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Abstract

In the past decade, the field of telecommunications went through a radical change in

the way users interact with the network and the way networks evolved in the func-

tion of user needs. Data Centers have become the backbone of modern digital society

and industry. This led to their rapid spread with the goal of providing fast and readily-

available services to customers around the globe. Consequently, wide-area networks

have grown exponentially more complex to accommodate the surge in bandwidth de-

mand and new paradigms such as Software Defined Networking emerged to combat the

increase in complexity. Nevertheless, even nowadays, most of the wide-area networks

still rely on legacy network management algorithms and protocols which significantly

limit the pace at which current network infrastructures are able to adapt to modern

traffic scenarios. Similarly to what happens in the wide-area networks, data center net-

works still employ classic flow management mechanisms which, although being able

to guarantee a good level of performance, do not fully exploit the potential of modern

network architectures.

In this Thesis a major focus is devoted towards analyzing the impact of the radical

change introduced by modern network infrastructures on the traffic flow performance.

As a first contribution, we show that programmable data planes, although being able

to overcome some of the shortcomings of traditional Software Define Networking, still

fall short for many applications relevant to the operations of wide-area networks. This

in turns contributes to the deterioration of traffic flow performance, for a wide range

of applications. We address this issue by proposing a novel paradigm of designing pro-

grammable data planes-ready network applications that exploit replicated states inside

the network, ultimately permitting to improve traffic flow performance.
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A second contribution relates to the performance optimization of data center net-

works. Traditional flow scheduling mechanisms employed in data center networks are

unable to keep up with the ever-increasing demand for highly responsive applications

deployed in modern data centers. At the same time, solutions proposed in the literature

rely on complex control mechanisms. Those solutions are capable of significantly im-

proving flow scheduling policies, thus traffic flow performance. Yet, even by relaxing

some of the requirements of those solutions, they still remain too complex and require

complex modifications to the hardware of underlying devices composing the network.

This ultimately results in prohibitively expensive solutions, thus inapplicable in realistic

scenarios. We propose a flow scheduling mechanism based on aggregate flow statistics

that is capable of achieving traffic flow performance close to state-of-the-art solutions

while keeping the complexity low, thus making it accessible for the already available

network infrastructures.

While our contributions in the field of programmable data planes and data cen-

ter flow scheduling are capable of considerably improving traffic flow performance we

show that blindly optimizing aggregate traffic flow performance does not lead to op-

timal results in terms of user experience. Indeed, observing aggregate flow informa-

tion does not give any insight on the nature of the service carried in single flows, thus

precluding any possibility of understanding the impact of the network parameters on

those flows. Our final contribution addresses this issue by proposing an efficient way

of assessing the impact of the latency on interactive applications which dominate the

modern Internet. We consider cloud gaming as a reference application and highlight

the heterogeneity in network requirements for apparently similar flows. This is done

by developing an automatic Quality of Experience assessment procedure which exploits

modern advances in the field of artificial intelligence and deep reinforcement learning.

Finally, we show that the proposed methodology can be employed to define and enforce

fine-grained flow optimization policies capable of taking into account service-level net-

work requirements.
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Chapter 1

Introduction

In the past decade, the field of telecommunications went through a radical change in

the way users interact with the network and the way networks evolved based on users’

needs. Data Centers (DCs) became the backbone of the modern digital economy which

led to their rapid spread throughout the globe. Consequently, wide-area networks grew

exponentially more complex to accommodate the surge in bandwidth demand. Never-

theless, even nowadays, most of the wide-area networks still rely on legacy network

management algorithms and protocols which significantly limit the pace at which cur-

rent network infrastructures are able to adapt to modern traffic scenarios. Similarly

to what happens in wide-area networks, data center networks still employ classic flow

management mechanisms which, although being able to guarantee a good level of per-

formance, do not fully exploit the potential of modern Data Center Network (DCN)

architectures.

In this chapter, we will address the aforementioned issues related to the manage-

ment of wide-area and data center networks. First we will analyze how Software De-

fined Networking (SDN) was introduced to solve the issue of the ever-growing man-

agement complexity of modern network infrastructures. Later, instead, we will discuss

the architecture of modern data centers and the challenges which arise in optimizing

the performance of intra-data center flow transmission. Finally, we will present the

structure of the Thesis, outlining the addressed challenges and the contribution to the

state-of-the-art.
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Introduction

1.1 Software Defined Networking

Users have an ever-increasing demand in fast and reliable service which forces network

operators to implementmore complex and intricate services inside their infrastructures.

At the same, legacy network management mechanisms are quickly becoming unsus-

tainable due to their lack of flexibility and difficulty of adapting to new, more dynamic

scenarios. Such was the case of Facebook’s video autoplay feature, which in 2014 in

the US led to a surge in the total mobile data traffic by 60% overnight [1] which had a

dramatic impact on the network infrastructure in different parts of the world. On the

other hand, instances of network misconfiguration had led numerous times to major

portions of local Internet traffic being rerouted through an ISP located on the opposite

part of the world, possibly exposing sensitive data and causing service disruption for

millions of customers.

Episodes like these spread light on the necessity of implementing novel network

management mechanisms with simplicity and fast adaptability to new scenarios at their

core. Such was the motivation behind the introduction of SDN which caused a radical

change in the way modern networks are managed.

SDN sparked considerable interest both in the industry and in the research commu-

nity which was enough to promptly highlight not only the potential benefits, but also

the inevitable drawbacks of employing such an approach. Among the main drawbacks

with SDN was the issue related to the reactivity and increased control plane latency.

SDN introduced a separation of, traditionally tightly coupled, control and data planes,

as depicted in Figure 1.1. While in classic networks the control plane lived alongside

to the data plane on each switch, in SDN the control plane is moved to an external

central entity, namely the controller. This translates in SDN switches being devoid of

any decision-making capability, leaving bare metal without any network-related logic

within. The role of the controller is to provide decision-making capabilities to each

switch by interacting with them over a dedicated control interface, i.e., the southbound

interface. This interaction is performed each time a, previously unseen, network event

occurs. To deal with different events and to provide custom network configuration the

SDN controller interacts with a set of network applications. These applications repre-

sent an entry point for the network administrator to the network infrastructure. Indeed,
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Figure 1.1: High-level overview of an SDN architecture.

they allow the programmer to easily describe high-level network behavioral policies,

such as routing schemes or energy management policies, which are then translated into

device-specific instructions by the controller through the southbound APIs.

SDN has greatly reduced the complexity of modern network infrastructures by

bringing flexibility and ease of management. Nevertheless, such improvements came

at a cost of increased control plane latency and communication overhead [2] between

switches and the controller, which consequently heavily impacted the reactiveness of

the whole system to critical networking events.

As SDN led to a more simplified and unified network management scheme, the

reactivity of SDN to critical network events became constrained to the communication

latency between switches and the controller, and the latency incurred by the processing

and reaction routines at the controller. The concept of programmable data plane [3]

was created to fill the newly opened gap in network performance. Programmable data

planes performed a step backward from fully centralized control planes by offering the

possibility of executing custom code directly inside the packet processing pipeline of

the switch. This lightened the switches’ dependency on the controller by providing a

limited amount of decision-making capabilities directly inside switches.

While its main objective was that of removing the communication delay with the

controller for latency-sensitive in-switch decisions, the introduction of programmable
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data planes opened a wide range of possibilities for the development of novel network

applications. Stateful switches offered the opportunity of embedding some of the services

which previously required dedicated devices, directly inside the switches, thus flattening

the overall network architecture. At the same time, they enabled the possibility of defin-

ing completely new network applications that previously were unattainable without

expensive custom hardware devices. While those applications permitted to dramati-

cally increase the network performance, it also led to a new set of challenges related to

the scalability of such an approach.

1.2 Data center networks

DCs took the world by storm with the explosion of data-based services, cloud solutions

for businesses and entertainment systems for the general public.

From the point of view of the network interconnection, DCNs present very ordered

tree-like structures, as shown in Figure 1.2. Most of the DCNs exploit multi-level hier-

archical design with servers being at the bottom of the hierarchy. Such design is what

permits DCs to easily scale to the enormous amount of servers (millions of them in

the case of large data centers). At the same time, such design permits to achieve large

bisection bandwidth which enables the possibility of obtaining high data rates among

any pair of servers.

The main peculiarity of DCNs is that, differently from conventional Internet net-

works, the DC operators are in full control of every element of the network. This means

that fine-grained optimization can be easily done at any layer of the architecture, i.e.,

both at the software and hardware of servers and switches composing the network.

Such kind of unprecedented fine-grained control opens a wide range of opportunities

for designing and implementing network algorithms, aiming at improving the perfor-

mance of specific DC architectures. The average amount of time required to transmit

a flow from one part of a DC to another one is among the most critical types of per-

formance indicators of a DCN. The latter, usually referred to as flow completion time, is

usually used as the main performance metric since it is very representative of what an

average user desires, i.e., a fast response after a request for given data has been made.

Furthermore, flow completion time summarizes information about many aspects of the
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Figure 1.2: High-level overview of an SDN architecture.

DC such as the efficiency of the load balancing, congestion control, and scheduling

algorithms employed in the system. Among these algorithms, flow scheduling has a

major impact on the overall DCN performance.

Modern applications distinguish themselves by an ever-increasing requirement for

higher interactiveness among participants. This trend is manifested by a broad spread

of realtime services such as video conferences and online gaming which became the

dominant type of applications in DCs. Nevertheless, less interactive applications such

as video streaming and bulk data transfer, although not being the dominant application

type, remain the main contributors to the overall network usage. From the network

point of view, the coexistence of those two types of applications pose numerous chal-

lenges.

Whenever a short, highly delay-sensitive flow contends the same link with a long,

delay-insensitive flow, the performance of the short flow suffers considerably in terms

of flow completion time. Indeed, the short flow is forced to share its bandwidth for

its entire lifetime with another flow leading to a potentially double flow completion

time. At the same time, the long flow is not penalized significantly since the time of

coexistence with the short flow represents a small percentage of its overall lifetime.

The role of the flow scheduler is to decide the order in which flows must be served

inside the network. In such a trivial example it is evident that an ideal flow scheduler

would prioritize the short flow over the long one. Nevertheless, the optimal way of

performing flow scheduling in realistic scenarios and constrained to the real capabilities

5
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Chapter 3-4: 
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Figure 1.3: Roadmap of the Thesis

of DC switches is still an open research problem.

1.3 Structure of the Thesis

In this Thesis we focus on new research questions opened by the introduction of pro-

grammable data planes (Chapter 2), the wide spread of data center networks (Chap-

ter 3-4) and the raise of data-driven algorithms (Chapter 5). Figure 1.3 shows an overview

of the main topics covered in this Thesis which combined provide an end-to-end traffic

flow performance optimization scheme on both the network and the application layers.

This is achieved by analyzing how programmable data planes can improve the perfor-

mance of flows in the wide-area networks, moving to flow scheduling in data center

networks and finally descending into fine-grained optimization of traffic flow perfor-

mance based on the user-perceived Quality of Experience (QoE).

While programmable data planes have beenwidely used to embed, previously controller-

specific applications, directly inside the data plane, traditional approaches of embedding

6
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network applications still rely on having a single instance of a given network applica-

tion for the entirety of the network. This inevitably leads to issues related to scalability

and resilience to faults. As an example, following such an approach, a network appli-

cation designated to monitor all of the incoming traffic in the network will require all

of the traffic to traverse a single switch. This will inevitably lead to traffic flow perfor-

mance degradation, major congestion, and in the worst case, total service disruption.

Although being a simple example, it spreads lights on how traditional embedding ap-

proaches are not suitable for the majority of network applications operating on global

network statistics.

To solve this issue, as a first contribution, we devise a state replication algorithm

which is capable of replicating network application-related persistent states among dif-

ferent switches without relying on the controller. This enables replicated instances of

the same network application in different parts of the network, ultimately leading to

increased scalability and better traffic flow performance.

While designing a suitable scheme for replicating states, we provide the program-

mer an abstraction model enabling him to easily develop network applications operat-

ing on replicated states. We provide an end-to-end solution, namely LOADER, start-

ing from the programming abstraction, going through the compilation phase and finally

choosing the optimal amount of replicas per each state and their optimal embedding in

the network.

Through extensive analysis, we show that LOADER is capable of improving the

traffic flow performance thanks to the presence of distributed network applications or-

chestrated by a centralized manager. While LOADER can greatly boost the traffic flow

performance in wide-area networks, centralized approaches such as SDN have been

widely used also in the context of DCNs for what concerns network management, con-

figuration and monitoring. At the same time, most of the data flows nowadays origi-

nate from a Data Center (DC) as pictured in Figure 1.3. Thus, optimizing the traffic flow

performance inside DCNs becomes of paramount importance. Yet, while in wide-area

networks to improve the traffic flow performance the main objective is that of mini-

mizing the network congestion, in DCNs minimizing congestion alone is not sufficient.

Load balancing, optimized transport protocols, and, most importantly, the use of a re-

fined flow scheduling algorithm play a fundamental role in the DC environment. This
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leads to the inapplicability of the general congestion minimization approach proposed

by LOADER in such a peculiar context. While there exist a plethora of distributed ver-

sions of the former schemes, the usage of centralized approaches for fine-grained op-

erations such as flow scheduling in DCNs has not been extensively explored. As flow

scheduling has the most influence on traffic flow performance in DCNs, taking inspi-

ration from LOADER we analyze whether centralized approaches for flow scheduling

are a viable solution for improving the network performance in DCNs. Specifically,

we compare two different approaches which, although both exploiting a central con-

troller to schedule flows, significantly differ in complexity. Specifically, we compare

synchronous and asynchronous centralized flow scheduling algorithms. We show that

both of them can be implemented in a realistic scenario and finally we highlight the

performance and practicality of each of them through an extensive set of simulations.

The main outcome of our investigation of centralized flow scheduling algorithms is

that they are mostly unpractical and sometimes even unfeasible in realistic scenarios.

Due to the scale of modern DCs and very tight latency requirements distributed ap-

proaches are currently the only feasible solution for flow scheduling. While there exist

multiple variations of different distributed flow scheduling algorithms, most of them

either lead to unsatisfactory performance or require expensive hardware which is not

readily available on currently employed commercial switches. For this reason, we de-

vise a simple, yet efficient flow scheduling mechanism, namely NOS2, for DCNs which

offers a high degree of practicality. We design NOS2 by keeping in mind the restraints

of realistic DCN architectures and by considering the presence of off-the-shelf compo-

nents, thus not requiring any expensive modification to the already present infrastruc-

ture. The proposed mechanism exploits in-network flow prioritization algorithm with

a central controller responsible of configuring the parameters of the prioritization algo-

rithm. NOS2 is capable of achieving close to state-of-art traffic flow performance while

keeping the complexity as low as possible as shown by our extensive set of simulations.

As previously mentioned, most of the flows nowadays originate from DCs and ter-

minate at end-users. In the previous Chapterswe aimed at the optimization of flow-level

performance by either trying to minimize the congestion in the network or by trying to

reduce the average flow completion time. Although being a suitable approach for most
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of the applications on the Internet, such an approach is not able to take into account

fine-grained requirements in terms of bandwidth and latency of user-centric applica-

tions. Such is the case of different interactive applications ranging from voice/video

calls or remote control to online gaming. The main issue in guaranteeing a particular

level of network performance for such applications is that typically the required level

of performance is unknown. For this reason, such applications are usually grouped into

a macro-category of latency-sensitive applications. This inevitably leads to all of them

being offered the same level of performance, without considering the actual level of sat-

isfaction of the user. Knowing the response of the user to different network conditions

for a particular service is notoriously difficult to achieve as it requires a complex and

expensive QoE assessment phase.

