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a b s t r a c t 

Hybrid electric vehicles (HEV) are nowadays proving to be one of the most promising technologies for the im- 
provement of the fuel economy of several transportation segments. As far as the on-road category is concerned, 
a wise selection of the powertrain design is needed to exploit the best energetic performance achievable by 
a HEV. Amongst the methodologies developed for comparing different hybrid architectures, global optimizers 
have demonstrated the capability of leading to optimal design solutions at the expense of a relevant compu- 
tational burden. In the present paper, an innovative deep neural networks-based model for the prediction of 
tank-to-wheel carbon dioxide emissions as estimated by a Dynamic Programming (DP) algorithm is presented. 
The model consists of a pipeline of neural networks aimed at catching the correlations lying between the de- 
sign parameters of a HEV architecture and the main outcomes of the DP, namely powertrain feasibility and tail 
pipe CO 2 emissions. Moreover, an automatic search tool (AST) has been developed for tuning the main hyper- 
parameters of the networks. Interesting results have been registered by applying the pipeline to three databases 
related to three different HEV parallel architectures. The capability of the pipeline has been proved through an 
extensive testing campaign made up by multiple experiments. Classification performances above 91% as well as 
average regression errors below 1% have been achieved during an extensive set of simulations. The presented 
model could hence be considered as an effective tool for supporting HEV design optimization phases. 
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Nomenclature 

Acronyms 

AI Artificial Intelligence 
AST Automatic Search Tool 
BC Battery Charging 
BEV Battery Electric Vehicle 
CrateChar Charge C-rate 
cDNN Classification Deep Neural Network 
CoD Coefficient of Determination 
CB Computational Burden 
CM Confusion Matrix 
DNN Deep Neural Network 
DNNs-PM Deep Neural Networks based Predictive Model 
DoE Design of Experiment 
DesPars Design Parameters 
CrateDis Discharge C-rate 
DP Dynamic Programming 
EMS Energy Management System 

ED Engine Displacement 
ES Engine State 
ECMS Equivalent Consumption Minimization Strategy 
FDf Front Final Drive 
FCEV Fuel-Cells Electric Vehicle 
FC Fuel Consumption 
HEV Hybrid Electric Vehicle 
ICE Internal Combustion Engine 
ML Machine Learning 
MS Massive Simulation 
MCC Matthews Correlation Coefficient 
MG Motor/Generator 
MGPower Motor/Generator Peak Power 
MGSpRatio Motor/Generator Speed Ratio 
NN Neural Network 
PMP Pontryagin’s Minimum Principle 
PS Power Split 
PEratio Power-to-Energy Ratio 
PE Pure Electric 
PT Pure Thermal 
FDr Rear Final Drive 
FDrSpRatio Rear final Drive Speed Ratio 
rDNN Regression Deep Neural Network 
RA Results Accuracy 
RMSE Root Mean Squared Error 
SoC State of Charge 
TC Torque Coupling Device 
t/t Train-to-Test 
t/v Train-to-Validation 
VL Variation List 
WHVC World Harmonized Vehicle Cycle 

Variables 

# 𝑔𝑒𝑎𝑟 Set of gear numbers 
𝑎 Vehicle acceleration [m/s 2 ] 
𝐶 Model-predicted tank-to-wheel CO 2 emissions [g/km] 
𝐶 𝑏𝑎𝑡 Battery capacity [Ah] 
𝐶 𝑂 2 Tank-to-wheel CO 2 emissions [g/km] 
𝐶 𝑟𝑎𝑡𝑒,𝑑𝑖𝑠 Charge C-rate [-] 
𝐶 𝑟𝑎𝑡𝑒,𝑑𝑖𝑠 Discharge C-rate [-] 
𝑑 Total covered distance [km] 
𝐷𝑒𝑠𝑃 𝑎𝑟𝑠 Set of design parameters 
𝐸̂ Average prediction error 
𝐸𝑆 Engine state 
𝐹 Set of feasible layouts 
2 
𝐹 𝑎𝑒𝑟𝑜 Aerodynamic drag [N] 
𝐹 𝐶 Cumulative fuel consumption [g] 
𝐹 𝑁 Number of false negatives 
𝐹 𝑃 Number of false positives 
𝐹 𝑟𝑜𝑎𝑑 Resistive force coming from road slope [N] 
𝐹 𝑟𝑜𝑙𝑙 Rolling resistance [N] 
𝐼 𝑏𝑎𝑡 Battery current intensity output [A] 
𝐼 𝑐ℎ,𝑚𝑎𝑥 Maximum current intensity admitted in charge mode 

[A] 
𝐼 𝑑𝑖𝑠,𝑚𝑎𝑥 Maximum current intensity admitted in discharge 

mode [A] 
𝐽 Objective function of the Dynamic Programming 
𝑘 Conversion factor [-] 
𝐿 Number of nodes in the hidden layer 
𝐿 1 Number of nodes in the first hidden layer 
𝑀𝑎𝑥 𝐸 Maximum prediction error 
𝑚𝑖𝑛 𝐸 Minimum prediction error 
𝑚 𝑣𝑒ℎ Vehicle mass [kg] 
𝑛 Number of total predictions 
𝑁 𝐺𝑁 

Total admissible number of gears 
𝑃 𝑏𝑎𝑡𝑡 Battery power output [W] 
𝑅 

2 Coefficient of determination 
𝑟 𝑤ℎ𝑒𝑒𝑙 Wheel effective radius [m] 
𝑆𝑜𝐶 Battery state of charge [-] 
𝑆 𝑆 𝑟𝑒𝑠 Sum of the squared residuals 
𝑆 𝑆 𝑡𝑜𝑡 Total sum of squares 
𝑠𝑡𝑑( 𝑥 ) Standard deviation 
𝑡 Time [s] 
𝑡 𝑐ℎ𝑎𝑟,𝐼= 𝑚𝑎𝑥 Total battery charging time at maximum current [s] 
𝑡 𝑑𝑖𝑠,𝐼= 𝑚𝑎𝑥 Total battery discharging time at maximum current [s] 
𝑇 𝐼𝐶𝐸 Internal combustion engine output torque [N m] 
𝑇 𝑀𝐺 Motor/generator output torque [N m] 
𝑇 𝑁 Number of true negatives 
𝑇 𝑜𝑢𝑡 Vehicle output torque [N m] 
𝑇 𝑃 Number of true positives 
𝑈 Set of control variables 
𝑣 𝑡𝑎𝑟𝑔𝑒𝑡 Cycle-imposed vehicle velocity [m/s] 
𝑣 𝑣𝑒ℎ Real vehicle velocity [m/s] 
𝑋 Set of state variables 
𝑥 Input feature of the neural network before normaliza- 

tion 
𝑥̃ Input feature of the neural network after normalization 
𝑥̄ Average value of the input features of the neural net- 

work 
ȳ Average value of the target CO 2 emissions [g/km] 
𝑦 Target CO 2 emissions [g/km] 

Greek symbols 

𝛼 Power-split level 
𝛼𝐼𝐶𝐸 Internal combustion engine torque fraction 
𝛼𝑀𝐺 Motor/generator torque fraction 
𝜂𝜏𝐼𝐶𝐸 Internal combustion engine gear efficiency 
𝜂𝜏𝑀𝐺 Motor/generator gear efficiency 
𝜃𝑐 Set of structural and algorithmic parameters for the clas- 

sification deep neural network 
𝜃𝑟 Set of structural and algorithmic parameters for the re- 

gression deep neural network 
𝜏𝐼𝐶𝐸 Internal combustion engine gear ratio 
𝜏𝑀𝐺 Motor/generator gear ratio 
𝜔 𝑀𝐺 Motor/generator speed [rad/s] 
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. Introduction 

The increasing need for reducing pollutants and greenhouse gases
missions from road transportation systems has tailored the research
f the last few years towards new technologies, such as battery elec-
ric vehicles (BEVs), fuel-cells electric vehicles (FCEVs) and hybrid elec-
ric vehicles (HEVs) [1] . Even though BEVs and FCEVs show promis-
ng results in terms of fuel economy, few but critical limitations arise:
EVs are still not capable of guaranteeing an electric range comparable
ith the driving range of a fuel-propelled vehicle due to battery limita-

ions [2] and are typically characterized by higher initial costs caused
y the current components’ markets prices [3] ; FCEVs are still in the
arly development stages, at least in the transportation field [4] and
onsistent improvements are needed regarding safe on-board hydrogen
torage systems and recharging infrastructures [5] . On the other hand,
EVs have demonstrated their capabilities in effectively reducing fuel
onsumption-related CO 2 and pollutant emissions [6] , while providing
eliable driving ranges. Moreover, the HEVs penetration in the market
s increasing through time thanks to a good compromise between retail
rices, total cost of ownership [7] , independency from an incomplete
echarging infrastructure and on-board safety [8] . 

Different HEV architectures have been studied and discussed in the
iterature, such as series, parallel and complex series/parallel architec-
ures [ 9 , 10 ]. Briefly, any architecture is characterized by a given posi-
ion of the electric machine/s in the powertrain and a customized con-
ection between the electric and thermal energy sources. Furthermore,
ny HEV architecture is also characterized by different design specifica-
ions (e.g., engine sizing, electric motors’ power and battery capacity,
tc.). For the sake of clarity, the term “HEV layout ” (or simply “layout ”)
s hereafter used to address to any HEV configuration for which the main
omponents’ sizes have been defined. 

