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Direct Flux Vector Control of Synchronous Motor
Drives: A Small-Signal Model for Optimal

Reference Generation
Anantaram Varatharajan, Gianmario Pellegrino, Senior Member, IEEE, and Eric Armando, Senior Member, IEEE,

Abstract—A novel Direct Flux Vector Control (DFVC) scheme
is presented based on the real-time use of the motor small-
signal model for optimal reference generation without pre-
processed look-up tables (LUTs). The control scheme is valid
for Reluctance- and PM-Synchronous machines. The stator flux
magnitude and the load angle are the controlled variables and
the optimal reference values respecting maximum torque per
ampere (MTPA), maximum torque per volts (MTPV), voltage and
current limit conditions are computed in real-time from the small-
signal model. Analytical expressions of MTPA and MTPV criteria
are derived to enable online adaptation according to the small-
signal approximation of the motor model. The motor parameters
reside in the flux-map LUTs used in the flux observer; besides
that, no additional tables are necessary. Furthermore, online
parameter adaptation is proposed to further improve torque
tracking accuracy against flux-map LUTs errors. The feasibility
of proposed scheme is demonstrated through experiments on
a 1.1. kW synchronous reluctance (SyR) machine test-bench.
The proposed control scheme simplifies the implementation and
calibration of the DFVC, while improving its MTPV control and
its roughness against model parameter errors. Prospective fields
of application are spindle and traction drives.

Index Terms—Direct flux vector control, small-signal model,
flux-weakening, parameter adaptation, optimal reference.

I. INTRODUCTION

Synchronous machines can be designed to possess high
torque density and good flux-weakening capability for large
constant-power speed range [1]. Operations beyond rated
speed finds importance in industrial applications, traction and
home appliances.

The commonly used current vector control (CVC) schemes
are implemented in the synchronous rotor dq coordinates
where the reference current i∗dq is a function of commanded
torque and operating speed, fetched from a pre-processed
lookup tables (LUTs) [2], [3]. An additional regulator can be
used for the voltage limit to induce flux-weakening at high
speeds in [4]–[7]. As rotor position is integral to CVC, the
maximum torque per volt (MTPV) operations become very
sensitive as small errors in rotor position can result in torque
reversals. Direct torque control (DTC) is a classical technique
known for its fast dynamic performance and robustness [8].
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The DTC inherently facilitates flux-weakening operations due
to the direct control of stator flux linkage [9]–[11].

The direct flux vector control (DFVC) is a field-oriented
control in stator flux reference coordinates that combines the
merits of CVC and DTC with constant switching frequency
and straightforward current limitation [12]–[15]. The choice of
controlled variables, stator flux magnitude λ and the quadra-
ture torque producing current iτ , facilitate extending operation
to flux-weakening and MTPV limits. The optimal stator flux
magnitude of a synchronous machine is determined by the
maximum torque per ampere (MTPA) law and the voltage
limit while the maximum achievable torque is determined by
the current and the MTPV limit. The DFVC principle applies
to PM- and Reluctance-Synchronous machine drives in general
manner [14].

A model-based DFVC is reported in [16] with deadbeat-type
solution. Conventionally, the stator flux oriented controllers
are of proportional-integral (PI) type. However, the torque
producing current loop is nonlinear due to which the dynamics
become a function of the operating point. A nonlinear trans-
formation matrix is proposed in [17] to decouple and achieve
constant bandwidth of the control loops. Moreover, the torque
producing current loop of DFVC approaches singularity along
the MTPV trajectory where iτ becomes uncontrollable. Hence,
an inherent limitation of DFVC is the inability to operate
on the MTPV limit. Therefore, a sufficient margin away
from MTPV trajectory is necessary for stable operation which
restricts exploiting the maximum speed-torque characteristics.

This paper proposes a new DFVC scheme where the second
controlled variable, besides the stator flux linkage magnitude,
is the load angle. The small-signal model of the machine
under control is used to obtain decoupled linearized torque
control. Moreover, the use of the load angle in place of
the torque producing current circumvents the instability and
permits operation at the MTPV limit.

The optimal flux magnitude and load angle references are
usually retrieved from pre-processed MTPA and MTPV LUTs
computed by manipulation of the flux-map LUTs of the
machine under test. Alternatively, MTPA can be tracked online
using signal injection [18], [19]. In this paper, the optimal flux
magnitude and load angle references are calculated using the
small-signal approximation of the motor model, without pre-
processed LUTs.