The final contribution of this Thesis addresses the issue with the difficulty of per-

forming QoE assessment by proposing a framework for a fast and efficient QoE assess-

ment in the context of cloud gaming using Deep Reinforcement Learning (DRL). We

choose the scenario of cloud gaming as it offers a vast set of different games with dif-

ferent sensitiveness to latency, thus providing a way of emulating different interactive

services. Following our analysis, we exploit the proposed framework to devise a data-

driven QoE-aware flow scheduler which, contrarily to what has been done before, is

capable of optimizing the performance of each interactive service based on the user-

perceived QoE.
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Chapter 2

LOADER: Local Decisions on
Replicated States in Programmable
data planes

Part of the work presented in this chapter has been published in:

• Sviridov G, Bonola M, Tulumello A, Giaccone P, Bianco A, Bianchi G. ”LODGE:

LOcal decisions on global statEs in programmable data planes.” In 4th IEEE Con-

ference on Network Softwarization and Workshops (NetSoft). 2018.

• Muqaddas AS, Sviridov G, Giaccone P, Bianco A. ”Optimal state replication in

stateful data planes.” In IEEE Journal on Selected Areas in Communications. 2020.

• Sviridov G, Bonola M, Tulumello A, Giaccone P, Bianco A, Bianchi G. ”LOcAl DE-

cisions on Replicated States (LOADER) in programmable data planes: program-

ming abstraction and experimental evaluation.” In Computer Networks. 2020.

Future wide-area networks are called to efficiently and flexibly support an ever-

growing variety of heterogeneous network applications such as network address trans-

lation, tunneling, load balancing, traffic engineering, monitoring, intrusion detection,

and so on. Software-based programmability of such type of applications has been

first pioneered by early Software Defined Networking (SDN) proposals, and then by

the more recent trend of Network Function Virtualization (NFV). However, both these
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approaches have shown shortcomings. Indeed, original SDN approaches (and, more

specifically, the OpenFlow-based ones), were relying on stateless switching architec-

tures, and thus suffered from the need to centralize any state update and maintenance

to a centralized controller, thus paying a significant toll in terms of latency and com-

munication overhead. On the other side, NFV has addressed the design of middlebox

functionalities in software, typically using commodity CPUs. However, early NFV im-

plementations appeared to be performance-limited: it is a fact that there exists a sub-

stantial gap (a 50× factor [4]) between the speed attainable in software opposed to

dedicated HW devices, and such gap is not going to decrease in the future, with HW

switches capable to attain many Terabit per seconds, opposed to the tens of Gigabit per

second attainable by their SW counterparts.

In order to overcome such limitations, starting from 2014 with OpenState [5] and

P4 [6], a new innovation trend emerged with the introduction of programmable / state-

ful data planes. Stateful data planes offer an additional level of programmability with

respect to the traditional stateless SDN paradigm, by introducing the possibility of keep-

ing and manipulating persistent states locally at the network device. Opposed to state-

less switches, persistent states can now be directly deployed and managed inside net-

work devices in the form of simple user-defined memory elements. Furthermore, ar-

bitrary algorithms for packet/flow processing, e.g., described in terms of simple Mealy

Finite State Machines [5] or more sophisticated Extended Finite State Machines [7],

[8], can be directly loaded and run inside the processing pipeline of individual network

devices, thus providing opportunities of implementing network applications directly

within the network device at line rate.

The crucial advantage of stateful data plane technologies consists in the possibility

to significantly reduce the interaction between switches and the controller. Opposed to

a stateless data plane, in which any change of the forwarding decision requires the in-

tervention of the controller, a stateful data plane permits to take localized decisions, i.e.,

adapt the forwarding behavior to network events and handle changing states locally

inside the switch. This approach significantly reduces the reliance upon a centralized

controller, and mitigates the relevant severe penalties in terms of latency and signaling

overhead [2], hence greatly improving the reactivity of the network control applica-

tions.
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Unfortunately, the benefits of distributing network applications on stateful switches

cannot be achieved in cases where non-local states need to be considered. For exam-

ple, an application that identifies the occurrence of a particular event based on multiple

statistics gathered from different switches, operates on a global state that is the com-

bination of different local statistics of different switches. Even in the case of stateful

data planes, the control and update of the global state is still delegated to a central-

ized entity, either to a controller or a single switch [9]. The traditional approach of

employing a centralized controller for global state management greatly simplifies the

implementation, but non-local states can be accessed and updated only at the price of

extra delay, thus affecting the overall reactivity. On the other hand, solutions employing

global states centralized in a stateful switch lead to performance impairments. Indeed,

all flows affected by/ affecting a global state should traverse the switches storing it.

This ultimately leads to overall higher network utilization and traffic concentration,

thus affecting network congestion and available capacity. Furthermore, any failure to

the switch can jeopardize the state integrity due to the presence of a single replica of

the global state.

In [10] we propose a novel framework, namely LOADER (LOcAl DEcisions on Repli-

cated states), which enables a new possibility for stateful data planes: the states and the

corresponding control logic are distributed across the switches and the controller while

permitting multiple replicas of the same state/control logic to be present in the net-

work. This permits to run network applications operating on global states without a

unique central entity. Switches can take instantaneous decisions based on local replicas

of non-local states, without any controller intervention, thus re-establishing the bene-

ficial effects of stateful data planes also for non-local states. A preliminary analysis of

using multiple replicas was presented in [11], mainly focusing on some implementation

issues related to state synchronization and replication from the data plane point of view

and providing some experimental results. In the meanwhile In [10] instead, we build

upon [11] and implement:

• the programming abstractions to define generic (either local or non-local) states

and the control logic of any network application;

• the engine to optimally embed the states and the control logic into the network

devices and the controller, to optimize performance while taking into account the

12
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available resources in terms of processing and state storage capabilities;

• the mechanism to transparently replicate non-local states across multiple net-

work devices.

To this end, in this Chapter we discuss the issues and possible solutions for offload-

ing network applications to the data plane. By analyzing the outcome of our discussion

and thoroughly revising existing solutions we first provide a high-level abstraction of

the LOADER framework by defining its core modules and later delve into the details of

each module and the way LOADER abstraction is exposed to the network programmer.

After discussing consistency-related issues when dealingwith replicated states and how

to overcome them we deep-dive into details regarding our lightweight implementation

of the LOADER framework in ONOS [12] with major emphasis on the data plane imple-

mentation in P4 [6] and Open Packet Processor (OPP) [7]. By showcasing LOADER on

these two different architectures we prove the generality of the proposed programming

model, which, by design, is agnostic of the adopted data plane implementation. Finally,

we show how to program a distributed Deny-of-Service (DoS) detection application in

LOADER and experimentally assess the performance for both P4 and OPP based imple-

mentations. Furthermore, to highlight the versatility of the proposed framework, we

provide details about the implementation of other relevant network applications.

2.1 Related work

Data plane embedding of network applications is steadily gaining attention from the

industry and the research community. Numerous frameworks and abstraction models

have been proposed which try to expose to the programmer data plane resources allow-

ing them to embed custom logic and persistent states directly inside the data plane. Yet

no significant effort have been put into dealing with scalability issues which inevitably

arise when embedded network applications must operate on network-wide states.

Numerous studies considered employing replicated states in the data plane [13]–

[15], demonstrating the scalability benefits of such an approach and treating it as an

enabler for new network applications. Yet all of the above studies considered specific

applications with tailored implementation.
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On the other hand, there have been studies [16]–[20] concerning the development

of general-purpose programming abstractions for network applications, none of which

considered having replicated states in the data plane. In particular, in [16]–[18] the

authors tried to address the issues of defining a general enough programming language

for network applications. Yet they considered that states are kept at the controller in

a centralized fashion, thus not only neglecting the available data plane resources but

also leading to scalability issues due to the centralization of all policies at the same

controller. In [19] the authors addressed the former issue by providing an abstraction

model including replicated states and distributed network applications among different

controllers. Although solving the issue with scalability, applications still reside in the

control plane, mitigating the benefits of having stateful data planes.

On the contrary, works such as [9], [20] proposed novel network programming

abstractions, which permits to define complex network applications for stateful data

planes. In particular, SNAP [9] addressed the problem of performing optimal embedding

of states across the network switches, taking into account the dependency between

states and the traffic flows. Nevertheless, by design, SNAP is limited to just one replica

of each state within the network, thus still precluding awide variety of possible network

applications.

LOADER, instead, enables multiple replicas of the state, extending the single replica

approach of SNAP. Furthermore, LOADER closes the gaps of previously proposed pro-

gramming models by providing a programmer-level abstraction for the definition of

network applicationswhile transparently dealingwith replication and embedding prob-

lems.

The optimal replication problem for multiple replicas has been defined and investi-

gated in [21] and is presented later in Section 2.4. Given a network application and the

corresponding states, the problem considers all the traffic flows that are affected by/af-

fect such states and, based on a generic cost function, computes (i) the optimal number

of replicas, (ii) their placement within the network and (iii) the corresponding optimal

traffic routing. Although the optimal solution for the state replication problem is chal-

lenging to obtain in practice, in [21] we propose a simple heuristic able to significantly

reduce the problem complexity. While LOADER provides the programming framework

and the implementation for replicated states, the heuristic proposed in [21] is used as a
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building block for the LOADER embedding module.

In general, the problem of maintaining consistency across replicated states has been

deeply investigated in the past in the field of distributed systems [22] and many solu-

tions have been proposed, depending on the nature of the states, the desired properties,

and the available resources. There have been however, few works concerning replica-

tion in stateful data planes. Although we do not treat the issue of developing a sophis-

ticated replication algorithm in this work, we design LOADER in an agnostic way to

the actual consistency scheme given future research in the field.

2.2 Offloading network applications

Classic SDN management schemes present a series of limitations such as poor reac-

tiveness, big communication overhead, and compromised fault-tolerance caused by the

excessive centralization of the control plane. Stateful data planes introduce the pos-

sibility of embedding custom logic inside network devices, thus offering a new way

of mitigating the aforementioned issues by providing means of offloading control plane

functionalities to the data plane.

2.2.1 Network application in stateless SDN

In traditional SDN networks a logically centralized entity, namely the controller, is re-

sponsible for managing the whole network operations by means of user-defined net-

work applications.

Being centralized, to function correctly, network applications are required to oper-

ate on an accurate snapshot of the network. The task of constructing such a snapshot

is delegated to the controller which continuously gathers network statistics in the form

of network states, which provide a synthetic description of the network in the form of a

generic data structure holding a variable or a compound of variables. Given this infor-

mation at the controller, applications are able to detect the presence of certain events

(e.g., load unbalance, security risks, misconfiguration, etc.) by performing a set of op-

erations over the states and, whenever possible, take actions to correct the network

operations.
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2.2.2 Network applications offloading with stateful data planes

Although being suitable for coarse-grained network operations, due to the poor re-

activeness, classic SDN approaches come to their limits when it comes to supporting

network applications performing fine-grained operations. Such is the case of, e.g., per-

packet processing or fine-grained traffic engineering [23]. Stateful data planes offer the

possibility of mitigating this limitation by offloading the related logic to the data plane.

Offloading network applications implies the embedding of some or all of the appli-

cation elements into the network devices. This involves application states being embed-

ded under the form of stateful primitives natively supported by the network devices and

action logic under the form of data plane packet processing modules. Although being

feasible from the theoretical point of view, application offloading creates considerable

challenges in practice.

2.2.3 Satisfying resource constraints

When it comes to offloading, the type and the corresponding amount of available re-

sources at each network device pose hard constraints for the embedding of application

elements.

Dedicated hardware devices, such as switches and routers, lead to almost zero la-

tency during the execution of local processing, but typically have limited resources in

terms of processing capabilities and memory. On the other hand, general-purpose net-

work devices such as SDN controllers provide resource flexibility at the cost of large

processing latency. To minimize the application execution latency, during the embed-

ding phase, network applications exceeding the resources constraint at a single network

device may be split across multiple devices. If application splitting still does not satisfy

the resources constraint, the application may be fully delegated to the controller, thus,

reverting to a traditional stateless SDN scheme.

2.2.4 Inter and intra-application dependencies

In addition to the resource constraints, most of the applications involve a dependency

among different elements of a network application, i.e., states are accessed/modified

and actions are executed according to a well-defined order which is tightly bound to the
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definition of the application. The complexity is further increased when considering that

a given state of an applicationmay be accessed by different network applications such as

in the case of two network applications reading a common counter. This inter and intra-

application dependency imposes a constraint on how the traffic must be routed across

individual elements of the split application to ensure the correctness on the execution

of the application [9], [21].

2.2.5 Offloading shared states

Considering a general case of network applications embedded in different network de-

vices we can define two macro-categories of states: i) given a generic state 𝑠 stored in

a given network device 𝑛, 𝑠 is said to be local if it can be accessed (read/write) only by

𝑛 itself. In such a scenario, 𝑠 can be internally embedded in 𝑛 (provided that 𝑛 is capa-

ble of supporting it). ii) On the contrary, when 𝑠 is accessed (read/write) by multiple

network devices that share the state, 𝑠 is said to be non-local. If all states related to a net-

work application are local, the offloading does not present any considerable challenge

as states can be embedded into a single network device, assuming no violation of the

capacity constraint. However, when a state is non-local, multiple network applications

or multiple parts of the same application must be able to access the state.

In classic stateless SDN, non-local states are managed by states polling and aggre-

gation at the controller. Instead, in stateful SDN, non-local states can be supported with

one of the two approaches:

• Single replica. As proposed in SNAP [9], a non-local state can be embedded in a single

network device, thus a unique replica is made available in the entire network. Conse-

quently, to support inter/intra application dependency all traffic affected by/affecting

the state must be routed through that device. In SNAP, the choice of the network de-

vice to embed the state in is optimized according to some optimization criteria, e.g.,

minimization of the distance among dependent states, equal load balancing across

the network devices, etc.

The approach proposed by SNAP may lead to major scalability and performance im-

pairments, specifically when a state is affected by/affects a large amount of traffic.

• Multiple replicas: A single state is made available in different parts of the network by
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Figure 2.1: Example routing without replicated states (left) and with replicated states
(right), as enabled by LOADER.

providing copies (i.e., replicas) of it inside different network devices. This approach

permits to distribute the traffic across multiple network devices while also providing

robustness to failures. However, although this approach provides more embedding

flexibility, it requires the presence of a replication protocol between the replicas, to

keep all replicas consistent. In the absence of such a replication mechanism, the

values of each replicated state will start to diverge, thus leading to different distinct

states which will not be representative anymore of the global network dynamics.

An example of the two approaches is depicted in Figure 2.1. Assume a network ap-

plication composed of two states, namely 𝑠1 and 𝑠2, and two flows originating from H1

and H2 and directed towards H3. For a single replica in SW1, the green flow is forced

to make a detour from its shortest path to traverse SW1 storing 𝑠1. On the contrary,

in the presence of multiple replicas the green flow can reach its destination following

the shortest path thanks to the presence of two replicas of 𝑠1, namely 𝑠(1)
1 and 𝑠(2)

1 ,

embedded respectively inside SW1 and SW2. Although being a simple example, it high-

lights the importance of using replicated states. Detouring flows from their shortest

path adds considerable data overhead in the network which in turn leads to ineffective

use of network resources. Furthermore, in extreme cases, such as sudden traffic spikes,

this resource mismanagement may lead to scenarios of excessive overload of network

devices storing the state, thus degrading the traffic flow performance. State replica-

tion mitigates these issues by providing multiple copies of the same state which, in the

best-case scenario, are all located on the shortest path for each flow. Furthermore, flow

processing and updating network states are delegated to multiple switches, thus the

overall workload is distributed across the switches.
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2.2.6 Managing inconsistency of replicated states

The management of state inconsistencies is among the most challenging aspect of the

approach employing state replication. Whenever a given replica of a state propagates its

update to other replicas a period of inconsistency is created. During this time interval

read operations on different replicas of the same state may lead to different outcomes.