The necessity of defining a proper methodology for the compari-
on of very different HEV layouts hence arises. A widely used first step
s that of discriminating between the three above-mentioned HEV ar-
hitectures in order to reduce the design domain. Therefore, assump-
ions have to be made about the HEV Energy Management System
 EMS ), i.e. the algorithm (or set of algorithms) that coordinates and
ontrols the propellers operation during the vehicle use [ 11 , 12 ]. Sev-
ral methodologies have been developed in the last years and can be
lassified in three main categories: heuristic algorithms, static optimiz-
rs and global optimizers [13] . The performance of the different EMSs
an be compared by means of two parameters: computational burden
CB) and results accuracy (RA). Heuristic controllers (i.e. rule-based
trategies and fuzzy logics) are characterized by the lowest CB and
A [14] . Static optimizers, such as the Equivalent Consumption Min-

mization Strategy ( ECMS ) [15] , show intermediate CB and RA. Finally,
lobal optimizers, such as Dynamic Programming ( DP ) [16] and Pon-
ryagin’s Minimum Principle ( PMP ) [6] , achieve the highest possible RA
y identifying the optimal control strategy at the expense of the most
xpensive CB. 

From an optimal design perspective, once the HEV architecture is de-
ned, a global optimizer is typically selected as the most promising EMS
hanks to its capability of exploiting the optimal energetic performance
chievable by a HEV layout. Such an algorithm allows for properly com-
aring different HEV layouts at their best and would have to be run
hrough a wide range of design parameters. Given the high CB of such
assive set of simulations (MS), a learning algorithm could therefore be

rained to grasp the correlations between the layout specifications (i.e.
esign parameters) and the global optimizer’s outputs. Thanks to this
pproach, fewer simulations could be performed, drastically reducing
he CB still preserving the RA. 

A promising family of algorithms with the capability of learning from
 data set is classified as Machine Learning (ML). ML algorithms are
 branch of the Artificial Intelligence (AI) framework as they usually
ncompass automatic computing procedures that learn a task from a set
f samples without being explicitly programmed [16] . 
3 
A typical macro-discrimination is made between classification and
egression-aimed ML algorithms [17] . Briefly, classification algorithms
re employed to predict a class the processed inputs belong to, whereas
egression algorithms are used to predict numerical values. Beyond their
apability of predicting a class or a figure, ML algorithms can be further
ivided into two sub-branches: supervised learning and unsupervised
earning [18] algorithms. As far as supervised learning algorithms are
oncerned, “labelled data ” have to be available within the input dataset:
abelled data consist of data for which the class/value to be predicted
s a priori known. In fact, the algorithm is trained to understand the
onnections between the inputs and the outputs so as to replicate them
or new and unknown data. On the other hand, unsupervised learning
lgorithms use “unlabelled data ” as they are trained to catch the patterns
nderneath the data and use them to intercept the trend inputs. 

Regarding the CO 2 prediction task for HEVs, the choice of a global
ptimizer would guarantee the estimation of optimal outputs for each
f the tested layouts. Labelled data would be available, resulting in a
upervised approach problem. 

Since the numerical correlations between the layouts’ specifications
i.e. the inputs) and the global optimizer’s results (i.e. the outputs) are
xpected to be highly non-linear [19] , Neural Networks (NNs) have been
elected as the most promising solution for the considered prediction
ask. NNs are a sub-family of ML algorithms and are considered as par-
icularly advantageous when complex prediction problems are targeted
20] . Common features are the layered structure, a variable number of
odes for each computational layer and a recursive approach that is of
aramount importance in the learning process [21] . Concerning the NNs
lgorithm, the authors chose to resort to Deep-NNs algorithm ( DNNs ) as
he latter proved to possess a greater learning potential due to their deep
ayered structure [ 22 , 23 , 24 ]. In fact, the term “Deep ” refers to the wide
umber of layers in the net itself. 

An innovative exploitation of DNN is proposed in the present paper.
he latter mainly differs from the literature solutions where neural net-
orks are basically used to monitor real-time vehicle performances and

o dictate a proper control strategy. As a matter of fact, the potentials
f a learning DNNs-based Predictive Model ( DNNs-PM ) when applied to
he optimization task of HEVs design parameters through the prediction
f tank-to-wheel CO 2 emissions are presented in the paper. More specif-
cally, the developed method could be easily implemented within the
esign operations of HEV fleets and could represent a fast and reliable
ay to identify possible optimal design parameters combinations with

espect to a foreseen driving mission. 
A single VL (i.e. only one MS is performed) is generated by means

f a Design of Experiment (DoE) approach [25] for three different HEV
arallel architectures and processed by a DP algorithm. Once the simu-
ations are completed, a dataset comprising the layout specifications is
enerated for each architecture and fed into the DNNs-PM. At this stage,
wo steps are performed by the model: first, the discrimination between
easible/unfeasible layouts (i.e. a classification task) is carried out; then,
he prediction of the tank-to-wheel CO 2 emissions of the admissible lay-
uts (i.e. regression task) is performed. In order to obtain a dual nature
rediction, a two-DNN pipeline has been developed. 

. Vehicle model and control logic 

In the current section, the low-throughput models adopted for re-
roducing the three HEVs parallel architectures are presented together
ith the formulation of the EMS. Finally, a thorough description of the
atasets is provided. 

.1. HEV model 

In the present paper, three HEV parallel architectures featuring only
ne electric machine have been analysed, namely P2, P3 and P4. The
ust mentioned architectures, and their related design parameters, are
erived from a reference heavy-duty vehicle for which an experimental
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Fig. 1. P2, P3 and P4 parallel hybrid architectures. 
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ampaign was conducted in the context of an industrial partnership. It
s worth noticing that this choice has been driven by the amount of ex-
erimental data that were otherwise not possible to retrieve. Still, the
ersatility of the method allows for a simple transfer to other HEV design
ptimizations, such as those related to passenger-cars. A schematic view
f the different hybrid configurations is proposed in Fig. 1 . For the sake
f clarity, the electric machines involved in the present study are consid-
red capable of providing traction to the vehicle as well as of allowing
or the battery recharging during regenerative braking phases. Hence,
he electric machines will be referred as motors/generators ( MGs ). 

In the P2 configuration, the MG is placed in between the Internal
ombustion Engine ( ICE ) and the gearbox; the connection between the
G and the ICE shaft is achieved considering a Torque Coupling de-

ice ( TC ). The disengagement of both the ICE and the MG is realized
hanks to the use of two clutches (c1 and c2): during pure electric op-
rating modes, c1 is engaged and c2 is disengaged whereas the inverse
ngagement is used during pure thermal operating modes. In the P3
onfiguration, the MG is connected to the main shaft through a TC po-
itioned on the gearbox output shaft; the same system of clutches of the
2 configuration is used to disengage the ICE or the MG in the P3 archi-
ecture. Differently from the P2 and P3 configurations, in the P4 one, the
G drives a separate axle with respect to the one powered by the ICE.

inally, a Front Final Drive ( FDf ) is defined for the three architectures
hereas a Rear Final Drive ( FDr ) is considered in the P4 configuration.

The operating modes of each above-mentioned parallel architecture
an be classified as follows [6] : 

• Pure Electric ( PE ) mode: the driver’s power demand is met by the
MG alone (the ICE is off); regenerative breaking is included in the
category. 

• Pure Thermal ( PT ) mode: the driver’s power demand is met by the
ICE alone (the MG is off). 

• Power Split ( PS ) mode: the driver’s power demand is met synergi-
cally by the ICE and the MG. 

• Battery Charging ( BC ) mode: the ICE output power is higher than
the power required to move the vehicle so that the exceeding power
could be used to recharge the battery as the MG is employed as gen-
erator during a traction a phase. 
4 
The mathematical formulation of the HEV model is derived from a
uasi-static backward-facing modelling approach: the power to be de-
ivered by the on-board energy sources is derived from the total power
emand imposed by the driving mission considering the selected power-
plit levels [7] . The choice of such a simplified HEV model has been
orced by the necessity of running multiple simulations embedding a
omputationally-heavy HEV control strategy (i.e. DP, see Section 2.3 ).
nyhow, no influence on the consistency of the proposed method for

he prediction of CO 2 emissions through DNNs arises by the level of the
EV model complexity. 

Once the power required to the vehicle is estimated, the torque to be
xerted by the transmission 𝑇 𝑜𝑢𝑡 is computed, resulting in the following
ormulation: 

 𝑜𝑢𝑡 = 

(
𝐹 𝑟𝑜𝑙𝑙 + 𝐹 𝑟𝑜𝑎𝑑 + 𝐹 𝑎𝑒𝑟𝑜 + 𝑚 𝑣𝑒ℎ ⋅ 𝑎 

)
⋅ 𝑟 𝑤ℎ𝑒𝑒𝑙 (1) 

here 𝐹 𝑟𝑜𝑙𝑙 , 𝐹 𝑟𝑜𝑎𝑑 and 𝐹 𝑎𝑒𝑟𝑜 contribute to the resistive load and are the
olling resistance, the resistive force coming from the road slope, and
he aerodynamic drag, respectively, 𝑚 𝑣𝑒ℎ represents the vehicle mass, 𝑎
epresents the acceleration imposed to the vehicle and finally 𝑟 𝑤ℎ𝑒𝑒𝑙 is
he wheel effective radius. 

