous generations. The time average of the total number of
cooperators is 86.869×103±44.54%, while that of defectors is 13.358×103±17.99%.

semiochemical secretion. Furthermore, as depicted by the results presented
in Fig.7, cooperators are distributed much more unevenly, with a smaller
number of colonies of significantly larger spatial extent. The two strategies
stably coexist (vid. Fig.9), although the time average of the total number of
defectors is much smaller than that of cooperators and, at times, defectors
are poised on the cusp of extinction. Compared with the case without semi-
ochemical secretion, both strategies are more volatile (compare the results in
Fig.9 with the curves in Fig.4). At times, when the number of defectors is
particularly low, cooperators expand quickly to fill almost the entire domain
before encountering small peripheral colonies of defectors, which reduce the
number of cooperators back to much lower levels. Defectors form well defined
filamentary wavefronts which advance in a spiral fashion altering the spatial
distribution of cooperators, and annihilate each other when they meet (vid.
Fig.8).

As summarised by the plot in Fig.10, compared with the case when there
is no semiochemical secretion, the mean (with respect to time) of the total
number of defectors is reduced – it is halved for synchronous generations
and reduced by almost two-thirds when generations are non-synchronous –
whereas the equivalent mean becomes larger for cooperators – such an in-
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Figure 7: Snapshots summarising the time-evolution of the spatial distribution of
cooperators in the presence of semiochemical secretion (i.e., when ν = 1) and with
non-synchronous generations. The colour scale ranges from blue (low density) to
yellow (high density).

crease is much more pronounced in the case of non-synchronous generations.
On the other hand, the values of the related standard deviations remain
essentially unaltered across all scenarios considered here.

3.3. Effects of the temptation-to-reward ratio T/R

To investigate how, ceteris paribus, the value of the ratio T/R (i.e., the
quotient between the payoff that a defector gets from the interaction with
a cooperator and the payoff that a cooperator gets from conspecific inter-
actions) impinges on the interaction dynamics of cooperators and defectors,
we perform again the same simulations of the two previous subsections while
holding all parameters constant except for the payoff T , and we record the
time average of the total number of cooperators and defectors. In order to
preserve the essentials of the prisoner’s dilemma, we keep T ≥ R.

The results obtained are illustrated by the plots of Fig.11, which show
how the time average of the total number of cooperators and defectors varies
as a function of the ratio T/R, in the presence or in the absence of semi-
ochemical secretion, and with synchronous generations. Not surprisingly,
for T/R = 1 the two strategies cannot coexist, and defectors go extinct.
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Figure 8: Snapshots summarising the time-evolution of the spatial distribution of
defectors in the presence of semiochemical secretion (i.e., when ν = 1) and with
non-synchronous generations. The colour scale ranges from blue (low density) to
yellow (high density).

Again, for values of T/R that exceed a certain threshold, all defectors die
out and only cooperators survive. Between these extremes, we observe the
stable invasion of a minority of defectors along with a substantial decrease
in the average size of the resident population of cooperators. The limiting
T/R value consistent with stable polymorphism is lower in the presence of
semiochemical secretion than in the case without semiochemical secretion.

The same conclusions hold for non-synchronous generations as well (vid.
Fig.12). However, compared with the case when generations are synchronous,
there is a narrower range of values of the ratio T/R for which coexistence
between cooperators and defectors occurs.

4. Discussion and conclusions

In the context of the prisoner’s dilemma, there is now a body of evid-
ence indicating that spatial interactions promote the coexistence of resident
cooperators and parasitic defectors, in situations where the survival of one
strategy would exclude the other if the interactions took place in a well-mixed
scenario. Here, we have used a spatially explicit stochastic individual-based
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Figure 9: Plot of the total number of cooperators (left panel) and defectors (right
panel) as a function of time, in the presence of semiochemical secretion (i.e.,
when ν = 1) and with non-synchronous generations. The time average of the
total number of cooperators is 136.400 × 103 ± 28.86%, while that of defectors is
5.922× 103 ± 28.77%.

model to investigate whether coexistence between these two strategies can
occur when individuals disperse by diffusion and respond to semiochemical
cues.

Our model predicts that cooperators become spontaneously organised
into clusters, which minimises the potential exploitation by defectors and
offers cooperators protection through spatial reciprocity. On the other hand,
defectors form short filamentary structures which tend to develop into spir-
als while expanding. Local interactions with defectors hinder the clusters’
growth and induce cooperators to migrate. In turn, the migration of co-
operators forces defectors to move, as their survival depends partially on the
interaction with cooperators. Iteratively, this leads to the emergence of dy-
namic spatial patterns in which the two strategies coexist in proportions that
fluctuate about non-zero values. The essentials of these results remain in-
tact in all the scenarios we explored (i.e., for synchronous/non-synchronous
generations and in the presence/absence of semiochemical sensing).