When developing the application, the programmermust be able to take into account the

presence of these errors and specify themaximum amount of error that can be tolerated.

Consequently, operating on replicated states requires an additional abstraction layer

capable of translating user-defined consistency constraints into embedding constrains.

In addition of defining a formal model for managing inconsistency errors, LOADER

provides a general abstraction model and a framework for developing network applica-

tions based on replicated states. In the following, we identify a common abstraction for

network applications permitting LOADER to be target independent and completely ag-

nostic to the underlying network hardware. The abstraction is made generic by: i) sup-

porting network applications operating only on local states, as they fall into the special-

case category of single-replica states, ii) supporting the absence of stateful switches, iii)

being target-independent from the technologies employed in the data plane.

2.3 LOADER abstraction model and framework

LOADER naturally extends functionalities of previously proposed frameworks based on

single-replica states. As shown in Figure 2.2, the proposed framework is based on three

main blocks which define the lifecycle of deploying a LOADER application: i) applica-

tion are defined by means of a predefined set of APIs which expose to the programmer

LOADER-specific functionalities; ii) once defined, the applications undergo a compi-

lation phase by means of a compiler capable of translating them into basic primitives

supported by network devices; iii) finally, the compiled network applications undergo

an embedding phase during which the embedder will try to place the basic primitives

composing the network application inside the available network devices.

In the following section we define an abstraction model for LOADER that permits

the decomposition of a network application in basic elements that can be directly em-

bedded into network devices.
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Figure 2.2: Main building blocks of LOADER framework.

At the top layer, users define network applications by employing a set of prede-

fined building blocks, namely application elements, in a completely agnostic way with

respect to the remaining components of the framework. The application elements sup-

ported by LOADER are the only part of the framework exposed to the programmer by

means of APIs and generic language libraries. While maintaining generality, the use

of these elements permit an efficient decomposition of user-defined applications dur-

ing the compilation phase and provide a comprehensive abstraction for the compiler

during their translation to device-specific primitives.

2.3.1 Building blocks of a network application

Figure 2.3 depicts an example of a generic network application employing LOADER

abstraction. Each application is composed of four main types of application elements

which have to be implemented by the programmer: states, reduction functions, trigger

functions and activity functions.

For ease of explanation, in the following, we will present the role of each application

element by considering a reference data center load balancing application. More details

about the topology and the functionality of data center load balancers will be presented

in Chapter 3. This application works as follows: (1) whenever the load on the data

center servers is medium-low, the application distributes the user’s request among the

available servers in a load balancing fashion, i.e., an arriving request is forwarded to
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Figure 2.3: DAG representation of a LOADER network application and its mapping to
primitive elements.

the least loaded server, in terms of CPU utilization; (2) otherwise, when the data center

is highly loaded, users’ requests are sent to the controller for further processing.

Each application element is defined as follows:

• States: Let Ω𝑃 = {𝑠𝑖}𝑖 be the set of states associated with a network application

𝑃, with 𝑠(𝑘)
𝑖 be the 𝑘-th replica of state 𝑠𝑖, with 𝑘 ∈ ℕ. For the reference load

balancing application, state 𝑠𝑖 represents the current CPU load of a generic server

𝑖, where 𝑖 = 1,… , 𝑛, and 𝑛 is the number of available servers.

• Reduction function: The reduction function is a generic multivariate function

that maps states in Ω𝑃 to a reduced version 𝑠𝑜
1 of the input states. It is obtained by

combining a set ℛ = {𝑟𝑗} of primitive reduction actions natively available in the

network device. In the reference application, ℛ = {𝑟1, 𝑟2} with 𝑟1 = argmin()
and 𝑟2 = mean(), which compute the index corresponding to the minimum and

the average of an array of values, respectively. Consequently, the reduced ver-

sions are just two scalars: 𝑠𝑜
1 = argmin(𝑠1,… , 𝑠𝑛) and 𝑠𝑜

2 = mean(𝑠1,… , 𝑠𝑛).

• Trigger function: Based on 𝑠𝑜
𝑖 , the trigger function evaluates the presence of a

particular event and decides whether a reaction is required or not. The reference

application operates concurrently on two trigger functions leading to different

activity functions. The first trigger function checks if the average data center
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from Controller import TopologyManager
from LOADER.PrimitiveActions import SetEgress, Rate
from LOADER.Scope import Pkt, ExtScopeHelper

THR = 0.8 # threshold CPU load percentage

# Get the average CPU load of servers in the form of a list of states. We omit
the details.

loads = ExtScopeHelper(scope=”ServerLoad”)

r1 = ReductionFunction(
states = [loads]
operation=argmin([i.Value() for i in loads]))

r2 = ReductionFunction(
states = [loads]
operation=mean([i.Value() for i in loads]))

a1 = ActivityFunction(
scope = Pkt(filter = (TCP.Flag.SYN == 1)),
action = SetEgress,
args = r1.Result())

a2 = ActivityFunction(
scope = Pkt(filter = (TCP.Flag.SYN == 1)),
action = SetEgress,
args = CONTROLLER_PORT)

tr1 = TriggerFunction(
s0=r2.Result(),
trigger=(r2.Result() <= THR),
inconsistencyLevel=UpdateError(15),
activity=a1)

tr2 = TriggerFunction(
s0=r2.Result(),
trigger=(r2.Result() > THR),
inconsistencyLevel=UpdateError(15),
activity=a2)

Listing 2.1: Resource-aware load balancing with LOADER.

load 𝑠𝑜
2 is below a given threshold (corresponding to a low load scenario). The

second trigger function instead is activated whenever 𝑠𝑜
2 is above the predefined

threshold.

• Activity function: The activity function is a sequence of actions that are exe-

cuted when the events associated with a trigger function occur. In the reference

application, two action functions are defined. If the first trigger function is satis-

fied (i.e., 𝑠𝑜
2 is smaller than the threshold), then Action 1 is executed and the user’s

request is sent to the least loaded server, otherwise, Action 2 is triggered and the

request is forwarded to the controller. Both action functions are executed at the

same switch where the request has been received.
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Table 2.1: Example applications enabled by LOADER and their mapping the the
LOADER programming model

Application States Reduction func-
tion

Trigger function Action function

DDoS detection
[11]

Average rate of
inbound SYN
packets travers-
ing each edge
router

Sum of all states Comparison
against a fixed
threshold

Controller notifi-
cation

Distributed rate-
limiting [14]

Average rate of
inbound traffic
traversing each
edge router

Sum of all states Comparison
against a random
threshold

Packet drop

Link-aware load
balancing [13]

Average load
on uplink and
downlink ports
connecting a
pair of two ToR
switches

Argmin among
the maximum
of all uplink
and downlink
pairs sharing a
common path

Change in the re-
duction function
output

Insertion of a per-
flow forwarding
rule

Resource-aware
load balancing
[24]

Instantaneous
CPU utilization
of servers

i) Argmin among
all states, ii) Mean
among all states

Comparison
of the average
global CPU uti-
lization against a
fixed threshold

Insertion of a per-
flow forwarding
rule if the average
CPU utilization is
below a thresh-
old, controller
notification
otherwise.

The actual implementation of the reference load balancing application is shown in

Listing 2.1. The listing highlights the simplicity of defining the application, by depicting

how each of the previously discussed application elements can be defined and manip-

ulated by the programmer thanks to the APIs provided by the LOADER programming

model.

Table 2.1 depicts other example applications which operate on replicated states.

Those applications have been proposed in the literature with either custom hardware

implementation inside switches or by employing ad-hoc P4 code. We show how those

applications can be easily mapped to the LOADER abstraction by employing the ap-

plication element provided by our abstraction model. A detailed description of those
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applications, alongside with the evaluation of selected applications, will be presented

in Section 2.7.

We limit the discussion of the syntax and the implementation details of the proposed

programming model while focusing on its core functionalities. One core functionality

is the explicit management of inconsistencies, which is specified as a parameter in both

trigger functions (as explained in Section 2.5), and the semantic of the language which

is discussed in the following.

2.3.2 Semantics and order of execution

By default, in LOADER all operations on states are executed in parallel. Such kind of dis-

aggregation for the order of execution significantly reduces the embedding complexity

as each element of the network application can be treated independently and will not

require order synchronization.

Nevertheless, some applications may require a specific order for the execution of

the activity functions (e.g., appending new packet headers in a given order). Such kind

of constraints may significantly increase the complexity of the overall approach by re-

quiring additional orderingmechanismswhenever the activity functions are distributed

across different switches.

LOADER provides means of specifying particular order for the execution of op-

erations by exposing to the programmer the SequentialActivityFunction class.

This class imposes hard constrains on the compiler forcing it to treat the enclosed activ-

ity functions as a single sequential activity function. This in turn forces the embedder to

perform co-located embedding of those activity functions, forcing them to be embedded

in the same network devices, ultimately permitting sequential execution.

2.3.3 Compilation phase

Although in our experimental evaluation we implemented a minimal proof-of-concept

compiler, implementing a network application compiler compatiblewith a broad variety

of different network devices requires immense effort and in-depth knowledge about

each device architecture. For this reason, for the purpose of this work we discuss what

the compiler must perform and how the proposed framework facilitates its operations.
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Network applications are compiled through the LOADER Compiler, as shown in Fig-

ure 2.2. The compiler takes as input the network capabilities in the form of available

basic primitives, and the user-defined application in the form of LOADER application

elements. The catalog of available primitives depends on the specific network devices

operating in the network and is stored in the resource management module of the net-

work controller and it is updated through the networkmanagement plane, e.g., at device

installation time. The application is then represented by the compiler in the form of a

DAG (Directed Acyclic Graph) composed of its basic elements, as shown in Figure 2.3.

The compiler then reconstructs the dependency among each application element and

maps them to basic primitives supported by the network devices composing the net-

work so that, as depicted in Figure 2.3:

• states are mapped into primitive data structures, such as counters, registers, hash

tables, etc., to store application states;

• reduction, trigger, and activity functions are mapped into primitive actions, i.e.

basic processing/decision capabilities offered by network devices.

2.3.4 Optimal embedding and application reaction latency

The embedding consists in mapping the primitive elements provided by the compiler

into a set of physical network devices. This is performed by exploiting the target-

specific drivers and southbound APIs (e.g., P4Runtime, gRPC, OpenFlow, etc.) offered

by the embedding engine of the controller.

To perform the actual embedding, as depicted in Figure 2.2, the embedder takes as

input: i) the set of primitive elements provided by the compiler, ii) the resource avail-

ability inside the network provided by the controller resource manager, and iii) the

actual location of the resources inside the network provided by the controller topology

manager. Given this information, it is possible to find a set of feasible embeddings of

the decomposed application inside the network devices supporting the required prim-

itives. Notably, each element of the network application is not required to be embed-

ded in a single network device. Instead, individual primitives composing the network

application can be embedded in different network devices, based on the types of sup-

ported primitives, their amount and their location inside the network. The adopted
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Figure 2.4: Reduction function decomposition in case of two network applications shar-
ing a state 𝑠5 without replicated states (left) and with replicated states (right).

algorithm to optimize the embedding (i.e., computing the optimal number of replicas

and their placement within the network) has been already investigated in our previous

work [21], which serves as a natural integration to LOADER. In the following, we give

insights regarding the functionalities and restrains of the embedding mechanism, while

in Section 2.4 we provide the Integer Linear Programming (ILP) model for solving the

problem of optimal state replication.

Constraints on primitives location

In the absence of co-location at the same network device of primitive actions and prim-

itive data structures directly operated by those primitive actions, state replication is

mandatory. Indeed, to perform the reduction of a given set of states, the states must be

locally available at the network device operating the reduction function. This requires

either to provide co-location of the states and reduction functions or to perform state

replication at the network device storing the corresponding reduction primitive.

Inter-application state sharing

States may be shared among different network applications. Figure 2.4 shows an exam-

ple of two network applications 𝑃1 and 𝑃2 sharing a common state 𝑠5. Using a single

replica approach, 𝑠5 is required to be embedded into a single network device. As a

consequence, the device storing 𝑠5 must serve both 𝑃1 and 𝑃2, which, as previously

discussed, may lead to scalability issues whenever the number of applications employ-

ing 𝑠5 grows large. Instead, with state replication, the two applications can be made
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independent by replicating 𝑠5 in 𝑠(1)
5 and 𝑠(2)

5 . Note that the concurrent access of two

different applications to two replicas of the same state is equivalent to the concurrent

access of two instances of the same application on such replicated states, as in the DDoS

detection scheme discussed in Section 2.7.

Application reaction latency

Given an application embedding, it is possible to evaluate the corresponding reaction

latency, by considering the position of the primitives in the network, the propagation

delays between the involved network devices, and the replication delay. For a single-

replica state, the replication delay is by construction null as no replication occurs what-

soever. On the other hand, in the case of multiple replicas, the reaction latency models

the latency required to propagate a new value of the state to all the replicas and will

be explained in detail in Section 2.5.1. Interestingly enough, as investigated in [21], an

optimal embedding might lead to multiple replicas. Although multiple replicas imply

non-null replication delays, this delay can be compensated by a much smaller applica-

tion execution latency. The distributed DDoS detection application, considered later in

Section 2.7, is an example of such a scenario, clearly showing the advantage of keeping

multiple replicas for some network-wide applications.

Objective-based embeddings

The optimal embedding is chosen by minimizing a particular cost function. The defi-

nition of the cost function highly influences the way the embedding is performed, as

shown in [21]. As an example, a cost function aiming at reducing the network energy

consumption or reducing the synchronization traffic between replicas may lead to sce-

narios in which the application is embedded into few network devices or eventually to a

single network device (e.g., the SDN controller). On the other hand, a cost function aim-

ing at minimizing the network congestion may lead to multiple replicated states across

different network devices to balance the traffic across the network. Thus, the definition

of the cost function highly affects the level of distribution of the application, ranging

from completely distributed implementations to completely centralized and stateless

ones.
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LOADER in stateless SDN

In the case of stateless SDN networks, with network devices able to perform only basic

forwarding/routing operations, the LOADER approach is still viable. Indeed, LOADER

provides only an abstraction layer between the actual application and its mapping to the

network devices. As previously discussed, the controller is seen as part of the available

embedding targets during the embedding phase. Being typically a general-purpose ma-

chine the controller is seen as a network device with unlimited computation resources,

thus giving the embedder the possibility of eventually placing the network application

at the controller. Nevertheless, as previously mentioned, the latency between the con-

troller and the network devices is typically high as it includes both the network latency

and the in-software processing delays at the controller. As shown in the following, this

latency plays a fundamental role during the embedding as it directly affects the state

inconsistency level which is among the main user-defined constraints in LOADER.