For a given GN, the angular speeds of both ICE and MG can be com-
uted as they are directly linked to the vehicle velocity [6] . Therefore,
he output torque 𝑇 𝑜𝑢𝑡 of the two power components can be computed
nsuring the torque balance: 

 𝑜𝑢𝑡 = 𝑇 𝐼𝐶𝐸 ⋅ 𝛼𝐼𝐶𝐸 ⋅ 𝜏𝐼𝐶𝐸 ⋅ 𝜂𝜏𝐼𝐶𝐸 + 𝑇 𝑀𝐺 ⋅ 𝛼𝑀𝐺 ⋅ 𝜏𝑀𝐺 ⋅ 𝜂𝜏𝑀𝐺 (2) 

here 𝜏 and 𝜂 are the gear ratios and the relative gear efficiencies, re-
pectively; 𝛼𝑀𝐺 represents the fraction of the torque outputted by the
G ( 𝑇 𝑀𝐺 ) with respect to the total torque required by the vehicle 𝑇 𝑜𝑢𝑡 ,

nd finally 𝛼𝐼𝐶𝐸 represents the fraction of the torque outputted by the
CE ( 𝑇 𝐼𝐶𝐸 ) with respect to 𝑇 𝑜𝑢𝑡 . 

So as to simulate the response of the HEV propulsion systems (i.e.
CE, MG and battery) to the torque and speeds requirements, three main
ub-models are built. The ICE is modelled by means of an empirically
erived 2D look-up table which relates the fuel consumption to the
CE speed and torque. The maximum load curves, which are function
f the ICE speed, are intrinsically embedded in the just mentioned 2D
ook-up table. The details about the reference ICE are protected by non-
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isclosure agreements and could therefore not be presented. Anyhow,
he validity of the proposed method is not compromised since the refer-
nce data are only employed to properly scale the look-up tables when
ariations in ICE design occur. 

At the end of the simulation, the tank-to-wheel CO 2 emissions in
∕ 𝑘𝑚 can be obtained through: 

 O 2 = 

𝑘 ⋅ 𝐹 𝐶 

𝑑 
(3) 

here 𝑑 represents the total distance covered in 𝑘𝑚 , FC is the cumulative
uel consumption in 𝑔 and 𝑘 is a conversion factor [26] . 

Regarding the MG, the energy losses occurring during the power
onversion from the electric to the mechanical form (and vice versa)
re modelled by means of an empirically derived 2D efficiency map
unction of the MG speed and torque in traction. As for the ICE, the
aximum torque curve admitted is intrinsically embedded in the 2D

fficiency map. For regeneration, the MG efficiency map and full load
urve are considered to be symmetrical. About the battery sub-model,
n equivalent open circuit model is employed considering experimen-
ally derived open circuit voltage and internal resistance as functions of
he battery State of Charge ( SoC ) [27] . The battery power output 𝑃 𝑏𝑎𝑡𝑡 
an be computed adopting the following formulation: 

 𝑏𝑎𝑡𝑡 = 𝜔 𝑀𝐺 ⋅ 𝑇 𝑀𝐺 ⋅
1 

𝜂𝑀𝐺 
𝑠𝑖𝑔𝑛 ( 𝛼𝑀𝐺 ⋅𝑇 𝑀𝐺 ) 

(4) 

here 𝜔 𝑀𝐺 is the speed of the MG, 𝑇 𝑀𝐺 is the MG output torque and

𝑀𝐺 is the efficiency of the MG. If the MG is used as motor 𝛼𝑀𝐺 is posi-
ive so 𝜂𝑀𝐺 divides the right-hand side, vice versa the latter is multiplied
y 𝜂𝑀𝐺 if the MG is employed as motor (i.e. negative 𝛼𝑀𝐺 values). The
ariation of the battery SoC is also evaluated using the aforementioned
quivalent open circuit model. 

 𝑜 𝐶 𝑡 = 𝑆 𝑜 𝐶 𝑡 −1 − ∫
𝐼 𝑏𝑎𝑡 

𝐶 𝑏𝑎𝑡 

⋅ 𝑑𝑡 (5)

here 𝑆𝑜 𝐶 𝑡 is the battery SoC at time 𝑡 , 𝑆𝑜 𝐶 𝑡 −1 is the battery SoC for
he previous time instant, 𝐼 𝑏𝑎𝑡 is the current intensity delivered by the
attery pack, and, finally, 𝐶 𝑏𝑎𝑡 is the battery capacity. 

.2. Database definition 

The learning algorithm that is presented in the next sections relies
pon an input set of features that are thought to be meaningful and
nformative about the phenomenon to be predicted (i.e. the CO 2 emis-
ions). 

Considering the HEV model presented in Section 2.1 , eight design
arameters have been chosen as the most informative features about
he CO 2 estimates resulting from the simulation of a HEV layout for a
iven driving mission: 

• Engine displacement ( EngDispl ): displacement of the ICE in 𝑙. 
• Motor/generator peak power ( MGPower ): power of the MG in 𝑘𝑊 . 
• Power-to-energy ratio ( PEratio ): ratio between the MG peak power

and the maximum energy storable in the battery pack measured in
𝑊 ∕ 𝑊 ℎ . 

• Front final drive speed ratio ( FDfSpRatio ): transmission ratio at the
front final drive. 

• Rear final drive speed ratio ( FDrSpRatio ): transmission ratio at the
rear final drive. It assumes positive values only for the P4 architec-
ture since the MG is connected on the rear axle. Therefore, it is null
for P2 and P3 architectures. 

• Motor/generator speed ratio ( MGSpRatio ): transmission ratio at the
TC level. It assumes positive values for both P2 and P3 architectures
since the MG is coupled to the ICE shaft through the TC. It is null for
P4 architectures. 

• Discharge C-rate ( CrateDis ): it is defined as: 

𝐶 𝑟𝑎𝑡𝑒,𝑑𝑖𝑠 = 

𝐼 𝑑𝑖𝑠,𝑚𝑎𝑥 
(6) 
𝐶 𝑏𝑎𝑡𝑡 

5 
here 𝐼 𝑑𝑖𝑠,𝑚𝑎𝑥 is the maximum current admitted in discharge (measured
n 𝐴 ) and 𝐶 𝑏𝑎𝑡𝑡 is the battery capacity (measured in 𝐴ℎ ). 

• Charge C-rate ( CrateChar ): it is defined as: 

𝐶 𝑟𝑎𝑡𝑒,𝑐ℎ𝑎𝑟 = 

𝐼 𝑐ℎ𝑎𝑟,𝑚𝑎𝑥 

𝐶 𝑏𝑎𝑡𝑡 

(7) 

here 𝐼 𝑑𝑖𝑠,𝑚𝑎𝑥 is the maximum current admitted during charge mode
measured in 𝐴 ). 

Even if the values assumed by each design parameter have to be con-
istent with real HEV applications, a spread range of values can be ex-
loited within a design optimization operation. In the present research
ctivity, the values of the design parameters related to each layout in the
L have been generated by means of a DoE technique, namely the Sobol
equence [28] . Thanks to the latter, once the lower and upper thresh-
ld of the existing range are defined along with the desired amount of
oints (i.e. the number of layouts to be produced), the VL is automati-
ally built through a space filling approach based on the generation of a
uasi-random sequence using primitive polynomials [29] . In the present
esearch, 1500 samples (i.e. different HEV layouts) have been generated
or each HEV architecture presented in Section 2.1 . 

.3. Dynamic programming 

A hybrid powertrain requires an EMS to manage the operations of
he on-board multiple power sources (i.e. battery, MG and ICE). The DP
as been selected as the most promising global optimizer for the present
esearch as it proved to be the most effective algorithm to be adopted
hen a fair comparison of the best energetic performances is required

or different HEVs. 
Once the driving mission is chosen and discretized by means of a

iven time step (in this paper, 1 second has been selected), the DP is
sed to assess for the optimal control trajectory based on a user-defined
bjective function (also called cost function) [ 19 , 30 ]. According to the
lgorithmic procedure, the cost function is computed for any possible
ombination of discretized control and state variables at each discrete
ime instant, starting from the last one and going backwardly to the first
ne. The control variables coordinate the actions that could be realized
y the controller, whereas the state variables completely describe the
tate of the vehicle. 

Three inputs have to be defined so that the DP could perform the
esired computations: the state variables space 𝑋 (i.e. the set of state
ariables), the control variables space 𝑈 (i.e. the set of control vari-
bles), and the objective function 𝐽 . In the present research, they have
een defined as follows: 

 = 

{ 

𝑆𝑜𝐶 

𝐸𝑆 

} 

, 𝑈 = 

{ 

# 𝑔𝑒𝑎𝑟 
𝛼

} 

 = min 
(
𝐶 𝑂 2 

)
∝ min ( 𝐹 𝐶 ) 

(8) 

here the battery SoC and the Engine State ( ES ) are representative of the
tate variables whereas the gear numbers # 𝑔𝑒𝑎𝑟 and the power-split lev-
ls 𝛼 are representative of the control variables; the objective function
as been set as the 𝐶 𝑂 2 , which is a direct function of the fuel consumed
uring the driving mission. According to the necessity of creating a grid
f values to be managed by the DP, the battery SoC is defined by means
f a set of discretized SoC levels whereas the ES is considered as a binary
ariable (i.e. ICE on/off). Similarly, # 𝑔𝑒𝑎𝑟 represents the set of possible
ear numbers and is composed by integer values in [1, 𝑁 𝐺𝑁 

] range,
here 𝑁 𝐺𝑁 

is the total number of gears admissible. Contrarily, despite
he power split levels 𝛼 should correctly be represented by any real num-
er (i.e. theoretically infinite ICE-MG power combination), only a finite
mount of levels have been evaluated in order to restrain the CB. 