Torque accuracy and the respect of control trajectories
(MTPA, MTPV, voltage and current limits) of the proposed
control scheme rely on the accurate knowledge of the motor



2

flux-map LUTs, contributing to the flux observer. These are
normally obtained through experimental identification with
a dedicated test-bench as reported in [20]; several self-
commissioning techniques have been proposed [21]–[24].
However, in the presence of an erroneous flux-map LUTs, the
optimal operation and efficiency can be compromised. Hence,
the proposed optimal reference is supplemented with an online
adaptation scheme for accurate stator flux estimation.

In Section II, the MTPA and MTPV criteria are analytically
formulated in terms of the auxiliary-flux and auxiliary-current
vector, respectively. Section III presents the proposed DFVC
with small-signal based optimal reference generation. The
main contributions of this work, in Sections III and IV, are
enumerated as follows:

1) The controlled variables are the stator flux magnitude λ
and the load angle δ in a linearized decoupled torque
control that mitigates the instability and is capable of
operation on the MTPV trajectory.

2) Online computation of the optimal control set-point,
respecting MTPA, MTPV, current and voltage limits,
i.e., besides the flux-map LUTs, no additional LUTs are
necessary.

3) Furthermore, a stator flux adaptation is developed to
suppress errors in inaccurate flux-map LUTs. Hence,
unlike the off-line computed MTPA table, the proposed
optimal tracking is more resilient to errors in flux-map
LUTs.

Section V presents the experimental validation on a 1.1 kW
synchronous reluctance (SyR) motor and Section VI concludes
the paper. Although the validation is limited to the SyR
machine case, the proposed concepts are also valid in general
for PM-Synchronous motor drives.

II. SYNCHRONOUS MACHINE MODEL

The electrical rotor position is θ and the electrical angular
speed is ω = s θ where s is the differential operator d

dt .
Estimated vectors are represented by the superscript .̂ The
orthogonal rotational matrix is J = [ 0 −1

1 0 ] and I is the identity
matrix.

Real space vectors will be used; for example, the stator
current is idq = [id, iq]

T where id and iq are the vector
components in rotor reference frame. Space vectors in the
stationary reference frame are denoted by subscript αβ. Note
that the convention of a SyR machine is followed, i.e, d-axis
is defined along the maximum inductance path. The symbols
and notations in the dq rotor and the fτ stator flux oriented
reference frames are shown in Fig. 1.

A. Mathematical Model in dq Reference Frame

The voltage equation of a synchronous machine in rotor
reference frame is expressed as

sλdq = vdq −Rsidq − ω Jλdq (1)

where Rs is the stator resistance and λdq is the stator flux
linkage. The incremental inductance is defined as

L∂ =
∂λdq
∂idq

=

[
ld ldq
ldq lq

]
(2)

Fig. 1. Illustration of symbols and notations in the dq rotor and fτ stator
flux oriented reference frames.

Fig. 2. (a) Contour of derivative of torque w.r.t current angle (4) where the red
line is the MTPA trajectory of SyR motor under test; (b) Contour of derivative
of torque w.r.t load angle (7) where the red line is the MTPV trajectory.

where ld, lq represents the incremental inductance along direct
d and quadrature q axis, respectively, while ldq is the cross-
saturation term. All quantities are functions of idq .

The electromagnetic torque is given by

T =
3p

2
iTdq Jλdq (3)

where p is the number of pole pairs.

B. Analytical Expression of the MTPA Law

Let γ denote the current angle. The change of torque w.r.t
current angle for a given current amplitude i = |idq| is
computed as [25]

dT
dγ

∣∣∣
i

=
3p

2

(
didq
dγ

T

Jλdq + iTdq J
dλdq
dγ

)
=

3p

2

(
λadq
)T J idq (4)

where the auxiliary-flux vector λadq is defined as

λadq = Jλdq −L∂ J idq. (5)

The contours of (4) in the dq current plane for the SyR motor
under test are shown in Fig. 2(a); the MTPA trajectory is
coincident with the zero locus. The MTPA law is defined as

dT
dγ

∣∣∣
i

= 0 ⇒
(
λadq
)T J idq = 0. (6)
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Fig. 3. Overview of the proposed flux vector control system. The model-based optimal reference generation blocks highlight the MTPA flux adaptation with
voltage-limited flux reference (yellow area), current-limited torque reference and MTPV-limited load angle reference (blue area). Note that no MTPA, MTPV,
flux-weakening or torque saturation LUTs are employed. The equation numbers of the small-signal expressions are shown in red.