2.4 Optimal state replication problem

As described in the previous, the optimal state replication problem must incorporate

a broad variety of constraints and must take into account both the traffic statistics in

the form of the traffic matrix and the available resources of the network devices. In the

following we will present a simplified version of the optimal state replication problem

which does not take into consideration the resource requirements. The presented for-

mulation will focus exclusively on finding the optimal embedding for replicated states

while satisfying intra-application dependencies. For the sake of presentation clarity we

will refer to all of the network application primitives as states, thus assuming reduc-

tion/trigger and action functions to be stateful elements.

Given a network graph, the objective of the state replication problem is to identify

the best set of nodes (i.e., network devices) where to place the replicas of each state and

to compute the optimal routing. Coherently with [9], the nodes are selected tominimize

the overall traffic in the network and to guarantee that all flows affecting (or affected

by) a given state will traverse at least one state replica. Differently from [9], the traffic

28



LOADER: Local Decisions on Replicated States in Programmable data planes

in the network is composed not only of data traffic, but also of the traffic introduced by

the synchronization protocol required to keep consistent the replicas of a given state.

We propose an ILP formulation, as in the original SNAP model [9]. The relevant

notation is reported in Table 2.2 and further discussion and the evaluation of this model

is deeply discussed in [21]. Our formulation takes the following input parameters:

• Network: Let 𝐺 = (𝑉,𝐸) be the network graph with 𝑁 nodes. Let 𝑐𝑒 be the

capacity of edge 𝑒 ∈ 𝐸.

• Traffic flows: Let ℱ be the set of all flows. The traffic demands are assumed to

be known in advance. In particular: let 𝜆𝑓 be the demand of traffic flow 𝑓 ∈ ℱ,

being 𝑓𝑠 ∈ 𝑉 and 𝑓𝑑 ≠ 𝑓𝑠 ∈ 𝑉 respectively the source and the destination nodes

of the flow.

• State variables: Let 𝑆 be the set of all state variables. Let 𝑆𝑓 ⊆ 𝑆 be the or-

dered sequence of state variables for flow 𝑓 ∈ ℱ, obtained from the primitives

dependency graph of the corresponding application.

• Maximum number of replicas: Let 𝐶𝑠 be a given upper bound on the number

of replicas for a state variable 𝑠, chosen by the network designer. Note that the

optimal number of replicas for state 𝑠, denoted by ̂𝐶𝑠, will be computed while

satisfying the constraint ̂𝐶𝑠 ≤ 𝐶𝑠. Furthermore setting 𝐶𝑠 = 1 for primitive

functions (i.e., reduction, trigger and action functions) will lead to them not being

replicated the final embedding.

Let 𝐻𝑓 be the set of all possible sequences of state replicas for a flow 𝑓. Consider a
toy example in which a flow 𝑓 requires 3 state variables 𝒜, ℬ, 𝒞, i.e., 𝑆𝑓 = [𝒜,ℬ,𝒞 ].
Each state has 2 replicas (denoted as “1” and “2”). Now 𝐻𝑓 ={[1 1 1], [1 1 2], [1 2 1], [1 2

2], [2 1 1], [2 1 2], [2 2 1], [2 2 2]}, and, as example, the sequence ℎ = [121] implies that

𝑓 traverses replica 1 of state 𝒜, then replica 2 of state ℬ, and finally replica 1 of state

𝒞. Let ℎ𝑠 be the replica of state variable 𝑠 in sequence ℎ ∈ 𝐻𝑓. For the above example

with ℎ = [121], ℎ𝒜 = 1, ℎℬ = 2 and ℎ𝒞 = 1.
The output of the solver is described as follows, and the relevant notation is reported

in Table 2.3:
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• Placement of the replicas of each state. Let 𝑃𝑠𝑐𝑛 be a binary variable equal to 1 iff

replica 𝑐 of state 𝑠 is stored at node 𝑛.

Note that the optimization problem might place multiple replicas on the same

node, but this would correspond to a single instance of the state. Thus, the op-

timal number of distinct replicas ̂𝐶𝑠 of state 𝑠 across the whole network can be

computed as follows1:

̂𝐶𝑠 = ∑
𝑛∈𝑉

✶

{ ∑
𝑐≤𝐶𝑠

𝑃𝑠𝑐𝑛 > 0}

• Data traffic routing. Let 𝑅𝑓ℎ𝑒 be a binary variable equal to 1 iff flow 𝑓 traverses

the sequence of state replicas ℎ on edge 𝑒. The set of such variables describes the

complete routing of all flows in the network, taking also into account the con-

straint for the required sequence of traversed replicas. To avoid out-of-sequence

problems, we do not permit flow splitting between different sequences of replicas.

• Synchronization traffic routing. Let 𝑅̂𝑠𝑛𝑚𝑒 be a binary variable equal to 1 iff there

are replicas of the state variable 𝑠 on nodes 𝑛 and 𝑚 and the flow from node 𝑛
to node 𝑚 traverses edge 𝑒. This set of variables describes the routing of the

synchronization traffic between different replicas of the same state. Let ̂𝜆𝑠 be the

traffic generated by each state replica to update each other single replica of the

same state.

Finally, Table 2.4 reports the list of auxiliary variables adopted in the ILP formula-

tion.

In the optimal state replication problem, the total traffic in the whole network is

minimized:

min ∑
𝑒∈𝐸

∑
𝑓∈ℱ

∑
ℎ∈𝐻𝑓

𝑅𝑓ℎ𝑒𝜆𝑓 + ∑
𝑒∈𝐸

∑
𝑠∈𝑆

∑
𝑛∈𝑉

∑
𝑚∈𝑉
𝑛≠𝑚

𝑅̂𝑠𝑛𝑚𝑒 ̂𝜆𝑠 (2.1)

The first term represents the total data traffic in the network. It is obtained by summing

all the traffic due to 𝑓 on all the possible sequences of state replicas and on all of the

1Let ✶{𝐴} be the indicator function of 𝐴, equal to 1 iff condition 𝐴 is true.
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Table 2.2: Input variables

Context Variable Description Range

Network definition

𝑉 set of all nodes {1,… ,𝑁}
𝑁 number of nodes (i.e., |𝑉 |) ℕ
𝐸 set of all edges
𝑐𝑒 capacity of edge 𝑒 ∈ 𝐸 > 0

Flow definition

ℱ set of all the flows
𝜆𝑓 traffic demand for flow 𝑓 ∈ ℱ > 0
𝑓𝑠 source node for flow 𝑓 ∈ ℱ 1,… ,𝑁
𝑓𝑑 destination node for flow 𝑓 ∈ ℱ 1,… ,𝑁

State definition

𝑆 set of all state variables
𝐶𝑠 max number of replicas for state 𝑠 ≥ 1
𝑆𝑓 sequence of state variables for flow 𝑓 ∈ ℱ ⊆ 𝑆

̂𝜆𝑠
synchronization traffic between > 0
any pair of replicas for state 𝑠 ∈ 𝑆

Table 2.3: Output variables

Context Variable Description Range
Data traffic 𝑅𝑓ℎ𝑒

1 iff flow 𝑓 along sequence of replicas ℎ
Binary

routing traverses edge 𝑒
Synchronization 𝑅̂𝑠𝑛𝑚𝑒

1 iff synchronization traffic from node 𝑛 to node 𝑚
Binary

traffic routing containing replicas of state variable 𝑠 traverses edge 𝑒
Replica 𝑃𝑠𝑐𝑛

1 iff replica 𝑐 of state 𝑠 is stored
Binary

placement in node 𝑛

Table 2.4: Auxiliary Variables

Variable Description Range
𝐸𝐼(𝑛) set of edges entering node 𝑛 ∈ 𝑉 ⊆ 𝐸
𝐸𝑂(𝑛) set of edges leaving node 𝑛 ∈ 𝑉 ⊆ 𝐸
𝐸(𝑛) set of all edges incident to node 𝑛 ∈ 𝑉 ⊆ 𝐸
𝐻𝑓 set of all sequences of replicas for flow 𝑓 ∈ ℱ -
ℎ𝑠 replica id of state 𝑠 for flow 𝑓 ∈ ℱ in sequence ℎ ∈ 𝐻𝑓 1,… ,𝐶𝑠

𝑃𝑓𝑠𝑐𝑒 1 iff flow 𝑓 on edge 𝑒 has passed replica 𝑐 of state 𝑠 Binary
𝑋𝑓ℎ 1 iff flow 𝑓 is assigned ℎ ∈ 𝐻𝑓 Binary
𝑈𝑠𝑛 1 iff at least one replica of state variable 𝑠 is on node 𝑛 Binary

𝑌𝑠𝑛𝑚𝑒 1 iff 𝑅̂𝑠𝑛𝑚𝑒 > 0 Binary

edges. Instead, the second term is the synchronization traffic between replicas of the

same state, summed across all states and edges in the graph. Notably, (2.1) is similar to

the objective function used by the SNAP framework in [9], but with the introduction

of the second term that takes into account the synchronization traffic, not included in

SNAP.
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As an alternative, the objective function could be modified to minimize the maxi-

mum congestion on a link, obtained by summing data and synchronization traffic, as

follows:

minmax
𝑒∈𝐸 ( ∑

𝑓∈ℱ
∑

ℎ∈𝐻𝑓

𝑅𝑓ℎ𝑒𝜆𝑓 + ∑
𝑠∈𝑆

∑
𝑛∈𝑉

∑
𝑚∈𝑉
𝑛≠𝑚

𝑅̂𝑠𝑛𝑚𝑒 ̂𝜆𝑠) (2.2)

and could be easily integrated in the following formulation, using well-known ILPmod-

eling techniques.

2.4.1 Constraints in the optimization problem

We now discuss all the constraints considered in the ILP model. In some cases, we

will get products of binary variables, but the corresponding constraint can be easily

linearized according to well-known techniques.

Data routing constraints

Constraints (2.4)-(2.7) are similar to the constraints for the classic multi-commodity

flow problem. However, our modification consists of assigning a commodity for each

sequence ℎ ∈ 𝐻𝑓 of state variable replicas directly at the source of the flow 𝑓, to model

the sequence of states required by each flow.

We introduce an auxiliary variable, which is an indicator function 𝑋𝑓ℎ equal to 1 if

sequence ℎ ∈ 𝐻𝑓 is assigned to flow 𝑓 ∈ ℱ.

𝑋𝑓ℎ = ∑
𝑒∈𝐸𝑂(𝑓𝑠)

𝑅𝑓ℎ𝑒 − ∑
𝑒∈𝐸𝐼(𝑓𝑠)

𝑅𝑓ℎ𝑒 (2.3)

Indeed, whenever a particular sequence ℎ is adopted, similar to (2.4), the net outgoing

data traffic from source 𝑓𝑠 is 1. Notably, the second term considers the special case in

which the flow is re-entering (and leaving) 𝑓𝑠 in the path to reach the state and then

the destination. We now force only one sequence ℎ to be assigned to flow 𝑓. ∀𝑓 ∈ ℱ:

∑
ℎ∈𝐻𝑓

𝑋𝑓ℎ = 1 (2.4)

A similar constraint is defined for flow 𝑓’s destination 𝑓𝑑, but now the net incoming
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flow should be 1. ∀𝑓 ∈ ℱ:

∑
ℎ∈𝐻𝑓

( ∑
𝑒∈𝐸𝐼(𝑓𝑑)

𝑅𝑓ℎ𝑒 − ∑
𝑒∈𝐸𝑂(𝑓𝑑)

𝑅𝑓ℎ𝑒) = 1 (2.5)

The sum of all the data and synchronization traffic passing an edge must not exceed its

capacity. ∀𝑒 ∈ 𝐸:

∑
𝑓∈ℱ

∑
ℎ∈𝐻𝑓

𝑅𝑓ℎ𝑒𝜆𝑓 + ∑
𝑠∈𝑆

∑
𝑛∈𝑉

∑
𝑛∗∈𝑉
𝑛≠𝑛∗

𝑅̂𝑠𝑛𝑛∗𝑒 ̂𝜆𝑠 ≤ 𝑐𝑒 (2.6)

Finally, the standard flow conservation condition must be satisfied at any node. ∀ℎ ∈
𝐻𝑓,∀𝑓 ∈ ℱ:

∑
𝑒∈𝐸𝐼(𝑛)

𝑅𝑓ℎ𝑒 = ∑
𝑒∈𝐸𝑂(𝑛)

𝑅𝑓ℎ𝑒 ∀𝑛 ∈ 𝑉 ⧵ {𝑓𝑠, 𝑓𝑑} (2.7)

Placement constraints

Each replica can only be placed at one switch. ∀𝑠 ∈ 𝑆, ∀𝑐 ≤ 𝐶𝑠:

∑
𝑛∈𝑉

𝑃𝑠𝑐𝑛 = 1 (2.8)

We now constrain the flows to be routed through the corresponding states, i.e., all

flows dependent on a state must traverse the node where the replica of such state is

located (except at source 𝑓𝑠 and destination 𝑓𝑑). ∀𝑛 ∈ 𝑉 ⧵ {𝑓𝑠, 𝑓𝑑},∀𝑓 ∈ ℱ,∀ℎ ∈
𝐻𝑓,∀𝑠 ∈ 𝑆𝑓:

∑
𝑒∈𝐸𝐼(𝑛)

𝑅𝑓ℎ𝑒 ≥ 𝑃𝑠ℎ𝑠𝑛 + 𝑋𝑓ℎ − 1 (2.9)

Indeed, if a particular sequence ℎ is adopted for 𝑓, then (2.9) becomes ∑𝑒∈𝐸𝐼(𝑛) 𝑅𝑓ℎ𝑒 ≥
𝑃𝑠ℎ𝑠𝑛 and in the case the node contains a replica ℎ𝑠 of the state 𝑠, then ∑𝑒∈𝐸𝐼(𝑛) 𝑅𝑓ℎ𝑒 ≥
1, which forces at least one 𝑅𝑓ℎ𝑒 variable to be one on the incoming edges to 𝑒. Other-

wise, if the sequence ℎ is not adopted for 𝑓, then (2.9) becomes a useless bound.

We now define a variable that tracks the fact that a flow has already traversed a

particular state along its path. For a flow 𝑓 traversing a replica ℎ𝑠 of state 𝑠, we define
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𝑃𝑓𝑠ℎ𝑠𝑒 = 0 for all edges along the path before entering the node with replica ℎ𝑠 of 𝑠,
and 𝑃𝑓𝑠ℎ𝑠𝑒 = 1 for all edges on the path after ℎ𝑠. It is initialized to zero for all unused

replica sequences ℎ. ∀𝑓 ∈ ℱ,∀𝑠 ∈ 𝑆𝑓,∀ℎ ∈ 𝐻𝑓,∀𝑒 ∈ 𝐸:

𝑃𝑓𝑠ℎ𝑠𝑒 ≤ 𝑅𝑓ℎ𝑒 (2.10)

Tomodel the fact that 𝑃𝑓𝑠ℎ𝑠𝑒 changes from 0 to 1whenever the flow leaves a nodewhere

the state is stored, we set: ∀𝑓 ∈ ℱ,∀𝑠 ∈ 𝑆𝑓,∀ℎ ∈ 𝐻𝑓,∀𝑒 ∈ 𝐸,∀𝑛 ∈ 𝑉 ⧵ {𝑓𝑠, 𝑓𝑑}:

𝑃𝑠ℎ𝑠𝑛𝑋𝑓ℎ + ∑
𝑒∈𝐸𝐼(𝑛)

𝑃𝑓𝑠ℎ𝑠𝑒 = ∑
𝑒∈𝐸𝑂(𝑛)

𝑃𝑓𝑠ℎ𝑠𝑒 (2.11)

Indeed, only when 𝑃𝑠ℎ𝑠𝑛𝑋𝑓ℎ = 1 (i.e., node 𝑛 has replica ℎ𝑠 and 𝑓 exploits ℎ including

it), the net flow of 𝑃𝑓𝑠ℎ𝑠𝑒 entering 𝑛 is 0 and the corresponding one leaving 𝑛 is 1.