Moreover, two additional constraints are imposed to the optimiza-
ion algorithm: 

 𝑣𝑒ℎ = 𝑣 𝑡𝑎𝑟𝑔𝑒𝑡 
 

𝑆 𝑜 𝐶 𝑒𝑛𝑑 = 𝑆 𝑜 𝐶 𝑠𝑡𝑎𝑟𝑡 ± 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 

0 . 4 ≤ 𝑆𝑜𝐶 ≤ 0 . 8 
(9) 
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Table 1 

Extract of the P4 dataset. 

Example[#] EngDispl[l] MGPower[kW] PERatio[W/Wh] FDfSpRatio[-] FDrSpRatio[-] CrateDis[1/h] CrateCh[1/h] CO 2 [g/km] 

1 2.62 106 5.1 4.14 14.80 8.8 9.3 377.1 

2 3.92 113 5.1 4.58 10.48 8.0 8.0 389.4 

… … … … … … … … …

1500 3.94 52 29.3 4.69 10.44 6.3 11.5 10000.0 
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here 𝑆𝑜 𝐶 𝑒𝑛𝑑 and 𝑆𝑜 𝐶 𝑠𝑡𝑎𝑟𝑡 are the SoC at the battery SoC at the end
nd at the start of the driving mission, respectively, 𝑣 𝑣𝑒ℎ represents the
eal vehicle velocity whereas 𝑣 𝑡𝑎𝑟𝑔𝑒𝑡 represents the cycle-imposed veloc-
ty. It is worth noticing that a tolerance (1e-5) around the final SoC
alue has been taken into account so that numerical approximation op-
rations could not affect the feasibility of a given control trajectory.
nyhow, the final SoC constraint has been imposed so that a satisfy-

ng battery charge sustaining strategy could be guaranteed through-
ut the driving missions [13] . Finally, the velocity constraint ensures a
omplete match between the considered cycle-imposed velocity and the
ehicle one. 

If any of the constraints described by Eq. (9) is not fulfilled, the sim-
lation is stopped and the corresponding HEV configuration is defined
s non-acceptable (i.e. unfeasible). Such an event can occur at two mo-
ents: in a pre-simulation phase [6] or during the DP backward run. In

he pre-simulation phase, the entire set of calculations about the power
nd speed required at any stage of the driveline for any combination
f GN and 𝛼 is performed. At this step, the impossibility of satisfying
he road requirements in one or more time steps could be discovered.
uch a condition is defined “pre-simulation unfeasibility ”. Within a pre-
imulation feasibility check, the maximum power levels demanded by
he driving mission at each discretized time step are checked upon.
uch a process would differ from the ‘unfeasibility’ deriving from tai-
ored and user-defined maximum power requests to the vehicle. In or-
er to comply with such different constraints, an index for the vehicle
erformance request should be better defined and the whole procedure
resented in the paper could be hence repeated assigning the analysed
EV layouts with a score corresponding to the performance index. If
o pre-simulation unfeasibility is detected (i.e. the velocity required by
he road can be fully matched), the first constraint of Eq. (9) is ful-
lled and the DP simulation can begin. At this stage, the backward set
f calculation begins and the optimal control trajectory is progressively
uilt. The second constraint of Eq. (9) (i.e. the battery SoC constraints)
s verified during the DP computations at each time step. Before reach-
ng the initial time step, the battery SoC could have dropped below or
isen above the imposed SoC window (i.e. 40% at minimum and 80%
t maximum); moreover, once the initial time step has been reached,
he specified tolerance could be exceeded. If one of the two SoC checks
s failed, the simulation is stopped and a “SoC unfeasibility ” is found.
ny HEV layout leading to an unfeasibility is stored as an unfeasible

ayout. Such layouts will be considered as the opposite to the “feasible ”
ne, which represent those HEV configurations leading to a successful
imulation. 

In Table 1 , as an example, an extract of the database obtained at the
nd of the MS and used for the prediction of the P4-related emissions
s reported. It is constituted by 1500 entries (number of rows) and 8
eatures (number of columns), the latter comprising 7 features for the
esign parameters (columns 2 nd to 8 th of Table 1 ) and 1 feature for
he CO 2 emissions related to the DP-based optimal control strategy (9 th 

olumn of Table 1 ). It is worth observing that the same structure layout
pplies for the datasets of the P2 and P3 architectures. As from the last
ow of Table 1 , a CO 2 emission value equal to 10000.0 𝑔∕ 𝑘𝑚 might
rises: such a value is assigned by the DP to the unfeasible layouts as a
arning. It represents a purely numeric value, and it has been chosen
y the authors to avoid misleading results that could affect the training
rocess of the DNNs-PM. In fact, the expected results are far below this
alue, thus the unfeasible layouts can be easily spotted. 
6 
. Deep neural networks for CO 2 prediction 

The approach used for the prediction of the DP-based CO 2 emissions
s made up of a couple of steps: first, the feasibility/unfeasibility of a
pecific HEV layout, and then the CO 2 estimate for the only layouts
onsidered as feasible. For such a reason, both macro-implementations
f a ML algorithm have been involved in the study, namely classification
nd regression. 

After the description of the model overall logic, a set of pre-
rocessing operations aimed at preparing a suitable dataset for the algo-
ithms training is presented. Particularly, two steps are examined: tar-
ets definition and dataset normalization; finally, the dataset should be
plit into smaller sets, distinguishing from training, validation and test
amples. 

.1. From the database definition to the CO 2 regression 

Once the general dataset has been successfully extracted, the pre-
rocessing set of operations begins followed by the model training
hase; then, the model validation occurs in order to verify the effective-
ess of the neural networks; finally, the model is considered as ready to
e test on unknown data. The dual nature prediction task is performed
nder a two-steps procedure: 

1 Assessment of the HEV layout feasibility: a Classification Deep Neu-
ral Network (cDNN) is used to predict whether a specific layout is
capable of completing the cycle or not (feasible/unfeasible layout). 

2 Prediction of the CO 2 emissions: a Regression Deep Neural Network
(rDNN) is used to predict the CO 2 emitted by the feasible layouts. 

The formulation of the DNNs-PM can be written as: 

 

𝐹 = 𝑓 
(
𝐷𝑒𝑠𝑃 𝑎𝑟𝑠, 𝜃𝑐 

)
𝐶 = 𝑓 

(
𝐷𝑒𝑠𝑃 𝑎𝑟𝑠 ( 𝐹 ) , 𝜃𝑟 

) (10) 

here 𝐹 represent the set of feasible HEV layouts to be considered for
he regression task, 𝐷𝑒𝑠𝑃 𝑎𝑟𝑠 represents the layouts’ set of design pa-
ameters, 𝐶 are the CO 2 emissions predicted by the model while 𝜃𝑐 and

𝑟 represent the set of network structural and algorithmic parameters
or the cDNN and rDNN, respectively. 

The workflow of the DNNs-PM is summarized in Fig. 2 . After a pre-
rocessing operation aimed at manipulating the data so as to make them
nterpretable by the DNNs, the first network to be trained is the cDNN.
uring the learning process, an Automatic Search Tool (AST) is em-
loyed to select the most effective combination of network’s parameters.
nce the feasible layouts are identified and the unfeasible ones are dis-
arded (i.e. filtering procedure), the database is ready to be employed in
DNN’s development. The rDNN learning process can finally take place
ith the support of the AST and the CO 2 prediction can occur. 

.2. Data management and normalization techniques 

A first distinction is to be made when referring to the target’s nature
f the cDNN and rDNN. In the regression task performed by the rDNN, no
ction has been performed on the values of the CO 2 column of Table 1 as
he rDNN is asked to predict the exact CO 2 estimates. Contrarily, given
hat the cDNN is supposed to perform a classification, categorical targets
re needed instead of numerical targets, both for training and prediction
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Fig. 2. Workflow of the DNNs-PM. 
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urposes. To this end, the CO 2 column is replaced by another one, fea-
ured by the same amount of points and defined as: 

𝑎𝑏𝑒𝑙𝑠 = { 1 𝑖𝑓 C O 2 ≠ 10000 
0 𝑖𝑓 C O 2 = 10000 (11)

Once again, the value “10000 ” is an intentionally out-of-scale ficti-
ious value assigned to the unfeasible layouts to clearly distinguish them
rom the feasible ones. 

Another important consideration has been made about the values
ssumed by the design parameters. The seven descriptive features, as
t can be noticed in Table 1 , show different order of magnitudes since
hey represent different physical quantities. From a numerical perspec-
ive, such a condition can lead to inefficient training processes as the
etwork predictions could be learnt only through the features charac-
erized by larger values [ 31 , 32 ]. An effective and fast solution is the
ormalization the of whole dataset. This procedure is usually accom-
lished by substituting each entry of the dataset with an equivalent one
sing a relation which is able to enforce the same range of variation for
ll the features, preserving simultaneously their informative potential
 33 , 34 ]. To avoid unbalanced distributions of data in the normalized
ataset, “standardization ” is chosen as normalization technique. All the
ataset features are then modified as follows: 

̃ 𝑖 = 

𝑥 𝑖 − 𝑥̄ 

𝑠𝑡𝑑 ( 𝑥 ) 
, 𝑖 = 1 …𝑁 (12)

here: 

• 𝑥̃ 𝑖 is the i-th layout’s feature after normalization. 
• 𝑥 𝑖 is the i-th layout’s feature before normalization. 
7 
• 𝑥̄ is the average of the considered feature. 
• 𝑠𝑡𝑑( 𝑥 ) is the standard deviation of the considered feature. 

Thanks to the standardization of the input dataset, the entire set of
escriptive features of the dataset vary in the same order of magnitude.