The expression (6) dictates that the MTPA criterion is re-
spected if and only if the stator current is in phase with the
auxiliary-flux vector, i.e., γMTPA = ∠λadq .

C. Analytical Expression of the MTPV Law

Let δ denote the load angle. Then, the change of torque w.r.t
load angle for a given flux amplitude λ = |λdq| is computed
as

dT
dδ

∣∣∣
λ

=
3p

2

(
didq
dδ

T

Jλdq + iTdq J
dλdq

dδ

)
=

3p

2
λT
dq J iadq (7)

where the auxiliary-current vector iadq is defined as

iadq = J idq −L−1
∂ Jλdq. (8)

The contours of (7) in dq flux plane for the SyR motor under
test is shown in Fig. 2(b); the MTPV trajectory is coincident
with the zero locus. The MTPV law is defined as

dT
dδ

∣∣∣
λ

= 0 ⇒ λT
dq J iadq = 0. (9)

The expression (9) dictates that MTPV law is respected if and
only if the auxiliary-current is in phase with the stator flux
vector, i.e., δMTPV = ∠iadq .

III. PROPOSED DFVC CONTROL SYSTEM

The proposed DFVC control system uses the stator flux
magnitude λ and the load angle δ as the controlled variables
for the ease of flux-weakening implementation and stability
under MTPV operation. The analytical expressions of MTPA
and MTPV laws derived in the preceding section are used in
computing the model-based optimal reference.

An overview of the control system is shown in Fig. 3. The
stator flux magnitude for the MTPA condition is determined
from the current angle and the phase of the auxiliary-flux
vector using a small-signal model and is limited by the voltage
and the operating speed as highlighted in the yellow area

in Fig. 3. The optimal load angle is regulated to minimize
the torque control error using a small-signal model where
the torque reference is limited by the maximum permissible
current. In addition, the perturbation in torque brought about
by the variations in the stator flux magnitude is compensated
with a small signal model as shown in the blue area in Fig. 3.
The following subsections delve deeper into the design of the
small-signal model.

A. Machine Dynamics in the Stator Flux Reference

The stator flux oriented reference frame is denoted by the
subscript fτ where the stator flux linkage is aligned along the
f -axis, i.e.,

λfτ =

[
λ
0

]
= e−δJ λdq. (10)

The voltage equation of a synchronous machine in stator
flux oriented reference frame is expressed as[

sλ
λ sδ

]
= vfτ −Rs ifτ − ωJλfτ . (11)

The electromagnetic torque is a function of the stator flux
magnitude and the load angle. Analogous to the DTC in
principle, the torque is controlled in the proposed scheme
by regulating the load angle. The optimal reference state
variables, λ∗ and δ∗, are computed from the small-signal
model-based scheme as discussed in the following sections.

B. Optimal Load Angle: Reference Torque Tracking

For a given stator flux magnitude, the load angle is regulated
to track the reference torque. The maximum achievable torque
is determined by the current and the MTPV limits.

The small-signal torque perturbation is expressed as the
functions of the load angle and the stator flux magnitude as

dT =
∂T

∂δ

∣∣∣
λ

dδ +
∂T

∂λ

∣∣∣
δ

dλ (12)

where the derivative of torque w.r.t load angle is derived in
the MTPV formulation as (7). Manipulating, the load angle
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Fig. 4. (a) Contour of derivative of stator flux magnitude w.r.t current angle in A for the MTPA flux adaptation; (b) Contour of derivative of torque w.r.t stator
current magnitude in Vs for the adaptive torque limit computation respecting current limitation; (c) Contour of derivative of torque w.r.t stator flux magnitude
in Vs for the reference load angle computation.

reference is computed from the discrepancy between reference
and estimated torque as

δ∗ = δ̂ +
dδ
dT

∣∣∣
λ
·
(
T ∗ − T̂ − ∂T

∂λ

∣∣∣
δ

dλ
)

(13)

where the change in flux magnitude is computed from the
reference voltage as dλ = Ts (v∗f − Rs if ) (Ts is the control
period), illustrated in Fig. 3. The derivative of torque w.r.t load
angle (7) reduces to zero along the MTPV trajectory as shown
in Fig. 2(b). As the expression (13) uses the inverse of (7), care
must to taken for operation in the vicinity of the MTPV limit;
in practice, a minimum value (≈1) is imposed on (7).

