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Robust Consensus of Second-Order Heterogeneous Multi-Agent Systems
via Dynamic Interaction

Elisa Capello1 and Yasumasa Fujisaki2

Abstract— A consensus problem is proposed for second-order
multi-agent systems with heterogeneous mass distribution. The
motivation of this work is mainly related to spacecraft atti-
tude coordinated control, in which gyroless configuration is
considered, to avoid drift errors and design of estimation filters.
The considered spacecraft includes flexible modes and coupling
between the rigid and flexible dynamics. Dynamic interaction
between the agents is considered. Moreover, the achievement
of the consensus and robust stabilization are shown for co-
ordinated heterogeneous multi-agent systems, for undirected
and connected graph topology. Finally, the effectiveness of the
proposed controller is shown for a precise pointing mission of
the Crab Nebula.

Index Terms— multi-agent system, robust consensus, dynamic
displacement interaction, cooperative control, flexible modes.

I. INTRODUCTION

In recent years, different researchers explored works based
on multi-agent systems as emerging systems for distributed
coordination and for achievement of consensus [1]. Het-
erogeneous (second-order) multi-agent systems problem has
attracted attention in different applications [2], [3], since
heterogeneity implies that different agents might have dif-
ferent dynamics. Unknown mass distribution and cooperation
control are usually also included. The motivation behind this
work is mainly related to space applications, in which with
the increase in the demand for space vehicles and for future
space missions, particular attention is paid for coordination
of spacecraft in rendezvous or pointing operations [4], [5]
and for systems with movables appendages [6], [7].

A survey on distributed attitude coordination control was
proposed by [8], in which different works on consensus for
multi-body rigid systems are presented, mainly addressed
to coordination. As clearly explained, multi-agent systems
have higher accuracy, higher energy efficiency and even
lower costs. Moreover, the satellites are often characterized
by complicated shapes, with large appendages such as de-
ployable solar panels or antennas. For this reason, in the
last decades, several studies have been carried out on the
flexibility of the satellite structure, and a reasonable way to
model it is to consider a rigid hub and flexible appendages.

The main objective of this paper is to establish a consensus
theory for second-order heterogeneous multi-agent system,
where velocity of each agent is not assumed to be mea-
surable and an attitude ”coordinated control” of multi-agent
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systems with flexible modes is analyzed. Moreover, thanks
to advances in networking and distributed computing, co-
ordinated multi-vehicle systems is proposed as applications
of proximity operations of spacecraft. Rigid body attitude
dynamics of space systems was widely studied, as first-
order single integrator kinematics, including leader-follower
consensus [9], [10]. However, as said before, the purpose of
this paper is to present a consensus theory for multi-agent
systems with dynamic displacement interaction and second-
order differential equations with flexible modes.

The key features of this paper are the following: (i)
instead of static weights, we employ dynamic weights in
agent interaction, (ii) velocity of each agent is not mea-
surable, (iii) a robust consensus is achieved, showing a
stability condition for an heterogeneous dynamical system,
represented by second-order differential equations, and (iv)
flexible modes are included in the dynamics. For spacecraft
attitude applications, even if spacecraft are usually equipped
with gyroscopes, due to drift errors and possible failures [11],
[12], gyroless attitude estimation and control [13], [14], [15]
are proposed in the last years for small satellites. Since space
maneuvers should handle high pointing accuracy, several
missions include ”formation flight” [9], [16] or ”coordinated
control” [10], [6], [7]. Our idea is to measure the Line-of-
Sight or the attitude angles with inertial sensors (i.e Star
Trackers) [17], [18], for an attitude ”coordinated control”
of multi-agent flexible spacecraft. The main result in this
paper is the achievement of the consensus for heterogeneous
second-order multi-agent systems, if the graph of the overall
system is undirected and connected, even if a flexible model
is considered. Since heterogeneous properties have no effects
on consensus convergence for first-order integrator [2], a
sufficient condition for the consensus of second-order multi-
agent systems is also given with some local information
exchange.