The input dataset can actually be split into smaller datasets, namely
raining-set, validation-set, and test-set. The larger share of data is
elected as training-set and processed during the training phase by
he DNNs to catch the inputs/outputs correlations. Then, two smaller
ets are generated: the former is employed to validate the DNNs (i.e.
alidation-set) during validation procedures aimed at defining the best
ossible networks’ parameters combination; the latter (i.e. test-set) is
mployed to test the network on new and unknown data. 

Within the present research, the training, validation, and test sets
ave been selected in a stochastic manner so that any DNN behaviour
ould not be biased by specific data splits. Particularly, the numerosity
f the whole training and validation set has been defined as a conse-
uence of a tuneable network parameter, namely Train-to-Test ( t/t ) ra-
io. The latter is typically considered too strongly affect the model per-
ormance as it modifies the number of data available during the training,
alidation and test phases [23] . 

.3. Multi-stage deep neural network model 

A distinction is to be made regarding the parameters of the neu-
al networks considered in the present study: weights, fixed-parameters
nd hyper-parameters. The weights have been considered as the param-
ters involved in the computation of the activation functions and are
utonomously tuned during the training process (specifically during the
ack-propagation phase [18] ). The fixed-parameters have been consid-
red as the features or the numeric parameters to be a priori defined by
he user before the training process of the networks begins: in the present
ork, the values of the fixed parameters have been chosen after several
ttempts in finding the optimum time/accuracy trade-off [35] and kept
nchanged for the entire set of analyses (the description and investi-
ation of these parameters is beyond the scope of this study and the
elated investigations are not presented in this paper). The list of fixed-
arameters is presented in Table 2 . Finally, the hyper-parameters have
een considered as the networks’ features to be tuned during the training
rocess by means of a dedicated tool (AST); given the different nature
f the DNNs involved in the pipeline, different sets of hyper-parameters
ave been considered for the cDNN and rDNN and will be detailed in
he following sections. For the sake of completeness, the simulations
resented in the paper have been performed on a 2.4GHz CPU-12GB
AM personal computer. 

.4. Performance index of the cDNN 

As far as the classification task of the cDNN is concerned, a binary
lassification (i.e. each example belongs to one of the two available
lasses) has to be performed. In the present work, the classification net-
ork index used to evaluate the cDNN performance is the Matthews
orrelation Coefficient (MCC). The latter is considered as one of the
est “single-number ” performance indexes, deriving directly from the
ssociated Confusion Matrix (CM) [36] . The MCC can be computed as:

𝐶𝐶 = 

𝑇 𝑃 ∗ 𝑇 𝑁 − 𝐹 𝑃 ∗ 𝐹 𝑁 √
( 𝑇 𝑃 + 𝐹 𝑃 ) ( 𝑇 𝑃 + 𝐹 𝑁 ) ( 𝑇 𝑁 + 𝐹 𝑃 ) ( 𝑇 𝑁 + 𝐹 𝑁 ) 

(13) 

here: 

• TP are the true positives. 
• TN are the true negatives. 
• FP are the false positives. 
• FN are the false negatives. 

The MCC ranges from -1 (the model is in complete opposition with
espect to the observations) to 1 (perfect classification); in the case of



C. Maino, D. Misul, A. Di Mauro et al. Energy and AI 5 (2021) 100073 

Table 2 

Fixed-parameters for the cDNN and the rDNN. 

Fixed-parameter cDNN rDNN 

Number of epochs 250 100 

Activation function (internal layers) ReLU ReLU 

Activation function (output layer) Sigmoid Linear 

Learning algorithm Adam Adam 

Standardization method Batch-Normalization Batch-Normalization & Drop-Out 
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ull MCC, the model is considered to produce random predictions. Along
ith the MCC, the associated Confusion-Matrix is also considered for an

ven more complete evaluation. 

.5. Performance index of the rDNN 

Since the rDNN is intended to replicate the results of the DP algo-
ithm, the widely used Coefficient of Determination (CoD) R 

2 is selected
o monitor the fitting goodness of the DNNs-PM predictions with respect
o DP-based targets [37] . The CoD is calculated through: 

 

2 = 1 − 

𝑆 𝑆 𝑟𝑒𝑠 

𝑆 𝑆 𝑡𝑜𝑡 
(14)

ith: 

• 𝑆 𝑆 𝑡𝑜𝑡 = 

∑
𝑖 ( 𝑦 𝑖 − ̄y ) 2 

• 𝑆 𝑆 𝑟𝑒𝑠 = 

∑
𝑖 

( 𝑦 𝑖 − 𝑓 𝑖 ) 2 

• ȳ : target values average 
• 𝑦 𝑖 : true value 
• 𝑓 𝑖 : predicted value 

The CoD ranges from infinitely negative number to 1: a baseline
odel predicting the average value of the distribution exhibits a null
 

2 ; a perfect fit of the model scores an R 

2 equal to 1, while negative
alues typically account for models worse than the baseline one [38] . 

Moreover, the Root Mean Squared Error (RMSE) is also monitored
hroughout the simulations as it is selected to be the loss-function of the
DNN. The RMSE is calculated through: 

𝑀𝑆𝐸 = 

2 

√ ∑
𝑖 

(
𝑓 𝑖 − 𝑦 𝑖 

)2 
𝑛 

(15) 

here 𝑛 is the number of total predictions. Notice that the RMSE is ex-
ressed in 𝑔∕ 𝑘𝑚 since these latter are the units of both target and pre-
icted values. The RMSE values range from 0 (perfect predictions) to
nfinitely large values (predictions infinitely distant from target values).

.6. Automatic search tool 

It is now possible to introduce the AST procedure employed to select
he best hyper-parameters’ combination. Each tested hyper-parameters’
ombination is referred hereafter as “trial ”. Particularly, several combi-
ations of hyper-parameters are randomly selected (i.e. Random-Search)
nd their performance are assessed for using an 8-fold Cross-Validation.
riefly, the dataset resulting from the merging between the training
nd validation sets is split into 8 sub-sets, alternatively treated as the
alidation-set. The task-specific performance index resulting from the
verage of the 8 validation splits is considered as the desired perfor-
ance for the entire trial. In this manner, the same importance is given

o each validation split, leading to a more robust estimation of the real
erformances of a given trial. The performances are then compared
sing a task-specific algorithm and the most promising set of hyper-
arameters is selected. 

.6.1. Selection of the cDNN hyper-parameters 

The cDNN hyper-parameters considered for the tuning operation are:

• Learning rate: logarithmic variation with base 10. 
8 
• Number of hidden layers. 
• Neurons at first layer. 
• L2 regularizer parameter: logarithmic distribution with base 10. 
• Batch size: logarithmic distribution with base 2. 

The number of neurons featuring the hidden layers should also be
onsidered as an additional hyper-parameter to be tuned. Nevertheless,
uch a value has been computed through the following equation in order
o bound the hyperparameters’ space: 

 𝑖 = 

𝐿 1 
2 ( 𝑖 −1 ) 

(16) 

here 𝐿 𝑖 is the i-th hidden layer’s number of neurons, and 𝐿 1 is the num-
er of neurons of the first hidden layer. The resulting hyper-parameters’
pace is therefore a 5-dimensional one. Notice that the range in which
ach hyper-parameter varies is user-defined. Moreover, even though
ome of them (e.g. learning rate and L2 regularizing parameter) could
heoretically exhibit a continuous distribution (i.e. infinite number of
oints in the variation range) a fixed number of points is considered in
his study. Each axis of the space, namely each hyper-parameter range
f variation, is divided into 3 equal sectors. Such a procedure generates
 

5 (243) sub-spaces. The logic is characterized by 4 steps: 

1 A Random-Search in the whole hyper-parameters’ space with a user-
defined number of trials. 

2 An 8-fold Cross-Validation ( Section 3.6 ) of each trials. Whenever a
trial is found to exhibit an MCC higher than a threshold value of 0.95,
the sub-space in which the related hyper-parameters’ combination is
located is selected for the second step. If less than three sub-spaces
are selected, the best three are chosen. 

3 A Random-Search (same number of trials as the first step) in each
selected sub-space. 

4 An 8-fold Cross-Validation of each trials. The trial showing the
higher MCC is considered as the best hyper-parameters’ combina-
tion and chosen as the final one. 

.6.2. Selection of the rDNN hyper-parameters 

A slightly different set of hyper-parameters has been considered for
he tuning operation of the rDNN: 

• Learning rate: logarithmic distribution with base 10. 
• Number of hidden layers. 
• Neurons at first layer. 
• Batch size: logarithmic distribution with base 2. 
• Type of weights initialization: choosing between Glorot uniform,

Glorot normal, Random uniform, Random normal and truncated nor-
mal. 

Once again, the number of neurons involved in the hidden layers
s computed through Eq. (16) . The tuning procedure of the AST is per-
ormed beginning with a Random-Search during which the R 

2 value
s monitored. The R 

2 value is the result of the 8-fold Cross-Validation
 Section 3.6 ). Whenever a trial shows an R 

2 higher than a threshold
alue of 0.75, a second verification step is activated: 

1 If any hyper-parameters combination has still been selected, the
value of the loss function (RMSE, Section 3.5 ) obtained at the end
of the Cross-Validation is stored and the combination is temporarily
selected as the best one. 
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Fig. 3. World Harmonized Vehicle Cycle 
(WHVC) velocity profile. 

Table 3 

Main specifications of the baseline vehicle and its main 
components. 

Vehicle 

Vehicle class Heavy-duty 

Vehicle weight [ kg ] 7500 

Number of wheels [ # ] 6 

ICE 

Displacement [ L ] 4.5 

Rated Power [ kW ] 150 

Maximum Torque [ Nm ] 800 @ 1400 RPM 

MG 

Rated Power [ kW ] 125 

Maximum Torque in traction [ Nm ] 300 

Maximum Torque in braking [ Nm ] -300 
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2 If a hyper-parameters combination has already been selected, a new
combination can force the already selected combination out only in
case of a lower value of the loss function. 