The excursion of stator flux magnitude for MTPA adaptation
introduces perturbations in torque; it is compensated in (13)
where the derivative of torque w.r.t stator flux is given by

∂T

∂λ

∣∣∣
δ

=
3p

2

1

λ

(
L−1
∂ λdq + idq

)T Jλdq. (14)

Having the dimension A, the contour of the gain (14) is shown
in Fig. 4(a); it is worth pointing out that this gain maximizes
along the MTPV trajectory in the dq flux plane.

C. Optimal Load Angle: Current Limitation

The permissible maximum stator current imax limits the
torque reference that is analytically expressed as an adaptive
torque limit as

T imax = T̂ +
∂T

∂i

∣∣∣
γ
·
(
imax − i

)
(15)

where T̂ is the estimated torque from the observed stator flux
and measured current. The derivative of torque w.r.t stator
current magnitude at a given current angle is expressed as

∂T

∂i

∣∣∣
γ

=
3p

2

(
iTdq
i

Jλdq + iTdq JL∂
idq
i

)
=

3p

2

iTdq
i

J
(
λdq +L∂ idq

)
. (16)

Fig. 4(b) shows the contour of the gain (16) for the motor
under test; it is worth pointing out that the gain (16) is a
representative of the torque factor (Nm/A) with dimension Vs,

being maximum along the MTPA trajectory. The magnitude of
torque reference T ∗ is limited to T imax.

D. Optimal Load Angle: MTPV Limitation

The reference load angle δ∗ is limited by the phase of
auxiliary-current vector to respect the MTPV limitation as

δmax = |∠î
a

dq| (17)

where the estimated auxiliary-current vector î
a

dq is computed
from the observed stator flux.

E. Optimal Stator Flux Magnitude: MTPA Criterion

The optimal stator flux magnitude is designed to comply
with the MTPA law for operations under the rated speed and
with the voltage limit (flux-weakening) for operations over the
rated speed.

Following (6), the MTPA condition is found by imposing
the phase of the auxiliary-flux vector as the current angle. The
estimated auxiliary-flux λ̂

a

dq is computed from the observed
stator flux described in Section IV-A. Thus, the stator flux
magnitude for the MTPA condition λMTPA is calculated as

λMTPA = λ̂+
∂λ

∂γ

∣∣∣
i
·
(
∠λ̂

a

dq − γ
)

(18)

where the derivative of stator flux w.r.t current angle at a given
current magnitude is a gain, expressed as

∂λ

∂γ

∣∣∣
i

=
1

λ
λ̂

T
dq L∂ J idq. (19)

Fig. 4(c) is the contour plot of the gain (19) with dimension
Vs for the SyR motor under test. It is observed to vary little
along the MTPA trajectory and could be replaced with a
constant to decrease computational load.

F. Optimal Stator Flux Magnitude: Voltage Limitation

The stator flux magnitude is limited by the voltage as a
function of operating speed. The maximum flux magnitude is
given by

λmax = kv
Vdc√
3ω

(20)
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Fig. 5. Hybrid flux observer in stationary reference frame and the projection
vector approach based parameter adaptation.

where kv is a small voltage margin (≈10%). Finally, the
optimal stator flux magnitude reference λ∗ is the λMTPA limited
by λmax.

Thus, the optimal references are computed entirely relying
on the small-signal model around the operating point without
additional LUTs. Note that the small-signal terms (19), (16)
and (14) are gains; hence, any reasonable approximation does
not affect the steady-state performance.