We now impose that the data flow reaches the destination 𝑓𝑑 after having traversed

all the states required in ℎ, i.e. 𝑃𝑓𝑠ℎ𝑠𝑒 = 1 for one edge entering 𝑓𝑑. ∀𝑓 ∈ ℱ,∀𝑠 ∈
𝑆𝑓,∀ℎ ∈ 𝐻𝑓:

𝑃𝑠ℎ𝑠𝑓𝑑
𝑋𝑓ℎ + ∑

𝑒∈𝐸𝐼(𝑓𝑑)
𝑃𝑓𝑠ℎ𝑠𝑒 = 𝑋𝑓ℎ (2.12)

So far, the constraints (2.10)-(2.12) force the flows to pass through all the required

state variables, but not necessarily in sequence. We model here the correct sequence of

traversed states, if the flow 𝑓 has to cross ℎ𝑠 ∈ 𝐻𝑓 of 𝑠, followed by replica ℎ𝑠′ ∈ 𝐻𝑓

of 𝑠′. ∀𝑓 ∈ ℱ,∀𝑠, 𝑠′ ∈ 𝑆𝑓,∀ℎ ∈ 𝐻𝑓,∀𝑛 ∈ 𝑉

𝑃𝑠ℎ𝑠𝑛 + ∑
𝑒∈𝐸𝐼(𝑛)

𝑃𝑓𝑠ℎ𝑠𝑒 ≥ 𝑃𝑠′ℎ𝑠′𝑛 + 𝑋𝑓ℎ − 1 (2.13)

Indeed, if either flow 𝑓 has been assigned sequence ℎ, i.e., 𝑋𝑓ℎ = 1, or replica ℎ𝑠′ ∈ 𝐻𝑓

exists at node 𝑛, or replica ℎ𝑠 ∈ 𝐻𝑓 does not exist at node 𝑛, then (2.13) becomes

∑𝑒∈𝐸𝐼(𝑛) 𝑃𝑓𝑠ℎ𝑠𝑒 ≥ 1. This forces 𝑃𝑓𝑠ℎ𝑠𝑒 to be 1 before entering node 𝑛, which means

that the flow must have traversed ℎ𝑠 before entering the node containing ℎ𝑠′ . This

ensures that the flow traverses the correct sequence of states as dictated by ℎ.
Constraint (2.14) ensures that if flow has traversed state variable replica ℎ𝑠 on edge

𝑒, i.e., 𝑃𝑓𝑠′ℎ𝑠′𝑒 = 1, then it must have already crossed state variable replica ℎ𝑠, which
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ensures 𝑃𝑓𝑠ℎ𝑠𝑒 = 1. ∀𝑓 ∈ ℱ,∀𝑠, 𝑠′ ∈ 𝑆𝑓,∀ℎ ∈ 𝐻𝑓, 𝑒 ∈ 𝐸:

𝑃𝑓𝑠ℎ𝑠𝑒 ≥ 𝑃𝑓𝑠′ℎ𝑠′𝑒 (2.14)

State synchronization

State synchronization implies the generation of synchronization traffic between any

pair of replicas of the same state. Thanks to the routing variable 𝑅̂𝑠𝑛𝑚𝑒, we canmodel the

traffic between any pair of nodes 𝑛 and 𝑚 containing replicas of the state variable 𝑠 and

consider its contribution in the total traffic, as in (2.1) and (2.2), and in the constraint (2.6)

regarding the edge capacity.

In the optimization model, multiple replicas of the state variable can be hosted on

the same node 𝑛. Hence, to track that there is at least one replica at node 𝑛, we define

the variable 𝑈𝑠𝑛 in (2.15). ∀𝑐 ∈ 𝐶𝑠, ∀𝑠 ∈ 𝑆, ∀𝑛 ∈ 𝑉:

𝑈𝑠𝑛 ≥ 𝑃𝑠𝑐𝑛 (2.15)

For the synchronization traffic from node 𝑛 to node 𝑚, the routing variable 𝑅̂𝑠𝑛𝑚𝑒 is

treated as a commodity from node 𝑛 such that 𝑈𝑠𝑛 = 1 to node 𝑚 such that 𝑈𝑠𝑚 =
1. We constrain the routing to ensure the standard flow conservation equation at the

intermediate node.

We define a new intermediate variable 𝑌𝑠𝑛𝑚𝑒, set to 1 iff 𝑅̂𝑠𝑛𝑚𝑒 > 0. This is ensured
using the big-M method [25] as in (2.16) where M is sufficiently larger than 𝑅̂𝑠𝑛𝑚𝑒.

∀𝑠 ∈ 𝑆, ∀𝑛 ∈ 𝑉, ∀𝑚 ≠ 𝑛 ∈ 𝑉, ∀𝑒 ∈ 𝐸

0 ≤ −𝑅̂𝑠𝑛𝑚𝑒 + 𝑀𝑌𝑠𝑛𝑚𝑒 ≤ 𝑀 − 1 (2.16)

To fix a large enough value for 𝑀, assume 𝑅̂𝑠𝑛𝑚𝑒 = 1, ∀𝑒 ∈ 𝐸𝑂(𝑛), then 𝑌𝑠𝑚𝑛𝑒 = 1
from (2.16). In this case, for the condition 𝑀 ≥ 𝑅̂𝑠𝑛𝑚𝑒 to be true, 𝑀 must be equal to

or greater than the maximum degree of 𝐺:

𝑀 ≥ Δ𝐺 (2.17)

with Δ𝐺 = max𝑛∈𝑉 |𝐸𝑂(𝑛)|.
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We require the egress synchronization flow from a state replica containing node to

use only one outgoing edge. This can be done by exploiting 𝑌𝑠𝑛𝑚𝑒 as in (2.18). ∀𝑠 ∈
𝑆, ∀𝑛 ∈ 𝑉, ∀𝑚 ≠ 𝑛 ∈ 𝑉:

∑
𝑒∈𝐸𝑂(𝑛)

𝑌𝑠𝑛𝑚𝑒 ≤ 1 (2.18)

The following constraints (2.19)-(2.22) model themulti-commodity flow problem for

the synchronization traffic. Specifically, constraints (2.19) and (2.20) are for the origi-

nating synchronization flow from the source node 𝑛 and the sink flow in the destination

node 𝑚 containing the state replicas respectively. ∀𝑠 ∈ 𝑆, ∀𝑛 ∈ 𝑉, ∀𝑚 ≠ 𝑛 ∈ 𝑉:

∑
𝑒∈𝐸𝑂(𝑛)

𝑌𝑠𝑛𝑚𝑒 ≥ 𝑈𝑠𝑛 (2.19)

∑
𝑒∈𝐸𝐼(𝑚)

𝑌𝑠𝑛𝑚𝑒 ≥ 𝑈𝑠𝑚 (2.20)

Instead, constraints (2.21)-(2.22) are for the flow conservation at intermediate nodes.

∀𝑠 ∈ 𝑆, ∀𝑛 ∈ 𝑉, ∀𝑚 ≠ 𝑛 ∈ 𝑉:

∑
𝑒∈𝐸𝑂(𝑛)

𝑌𝑠𝑛𝑚𝑒 ≤ ∑
𝑒∈𝐸𝐼(𝑛)

𝑌𝑠𝑛𝑚𝑒 + 𝑈𝑠𝑛 ≤ 1 (2.21)

∑
𝑒∈𝐸𝐼(𝑛)

𝑌𝑠𝑛𝑚𝑒 ≤ ∑
𝑒∈𝐸𝑂(𝑛)

𝑌𝑠𝑛𝑚𝑒 + 𝑈𝑠𝑚 ≤ 1 (2.22)

2.4.2 Approximate solution

The complexity to solve an ILP model is 𝑂(22𝑘𝑣+2
𝑘𝑐) [26], where 𝑘𝑣 is the number

of variables and 𝑘𝑐 is the number of constraints. As a worst case, assume that all

flows 𝑓 ∈ ℱ require to traverse all state variables 𝑠 ∈ 𝑆, where each 𝑠 ∈ 𝑆 has 𝐶
replicas. In this case, it can be shown that 𝑘𝑣 = 𝑂(max(𝑁2𝐶 |𝑆|, |𝑆|𝑁4)) and 𝑘𝑐 =
𝑂(max(𝑁|𝑆|𝐶 |𝑆|, |𝑆|𝑁4)). In a simple scenario when only one state variable required

by all the flows, 𝑘𝑣 = 𝑂(𝑁4) and 𝑘𝑐 = 𝑂(𝑁4). Thus, the final complexity is lower

bounded by 𝑂(22𝑁4+2
𝑁4). Clearly, the presented ILP formulation does not scale for

large instances of the problem. This advocates the design of approximation algorithms

to solve the optimal replication problem in real scenarios. To address this issue, we
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propose PlaceMultiReplicas (PMR) algorithm which is computationally scalable and

will be later shown to approximate well the optimal solution obtained by the ILP solver

for small problem instances.

The pseudocode of PMR is given in Algorithm 1. It takes as input the network graph

𝐺, the state variable 𝑠 and the maximum number of replicas 𝐶𝑠 of 𝑠 and the set of flows

ℱ requiring 𝑠. As output, the algorithm returns: the routing variables of the data flows

𝑅𝑓ℎ𝑒 and of the state synchronization flows 𝑅̂𝑠𝑚𝑛𝑒 and the replicas placement variables

𝑃𝑠𝑐𝑛. The algorithm works through 3 phases:

• Phase 1. The network graph 𝐺 is partitioned into 𝐶𝑠 clusters, in order to min-

imize the maximum distance among the elements within a cluster. This allows

to distribute the replicas across the whole network in a balanced way, exploiting

the spatial diversity offered by each cluster.

• Phase 2. In each cluster, a replica is placed in the “most central” node, i.e., the one

with the highest betweenness centrality, in order to minimize the data traffic for

each flow.

• Phase 3. The position of each replica is perturbed at random using a local search

to improve the solution with respect to one obtained in the previous two phases.

Algorithm 1 comprises all thementioned phases. After having initialized the routing

and the replica placement variables (lines 2-4), Phase 1 is executed in line 5 by calling

ComputePartitions. This method solves the 𝑘-means clustering problem [27] with

𝑘 = 𝐶𝑠 using Lloyd’s algorithm [28] in which the node with the highest betweenness

centrality is chosen as the center of the partition.

As part of Phase 2 (lines 6-9), within each subgraph 𝐺𝑐 the node 𝑛′ with the highest

betweenness centrality is assigned a state variable replica through NodeWithHigh-

estBC.

Lines 11 to 18 refer to a local search procedure with 𝐼 iterations. Within each itera-

tion, RouteFlows is used to route flows through the location of the replicas identified

in Phase 2, following two sub-paths: one from the flow source node to the closest replica

and one from this replica to the destination node. The procedure works on the set of

flows ℱ and the location of state variables 𝑃𝑠𝑐𝑛 and returns the routing variables for
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Algorithm 1 PlaceMultiReplicas (PMR)
1: procedure [{𝑅𝑓ℎ𝑒}, {𝑅̂𝑠𝑚𝑛𝑒}, {𝑃𝑠𝑐𝑛}] = PlaceMultiReplicas(𝐺, 𝑠, 𝐶𝑠, ℱ)
2: 𝑅𝑓ℎ𝑒 = 0,∀𝑓 ∈ ℱ,ℎ ∈ 𝐻𝑓,∀𝑒 ∈ 𝐸 ▷ Init routing
3: 𝑅̂𝑠𝑚𝑛𝑒 = 0,∀𝑐, 𝑔 ≠ 𝑐 ≤ 𝐶𝑠,∀𝑒 ∈ 𝐸 ▷ Init state sync
4: 𝑃𝑠𝑐𝑛 = 0,∀𝑐 ≤ 𝐶𝑠,∀𝑛 ∈ 𝑉 ▷ Init state 𝑠 location
5: {𝐺𝑐} ← ComputePartitions(𝐺,𝐶𝑠,) ▷ Phase 1: Graph partitions {𝐺𝑐}
6: for 𝑐 ≤ 𝐶𝑠 do ▷ Phase 2: Replica placement
7: 𝑛′ ← NodeWithHighestBC(𝐺𝑐) ▷ Find best candidate in partition 𝐺𝑐
8: 𝑃𝑠𝑐𝑛′ = 1 ▷ Store the state replica location
9: end for
10: 𝑇min = ∞ ▷ Init minimum traffic
11: for 𝐼 iteration do ▷ Phase 3: Local search
12: [𝑇 ′, {𝑅′

𝑓ℎ𝑒}, {𝑅̂′
𝑠𝑚𝑛𝑒}] ← RouteFlows(ℱ, {𝑃𝑠𝑐𝑛}) ▷ Route flows through the replicas

13: if 𝑇 ′ < 𝑇min then ▷ Check if the traffic is smaller
14: 𝑇min = 𝑇 ′ ▷ Store current best solution
15: 𝑅𝑓ℎ𝑒 = 𝑅′

𝑓ℎ𝑒 𝑅̂𝑠𝑚𝑛𝑒 = 𝑅̂′
𝑠𝑚𝑛𝑒, 𝑃 ′

𝑠𝑐𝑛 = 𝑃𝑠𝑐𝑛, ∀𝑓 ∈ ℱ, ∀ℎ ∈ 𝐻𝑓, ∀𝑐, 𝑔 ≠ 𝑐 ≤ 𝐶𝑠, ∀𝑒 ∈ 𝐸, ∀𝑛 ∈ 𝑉
16: end if
17: {𝑃 ′

𝑠𝑐𝑛} ← PerturbReplicaLocation({𝑃𝑠𝑐𝑛}) ▷ Change existing location of state replicas
18: end for
19: return [{𝑅𝑓ℎ𝑒}, {𝑅̂𝑠𝑚𝑛𝑒}, {𝑃𝑠𝑐𝑛}]
20: end procedure

21: procedure [𝑇current,𝑅′
𝑓𝑐𝑒, 𝑅̂′

𝑠𝑚𝑛𝑒] = RouteFlows(ℱ,𝑃𝑠𝑐𝑛)
22: 𝑇current = 0 ▷ Init total traffic
23: for 𝑓 ∈ ℱ do ▷ For each flow
24: minDist = ∞ ▷ Init minimum distance
25: 𝑐𝑏 ← null ▷ Init best replica for current flow
26: 𝒫𝑏𝑒𝑠𝑡 ← null ▷ Path with minimum length for 𝑓𝑠 → 𝑛𝑐 → 𝑓𝑑
27: for 𝑐 ∈ 𝐶𝑠 do ▷ For all state replicas
28: 𝒫 = ShortestPath(𝑓𝑠, 𝑛𝑐) ∪ ShortestPath(𝑛𝑐, 𝑓𝑑)
29: if 𝒫 .length < minDist then
30: minDist = 𝒫 .length ▷ Update minimum distance
31: 𝒫𝑏𝑒𝑠𝑡 ← 𝒫 ▷ Store path with minimum length
32: 𝑐𝑏 ← 𝑐 ▷ Store best replica for this flow
33: end if
34: end for
35: for 𝑒 ∈ 𝒫𝑏𝑒𝑠𝑡 do ▷ For each edge in the minimum length path
36: 𝑅′