Through the AST procedure for the rDNN, a combination is not se-
ected unless the threshold R 

2 value is reached; it is therefore possible
hat no combination is selected at the end of the tuning process. For
uch conditions, the AST procedure is repeated searching for a suitable
ombination of hyper-parameters: a new random-search is started and
ence followed by steps 1 and 2. 

. Results 

The DNNs-PM pipeline has been applied to the prediction of both
EV layout feasibility (classification task) and tank-to-wheel CO2 emis-

ions (regression task) identified by the DP for a heavy-duty vehicle. The
ain specifications of the baseline vehicle used for modelling the HEV
arallel architectures are reported in Table 3 whereas the driving cycle
elocity profile of the World Harmonized Vehicle Cycle considered for
he DP optimization is illustrated in Fig. 3 . For the sake of clarity, ad-
itional information about the ICE and the MG were not presented for
oth for confidentiality reasons and because not relevant for the target
f the present research. 

The performance of the DNNs-PM has been evaluated following two
teps: the evaluation of the effective model learning capability over the
ataset of the P4 architecture, namely P4-dataset, and the comparison
f the model generalization capability when tested to different HEV ar-
hitectures (i.e. P2 and P3). Such an evaluation approach has been first
pplied to the cDNN stand-alone, then it has been extended to the en-
ire pipeline. The study of the results produced on a single dataset is
hought to be useful for understanding the DNNs operation, whereas
9 
he comparison on different datasets is mandatory to highlight the real
eneralization capability of the model when tested under various con-
itions. 

The outcomes of 46 independent simulations (28 simulations for the
DNN and 18 for the pipeline) have been post-processed in order to
valuate the realistic potentials of the DNNs-PM and are presented in the
ext sections. First, the assessment of the cDNN performance is achieved
y a preliminary simulation with a fixed t/t split so as to verify the net-
ork consistency of the learning process. Then, the results obtained by
4 simulations are presented in order to thoroughly analyse the perfor-
ance variation of the model when changes into the training-set’s nu-
erosity are introduced: multiple tests (6) are performed so as to evalu-

te the generalization performance of the model under several random
raining, validation and test sets ( Section 3.2 ) for 4 t/t ratios (60-40, 70-
0, 80-20 and 90-10). Consistently, no bias in the model learning process
s introduced. Once the evaluation of the model robustness is completed
or a single HEV architecture, a comparison of the results produced by
he model when applied to the three architectures’ datasets (i.e. P2, P3
nd P4 alternatively) is carried out under slightly different conditions. In
act, for such comparison the hyper-parameters’ space has been enlarged
nd the number of trials (i.e. the number of tested hyper-parameters’
ombinations) has been increased. In this manner, the cDNN is allowed
o deeply search in a wider numerical space increasing the probability
f detecting an optimal hyper-parameters setup. The latter operation is
ade possible by the automatic search tool presented in Section 3.6 .
 single trial has been performed with a fixed t/t ratio comparing the
CC over the three architectures. As far as the performance of the en-

ire pipeline are concerned, the assessment of its prediction capability
s presented through the results of 18 simulations carried out over the
2, P3 and P4 datasets alternatively (i.e. 6 tests for each architecture). 

As a final step, a detailed analysis of cDNN misclassified false positive
ayouts has been performed and presented to the reader. 

.1. Investigation on the cDNN performance 

As a first step, the consistency of the cDNN’s learning process is as-
essed. Particularly, the learning curves (i.e. the trend of the perfor-
ance index during the training phase) are analysed so as to ensure the

bsence of overfitting or biased behaviours. 
Recalling Section 3.2 , a random selection of the training, validation

nd test sets is asked to the DNN before entering the training process,
n order to avoid a biased network operation caused by a fixed split.
onsistently, a diversification of the simulation setup is ensured to the
NNs-PM and an unbiased behaviour is promoted. 

Within this section, the results produced by one simulation per-
ormed with the cDNN on the P4-dataset is presented as a qualitative
xample of the cDNN achievable outcomes. Twenty hyper-parameters’
ombinations are included for each random search and cross validation
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Table 4 

Setup of the investigation on the cDNN performance. 

Hyper-parameter Range of variation [-] 

Learning rate 0.0002 – 0.02 

Hidden Layers 1 – 4 

Neurons first hidden layer 130 – 230 

L2 regularizer 0.003 – 0.3 

Batch size 16 – 128 

Dataset split Number of samples [#] 

Training 1050 

Validation 150 

Testing 300 

Fig. 4. MCC trend (a) and test-set’s CM (b) for the P4-dataset simulation. 
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Table 5 

Specifications of the experiments with the cDNN. 

t/t ratio [%] 
# of 
simulations 

Number of samples [#] 

Training-set Validation-set Test-set 

60/40 6 788 112 600 

70/30 6 919 131 450 

80/20 6 1050 150 300 

90/10 6 1181 169 150 
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tep of the abovementioned automatic search tool; 250 epochs are em-
loyed for the training phase and the t/t ratio is set to 80-20 (i.e. the
raction of training and validation samples with respect to the entire
ataset numerosity is 80%). Notice that, due to the presence of the 8-fold
ross-validation, the Train-to-Validation ( t/v ) ratio is 7-1. The complete
et-up for the simulation is resumed in Table 4 . 

Two indices have been accounted for to monitor the cDNN perfor-
ances through different trials: the MCC (see Section 3.4 ) and the test-

et CM, which are presented in Fig. 4 . The MCC ( Fig. 4 (a)) is monitored
hroughout the training phase (i.e. red curve) and for each split con-
idered in the cross-validation procedure. Then, the average MCC trend
s calculated for the cross-validation splits (i.e. green curve) and com-
ared with the MCC trend of the best performing split (i.e. blue curve).
or the sake of clarity, notice that the latter is tracing the cDNN’s per-
ormance throuhgout the training process over one of the 8 validation
10 
plit, namely the one that is found to achieve the highest MCC at the
ast training epoch. Promising results are highlighted by cDNN as the
CC increases along with the training epochs. The increasing trend of

he learning curves is considered as a symptom of an healthy learning
rocess, not affected by overfitting [39] . On the other hand, no warn-
ngs are shown by the curves noise, which can be considered as a di-
ect consequence of the stochastic learning algorithm and of the batch-
ormalization technique ( Section 3.3 ). From the noise perspective, the
lue curve is clearly the most affected one: such a condition can be di-
ectly linked to the restricted number of layouts used for the model vali-
ation (i.e. validation-set of the best performing split). Consistently, the
oise is smoothed-out by averaging the MCC on any split (green curve).

In addition, the complete CM for the P4 test-set is shown in Fig. 4 (b),
hich reports the exact number of true positives, true negatives, false
ositives and false negatives. Given 1500 layouts in the P4-dataset and
 80-20 t/t ratio, 300 units are involved in the test-set. As a matter of
act, the sum of the CM outputs is equal to the test set size. An additional
heck of the robust performance of the cDNN is given by the test-set MCC
omputation through Eq. 13 ( Section 3.4 ), resulting in 82.92%. Such a
alue is aligned with the final value of the average MCC trend ( Fig. 4 (a),
reen curve) proving the validity of the cross-validation performance
rediction with respect to new and unknown data. 

At this stage, the model generalization capability is evaluated based
n the results obtained by 24 simulations in which changes into the
raining-set’s numerosity are introduced by considering 4 t/t ratios (60-
0, 70-30, 80-20 and 90-10). Multiple tests (6) are performed for each
/t ratio. In Table 5 , a description of the datasets numerosity for the dif-
erent t/t ratios is reported. The hyper-parameters’ space and the num-
er of examined hyper-parameters’ combinations are kept the same as
or the previous simulation, as well as the number of training epochs. 

The main results obtained at the end of the 24 simulations are pre-
ented in Table 6 . The actual MCC index resulting for each t/t ratio is
eported for each trial along with the MCC average value (avg) and the
tandard deviation (std). A direct proportionality between classification
erformances and training-set’s size arises: the MCC average value in-
reases as the training-set is enlarged. Such a result can be considered
s the most coherent outcome of a robust learning process. Consistently
ith the stochastic nature of the training set selection performed by the

DNN, not a fixed MCC is found for each trial, but a restrained standard
alue is highlighted. It is worth noticing that the 80/20 and 90/10 t/t
atios produce larger fluctuations with respect to the 60/40 and 70/30
atios. This can be mainly linked to the reduced numerosity of the test-
et: as the latter lowers, the relative influence of the single test prediction
ith respect to the overall prediction process increases; this finally re-

ults in more evident performance deficiencies/peaks throughout simu-
ations in case strong discrepancies between training-set and test-set are
ound 

.2. Application of cDNN to different HEV architectures 

Within this section, the results obtained by a different analysis aimed
t highlighting the cDNN capability of producing accurate predictions
hen tested over different architectures’ (i.e. P2, P3 and P4 alterna-

ively) are presented. 
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Table 6 

Main results of the cDNN on the P4-dataset. 

t/t ratio [%] I [%] II [%] III [%] IV [%] V [%] VI [%] avg [%] std [%] 

60/40 81.88 82.13 76.46 82.21 79.69 76.45 79.80 2.33 

70/30 82.08 86.34 81.59 76.82 81.63 81.62 81.68 2.55 

80/20 82.92 82.22 87.22 85.09 84.39 75.01 82.81 3.55 

90/10 85.79 78.79 80.36 84.50 88.79 85.80 84.01 3.16 

Table 7 

Setup for the comparison of the cDNN performance over 
different HEV architectures. 