G. Stator Flux Oriented Controller

It follows from (11) that the voltage reference can be
computed with a proportional-integral (PI) regulator and feed-
forward terms as

v∗fτ = Rs ifτ + Jω λ̂fτ +

[
Kp +

Ki

s

] [
λ∗ − λ̂
λ̂(δ∗ − δ̂)

]
(21)

where λ̂fτ is the observed stator flux in Section IV-A, the
proportional Kp and integral Ki gains are diagonal matrices
with terms kpf , kpτ and kif , kiτ , respectively. The f -axis
gains are tuned for critical damping at s = −Ωf as

kpf = 2 Ωf kif = Ω2
f . (22)

The τ -axis gains are tuned in a similar fashion for critical
damping at s = −Ωτ . The torque loop is recommended to be
faster than the flux loop to curtain overshoot in torque during
transients. Moreover, the PI regulator in the f -axis is limited
to one third of the rated voltage.

Provided that the torque reference is translated into corre-
sponding λ and δ references, and that the feed-forward terms
are accurate, the controller (21) is linear and decoupled.

IV. ADAPTIVE FLUX OBSERVER

The flux-map LUTs can be prone to errors that introduce
inaccuracies in flux estimation and adversely affects the small-
signal computations for the optimal operating point. Hence,
the hybrid flux observer (HFO) in use is supplemented with
parameter adaptation. The comprehensive hybrid flux observer
with adaptation for parameter error is shown in Fig. 5.

Fig. 6. Experimentally obtained flux-map of the SyR motor under test
illustrating the saturation and the cross-saturation phenomenons.

A. Hybrid Flux Observer

Let Λdq denote the flux-map LUTs of the machine under
test such that λidq = Λdq(idq) where λidq denotes the current-
model flux estimate. Fig. 6 shows the flux-map of SyR ma-
chine under test that is experimentally identified with constant
speed test reported in [20]. The state equation of the flux
observer in stationary reference frame is defined as

sλ̂αβ = vαβ −Rsiαβ + eJθG
(
λidq − λ̂dq

)
(23)

where λ̂αβ is the observed flux and G is a 2× 2 gain matrix.
The observed torque is computed using the observed stator
flux as

T̂ =
3p

2
iTαβ J λ̂αβ . (24)

In this work, a diagonal matrix G = g I is used. For
electrical speeds above g rad/s, the voltage-model (back-emf
integration) prevails. The observer is called hybrid to signify
the combination of voltage and current-models. Typically, it
is common to set the gain g between 0.1-0.2 p.u. of the rated
speed.

B. Adaptation under Parameter Errors

Let Λ̂dq denote the flux-map LUTs accounting for param-
eter error. Then, the error in the current-model flux estimate
λ̃
i

dq is given by

λ̃
i

dq = Λdq(idq)− Λ̂dq(idq). (25)

The flux observer state equation (23) is transformed to the
dq reference for analysis purposes as

sλ̂dq = vdq −Rsidq − ω J λ̂dq +G
(
λ̂
i

dq − λ̂dq
)
. (26)

It follows from (1) and (26) that the discrepancy between the
observed flux and the current-model flux can be expressed as

λ̂dq − λ̂
i

dq = (sI +G+ ωJ)
−1

(sI + ωJ) λ̃
i

dq. (27)

At steady-state conditions (s = 0), the former expression
simplifies to

λ̂dq − λ̂
i

dq

∣∣
s=0

= (G+ ωJ)
−1
ωJ λ̃

i

dq. (28)
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Fig. 7. Experimental Setup of 1.1 kW SyR motor under test on a dSPACE
DS1103 control platform at a sampling frequency of 10 kHz.

This leads to the error function of nature

εdq = ΦT
dq (λ̂dq − λ̂

i

dq) (29)

where the 2× 2 matrix ΦT
dq is given by

Φdq
T =
−J
ω

(G+ Jω). (30)

It is noted that the current-model flux error signal εdq is equal
to the parameter error in steady-state condition, i.e., εdq

∣∣
s=0

=

λ̃dq . An integral regulator is therefore set up to rectify the flux-
map LUTs error, according to the flux estimate error function
(29)-(30) as

λ̂
i

dq = Λ̂dq(idq) +
kλ
s
εdq (31)

where kλ is integral gain.
Note that the proposed adaption mitigates error in the flux

estimation but error in incremental inductance remains. If
needed, this can be mitigated with high frequency signal injec-
tion techniques although not viable at high speeds operation.
Dealing with the proposed control scheme, flux adaptation (31)
guarantees that the steady-state value of controlled torque is
accurately tracked, though the effect of parameter detuning
during torque transients is unavoidable.