𝑓𝑐𝑏𝑒 = 𝑅′
𝑓𝑐𝑏𝑒 + 𝜆𝑓 ▷ Store the routing

37: 𝑇current = 𝑇current + 𝜆𝑓 ▷ Store the traffic value
38: end for
39: end for
40: for 𝑐 ∈ 𝐶𝑠 do ▷ For each cth replica of state variable 𝑠
41: for 𝑔 ≠ 𝑐 ∈ 𝐶𝑠 do ▷ For each gth replica of state variable 𝑠
42: 𝒫𝑐𝑔 ← ShortestPath(𝑛𝑐, 𝑛𝑔) ▷ Shortest path from 𝑛𝑐 → 𝑛𝑔
43: for 𝑒 ∈ 𝒫𝑐𝑔 do ▷ For each edge in the path 𝑛𝑐 → 𝑛𝑔
44: 𝑅̂𝑠𝑚𝑛𝑒 = 𝑅̂𝑠𝑚𝑛𝑒 + 𝛼 ▷ Store the state sync flow
45: 𝑇current = 𝑇current + 𝛼 ▷ Update total traffic
46: end for
47: end for
48: end for
49: return [𝑇current,𝑅′

𝑓𝑐𝑒, 𝑅̂′
𝑠𝑚𝑛𝑒]

50: end procedure

data flows 𝑅′
𝑓𝑐𝑒 and for state synchronization 𝑅̂′

𝑠𝑚𝑛𝑒, and the corresponding total traffic

𝑇 ′ in the network. Lines 23 to 39 route the data flows from their source 𝑓𝑠 to the des-

tination 𝑓𝑑 while traversing the replica 𝑐𝑏 which has the minimum path length among
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all other replicas. For each flow, in lines 25 and 26, the replica 𝑐𝑏 and the path 𝒫𝑏𝑒𝑠𝑡

traversing it are initialized. Then for each replica (in lines 27-34), first, the shortest

path 𝑓𝑠 → 𝑛𝑐 → 𝑓𝑑 is computed. 𝑛𝑐 is the vertex for which 𝑃𝑠𝑐𝑛 = 1. If the path length

𝒫.length is less than the previous minimum minDist in line 29, then the current path

𝒫 is stored as the best path 𝒫𝑏𝑒𝑠𝑡 and the current replica 𝑐 as the best replica 𝑐𝑏. In

lines 35-38, for each edge in 𝒫𝑏𝑒𝑠𝑡, the routing as well as the traffic value is updated.

Lines 40 to 48 generate flows from each state replica 𝑐 to all the other state replicas 𝑔
for state synchronization using the shortest path. This includes the synchronization

flows 𝑅̂𝑠𝑐𝑔𝑒 being updated in line 44 for each edge in the path 𝒫𝑐𝑔 before updating the

total traffic in line 45. If 𝑇 ′ is less than the previous minimum, then the minimum traf-

fic value and all the decision variables are updated (lines 14-15). In Phase 3 (line 17),

a local search procedure perturbs the existing state replica locations. This proceeds

by randomly selecting one node where a replica is located and moving it to one of its

neighbor nodes. This new solution is then compared with the current one (line 13) after

having evaluated the corresponding routing and total traffic.

2.4.3 Performance comparison

To highlight the effectiveness of the approximation algorithm we perform a detailed

comparison of the PMR algorithm with respect to the ILP solution. The local search in

PMR runs with 𝐼 = 1000 iterations. In the case of small instances of the problem, we

run an ILP solver, coded using IBM CPLEX optimizer [29], implementing the optimiza-

tion model. We compute the approximation ratio, i.e., the ratio between the total traffic

obtained by PMR and the optimal traffic obtained by the ILP solver. We consider two

standard topologies for the network graph:

• Unwrapped Manhattan is a √𝑁 × √𝑁 grid.

• Watts-Strogatz [30] adds a few long-range links to regular graph topologies to re-

duce the distances between pairs of nodes and emulate a small-world model. It is

generated by taking a ring of 𝑁 nodes, where each node is connected to 𝑘 nearest

neighbors. In each node, the edge connected to its nearest clockwise neighbor is

disconnected with probability 𝑝 and connected to another node chosen uniformly

at random over the entire ring. Thus, the final topology maintains the original
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Figure 2.5: Optimal traffic and number of replicas in a 4×4 Manhattan graph for uniform
traffic, using the ILP solver.

average degree 𝑘 while being connected. In the following, we will use 𝑝 = 0.1
and 𝑘 = 8.

We utilize random traffic matrices with the number of flows equal to the number of

nodes in the graph (|ℱ | = 𝑁) andwith unity demands (𝜆𝑓 = 1). The source-destination
pairs for the flows were generated according to two models. In the case of uniform

traffic, all the source nodes were associated with a random permutation of nodes as a

destination; thus each node is a source and a destination of exactly one flow. In the case

of clustered uniform traffic, we partitioned the nodes of the graph in half and generated

a random permutation between the nodes of the same partition; thus all the flow are

local within the same partition. All the results were obtained with 1000 different runs

to get very small 95% confidence intervals (in all cases within 4.2% accuracy).

In Figure 2.5 we evaluate the effect of varying the number of replicas for state 𝑠 and

of the synchronization rate ̂𝜆𝑠, through the optimal ILP solver. We consider a 4 × 4
Manhattan graph and set 𝐶𝑠 = 7. As expected, when increasing the traffic required to

synchronize the replicas ( ̂𝜆𝑠), the optimal number of replicas reduces, since the higher

costs of synchronization compensates the beneficial effect of multiple replicas on the

data traffic. Instead the synchronization traffic is almost constant, since, for a smaller
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Figure 2.6: Approximation ratio of PMR in a Manhattan graph under uniform traffic.
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Figure 2.7: Approximation ratio of PMR in Watts-Strogatz graph under uniform traffic.

number of replicas, their relative distances grows, to “cover” a larger area of the net-

work.

Figures. 2.6-2.7 show the approximation ratio for different number of nodes 𝑁, of

replicas 𝐶𝑠 and different values of ̂𝜆𝑠, under uniform traffic. The two graphs refer

to Manhattan and Watts-Strogatz graphs, respectively. The approximation ratio in all

cases is always ≤ 1.15, thus PMR approximates well the ILP solution. For larger graphs,

we could not provide the results as the ILP solver is not computationally feasible.
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2.5 Bounding inconsistency among states

To provide the correct functionality of the application, all replicas of a state must be

consistent. Consequently, a read operation of any replica at any given time should

eventually return the same result. The CAP theorem [31] states that, for a replication

scheme, out of Consistency, Availability and Partition tolerance, only two properties

can be picked at the same time. Considering that network failures may occur, partition

tolerance cannot be left out of the design of the replication algorithm, leaving us with

two main reference models:

• Strong consistency. This model privileges consistency over availability, meaning that a

read operation on any non-faulty replica will return the most recent committed value

(same for all replicas) or an error. This property is achieved at the cost of reduced

availability due to the requirement of multiple interactions between replicas and is

based on complex consensus protocols [32].

• Eventual consistency. This model privileges availability and results in instantaneous

operations on all replicas with a considerably reduced protocol complexity. Although

it introduces transient inconsistency, the latter can be seen as an error in the value of

a local replica.

The choice between the two models depends on the level of tolerance of the consid-

ered network application in the presence of temporary inconsistencies between replicas

of the same state. The majority of network applications require small packet processing

latencies. Indeed, excessive latencies may lead to noticeable performance degradation

in the case of real-time traffic and applications performing per-packet processing. This

leads to the necessity of privileging high availability when state changes occur.

For highly mutable states, replication schemes based on strong consistency may

lead to excessive latency due to the complex protocol needed to reach the consensus,

ultimately leading to excessive commit delays which will preclude the correct function-

ality of applications. However, the majority of network applications operate on statis-

tical network measurements and remain robust even in the presence of small errors for

the value of the global state, making strong consistency less essential.
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2.5.1 Replication delays and state inconsistency

LOADER does not impose any constraint on the adopted replication scheme, leaving to

the programmer the freedom of implementing any replication protocol alongside with

the suitable reconciliation scheme supported by network devices. It is generally true

that replication schemes based on strong consistency are more complex and introduce

larger latency to commit a value than the schemes based on eventual consistency. Thus,

without loss of generality, in the following discussion, we focus on supporting eventual

consistency. More in detail we focus on the case of optimistic replication realized with

basic gossiping for which the precise sequence of concurrent writes on the different

replicas is not affecting the application correctness.

In an eventual consistency scheme, each state is associated with a certain replica-

tion delay 𝑑𝑖, i.e., the maximum amount of time required to convey a state update to

all of its replicas. Note that 𝑑𝑖 corresponds also to the worst-case inconsistency time.

Assume now that a state is replicated with period 𝑑𝑅
𝑖 (i.e., the inverse of the replication

frequency). Let 𝑑𝑃
𝑛𝑚 be the communication latency between network devices 𝑛 and 𝑚,

taking into account the propagation delay (we assume isolation of replication traffic

from data traffic, thus negligible queueing delays). If 𝒩𝑖 is defined as the set of nodes

storing replicas of 𝑠𝑖, we can claim:

𝑑𝑖 = 𝑑𝑅
𝑖 + max

𝑛,𝑚∈𝒩𝑖
𝑑𝑃

𝑛𝑚 (2.23)

The programmer is required to develop network applications by keeping in mind

that different state replicas may suffer from inconsistency intervals during which their

values may differ. To cope up with this, LOADER exposes to the programmer the pos-

sibility of defining an explicit inconsistency level for the replicated states. This is made

possible by defining a level of state inconsistency inside the trigger function. The out-

put of a network application is driven by the outcome of the trigger function, and for

this reason, specifying the inconsistency level at the trigger function is sufficient to

determine also the overall state inconsistency of the application.

We foresee two main inconsistency metrics which can be defined by the program-

mer: (1) time obsolescence 𝜖𝑡 and (2) update error 𝜖𝑟. The former metric provides means

of defining an upper bound on the time freshness of the state replicas and guarantees
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that at any given time any replica will contain a value not older than 𝜖𝑡 in time. The

latter instead specifies the maximum admissible inconsistency in terms of uncommitted

writes for any state variable, thus ensuring that the difference between all the replicated

states does not exceed a number 𝜖𝑟 of state writes. The actual choice of the adopted in-

consistency metric and the corresponding value is left to the programmer and it largely

depends on the particular network application.

LOADER guarantees that the constraints specified by the programmer in terms of

inconsistency metrics are satisfied. During the embedding phase LOADER first assigns

replicas positions in the network so to minimize the maximum communication latency

between any pair of replicas, i.e., minimize the second term of (2.23). Following this

operation, two scenarios are possible. If time obsolescence 𝜖𝑡 is specified, then the

replication periodicity 𝑑𝑅
𝑖 must be set such that:

𝑑𝑅
𝑖 ≤ 𝜖𝑡 − max

𝑛,𝑚∈𝒩𝑖
𝑑𝑃

𝑛𝑚 (2.24)

If instead an update error 𝜖𝑟 is specified, now 𝑑𝑅
𝑖 must be related to the rate of write

operations on the state over time. To satisfy this constraint for a generic state 𝑥, it is
sufficient to evaluate 𝛿∗

𝜏 as the maximum number of write operations performed on 𝑥
over a time interval 𝜏. Note that 𝛿∗

𝜏 depends on the specific meaning of the considered

state and should be evaluated a priori. E.g., for a packet counter at an interface, it is

obtained by the data rate divided by the transmission time of a minimum size packet.

Let |𝑥|𝑡 denote the number of writes for state 𝑥 up to time 𝑡. By construction, it holds:

|𝑥|𝑡+𝜖𝑡
− |𝑥|𝑡 ≤ 𝛿∗

𝜖𝑡
𝜖𝑡 (2.25)

By definition, we can bound (2.25) with 𝜖𝑟 and obtain:

𝛿∗
𝜖𝑡

𝜖𝑡 ≤ 𝜖𝑟 (2.26)

Based on (2.24), 𝑑𝑅
𝑖 is chosen such that:

𝑑𝑅
𝑖 ≤

𝜖𝑟
𝛿∗

𝜖𝑡

− max
𝑛,𝑚∈𝒩𝑖

𝑑𝑃
𝑛𝑚 (2.27)
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Note that in the case of states which permit a definition of absolute state error based

on some norm (e.g., scalars, arrays, graphs), knowing the nature of write operations

permits to translate the update error into absolute value error. Assuming that a write

operation can alter the state by a maximum amount, it is possible to rewrite 𝛿∗
𝜏 in terms

of absolute state variation and derive the temporal constraints following the same above

formulation.

Listings 2.2, 2.3, 2.4 provide an example of the definition of a trigger function in

LOADER for a simple scenario (i.e., sum of two states). The listings show respectively

a trigger function with a given value of time obsolescence (𝜖𝑡), a trigger function with

update error (𝜖𝑟) and a trigger functions which does not tolerate any state inconsistency.
r = ReductionFunction(states=[s1, s2], operation=stateSum)

tr = TriggerFunction(s0=r.Result(), trigger=(r.Result() > 0),
inconsistencyLevel=TimeObsolescence(2, ”ms”))

Listing 2.2: Example of trigger function with time obsolescence 𝜖𝑡 equal to 2ms.

r = ReductionFunction(states=[s1, s2], operation=stateSum)

tr = TriggerFunction(s0=r.Result(), trigger=(r.Result() > 0),
inconsistencyLevel= UpdateError(10))

Listing 2.3: Example of trigger function with update error 𝜖𝑟 equal to 10 writes.

r = ReductionFunction(states=[s1, s2], operation=stateSum)

tr = TriggerFunction(s0=r.Result(),trigger=(r.Result() > 0))

Listing 2.4: Example of trigger function without inconsistency (i.e. replication

is not permitted).

2.5.2 Replication traffic generation

To replicate a state, network devices generate by themselves update packets, based on

the required replication periodicity 𝑑𝑅
𝑖 . This generation is not currently supported in

off-the-shelf hardware for stateful switches as a fundamental primitive, since, for per-

formance reasons, packet generation events are triggered only by packet arrivals. De-

pending on the actual hardware, we foresee different solutions which provide a way

of generating new packets without any hardware modification of current off-the-shelf

chipsets, which are briefly discussed in the following.
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Controller-triggered updates

The generation is triggered by the controller. In the case of periodic updates, the con-

troller sends periodic trigger messages to the network devices, where they are pro-

cessed and used to generate the update packets, by acting upon the reception of the

trigger messages. Despite its simplicity, this approach has many limitations. First, the

required control bandwidth from the controller to each switch can become relevant for

small update periods. Second, the controller is loaded with an additional task, impairing

its scalability.

Traffic-triggered updates

The generation is triggered directly by the reception of data packets received at any

interface of the network device. This permits to self-adapt the amount of replication

traffic on the dynamicity of the states, whenever these depends on the arrived traffic. In

terms of implementation, the update message is generated by cloning a data packet and

then modifying it to carry the update value. For what concerns stateful SDN switches,

we consider two possible approaches to regulate the replication traffic rate based on

native internal primitives:

• packet period 𝑝. By keeping a packet counter, a new update packet is generated every

𝑝 received packets, i.e., 𝑑𝑅
𝑖 ≤ 𝑝/𝑟min where 𝑟min is the minimum packet arrival rate

over the whole switch. This can be used in (2.23) to choose 𝑝 and satisfy the given

inconsistency metrics. Intuitively, the update rate is proportional to the arrival rate

of data packets which may suit well particular traffic-monitoring applications. On

the other hand, for other applications this approach may lead to shortcomings since

in the absence of transit traffic no updates will be generated.