Hyper-parameter Range of variation [-] 

Learning rate 0.00001 – 0.1 

Hidden Layers 1 – 15 

Neurons first hidden layer 20 – 300 

L2 regularizer 0.0001 – 0.09 

Batch size 16 – 516 

Dataset portion Number of samples [#] 

Training 1181 

Validation 169 

Testing 150 

Table 8 

Comparison of the MCC 
obtained by the cDNN 

for the three compared 
datasets. 

Architecture MCC [%] 

P2 96.98 

P3 92.40 

P4 91.51 
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Table 9 

Setup of the investigation on the pipeline performance. 

Hyper-parameter Range of variation [-] 

Learning rate 0.002 – 0.1 

Hidden Layers 1 – 6 

Neurons first hidden layer 30 – 80 

Batch size 8 – 64 

Drop-out 0 – 0.5 

Weights initialization Xavier, random, truncated normal 

Fig. 5. Regression task performance indeces trend: R-square for the training- 
set (red line); R-square for the validation-set (green line); loss function for the 
training-set (blue line); loss function for the validation-set (orange line). The 
black arrows indicate the reference axis. (For interpretation of the colors in this 
figure legend, the reader is referred to the web version of this article.) 
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Recalling Section 4 , the authors chose to increase the number of
rials and enlarge the hyper-parameters’ space. Given that no a priori
ssumptions can be made about the effectiveness of the optimal hyper-
arameters’ combination found for the P4 architecture on different ar-
hitectures, extending the number of realizable hyper-parameters’ com-
inations to a larger extent can be considered so as to increase the proba-
ility of spotting an optimal (or near optimal) hyper-parameters’ combi-
ation for each architecture. For the just mentioned reasons, an increase
n the overall performance is expected. 

For the present analysis, the t/t ratio has been set to 90/10 since
t was found to be beneficial from the cDNN outcomes discussed in
ection 4.1 . The complete setup for the analysis is described in Table 7 .
he results of the comparison between the three architectures are re-
umed in Table 8 . Notice these latter are the result of one simulation for
ach dataset (i.e. P2, P3 and P4 alternatively). The expected increase in
he classification performance is clearly confirmed. Particularly to the
4-dataset, the obtained MCC is 91.51%, showing an increase of more
han 2.7% with respect to the maximum MCC registered in Table 6 for
he same t/t ratio. Anyhow, the cDNN performances on the classifica-
ion of feasible P2 and P3 layouts are found to outperform the best per-
ormances found for the P4 dataset. In fact, the MCC obtained for the
2 and P3 datasets are roughly 97% and 92%, respectively. This phe-
omenon however has not been deepened in this study and could be
rounds for future research. It is anyway believed to be related to the
tochastic nature of the NNs. 

.3. Investigation of the pipeline performance 

Once the robustness of the cDNN has been assessed for, the perfor-
ance of the entire pipeline can be verified. Particularly, a first in-depth

nalysis of the results produced by the DNNs-PM when applied to the
11 
4-datasets is performed. The generalization capability is hence evalu-
ted comparing the outcomes on the P2, P3 and P4 datasets. 

The rDNN is thought to be responsible for predicting the CO 2 of
he only HEV layouts positively passing through the cDNN classifica-
ion filter. Therefore, it is worth observing that the numerosity of the
atasets inputted into the rDNN and the cDNN can differ. In fact, the
mount of data read by the rDNN is equal to the amount of feasible
amples outputted by the cDNN. However, the DNNs-PM is required to
ontrol the number of samples used to train and test the rDNN in order
o avoid heavy discrepancies on the regression task between multiple
ests. Therefore, preserving the feasible-to-unfeasible layouts proportion
s required to the rDNN. For the present investigation, a two-to-one pro-
ortion has been guaranteed for each HEV dataset. 

As for the cDNN, 6 tests are performed keeping the t/t ratio fixed
t 90/10 over the P4-dataset; the hyper-parameters’ setup used for the
DNN is resumed in Table 9 . 

Once again, two indices are monitored throughout the analysis,
amely the RMSE (i.e. the loss function of the regression task) and the
2 value ( Section 3.6.2 ). The trend of the two performance indicators

hrough increasing number of epochs are referred to as rDNN’s learning
urves; these latter are reported in Fig. 5 for one of the 6 simulations as
n example case. 
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Table 10 

Main results of the rDNN on the P4-dataset. 

Ê Max E min E R 2 [-] RMSE[ g∕ km ] 

Abs[ g∕ km ] Rel[%] Abs[ g∕ km ] Rel[%] Abs[ g∕ km ] Rel[%] 

I 2.11 1 9.39 2 0.03 < 1 0.923 2.50 

II 0.92 < 1 4.67 1 0.01 < 1 0.988 1.25 

III 1.49 < 1 7.43 2 0.03 < 1 0.972 1.77 

IV 4.12 1 11.48 3 0.15 < 1 0.672 4.61 

V 1.28 < 1 7.88 2 0.00 < 1 0.963 1.93 

VI 0.78 < 1 3.13 1 0.01 < 1 0.989 1.06 

avg 1.78 < 1 7.33 2 0.04 < 1 0.918 2.19 

std 1.13 < 1 2.78 1 0.05 < 1 0.112 1.18 
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The same considerations made for the classification task-related
earning curves ( Section 4.1 ) can be fortunately applied to the regres-
ion ones: the increasing trend of the R 

2 index, both for training (red
urve) and for validation sets (green curve), as well as the decreasing
rend of loss function (blue and orange curves), are a promising sign of
n effective, overfitting-free, learning process [39] . 

The CO 2 emissions predictions and target values (i.e. the DP-labelled
utputs of the test-set) are reported in Fig. 6 for all simulations. The
egression Average Errors (Ê), Maximum Errors (Max E) and Minimum
rrors (min E) obtained are summarized in Table 10 ; it is worth noticing
hat relative errors of “< 1 ” are referring to relative errors below 0.5%. As
or the cDNN, the performance indexes are reported for each simulation
long with the average value and the standard deviation. 

The CO 2 emissions predicted by the pipeline are considered as com-
arable with respect to the target ones as an overall average relative
rror under 0.5% ( Table 10 ) arises. Interestingly, the worst prediction
4 th simulation) leads to a restrained average relative error, equal to 1%.

Finally, the relative errors of the CO 2 predictions are shown in Fig. 7
or each test case. Few relevant outliers are found through the six simu-
ations, a symptom of the rDNN robustness when several tests are con-
idered. Particularly, the overall maximum absolute error is 3% (4 th sim-
lation). Notice finally that no particular trend is found concerning the
elative error dimensions. This can be considered proof of the absence
f biased behaviour towards specific category of layouts. 

As final step, a further test is conducted by applying the entire
ipeline to the P2 and P3 datasets using the same t/t ratio (i.e. 90/10):
2 simulations (6 for each dataset) have been performed and their rel-
tive R 

2 value and RMSE are reported in Table 11 together with the
verage, maximum and minimum errors. It is worth highlighting that
he results concerning the P4-dataset are the same as those presented in
able 10 . The relative errors falling very close to zero are reported as
< 1 ”. Robust performances can be observed for each of the tested HEV
rchitecture. As far as the ∆ is concerned, very small errors arise re-
ardless of the HEV architecture as the maximum relative discrepancy
s detected at 1 %. On the other hand, despite the fluctuations of the
ax E are more pronounced, the maximum relative discrepancy never

xceeds 4% (P2 and P3 datasets). At the same time, the min E are also
ery close to zero as quasi-perfect predictions are attained. 

The highest R 

2 is achieved when the DNNs-PM is applied to the P4-
ataset; nevertheless, the indexes ∆, Max E and min E show larger values
han the corresponding ones featuring the P2 and the P3 datasets. Given
hat the RMSE is considered as a more reliable index to assess for the
eal discrepancies between the predictions and target values, the perfor-
ance of the entire pipeline can be evaluated as consistent with those
roduced by the cDNN on the P2 and P3 datasets. 

.4. False positives 

Even if a perfect prediction is considered as the ideal scenario, a
estrained error has to be assumed even for very performing neural net-
orks. Within a classification task, the prediction error can turn into

he generation of false positives (i.e. unfeasible layouts that are incor-
12 
ectly classified as feasible) or false negatives (i.e. feasible layouts that
re incorrectly classified as unfeasible). Regarding the latter, the only
onsequence for the present application would be the avoidance of the
O 2 prediction for few layouts. Such a scenario would not be dramatic

rom a design perspective since no misleading results could be produced
nd post-processed. Contrarily, a false positive layout could affect the
ata post-processing: if an unfeasible layout is classified as feasible, a
ompletely unrealistic CO 2 prediction would occur. 

This said, a final analysis has been carried out in order to evaluate
he rDNN behavior in case of a cDNN misclassification which leads to
 given amount of false positive layouts. The cDNN false positive clas-
ifications resulting from the 18 simulations of Section 4.3 have been
xtracted and fed to the rDNN; the CO 2 emissions values predicted by
he rDNN for those layouts are reported in Table 12 in increasing order.
he minimum predicted CO 2 values related to the true positive layouts
re reported in the table for convenience: given that the minimum emis-
ions are considered as a guidance for a design optimization procedure,
onitoring that the predicted CO 2 values of the false positive layouts
o not fall below the minimum of the true positive ones is mandatory. 