V. EXPERIMENTAL RESULTS

The proposed DFVC with adaptation is validated exper-
imentally on a 1.1 kW SyR motor on a dSPACE DS1103
control platform running at a sampling frequency of 10 kHz.
A picture of the setup is shown in Fig. 7. The parameters of
the SyR motor under test are tabulated in Table I.

The flux observer gain is g = 2π · 10 rad/s. The speed PI
and the stator flux controllers are tuned for critical damping
at s = −2π · 1.5 rad/s, Ωτ = 2π · 150 rad/s and Ωf = 2π · 30
rad/s. The flux adaptation gain is kλ = 2π · 5 rad/s.

The incremental inductance matrix L∂ is retrieved from the
flux-map LUTs in real-time; as an example:

l̂d(idq) =
Λ̂d(id + δid, iq)− Λ̂d(id, iq)

δid
(32)

where δid is a small value (≈ 10 mA). The other incremental
inductances are computed in a similar fashion.

A. Speed Step Response
A step speed in reference is commanded at standstill to

1.75 p.u., ω∗
r = 0 → 2625 rpm, at t = 0 s as shown in

Fig. 8. A 50% overload in current is permitted in this test, i.e.,
imax = 1.5 ·

√
2 In A. The different stages of the result are

analyzed in time segments:

TABLE I
MOTOR PARAMETERS

Parameters Symbol Values Units

Rated power Pn 1.1 kW
Rated voltage Vn 340 V
Rated speed ωn 1500 rpm
Rated current In 2.9 A
Rated torque Tn 7.1 Nm
Pole pairs p 2 -
Stator resistance Rs 6.2 Ω
Shaft inertia J 0.04 kgm2

1) MTPA Operation - 0 < t ≤ 0.4 s: In response to the
step in speed reference, the control operates at the maximum
torque T̂ = T imax in (15), limited by the current imax. The
quantity T imax for t < 0 s is discerned to be ≈ 6 Nm but this
is irrelevant as it is computed using the small-signal model
at no-load. The MTPA operation is evidenced by the current
angle coincident with the phase of auxiliary-flux vector, i.e.,
γ = ∠λadq , recalling the MTPA definition (6). This is further
validated with the MTPA LUTs-based stator current magnitude
which is observed to be coherent with the measured |idq| in
this time-span.

2) Maximum Current Locus - 0.4 < t ≤ 0.85 s: The time
t = 0.4 s marks the onset of the flux-weakening region due
to voltage limit at the speed ωr = 1100 rpm (0.73 p.u). The
flux-weakening is enforced prior to the rated speed due to the
permitted 50% overload in the current. As the speed increases,
the control traverses along the maximum current locus where
the stator current magnitude i is constant, with progressively
decreasing torque output.

3) MTPV Limit - t > 0.85 s: The intersection of the
maximum current locus with the MTPV trajectory occurs at
t = 0.85 s. For speeds beyond, the maximum torque is dictated
by the MTPV limit; the MTPV operation is evidenced by the
observed load angle coincident with the phase of auxiliary-
current vector, i.e., δ̂ = ∠iadq , recalling the MTPV definition
(2). Furthermore, the achievable torque at the speed 1.75 p.u
is observed to be about 35% of rated torque (≈ 2.5 Nm). It
illustrates the poor capability of SyR machines to operate in
the deep flux-weakening regions.

The three small-signal gains in Fig. 8, referring to Fig. 4,
are computed for each operating point in real-time from the
observed stator flux (23) and the incremental inductance (32).

B. Comparison against State-of-Art DFVC Scheme

The state-of-art DFVC with λ and iτ as the state variables is
the decoupled control with nonlinear transformation, proposed
in [17]. As alluded to before, the main drawback of the state-
of-art DFVC is the inability at operate at the MTPV limit.
Thus, for stability reasons, a torque margin of 10% from
the MTPV limit is imposed. This scheme is subjected to a
similar speed step response as the former test under the same
conditions, shown in Fig. 9.