• time period 𝜏𝑅. An update packet is generated at the first packet arrival after 𝜏𝑅 time

and thus 𝑑𝑅
𝑖 ≤ 𝜏𝑅 + 1/𝑟min. This can be used in (2.23) to choose 𝜏𝑅 and satisfy the

given inconsistency metrics. Intuitively, this case results in periodic updates, i.e., a

fixed replication rate approximately independent from the traffic.

In terms of themessage format, the replication packet must carry the state identifier,

the state value and the identifier of the switch originating the update. All identifiers
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can be predetermined by the controller at the time of application instantiation. This

mechanism guarantees the state’s uniqueness while providing flexibility in terms of the

state format encoding. Finally, to route properly the replication traffic, the position of

each application primitive in the network is considered. LOADER exploits the network

knowledge at the controller to install updates forwarding rules through a Steiner tree,

either shared across all the states or one specific for each state.

2.6 LOADER implementation

To prove the feasibility if the LOADER approach, we developed a lightweight imple-

mentation of the framework. We integrated LOADER into ONOS v1.14 while using

P4 [6] and Open Packet Processor (OPP) [7] switches for the data plane. The choice of

these two distinct data plane architectures aims at showing the generality of the pro-

posed approach, which results to be independent of the specific type of devices adopted

in the network.

2.6.1 Control plane implementation

LOADER has been integrated inside the ONOS controller in the form of an ONOS ap-

plication with custom control logic overriding the default controller behavior.

Application definition

We consider a set of predefined application elements supported by the switches. This

assumption permits to drastically simplify the implementation of the application defini-

tion phase inside ONOS. In particular, we specify each application element by means of

predefined ad-hoc classes for each type of application element, based on the primitives

supported by the switches. Thus no interaction with the resource manager of ONOS is

performed.

Application elements embedding

For the purpose of this work, we consider a homogeneous network with devices com-

posed of programmable switches having the same type and amount of resources. Since
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the algorithm to solve the optimal embedding problem is out of the scope of this work,

we consider the following simple embedding scheme, inspired to the one proposed

in [21]. The position of each replicated primitive inside the network is determined by

considering the betweenness centrality [33] of each network device, weighted by the

amount of traffic flowing through it. The main idea is to privilege the devices that are

traversed by most of the traffic. Furthermore, the number of replicas of each primitive

is fixed a priori and not optimally chosen. The replication traffic between the different

replicas is routed on a single Steiner tree shared across all the replicas. This permits to

reduce both the amount of replication traffic and the amount of flow table entries.

State identification

LOADER requires a unique identifier for each state, to guarantee the correct processing

of update packets. Similarly to other network programming frameworks [19] LOADER

assigns a unique identifier to each state during the application compilation phase. For

replicated states an additional identifier is assigned to distinguish between different

replicas of the same state.

2.6.2 P4 implementation

P4 [3] is a novel stateful data plane programming language designed for next-generation

SDN switches. The main motivation behind the development of P4 is to provide greater

flexibility for the data plane by mitigating issues present in existing technologies. In

order to achieve such a level of elasticity P4 was built around four main concepts:

• Protocol-independence: Among the main novelties of P4 in respect to tradi-

tional SDN approaches is the introduction of a programmable parser and de-

parsed directly inside the language specifications. This provides means of defin-

ing matching actions for all fields present in currently available protocol headers.

Furthermore, it permits to define custom protocol headers ex-novo and even ex-

tend the matching rules to the payload of processed packets.

• Target-independence: P4 leverages its functionalities on a flexible compiler

which, given the specifications of the target hardware, is able to efficiently trans-

late P4 code in hardware instructions and map it to the underlying architecture.
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Figure 2.8: High level abstraction of a P4 Simple Switch Architecture [34] target.

This effectively enables the possibility of having a unified common high-level

abstraction for all of the P4-enabled devices.

• Reconfigurability: While traditional SDN switches are capable of changing

only the forwarding behavior, P4-enabled switches are capable of changing the

entirety of the packet processing pipeline without any service disruption. This

effectively enables plug-and-play logic at runtime, ultimately leading to more

flexible and dynamic network management schemes.

• Stateful operations and externs: Although not being among the main motiva-

tion behind P4, the inclusion of stateful elements inside the language represents

a big factor behind its success. P4-enabled devices must be capable of support-

ing stateful primitives such as registers, counters or meters. Furthermore these

primitives must be accessible during packet processing, thus operating at line

rate. While such a feature alone enable a rich set of novel functionalities, the

presence of extern modules provides a truly flexible abstraction for custom ex-

tensions. Indeed, extern modules permit to expose any hardware-specific func-

tionalities inside the P4 language, thus providing the possibility of plugging-in

vendor-specific functions such as encryption or packet inspection directly into

the packet processing pipeline.

Figure 2.8 depicts a high-level overview of a processing pipeline of a P4-enabled

switch employed in our evaluation. Before entering the main processing pipeline all

packets go through the programmable parser. We program the parser to support a
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custom header type used to identify LOADER packets and to discriminate among dif-

ferent content types carried within. Following the parsing stage packets are moved into

the ingress stage which, together with the egress stage, implements the network poli-

cies in the form of match-action rules combined with stateful primitives and actions.

After processing and before departing from the switch packets go through a depars-

ing stage which suitably modifies the protocol headers stack by appending LOADER-

specific headers to the packet if needed.

To provide connectivity between ONOS and P4 switches (version 1.1), we exploited

P4Runtime [35]. At the time of this work, P4Runtime implementation in ONOS v1.14

performed only basic flow tables manipulations without providing support for features

such as runtime pipeline modification and manipulation of extern objects such as reg-

isters and counters. Due to these limitations, we implemented the required primitive

data structures and the replication control logic directly in P4 instead of letting the con-

troller push them to each switch at application creation time. However, the controller

is left with the possibility of activating or deactivating application elements inside a

switch, which is equivalent to pushing new logic.

Replication traffic format

Replication traffic is transported through packets that are formatted with a custom

header carried by Ethernet packets, identified by an unused protocol type (LOADER_ETHTYPE)

in the Ethernet header. We leverage P4 to define custom packet formats and we imple-

mented LOADER header format directly inside the programmable parser.

Listing 2.5 shows the full header format of LOADER packets. As previously men-

tioned, all identifiers are assigned by the controller during application initialization. Be-

ing srcSwID, stateID and replicaID, respectively, source switch, state, and replica

identifiers, which are required to correctly interpret and process the update packets

at the destination switches. On the other hand, the inclusion of dstSwID permits to

implement more sophisticated replication schemes instead of employing ours based on

shared spanning trees. In our experiments we implemented a broadcast transmission

among all switches holding the replicas and for this reason dstSwID field remained not

utilized. The stateValue field carries the actual value of the replicated state and its

length is upper bounded by a constant number of bit, i.e., STATE_MAX_WIDTH. Finally,
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header LOADER_t {
bit<32> srcSwID;
bit<32> dstSwID;
bit<32> stateID;
bit<32> replicaID;
bit<STATE_MAX_WIDTH> stateValue;
bit<16> L3ProtocolType;

}

Listing 2.5: LOADER header definition in P4

state parse_LOADER {
packet.extract(hdr.LOADER);
transition select(hdr.LOADER.L3ProtocolType){

LOADER_ETHTYPE : parse_LOADER;
IP_ETHTYPE : parse_IP;
default : accept;

}
}

Listing 2.6: LOADER parser implementation in P4

the L3ProtocolType field permits to attach LOADER packets to transit packets, i.e.,

to piggyback replication information on data traffic.

We generate nested LOADER headers to carry multiple state updates in a single

packet. This functionality is depicted in Listing 2.6 which shows the implementation

of the LOADER protocol parser. Although in this work we opted to define a custom

LOADER header, replication traffic transport can be also implemented by employing

Inband Network Telemetry (INT) format [36] defined by the P4 Language Consortium.

Generation of periodic update packets

Commercial implementations of stateful switches generally do not support the genera-

tion of self-triggered events, precluding the possibility of employing periodic updates.

However, in conformity with their purpose, switches are able to execute routines during

packets reception and departure. Such routines may be related to simple packet pro-

cessing up to more complicated user-defined routines in programmable switches. This

behavior can be exploited to provide a simple mechanism to approximate a periodic

traffic generation without hardware modifications.

We exploit traffic-triggered updates, as described in Section 2.5.2, in which the tem-

poral periodicity 𝑑𝑅
𝑖 is obtained as follows. During the execution of a replication rou-

tine, the current timestamp 𝑡clk is saved as 𝑡′. For each subsequent incoming packet we
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check the value of the internal clock 𝑡clk and compare it against the expected execution

time of the routine, i.e., against 𝑡′ + 𝑑𝑅
𝑖 . If 𝑡clk ≥ 𝑡′ + 𝑑𝑅

𝑖 a new replication routine is

executed generating an update packet and 𝑡′ is updated. Consequently, the first packet

arriving after 𝑑𝑅
𝑖 time will trigger the generation of the update packet.

The replication routine generates and transmits a state-update packet filled with

the state-related information. To generate these packets we employ the packet-cloning

extern provided in P4 v1 model [34]. Once the update has been triggered by an arriv-

ing packet, such packet is cloned to the egress port that has been assigned to it by its

prior processing. Subsequently the original packet undergoes a transformation which

substitutes its original header with the LOADER header filled with all the information

related to the state which needs to be updated. At the same time the payload of the

packet that triggered the update is dropped. Following this operation, the newly created

LOADER packet is transferred to the corresponding output queue without undergoing

further processing. Since the triggering packet needs to be fully processed at the time

of cloning, this functionality, which is illustrated in Listing 2.7, resides at the very end

of the ingress processing pipeline. In this way the replication traffic generation routine

does not impact in any way the transit packets.

Replication traffic routing

The generated replication packets are transmitted on one or more egress ports follow-

ing a Steiner tree shared among all replicas. The distribution tree consists of a mapping

(Switch, PortList) which assigns to each switch of the Steiner tree the set of ports con-

nected to the corresponding links. All newly generated or transit LOADER packets

match against a specific match-action table which sends a copy of the packets for each

port specified in PortList. To avoid loops for transit LOADER packets, at the egress stage

the original ingress port of each packet is compared against the current egress port. If

the two ports are the same, the packet is dropped. This mechanism permits to keep the

amount of flow entries related to LOADER routing as low as one entry per state per

switch.

Both the P4 switch and the LOADER framework implementations are publicly avail-

able at the LOADER repository [37].
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if( meta.LOADER_meta.state == UPDATE_NEEDED ){
clone_pkt_to_egress(sm.egress_spec);
fillLOADERHeaderTable.apply(meta.LOADER_meta.state_id);
set_state_update_time(meta.LOADER_meta.state_id);

}

Listing 2.7: Generation of replication packet in P4

2.6.3 OPP implementation

Open Packet Processor (OPP) [7] is a programmable data plane abstraction in which Ex-

tended Finite State Machines (EFSM) are used to model stateful forwarding algorithms.

The OPP machine model extends the match-action tables pipeline model assumed by

OpenFlow. Such tables are substituted with stages, which can be either stateless or

stateful. A stateless stage is in fact an OpenFlow-like match-action table. The pipeline

processes packet headers to define corresponding forwarding behaviors. The packets

are processed by the ingress pipeline, which is composed of a parser stage and sev-

eral stateless and stateful blocks after the processed packets go into the internal switch

memory that holds the packet queues.

An OPP application requires the definition of the following components:

• Lookup/update extractors: these two blocks are configured by defining a combi-

nation of packet fields that are used to retrieve/update flow state information.

• Conditions: conditions are arithmetic comparison operations of global/local vari-

ables and packet header fields; conditions are matched in the EFSM table along

with the flow state and packet fields.

• EFSM table: programming the EFSM table requires the definitions of a set of EFSM

entries formed by amatch section (as defined in the list item above) and an action

section, which defines the state transition and a set of packet actions (drop, push

header, forward, etc.) and update functions over the local registers. The EFSM

table is configured as a standard OpenFlow table and is usually realized in ASIC

switches using TCAMs.

• Global data variables: OPP global variables are independent of a particular flow

and can be used in the condition block.
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The OPP protocol used between the OPP switches and controllers is a modified

version of OpenFlow 1.3 standard, extended to support the configuration of an OPP

pipeline. In particular, the configuration of the lookup/update extractors and the con-

ditions are realized with two new experimental OpenFlow messages that carry the list

of packets fields to be extracted from the packet headers and the arithmetic operations

whose results are matched from the EFSM tables. Furthermore, the configuration of the

EFSM table requires the extension of the OpenFlow FLOW_MOD message to support

newmatch fields (conditions, and flow states) and new actions (state transition and data

variables updates).

The OPP switch implementations is publicly available at the OPP source repository

[38].

Replication traffic format

In the OPP prototype, we decided to format the replication packets by employing the 20-

bit labels provided by the MPLS protocol. This design choice was taken for mainly two

reasons: the MPLS header is a widely used protocol supported by most of the Internet

nodes, and in our OPP implementation it was simple to handle such an encapsulation

header since adding a custom protocol would have resulted in a static implementation

of the parser code to support a custom header. The Switch ID is encoded in the source

and destination fields of the overlay IP protocol, assigned to each node by the control

plane at configuration time. The State ID is inserted in the Experimenter field of MPLS

(3 bits) and as such, confined to a maximum of 8 different states supported. Finally, the

MPLS label (20 bits) carries the State Value.

Generation of periodic update packets

OPP does not support a time-based generation of periodic events so, as in the P4 imple-

mentation discussed in Section 2.6.2, the generation of time-related events is triggered

only by the reception of packets. To emulate a timer expirationwe use per-flow registers

to store the time difference between packet arrivals. This difference is then compared

with the replication period 𝑑𝑅. The result of this comparison is then matched by the

EFSM table, resulting in the execution of the corresponding action present in the table

entry.
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To generate the replication traffic, we implemented two approaches. In the first

approach, we clone the arrived packet to generate an update packet. When the packet

generation event is triggered, the cloned packet is attached with an MPLS header con-

taining the correct state information, while the original packet continues its normal

processing. In the second approach, the update packet is instead generated ex-novo by

using a predefined template that already contains the MPLS header. The header fields

are then modified according to the state information to be written in the packet. Differ-

ently from the first approach, this one has the advantage of reducing the size of update

packets since they do not carry any data above the MPLS layer.

Replication traffic routing

As discussed in Section 2.6.2 for the P4 implementation, the mapping switch-to-output

port to route the replication traffic is statically assigned by the controller at configura-

tion time. In such away, the forwarding decision is taken through the normal OpenFlow

stateless match-action strategy.

2.7 Implementation and evaluation of network appli-

cations with LOADER

As a proof of concept, we used the LOADER programming model to developed a simple

yet significant application for the distributed detection of Distributed Denial of Service

(DDoS) attacks, denoted as DDoSD. The main idea of the distributed detection is to

exploit the typical temporal correlation between the increase of traffic across all the

network devices at the border of the network, due to the distributed nature of the attack.

Clearly, the correlated traffic increase across the edge routers is a much more reliable

way to detect an attack with respect to monitoring the traffic on a single network device

only. Consequently a network application performing DDoSD must be able to capture

this sudden increase in the network traffic.