As briefly introduced before, in some existing results [19],
[20], [2], velocity as well as displacement of each agent
are assumed to be available, though it is indeed a strong
assumption for a certain practical case. For this reason, some
researchers studied the problem of second-order multi-agent
systems in which only position measurements are available,
as in [21], [22]. Moreover, most of the researchers are focus-
ing on directed graph topology, even if the robust consensus
cannot be easily demonstrated, without assumptions related
to graph topology itself and on system parameters. The
mainly difference with these works are: (a) heterogeneity
is included in our research, as well as uncertainties, (b)
undirected graphs are considered, i.e. information on the



system parameters are not requires, and (c) a sufficient
condition for demonstrate the robust consensus tracking is
shown.

The work proposed in this paper represents the extension
of [23] and [24]. In [23] dynamic displacement feedback is
achieved by robust stabilization. In [24] dynamic weights and
homogeneous multi-agent systems are included. In this paper
we extend the proof of robust stabilization for heterogeneous
multi-agent systems with flexible modes. The effectiveness
of the proposed solution is shown for a space proximity
operation maneuver [25], in which some agents aim to
perform a pointing mission, i.e. assigned desired rotational
displacement, by interacting with the neighbors agents.

The paper is organized as follows. The main result
related to the reached consensus and robust stabilization
with dynamic weights and flexible modes is in Section II.
A numerical example is included in Section III. Finally,
conclusions are drawn in Section IV.

II. MAIN RESULT

The main result of this paper is described in this section,
where we investigate a robust consensus for heterogeneous
multi-agent systems with flexible appendages. A mathe-
matical model of spacecrafts having flexible appendages is
given in [26], [27], [28], and we employ this model. A
motivation behind this work is the coordinated control of
multi-agent spacecraft with heterogeneous mass distribution,
where movable systems are included.

Let us consider N heterogeneous agents each of which
consists of a rigid main body and some flexible appendages.
That is, we can write each agent as

Jiθ̈i(t) = ui(t)− δTi η̈i(t),
η̈i(t) + Ciη̇i(t) +Kiηi(t) = −δiθ̈i(t) (1)

in general, while we write it as

Jiθ̈i(t) = ui(t) (2)

if it does not have any flexible appendage. Here the index i ∈
{1, 2, . . . , N} is used for identifying each agent, ui(t) ∈ R`
denotes the consensus control input of agent i, and θi(t) ∈
R` denotes the linear/angular displacement vector of agent i.
Thus θ̇i(t) ∈ R` and θ̈i(t) ∈ R` represent the linear/angular
velocity and acceleration of agents i, respectively, and Ji is
the rigid body mass/inertia matrix of agent i. We assume
that all of θi(t) (i = 1, 2, . . . , N ) are in the same coordinate
system since we consider an attitude consensus in this paper.
On the otter hand, we allow the modal coordinate vectors
ηi(t) ∈ Rmi (i = 1, 2, . . . , N ) to be different, where
mi denotes the number of flexible modes of agent i. The
matrices Ci and Ki denote damping and stiffness, while
δi represents coupling between rigid dynamics and flexible
dynamics.

It should be noted that the coefficient matrices Ji, Ci, Ki,
and δi in (1) and (2) generally satisfy

Ji = JTi > 0, Ci = CTi > 0, Ki = KT
i > 0 (3)

and [
Ji δTi
δi Imi

]
> 0 (4)

if the matrices of the agent are derived under physical
and mechanical constraints, where Iq ∈ Rq×q denotes the
identity matrix of dimension q. We assume these conditions
(3) and (4) for all i ∈ {1, 2, . . . , N} throughout this paper.

To these agents (1) and (2), we apply the following type
of interaction with dynamic weights

żi(t) = −γzi(t)− γ
N∑
j=1

(γpij − qij)R(θi(t)− θj(t)),

ui(t) = −zi(t)− γ
N∑
j=1

pijR(θi(t)− θj(t)), (5)

where zi(t) ∈ R` is the state of the dynamic weight. The
gain R ∈ R`×` is chosen so that it satisfies

R = RT > 0, (6)

and the interaction parameters pij ≥ 0 and qij ≥ 0
(i = 1, 2, . . . , N , j = 1, 2, . . . , N ) are selected so that the
corresponding graphs are undirected, i.e.,

pij = pji, qij = qji

for all i and j. The parameter γ > 0 will be determined later.
Notice here that the interaction (5) can be represented as

ui(s) = −
N∑
j=1

wij(s)R(θi(s)− θj(s))

in the frequency domain, where the transfer function wij(s)
is

wij(s) = γpij −
γ(γpij − qij)

s+ γ
=

pijs+ qij
(1/γ)s+ 1

.