The results show that 86 unfeasible layouts out of 2700 total layouts
of which roughly 900 are unfeasible) are incorrectly marked as feasible,
hat is 3.1% (roughly 9.6% of the unfeasible layouts); moreover, only
 layouts out of the 86 misclassified unfeasible layouts (2.3%) show a
redicted CO 2 value under the minimum predicted one. In Table 12 ,
hey are denoted with an asterisk. Overall, the false positive layouts
or which a CO 2 value is lower than the minimum true positive-related
O 2 value amount to the 0.07% of the total analysed layouts (roughly
he 0.22% of the total unfeasible layouts). Since the identification of the
inimum emissions region is typically preferred to the actual minimum

mission value, the behaviour of the DNNs-PM in case of false positive
ayouts is considered as a promising outcome for the present application.

.5. DNNs-PM for HEV design optimizations 

As a last step, the discussion of the DNNs-PM integration within a
ossible design operation for HEV fleets is presented. Specifically, the
ool capability of spotting realistic regions within the design space fea-
ured by low CO 2 emissions is assessed for with respect to the results
chieved by the DP algorithm. Assessing for a good response of the
NNs-PM would turn into the confirmation of the possibility to involve

he model within a real-world energy-oriented design optimization for
EVs. 

For the sake of conciseness, the main outcomes produced by the
NNs-PM when applied to the P3 architecture alone are accounted for.

n Fig. 8 , the CO 2 emissions levels obtained for the layouts from the
esting set (see Table 7 ) are depicted both for estimation through DP
nd DNNs-PM. More specifically, the CO 2 emissions of Fig. 8 -a(1) and
ig. 8 -a(2) are referring to the design domain of EngDispl and MGPower

hereas EngDispl and PEratio are employed to represent the CO 2 surfaces
n Fig. 8 -b(1) and Fig. 8 -b(2). It is worth highlighting that the authors’
hoice of representing the CO 2 emissions with respect to EngDispl, MG-

ower, PEratio is arbitrary and is meant to exemplify the logic. Hence,
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Fig. 6. Predicted emissions (in orange) and DP-computed emissions (in blue) for the six simulations. (For interpretation of the colors in this figure legend, the reader 
is referred to the web version of this article.) 
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Table 11 

Comparison of the main results obtained by the entire pipeline for the three datasets. 

Dataset 
R 2 value [-] 

I II III IV V VI avg std 

P2 0.911 0.536 0.788 0.806 0.879 0.716 0.773 0.114 

P3 0.937 0.947 0.719 0.955 0.879 0.953 0.899 0.078 

P4 0.923 0.988 0.972 0.672 0.963 0.989 0.918 0.112 

Dataset 
RMSE [g/km] 

I II III IV V VI avg std 

P2 0.81 1.36 1.17 1.00 1.14 1.45 1.16 0.21 

P3 0.84 0.93 1.33 0.75 1.11 0.77 0.95 0.21 

P4 2.50 1.25 1.77 4.61 1.93 1.06 2.19 1.18 

Dataset 
Ê [g/km - %] 

I II III IV V VI avg std 

P2 0.55 - < 1 1.05 - < 1 0.77 / < 1 0.68 / < 1 0.72 / < 1 1.13 / < 1 0.82 / < 1 0.19 / < 1 

P3 0.59 - < 1 0.64 - < 1 0.99 / < 1 0.56 / < 1 0.92 / < 1 0.54 / < 1 0.71 / < 1 0.17 / < 1 

P4 2.11 - 1 0.92 - < 1 1.49 / < 1 4.12 / 1 1.28 / < 1 0.78 / < 1 1.78 / < 1 1.05 / < 1 

Dataset 
Max E [g/km - %] 

I II III IV V VI avg std 

P2 4.36 - 1 15.14 - 4 12.60 - 4 5.47 - 2 5.55 - 2 7.31 - 2 8.41 - 3 3.73 - 1 

P3 2.83 - 1 4.72 - 1 13.79 - 4 2.83 - 1 2.38 - 1 3.20 - 1 4.96 - 2 3.72 - 1 

P4 9.39 - 2 4.67 - 1 7.43 - 2 11.48 - 3 7.88 - 2 3.13 - 1 7.33 - 2 2.58 - 1 

Dataset 
min E [g/km - %] 

I II III IV V VI avg std 

P2 0.00 - < 1 0.01 - < 1 0.00 - < 1 0.01 - < 1 0.01 - < 1 0.00 - < 1 0.01 - < 1 0.01 - < 1 

P3 0.01 - < 1 0.03 - < 1 0.01 - < 1 0.00 - < 1 0.06 - < 1 0.00 - < 1 0.02 - < 1 0.02 - < 1 

P4 0.03 - < 1 0.01 - < 1 0.03 - < 1 0.15 - < 1 0.00 - < 1 0.01 - < 1 0.04 - < 1 0.05 - < 1 

Table 12 

CO 2 prediction related to the false positive layouts for the three datasets. 

P2-dataset 
I II III IV V VI 

CO 2,min [g/km] 331.62 331.53 331.97 332.19 331.52 330.13 

CO 2 

[g/km] 

338.93 - 338.28 346.66 345.11 342.37 

365.86 - - 362.53 349.64 343.44 

- - - 441.07 377.57 349.68 

- - - - 400.52 351.10 

- - - - - 357.13 

- - - - - 369.83 

- - - - - 396.27 

P3-dataset 
I II III IV V VI 

CO 2,min [g/km] 333.81 334.09 332.89 333.38 334.91 333.57 

CO 2 

[g/km] 

340.30 338.83 341.00 347.10 336.12 347.86 

343.99 355.30 344.03 347.47 338.42 - 

358.06 362.79 - 352.92 339.19 - 

387.31 - - - 342.44 - 

P4-dataset 
I II III IV V VI 

CO 2,min [g/km] 364.07 365.14 362.41 366.93 366.32 364.30 

CO 2 

[g/km] 

363.15 ∗ 369.63 367.24 367.26 363.03 ∗ 368.32 

367.19 382.43 373.92 367.37 367.97 369.95 

368.06 389.17 379.15 372.64 368.08 372.43 

372.25 - 382.74 377.32 368.20 374.76 

375.38 - 383.56 379.55 368.36 376.72 

377.73 - 385.94 379.98 369.30 379.11 

379.25 - 388.03 380.59 370.53 380.38 

380.48 - - 382.85 372.37 380.98 

381.08 - - 391.06 383.40 382.41 

381.30 - - 393.05 - 388.21 

381.77 - - 395.80 - 390.32 

14 
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Fig. 7. Relative errors obtained for the six simulations. 
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t  
he same analysis could be easily carried out for any other design pa-
ameter considered in the paper. 

Two main considerations arise from the results of Fig. 8: the DNNs-
M is effectively capable of reproducing the shape of the CO 2 surfaces
ndependently from the considered design variables; the minimum CO 2 
15 
missions region can be defined by means of the DNNs-PM and corre-
ponds to the same region obtained by DP. Even though the CO 2 surfaces
re fragmented due to the sparse nature of the test-set (i.e. only a portion
f the entire dataset is considered), the engine downsizing appears to be
he more influencing design parameter to achieve CO 2 reductions with
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Fig. 8. Low CO 2 emission regions analysis; a: CO 2 vs EngDispl/MGPower; b: CO 2 vs EngDispl/PEratio; (1): DP results; (2): DNNs-PM predictions. 
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he HEV P3 architecture. In fact, layouts represented by engine displace-
ents between 3.2 and 4.0 liters lead to lower CO 2 emissions regardless

f the motor/generator and battery sizing. Moreover, higher MG peak
owers relate to low emission zones. Such a result is consistent with the
hysics behind the optimal control trajectories to be found by the DP.
s a matter of fact, once the feasibility of a given set of HEV layouts
n a specific driving mission is assessed for during a preliminary anal-
sis, the layouts with the higher degrees of hybridization should lead
ower CO 2 emissions. In fact, the controller would reduce the share of
xploitation of the thermal engine in favor of an increase into the share
f pure electric and power-split modes. 

. Conclusions 

In the present paper, the capability of a pipeline made up of two
eep neural networks is assessed for. The latter has been considered as
n innovative solution for drastically reducing the computational time
equired during a design optimization procedure of several hybrid elec-
ric vehicles architectures. In fact, the pipeline has been conceived as a
ool for predicting the feasibility of hybrid layouts as well as the tank-
o-wheel CO 2 emissions. 

The main outcomes of the study are: 

• The deep neural networks proved to be capable of catching the
strongly non-linear correlations between components’ specifications
16 
of different hybrid electric vehicles and predicting both the feasi-
bility of the layouts (classification task) and the tank-to-wheel CO 2 
emissions (regression task). 

• The performance of the classification deep neural network increased
together with the number of layouts employed in the training pro-
cedure; the best results have been found for the P2-dataset. 

• The regression deep neural network showed CO 2 predictions compa-
rable to the target values with average error lower than 0.5% for any
feasible layout outputted by the classification deep neural network. 

• The capability of the model to limit the generation of false positive
layouts. In fact, only the 0.22% of the total unfeasible layouts are
misclassified as false positive layouts, hence not affecting the design
optimization procedure. 

• The presented model can be embedded into a design optimization
operation for hybrid electric vehicles fleets since it showed the ca-
pability of identifying low CO 2 emissions regions comparable with
those obtained by a global optimization algorithm. 

Considering the abovementioned results, further research steps will
nvolve the prediction of indicators about vehicle drivability and total
ost of ownership. Furthermore, new hybrid architectures will be tested
n order to enlarge the prediction possibility over a wider design domain
nd different driving missions will be integrated so that cycle-depending
ndexes could be analysed. 
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