The two schemes are observed to be nearly identical in
the MTPA and the maximum current locus operation until
t = 0.65 s. The imposed torque margin in Fig. 9 limits the
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Fig. 8. Speed control of the proposed small-signal scheme with a step
reference ωr = 0→ 2625 rpm (1.75 p.u.) commanded at t = 0 s to illustrate
the efficacy of the proposed optimal reference scheme. A 50% overload in
current is allowed.

operation on the maximum current locus and forces the control
into a premature MTPV operation at t = 0.65 s while the
proposed control tracks the maximum current locus for a
much longer time until t = 0.85 s in Fig. 8. The discernible
difference between the phase of auxiliary-current and the load

Fig. 9. Speed control of the state-of-art DFVC scheme [17] with a step
reference ωr = 0 → 2625 rpm (1.75 p.u.) commanded at t = 0 s. MTPV
torque margin of 10% is imposed for stability. A 50% overload in current is
allowed.

angle for t > 0.65 s, as opposed to the result in Fig. 8, suggests
that the control is operating beneath the maximum achievable
torque. This torque saturation below the MTPV limit increases
the settling time by about 10% w.r.t to the proposal small-
signal scheme in Fig. 8. This illustrates the advantage of the
proposed scheme in mitigating the instability of the state-or-
art DFVC at the MTPV limit. It is worth mentioning that the
two schemes have comparable computational effort in terms
of the turnaround time (≈40 µ s).

C. Torque Transient Response

Under the torque control mode with the speed regulated by
the auxiliary drive, a step reference T ∗ = 10 Nm (1.5 p.u.)
is commanded at t = 0 s at half the rated speed in Fig. 10(a).
At the onset, the stator flux and the load angle references
that are computed based on the small-signal quantities of the
present operating point are initially inaccurate but converge
as the operating point moves closer to the final steady-state
value.

No torque overshoot is discerned; a small overshoot in load
angle is observed which is due to the higher bandwidth of
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Fig. 10. (a) Torque control with a step reference T ∗ = 10 Nm (1.5 p.u.)
commanded at t = 0 s at half 750 rpm (0.5 p.u) to illustrate the transient
dynamics; (b) Torque control with a incremental reference T ∗ = 1 → 10
Nm (1.5 p.u.) in steps of 1 Nm at 750 rpm (0.5 p.u.) to illustrate steady-state
stability.

torque loop relative to the flux loop. The settling time of torque
is about 1 ms while stator flux to MTPA condition is about 5
ms.

To ascertain steady-state stability at all torque levels, an in-
cremental reference of T ∗ = 1→ 10 Nm (1.5 p.u.) in steps of
1 Nm is imposed at 750 rpm (0.5 p.u.) in Fig. 10(b). The noise
is attributed to the strong MMF harmonics exhibited by the
motor under test; the dead-time of the inverter is compensated
appropriately. The torque tracking and flux adaption for MTPA
condition are validated.

D. Dynamic MTPA Tracking

The dynamic MTPA tracking capability of the drive is
validated at 750 rpm in Fig. 11 with a sinusoidal perturbation
in reference torque at 25 Hz. The stator flux is adapted
ceaselessly to traverse along the MTPA trajectory where the
current angle is observed to be coincident with the phase of
auxiliary-flux vector, γ = ∠λadq . The small high-frequency
oscillations correspond to the 18th harmonic of the machine
under test.

Fig. 11. Sinusoidal perturbations at 25 Hz imposed on the reference torque
at 750 rpm to illustrate the dynamic MTPA tracking capability.

E. Parameter Error Adaptation

The hybrid flux observer is susceptible to parameter errors
in the flux-map LUTs, especially in the low speed regions.
Hence, the validation of current-model flux adaptation is
demonstrated at 0.33 p.u. (500 rpm) and at rated torque
reference in Fig. 12. In the figures, the quantities T and
∠λadq are the torque and the phase of auxiliary-flux vector,
respectively, computed with accurate parameters.

Any error in observed flux propagates to the observed torque
T̂ (24) and ultimately, results in a discrepancy between the
reference and the actual torque. In Fig. 12, the torque estimate
using the accurate flux-map is considered a good representative
of the actual torque T . A 25% error in d-axis flux-map LUTs,
λ̂id = 0.75λd, is considered in Fig. 12(a). While the reference
torque is T ∗ = 7.1 Nm, the actual torque is T ≈ 8 Nm which
is approximately -14% error. The flux adaptation is enabled
at t = 0 s upon which the observed and current-model flux
estimates converge and accurate torque control is realized.