That is, if γ tends to infinity, wij(s) tends to pijs + qij ,
which implies that (5) tends to

ui(t) = −
N∑
j=1

{pijR(θ̇i(t)− θ̇j(t)) + qijR(θi(t)− θj(t))}.

In this sense, this dynamic interaction can be regarded as a
PD type control law for achieving the consensus.

To derive a compact form of the overall multi-agent system
composed of (1), (2), and (5), we first prepare the vectors

θ(t) =
[
θT1 (t) θT2 (t) · · · θTN (t)

]T ∈ RN`,

η(t) =
[
ηT1 (t) ηT2 (t) · · · ηTN (t)

]T ∈ RM ,

u(t) =
[
uT1 (t) uT2 (t) · · · uTN (t)

]T ∈ RN`,

z(t) =
[
zT1 (t) zT2 (t) · · · zTN (t)

]T ∈ RN`,

M =

N∑
i=1

mi.

Then we see that the agents (1) can be represented as

Jθ̈(t) = u(t)−∆T η̈(t),



η̈(t) + Cη̇(t) +Kη(t) = −∆θ̈(t), (7)

where

J = block diag{J1, J2, . . . , JN},
C = block diag{C1, C2, . . . , CN},
K = block diag{K1,K2, . . . ,KN},
∆ = block diag{δ1, δ2, . . . , δN}.

Notice here that these matrices satisfy

J = JT > 0, C = CT > 0, K = KT > 0 (8)

and [
J ∆T

∆ IM

]
> 0, (9)

which follows (3) and (4). Notice also that, even if some of
the agents are fully rigid and described as (2), we can still
write the agents as the compact form (7) with (8) and (9),
where we redefine η(t), C, and K appropriately with setting
mi = 0 for fully rigid agent i. That is, we can include both
of (1) and (2) in (7) without going into details when we start
from (7) with (8) and (9). On the other hand, the dynamic
interaction (5) can be written as

ż(t) = −γz(t)− γ ((γLv − Ld)⊗R) θ(t),

u(t) = −z(t)− (γLv ⊗R)θ(t), (10)

where ⊗ denotes the Kronecker product and the matrices Lv
and Ld are defined as

Lv = [`vij ]N×N , Ld = [`dij ]N×N ,

`vij =

{∑N
j=1 pij (i = j)

−pij (i 6= j)
, `dij =

{∑N
j=1 qij (i = j)

−qij (i 6= j)
.

It is well known [29] that, if the graphs corresponding to Lv
and Ld are undirected and connected, Lv and Ld satisfy

Lv = LTv ≥ 0, Lv1N = 0, rankLv = N − 1, (11)

Ld = LTd ≥ 0, Ld1N = 0, rankLd = N − 1, (12)

where 1N ∈ RN is the vector whose elements are all one.
Throughout the paper, we assume the above conditions as
well.

Using (7) and (10), we can represent the overall multi-
agent system as

Jθ̈(t) + ∆T η̈(t) + (γLv ⊗R)θ(t) + z(t) = 0,

∆θ̈(t) + η̈(t) + Cη̇(t) +Kη(t) = 0,

1

γ
ż(t) + ((γLv − Ld)⊗R) θ(t) + z(t) = 0. (13)

To investigate consensus condition of this system, let us
define a matrix S ∈ RN×(N−1) which satisfies[

1TN/
√
N

ST

] [
1N/
√
N S

]
=
[

1N/
√
N S

] [ 1TN/
√
N

ST

]
= IN .

It should be noted that such an orthonormal complement S
to 1N/

√
N always exists. With this S, we have the main

result of this paper.