Our in silico results agree with the in vitro results reported by Van Dyken
et al. (2013) who showed that, in the context of an experimental prisoner’s
dilemma, spatial expansion can lead to the formation of uniform sectors of

16



0 50 100 150 200
cooperators

0

5

10

15

20

25

30

d
ef
ec
to
rs

Figure 10: Plot of the average (over time) of the total number of cooperators and
defectors in the four scenarios under consideration – i.e., in the absence of semio-
chemical secretion and with synchronous (square) or non-synchronous generations
(diamond), and in the presence of semiochemical secretion and with synchronous
(circle) or non-synchronous (star) generations. The blue error bars (vertical) de-
note the standard deviations of the defectors and the red error bars (horizontal)
the standard deviations of the cooperators. All values are reported in units of 104.

cooperators or defectors, thus reducing the direct competition between the
two strategies and mitigating the selective advantage of defection.

It might be speculated that the survival of cooperators is conditioned
on their capability to outrun defectors, or by the presence of physical shel-
ters. On the contrary, in this work we have demonstrated that, even if the
motility of cooperators and defectors is the same and the spatial domain is
homogeneous – so that there are no physical barriers – the natural tendency
of cooperators to aggregate into clusters is sufficient to preserve cooperation.
These findings confirm the results presented in previous theoretical studies
by Allison (2005), Durrett and Levin (1994), Fletcher and Doebeli (2009),
Hauert and Doebeli (2004), Korolev and Nelson (2011), Nowak and May
(1992), Ohtsuki et al. (2006), Perc and Szolnoki (2008), Santos and Pacheco
(2005), Szabó and Fath (2007) and Taylor et al. (2007), and experimental
works by Griffin et al. (2004), Julou et al. (2013), Kümmerli et al. (2009)
and Momeni et al. (2013), and provide further evidence that spatial cluster-
ing enhances the benefits of mutual cooperation and plays a crucial role in
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Figure 11: Plot of the time average of the total number of cooperators (red lines)
and defectors (blue lines) as a function of the ratio T/R, in the absence (left panel)
or in the presence (right panel) of semiochemical secretion, and with synchronous
generations. Time averages are in units of 104.
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Figure 12: Plot of the time average of the total number of cooperators (red lines)
and defectors (blue lines) as a function of the ratio T/R, in the absence (left
panel) or in the presence (right panel) of semiochemical secretion, and with non-
synchronous generations. Time averages are in units of 104.
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preserving cooperative behaviours.
The spiral structures created by defectors share some striking similarities

with spiral waves arising in models of host-parasitoid dynamics, such as those
reported by Comins et al. (1992), May (1995) and Solé et al. (1992). These
spiral structures become more noticeable in the presence of semiochemical
secretion and with non-synchronous generations, which is the case, out of
those considered in our study, corresponding to the largest fluctuations in
the number of cooperators and defectors. This is in line with the conclusion
drawn by White et al. (1996), who suggested that the appearance of spiral
waves in host-parasitoid systems correlates with more remarkable population
density oscillations.

It is clear that the temptation-to-reward ratio T/R is a key parameter for
the coexistence between resident cooperators and parasitic defectors. As one
would expect, we have found that for T/R = 1 defectors are outcompeted
by cooperators, which retain a competitive advantage by virtue of beneficial
conspecific interactions. On the other hand, for intermediate values of T/R
defectors find a niche in which they may survive as exploiters of cooperators.
More surprisingly, defectors are again outcompeted by cooperators if the
value of T/R overcomes a certain threshold. This is somewhat puzzling at
first glance. Why do cooperators do better than defectors for high values of
T/R? This can be understood by noting that, if the payoff T is sufficiently
higher than the payoff R, parasitic defectors ultimately drive the number
of cooperators down to a level that cannot sustain future generations of
defectors.

Compared with the case without semiochemical secretion, we have shown
that the presence of a semiochemical promotes the formation of larger clusters
of cooperators, and induces a reduction in the time average of the total num-
ber of defectors. This provides indirect evidence that the semiochemical
may enhance the rate of conspecific interactions, and thus leads defectors
to undergo a higher number of unproductive interactions. Furthermore, our
simulations reveal that the semiochemical acts by shrinking the band of T/R
values producing polymorphisms of cooperators and defectors. This means
that the chemotactic response to signalling chemicals can help resident co-
operators in surviving the assault of parasitic defectors.

Taken together, these results indicate, inter alia, that the modelling
framework presented here may open up new avenues of research on the role
of diffusion-based dispersal and semiochemical sensing in the evolutionary
dynamics of spatial games.
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