The flux adaptation decreases the discrepancy between the
current angle and the phase of the real auxiliary-flux vector
λadq; however, they are not coincident because the estimated
auxiliary-flux vector λ̂

a

dq is susceptible to the error in the in-
cremental inductance following (32). Thus, the flux adaptation
moves the control closer to the optimal MTPA operating point
though a small inaccuracy remains.
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Fig. 12. Torque control under parameter error at 500 rpm (0.33 rpm) and
T ∗ = 7.1 Nm (1 p.u.): (a) +25% error in d-axis flux-map LUTs, λ̂id =

0.75λd; (b) -25% error in d-axis flux-map LUTs, λ̂id = 1.25λd. The current-
model flux adaptation is enabled at t = 0 s.

Similar test at -25% error in d-axis flux-map LUTs, λ̂id =
1.25λd, is shown in Fig. 12(b) where the error between the
reference and actual torque prior to flux adaptation is approx-
imately +18%. Once the flux adaptation is enabled, the errors
in stator flux and torque are mitigated. A small inaccuracy in
MTPA tracking remains as seen from the discrepancy between
the phase of the real auxiliary-flux (computed using accurate
flux-maps) and the current angle; this is due to the error in
the incremental inductance (32).

The impact of the gain kλ on the flux adaptation is evaluated
at +25% error in d-axis for values kλ = 2π · 15 rad/s and
kλ = 2π · 35 rad/s in Figs. 13(a) and 13(b), respectively. It
can be discerned that while 15 Hz shows good dynamics, the
adaptation at 35 Hz shows under-damped oscillations. Hence,
a very high kλ is not recommended.

VI. CONCLUSION

The paper proposed a DFVC control with the stator flux
and the load angle as the controlled variables, contrary to the
conventional stator flux and the quadrature torque producing
current iτ . This choice of controlled variables circumvents

Fig. 13. Impact of the gain kλ on the flux adaptation at +25% error in d-axis
flux-map LUTs, λ̂id = 0.75λd, 500 rpm (0.33 rpm) and T ∗ = 7.1 Nm (1
p.u.): (a) kλ = 2π · 15 rad/s; (b) kλ = 2π · 35 rad/s. The current-model flux
adaptation is enabled at t = 0 s.

the singularity problem of the iτ current loop and permits
operation on the MTPV trajectory to exploit the maximum
torque-speed characteristics of the machine. Besides, the new
scheme obtains linear and decoupled torque control.

The optimal stator flux and load angle references are
computed from the small-signal model around the present
operating point. This novelty is the primary contribution of
the paper. Besides the flux-map LUTs, no additional tables
are necessary. The MTPA and MTPV criteria are analytically
expressed in terms of auxiliary-flux and auxiliary-current
vector, respectively, to facilitate online adaptation.

Furthermore, a current-model flux adaptation is supple-
mented to mitigate parameter errors in flux-map LUTs. Unlike
the control relying on pre-processed MTPA and MTPV LUTs,
an improved optimal operation is feasible under flux adap-
tation; thus, the proposed scheme becomes more resilient to
parameter error. In addition, mitigating error in flux estimation
assists in accurate torque control.

The proposed DFVC scheme with the small-signal based
optimal reference scheme and flux adaptation is experimen-
tally validated on a 1.1 kW SyR motor test-bench.
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and R. Bojoi, “Sensorless Self-Commissioning of Synchronous Reluc-
tance Motors at Standstill Without Rotor Locking,” IEEE Transactions
on Industry Applications, vol. 53, no. 3, pp. 2120–2129, 2017.

[23] P. Pescetto and G. Pellegrino, “Automatic Tuning for Sensorless Com-
missioning of Synchronous Reluctance Machines Augmented with High-
Frequency Voltage Injection,” IEEE Transactions on Industry Applica-
tions, vol. 54, no. 5, pp. 4485–4493, 2018.

[24] A. Varatharajan, P. Pescetto, and G. Pellegrino, “Sensorless Self-
Commissioning of Synchronous Reluctance Machine with Rotor Self-
Locking Mechanism,” in 2019 IEEE Energy Conversion Congress and
Exposition (ECCE), 2019, pp. 812–817.

[25] H. Kim, Y. Lee, S. K. Sul, J. Yu, and J. Oh, “Online MTPA Control
of IPMSM for Automotive Applications Based on Robust Numerical
Optimization Technique,” in 2018 IEEE Transportation Electrification
Conference and Expo (ITEC), 2018, pp. 442–447.