Theorem 1: Suppose that the agents (7) satisfy the condi-
tions (8) and (9). Suppose also that the dynamic interaction
(10) is designed so that R, Lv , and Ld satisfy (6), (11), and
(12). Then the overall multi-agent system (13) composed of
(7) and (10) achieves an attitude consensus

lim
t→∞

(
θ̇(t)− (1N ⊗ a)

)
= 0,

lim
t→∞

(θ(t)− (1N ⊗ (at+ b))) = 0,

lim
t→∞

η̇(t) = 0, lim
t→∞

η(t) = 0, lim
t→∞

z(t) = 0 (14)

for some a ∈ R` and b ∈ R` if γ is selected so that it satisfies

ST (γLv − Ld)S > 0. (15)

An important implication of this theorem is that the
dynamic interaction (10) in fact achieves robust consensus
for the heterogeneous agents (7). That is, we do not need J ,
C, K, and ∆ of (7) in order to choose R, Lv , Ld, and γ of
(10), which means that we can design the consensus control
law (10) independently of the agent dynamics (7). This is a
significant feature of the dynamic interaction (10).

In this regard, although passivity plays a crucial role in
standard multi-agent consensus [30], it cannot help us for
the multi-agent consensus of (7) since the velocity θ̇i(t) is
not measurable and thus the agent dynamics from ui(t) to
θi(t) cannot be passive. Instead of passivity, we employ a
stability theory for second-order differential equations [23].

We also remark that there always exists γ satisfying (15).
In fact, since (11) holds, it turns out that STLvS > 0, which
ensures the existence of γ for (15).

In the rest of this section, we establish the proof of
this theorem. To this end, we first introduce a variable
transformation

z(t) =

((
γLv − Ld +

1N1TN
N

)
⊗R

)
ẑ(t), (16)

where we see that γLv − Ld + 1N1TN/N > 0 from (15)
and thus this is a nonsingular transformation. Then we have
another representation of the overall system

Jθ̈(t) + ∆T η̈(t) + (γLv ⊗R)θ(t)

+

((
γLv − Ld +

1N1TN
N

)
⊗R

)
ẑ(t) = 0,

∆θ̈(t) + η̈(t) + Cη̇(t) +Kη(t) = 0,

1

γ

((
γLv − Ld +

1N1TN
N

)
⊗R

)
˙̂z(t)

+ ((γLv − Ld)⊗R) θ(t)

+

((
γLv − Ld +

1N1TN
N

)
⊗R

)
ẑ(t) = 0.



We further employ variable transformations for θ(t) and ẑ(t)[
θ̄(t)

θ̃(t)

]
=

[ (
1TN/
√
N
)
⊗ I`

ST ⊗ I`

]
θ(t), (17)

θ(t) =
[ (

1N/
√
N
)
⊗ I` S ⊗ I`

] [ θ̄(t)

θ̃(t)

]
, (18)[

z̄(t)
z̃(t)

]
=

[ (
1TN/
√
N
)
⊗ I`

ST ⊗ I`

]
ẑ(t), (19)

ẑ(t) =
[ (

1N/
√
N
)
⊗ I` S ⊗ I`

] [ z̄(t)
z̃(t)

]
. (20)

Then we can describe the overall system as

J̄ ¨̄θ(t) +HT ¨̃
θ(t) + ∆̄T η̈(t) +Rz̄(t) = 0, (21)

H ¨̄θ(t) + J̃
¨̃
θ(t) + ∆̃T η̈(t) + L̃v θ̃(t) + L̃vdz̃(t) = 0, (22)

∆̄¨̄θ(t) + ∆̃
¨̃
θ(t) + η̈(t) + Cη̇(t) +Kη(t) = 0, (23)

1

γ
R ˙̄z(t) +Rz̄(t) = 0, (24)

1

γ
L̃vd ˙̃z(t) + L̃vdθ̃(t) + L̃vdz̃(t) = 0, (25)

where we use the following definitions:[
J̄ HT

H J̃

]
=

[ (
1TN/
√
N
)
⊗ I`

ST ⊗ I`

]
J
[ (

1N/
√
N
)
⊗ I` S ⊗ I`

]
,

[
∆̄ ∆̃

]
= ∆

[ (
1N/
√
N
)
⊗ I` S ⊗ I`

]
,

L̃v =
(
γSTLvS

)
⊗R, L̃vd =

(
ST (γLv − Ld)S

)
⊗R.

Notice that the overall multi-agent system (21)-(25) has a
cascade structure. To see this fact, we first rewrite (21) as

¨̄θ(t) = −J̄−1HT ¨̃
θ(t)− J̄−1∆̄T η̈(t)− J̄−1Rz̄(t), (26)

where we regard the signals ¨̃
θ(t), η̈(t), and z̄(t) as the input

to this double integrator system (26). Next, substituting (26)
into (22) and (23), we regard (22), (23), and (25) as a system

(J̃ −HJ̄−1HT )
¨̃
θ(t) + (∆̃T −HJ̄−1∆̄T )η̈(t)

+ L̃v θ̃(t) + L̃vdz̃(t) = HJ̄−1Rz̄(t),

(∆̃− ∆̄J̄−1HT )
¨̃
θ(t) + (IM − ∆̄J̄−1∆̄T )η̈(t)

+ Cη̇(t) +Kη(t) = ∆̄J̄−1Rz̄(t),

1

γ
L̃vd ˙̃z(t) + L̃vdθ̃(t) + L̃vdz̃(t) = 0 (27)

with the input z̄(t). Finally, we rewrite (24) as

˙̄z(t) = −γz̄(t). (28)

We therefore see a cascade structure in the overall system.
In fact, the system (26) is governed by the systems (27) and
(28), and the system (27) is governed by the system (28).

Since γ is selected as a positive number in order to satisfy
(15), apparently the system (28) is stable. That is,

lim
t→∞

z̄(t) = 0,

which implies

lim
t→∞

˙̃
θ(t) = 0, lim

t→∞
θ̃(t) = 0, lim

t→∞
η̇(t) = 0,

lim
t→∞

η(t) = 0, lim
t→∞

z̃(t) = 0

if the system (27) is internally stable. In this case, the
behavior of the system (26) asymptotically follows

¨̄θ(t) = 0,

which immediately implies

lim
t→∞

( ˙̄θ(t)− a) = 0, lim
t→∞

(θ̄(t)− (at+ b)) = 0

for some a and b. If these convergences are established,
the transformations (16), (18), and (20) say that the attitude
consensus (14) is actually achieved.

Thus the rest is to investigate internal stability of the
system (27). The following lemma is useful for this purpose.

Lemma 1: [23] A dynamical system given by

M1ẍ1(t) +D1ẋ1(t) +K11x1(t) +K12x2(t) = 0,

D2ẋ2(t) +K21x1(t) +K22x2(t) = 0

is stable if its coefficients satisfy

M1 = MT
1 > 0, D1 +DT

1 ≥ 0, D2 +DT
2 > 0,[

K11 K12

K21 K22

]
=

[
K11 K12

K21 K22

]T
> 0,[

D1 +DT
1 K12

]
is of full row rank.

Let us define the matrices in this lemma as

M1 =

[
J̃ ∆̃T

∆̃ IM

]
−
[
H
∆̄

]
J̄−1

[
HT ∆̄T

]
,

D1 =

[
0 0
0 C

]
, D2 =

1

γ
L̃vd,

K11 =

[
L̃v 0
0 K

]
, K12 =

[
L̃vd
0

]
,

K21 =
[
L̃vd 0

]
, K22 = L̃vd.

Then we see that the system (27) has in fact the form of
the system described in the lemma. We also see that the
matrices defined above satisfy the stability condition of the
lemma when they are chosen so that (6), (8), (9), (11), (12),
and (15) hold true. This establishes Theorem 1.

III. NUMERICAL EXAMPLE

The proposed controller can be applied to a proximity
space maneuver, in which a consensus between N = 5
spacecraft should be reached. A numerical example for
the attitude control of spacecraft is proposed, in which a
rigid hub and flexible appendages represent the dynamics of
each agent. The agent can be represented as in Figure 1.
The considered reference frame is a body reference frame
and Euler angles [25] Θ = [θx, θy, θz]

T (3-2-1 order of
rotation) are considered for the attitude visualization. All
the agents start with an initial attitude angle Θ0,i, which
is different for each agents and it is randomly defined. Ji



TABLE I
FLEXIBLE MODE CHARACTERISTICS

Mode Natural frequency ωn[rad/s] Damping ζ [-]
Mode 1 0.7681 0.05607
Mode 2 1.1038 0.008620
Mode 3 1.8733 0.01283
Mode 4 2.5496 0.02516

is randomly changed over the agents. Moreover, δm ∈ Rm,
Cm = diag(2ζmωn,m) and Km = diag(ω2

n,m), with ωn,m
natural frequency and ζm damping of m flexible modes. The
δ matrix is the one defined in [26], with m = 4, instead
the flexible mode properties are in Table I. The generalized
coordinates represent the modal coordinates. For each agent
i, Ci = diag(Cm,i) and Ki = diag(Km,i). The moments of
inertia of each agent are randomly defined from the nominal
value of [26], in which Jx,0 = 350 kgm2, Jy,0 = 280 kgm2,
Jz,0 = 190 kgm2, Jxz,0 = 4 kgm2, Jxy,0 = 3 kgm2,
Jyz,0 = 10 kgm2. So, Jk,i = Jk,0 + Jk,0rand(1), with
k = [x, y, z, xy, xz, yz]. Ji − δTi δi > 0 is positive-definite,
for all the agents, even if a deviation of the moment of inertia
is included (as previously explained).

The consensus to be reached is zero angular velocities
ωf = [0, 0, 0]T and the desired Euler angles are θf =
[0.7684, 0, 0.224]T rad, i.e. the scientific observation of the
Crab Nebula. This final point defines the equilibrium constant
value to be reached by all the agents.

The flexible spacecraft is composed of a rigid body and
some flexible appendages. Its attitude can be described by
two sets of equations: the kinematic equations and the
dynamics equations. The overall dynamics (1) combines
rigid and flexible dynamics, in which δm ∈ Rm, Cm =
diag(2ζmωn,m) and Km = diag(ω2

n,m), with ωn,m natural
frequency and ζm damping of m flexible modes. The δ
matrix is the one defined in [26], with m = 4, instead
the flexible mode properties are in Table I. The generalized
coordinates represent the modal coordinates. For each agent
i, Ci = diag(Cm,i) and Ki = diag(Km,i). Moreover,
Ji − δTi δi > 0 is positive-definite, for all the agents, even
if a deviation of the moment of inertia is included (as
previously explained). As in [27], 4 flexible modes are
included, modeled as in Eq. (1). The coupling between the
rigid and flexible models are included. The consensus is
reached, even if the control input is defined as in Eq. (5), in
which the flexible dynamics is not considered, for both the

Fig. 1. A single agent dynamics, including flexible appendages: (a)
representation of a flexible spacecraft, (b) representation of the bending
mode and rigid hub
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Fig. 2. Rotational displacement along X , Y and Z axes with flexible
modes (nominal weights)
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Fig. 3. Rotational angular velocity along X , Y and Z axes with flexible
modes (nominal case)

rotational displacement and velocity, as in Figures 2-3. The
assigned control input is the same for both cases.

At the time step t0 = 0 seconds, the error in the rotational
displacement is about errθ = [40, 10, 3]T deg, for all the
agents. Due to the high error, a high control inputs is
required. If the initial conditions are selected in order to
reduce the error at the beginning of simulations, even with
γ = 100, a reduced control input is requested. The settling
time is not affected by the choice of the initial conditions.

Moreover, different weights pi,j and qi,j are tested, to
evaluate the performance of the distributed and coordinated
control. The list of selected weights are in Table II. The
nominal one is pi,j = 10 and qi,j = 1, for all the agents. If
γ and pi,j are increasing, the settling time to consensus is
reduced, even if the required control input is increased. As
an example, for the same agent, the rotational displacement
along X axis for all the cases is shown (Figure 4). The
consensus is reached, even if the settling time is higher when
flexible modes are included with nominal weights.

IV. CONCLUDING REMARKS

In this paper, a second-order multi-agent consensus via a
dynamic displacement interaction and flexible modes is stud-
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Fig. 4. Rotational displacement along X axis for all cases

TABLE II
DYNAMICS WEIGHT TRADE-OFF

CASE γ pi,j pi,j
nominal 100 10 1

1 100 10 0.5
2 100 20 0.5
3 1000 10 0.5

ied, assuming that velocity of each agent is not measurable.
We have established a sufficient condition for the consensus,
where the condition is represented by using graph Lapla-
cians. We have seen that such a dynamic interaction achieves
the consensus always exists if the graph of the overall system
is undirected and connected, where the dynamics of the
weights of the interaction should be selected adequately. The
proposed methodology is applied to an attitude control for
space pointing maneuvers.
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