With traditional SDN approaches, the controller is involved in the detection process

by being notified about the transit packets by switches. This leads to a large overhead
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in terms of traffic and of detection latency. Instead, LOADER enables a distributed de-

tection process operating directly at the switches, without any controller involvement.

Furthermore, the actions to counter the attack are executed in a distributed way, by

each network device involved in the detection.

In a single replica approach (i.e., in the absence of LOADER) the DDoSD application

would require all the traffic entering the network to traverse a single switch holding the

state monitoring the incoming traffic. Thus the network load would grow, increasing

the congestion, and could not be compatible with some traffic management schemes

(e.g., load balancing) that require to control the routing arbitrary within the network.

LOADER instead permits to replicate the entire DDoSD application over multiple

switches, thus minimizing the data overhead over the whole network. At the same

time, LOADER introduces an overhead in terms of replication traffic, whose amount

depends on the allowed inconsistency level. The replication traffic will be evaluated

experimentally for the DDoSD application in Section 2.7.3.

Notably, DDoSD is robust to possible transient inconsistencies between the values

of total traffic estimated at each switch, thus employing an eventual consistency replica-

tion schemewill not create noticeable degradation due to estimation errors of replicated

states.

As shown in Figure 2.9, we consider a large network (e.g., an Autonomous System

- AS) connected to other networks (e.g., other ASs) through different edge routers and

the attack targets a set of internal servers. Since the definition of a realistic DDoSD

algorithm is a well-known problem in the literature [39] and it is completely out of

the scope of this work, we employ a simple proof-of-concept threshold-based detection

scheme, which demonstrates the correct operation of the replication mechanism and

can be used as a foundation for more sophisticated DDoSD algorithms.

2.7.1 Network application definition

The total traffic entering the whole network and directed toward the targeted servers is

defined as the sum of the inbound traffic over each edge router (SW1-SW4 in our refer-

ence topology). Based on the value of the inbound traffic the network application must

perform some retaliation to counteract the DDoS attack. Consequently it is straight-

forward to map this kind of application to a LOADER application as described in the
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following.

• States: Given 𝑁 edge routers, we define 𝑠𝑖 as the average rate of inbound traffic

traversing the border router 𝑖, with 𝑖 = 1,… ,𝑁. As a monitoring target, we

employ the rate of incoming SYN packets directed towards the internal servers.

• Reduction function: The reduction function employed by the application is

composed of a single primitive action, namely 𝑟1 = sum(). Consequently, the

output of the reduction function is defined as 𝑠𝑜 = sum(𝑠1,… , 𝑠𝑁).

• Trigger function: Following the previous discussion, we define the threshold

function simply as a simple comparison of 𝑠𝑜 against a predefined threshold.

Thus, a DDoS attack is detected locally at each switch if 𝑠𝑜 is larger than a given

threshold, above which the attack is considered as detected. The threshold is

determined with standard test-based statistical methods.

• Activity function: We employ a simple activity function which notifies the con-

troller once the application has been triggered.

The implementation of the DDoS application with LOADER programming model is

available in Appendix A.

2.7.2 Implementation

The considered DDoSD scheme has been implemented on top of two different pro-

grammable data plane platforms: (1) 𝑃 414/𝑃 416; (2) OPP. Furthermore, the definition

of theDDoSD applicationwas performed inside ONOSwith LOADER abstractionwhich

permits to automatically offload and configure the developed network application.

Control plane implementation

We implemented basic LOADER functionalities related to this particular use case inside

ONOS. We employ the routing algorithms and the embedding mechanism based on the

betweenness centrality discussed in Section 2.6.1 with a maximum amount of admis-

sible replicated states equal to 𝐶. We assume a sufficiently large amount of resources

inside switches, thus permitting function co-location with consequent replication of all

application elements.
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Data plane implementation with P4

Our prototype is developed and tested in a virtual environment using Mininet [40] and

P4-enabled virtual switches targeting using the V1 Model and using the Simple Switch

Architecture [34]. We estimate the rate of incoming TCP SYN packets by employing

a sampling window equal to 𝛿. Let 𝑟𝑘(𝑡𝑛) be the estimated rate in the time interval

(𝑡𝑛 − (𝑘 + 1)𝛿, 𝑡𝑛 − 𝑘𝛿] with 𝑡𝑛 = 𝑛𝛿, 𝑛 ∈ ℕ. The average rate is estimated at each switch

𝑖 as

𝑠𝑖(𝑡𝑛) = 1
𝑤

𝑤−1

∑
𝑘=0

𝑟𝑘(𝑡𝑛) (2.28)

and represents the local state to be shared across all the other border routers, coherently

with the description of Section 2.7.1. In particular, 𝑤 is chosen as a power of 2 due

to the hardware limits in P4 switches imposed to the types of operations that can be

implemented, i.e., shift operations are supported, divisions are not [41]. Notably, The

𝑤 most recent samples of the estimated rate are stored in a circular buffer. Replicated

states are instead saved in dedicated registers.

Data plane implementation with OPP

The OPP implementation requires a sequence of three stages: stage 0 extracts the state

from update messages; stage 1 stores the state from the metadata notified by the previ-

ous table, performs monitoring and detection and generates update messages; stage 2

performs simple L3-forwarding. Stage 0 represents the stateful processing core of repli-

cated states. The processed flows are identified by the IPv4 destination addresses of the

target servers. Stage 0 also considers one flow data variable containing the switch-

local state and the 𝐶 − 1 variables storing the replicated states. Switch-local state 𝑠𝑖 is

computed by employing a hardware-implemented Exponential Weighted Moving Av-

erage (EWMA) counting the number of TCP SYN packets in a given preconfigured time

window.

2.7.3 Experimental evaluation and validation

We configure a Mininet-based emulation environment deploying the topology shown

in Figure 2.9, where, for the sake of simplicity, each cluster and each AS is represented
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Figure 2.9: Reference topology for DDoS Detection use case.

Figure 2.10: Temporal evolution of the local, remote and global states for the stateful
switches in case of 2 replicas for the global state in P4 implementation.

by a Mininet host. To simulate the DDoS attack, we use hping3 tool to send TCP

SYN requests from all ASs to all internal servers. In each experiment, during the first

20 seconds, we send the request at a slow rate, and then we increase the rate of all

senders in such a way to trigger the execution of the activity function. We consider

experiments with varying 𝐶: (i) single replica embedded in SW1 (𝐶 = 1), (ii) 2 replicas

(𝐶 = 2) embedded in SW1 and SW3, and (iii) 4 replicas (𝐶 = 4) embedded in SW1,

SW2, SW3, SW4. We repeated the experiments to achieve negligible 95% confidence

intervals if shown in the plots.
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Figure 2.10 shows the evolution of application states 𝑠𝑖 alongside with the evolution

of 𝑠𝑜 for the case of 2 replicas, implemented in P4. Identical results are obtained with

OPP. As expected, the values of 𝑠𝑜 evaluated at SW1 and SW3 are coherent, and permit a

contemporary detection of theDDoS attack in the two switches, without any interaction

with the controller. This experimental result validates our proposed implementation for

both P4 and OPP.

In Figures 2.11, 2.12 we show the average utilization of the links present in the

ring topology connecting all switches, for different values of 𝐶, with both P4 and OPP

implementations. Clearly, for one replica (i.e, single replica approach) the load on the

link is greatly unbalanced and in general higher for all the links. By increasing the

number of replicas to 2, the load of the data traffic decreases by a factor of 1.6 both

in P4 and OPP and is much better balanced across the links. The slightly different

values depend on the different mechanisms adopted for triggering the update event by

the incoming traffic: in P4 the update rate depends on the traffic, whereas in OPP it

is independent. Adding two other replicas reduces the data traffic by around 20% in

both implementations, but now the replication traffic becomes more relevant due to

the higher number of replicas. Indeed, the fraction of update packets increases from

14% (for 2 replicas) to 24% (for 4 replicas) in P4 and from 11% (for 2 replicas) to 23%

(for 4 replicas) in OPP. Thus, the two implementations behave very similarly and show

a beneficial effect on the overall traffic in the network due to the presence of multiple

replicas.

2.7.4 LOADER-induced overhead

As previously discussed and shown in Figure 2.11 and Figure 2.12, LOADER adds some

network overhead in the form of added synchronization traffic. The actual characteri-

zation of the amount of synchronization traffic highly depends on the network topology

and the definition of the state. The impact of those factors has been exhaustively ana-

lyzed in our previous work [21].

From the point of view of device resource utilization, the amount of memory re-

quired to manage replicated states scales linearly with the degree of replication. Specif-

ically, every switch must store their own local state values and the remote state values.

Alongside those states, switches must also store an aggregate value combining local and
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Figure 2.11: Average link utilization for data and for replication traffic in case of 1, 2, 4
replicas for global state in P4 implementation.
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Figure 2.12: Average link utilization for data and replication traffic in case of 1, 2, 4
replicas for global state in OPP implementation.

remote states into a global state, which is then used as input to the reduction function.

This translates into a total requirement of 𝐴(𝐶 + 1) bits of register memory per switch,

being 𝐴 the size in terms of bits of a generic state to replicate (e.g., 𝐴 = 32 bits in the

case of simple counters considered in the DDoS use case).

2.7.5 Other applications enabled by LOADER

Although being significant, the DDoS use-case does not highlight the whole versatility

of the proposed programming models. For this reason, in the following we describe

some examples of network applications (previously described in Table 2.1) which are

shown to benefit from state replication. We show how those applications can be im-

plemented with LOADER by providing their elements mapping and a code example

61



LOADER: Local Decisions on Replicated States in Programmable data planes

for each of them. The actual implementation of those applications with the LOADER

programming model is presented in Appendix A.

Distributed rate-limiting

In [14] the authors propose a network-wide global token bucket. Similarly to a local to-

ken bucket, a global one permits to rate limit all the incoming traffic in a given network

thanks to a network application performing probabilistic dropping at the edge routers

of the network. However, differently from a local one, a global token bucket involves an

instance of the same token bucket run independently at each border router and using

a single shared state accounting for the total inbound traffic.

This kind of application can be easilymapped to LOADER by considering theDDoSD

scheme and by changing only the trigger and the activity functions as follows:

• States: Given 𝑁 edge routers, we define state 𝑠𝑖 as the average rate of inbound

traffic traversing edge router 𝑖, with 𝑖 = 1,… ,𝑁.

• Reduction function: The reduction function performs a sum operation among

all local state 𝑠𝑖 with 𝑠𝑜 = sum(𝑠1,… , 𝑠𝑁).

• Trigger function: In order to perform probabilistic dropping the trigger func-

tion must invoke the activity function proportionally to the rate of the incoming

traffic and the desired rate.

• Activity function: Identically to the DDoSD case, the activity function must

perform dropping of incoming packets whenever invoked as to guarantee that

the total incoming traffic is less than a given threshold.

In Figure 2.13 we show an example of the distributed rate-limiting application in

action. We create two flows: Flow 1 from AS 1 directed towards server cluster 1 and

another flow from AS 3 directed towards server cluster 3. We consider shortest path

routing and place state replicas in SW1 and SW3. Flow 1 starts at time 0 with a rate of

5 Mbps while flow 2 starts with an offset of 20 s and with the same rate. Although the

flows do not cross each other at any point in the network when flow 2 starts both of

them are rate limited to a predefined aggregate 8 Mbps threshold. Note that oscillations

in throughput are due to the adopted probabilistic dropping scheme.
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Figure 2.13: Distributed rate limiter with two flows at different edges of the network.

Link-aware load balancing

LOADER can find its applicability also in the context of DCNs, such as for the case

of link-aware load balancing. More details about DC load balancing will be given in

Chapter 3. In [13] the authors propose a load balancing scheme for data center net-

works, based on the congestion level of individual links from the source ToR switch

to the destination ToR switch (refer to Figure 3.1 for a reference DC topology). Source

ToR switches keep track of local uplink congestion and of the downlink congestion from

each spine switch to the destination ToR.When a new flow starts, the source ToR switch

selects a path to the destination by considering the one that minimizes the maximum

congestion on the whole path, i.e., local uplink congestion and the downlink congestion

on the spine.

For the sake of simplicity, we present a reduced version of the application with some

omitted details and by assuming that the application targets a single ToR switch with

𝑃 spine switches. The application can be easily extended to many ToR switches by

simply instantiating multiple instances of the same application and the states related to

downlink congestion must be shared across multiple ToR switches.

This network application can be mapped to LOADER as follows:

• States: Given a ToR switch, we define state 𝑠𝑖 as the average load on the 𝑃 uplink
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ports, with 𝑖 = 1,… ,𝑃. Additionally, we define state 𝑠𝑗 as the average downlink

load on the port leading to the destination ToR switch of spine switch 𝑗 − 𝑃, with

𝑗 = 𝑃 + 1,… ,2𝑃.

• Reduction function: The reduction function is composed of two primitive ac-

tions, namely 𝑟1 = max() and 𝑟2 = argmin(). Consequently, the reduced version

of the states is obtained as: 𝑠𝑜 = argmin(max(𝑠1, 𝑠𝑃 +1),… ,max(𝑠𝑃, 𝑠2𝑃))

• Trigger function: Differently from previous use cases, the trigger function in

this network application triggers the activity function each time a new 𝑠𝑜 is ob-

tained and does not require any additional checks.

• Activity function: The activity function involves a simple insertion of a new

per-flow forwarding rule for each new flow based on the outcome of the reduction

function.

2.8 Discussion

In this Chapter we propose a novel framework, namely LOADER which enables an ef-

fortless development of distributed applications and we show that distributed network

applications can be beneficial for the network performance and can be efficiently im-

plemented in high-performance programmable stateful switches.

While enabling novel application types, LOADER is capable of substantially reduc-

ing the traffic overhead introduced by data flows. However, in this work it was not

possible to increase the testbed size due to its demand of computation resources. Yet,

results from Section 2.4.2 show that, for medium-sized topologies, distributing network

applications can lead to a substantial decrease in the data traffic overhead introduced

in the network. Indeed, scaling from a single replica (i.e., traditional SDN approach) to

just two replicas can lead to a potential decrease in the total traffic introduced by the

related flows by a factor 1.6.
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Chapter 3

To Sync or not to Sync: Why
Asynchronous Traffic Control is
Good Enough for Your Data Center

Part of the work presented in this chapter has been published in:

• Sviridov G, Bianco A, Giaccone P. ”To Sync or Not to Sync: Why Asynchronous

Traffic Control Is Good Enough for Your Data Center.” In IEEE Global Communi-

cations Conference (GLOBECOM). 2018.

Data centers (DC) are constituted by a large concentration of servers, providing

computing and storage resources, typically to run cloud computing services and real-

time applications. Servers are connected through a Data Center Network (DCN) that

interconnects them to the rest of the data center and provides access to the Internet,

as shown in Figure 3.1. Interestingly, most of the data traffic within a DCN is local,

mainly due to the high exploitation of parallel processing, of the redundancy in the

data storage and of the internal control mechanisms. Thus, performance perceived by

the users heavily depends on the performance of the data transfers within the data

center.

In recent years, the demand for low latency and high bandwidth in the DCN has

grown dramatically, partially compensated by a scalable design of data centers, exploit-

ing multi-layer Clos-based topologies [42]. The memories internal to the switches have
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Figure 3.1: Architecture of a multilayer data center with a central traffic control for
packet scheduling and routing

instead kept growing slowly. Consequently the ratio of RTT over bandwidth for the

intra-data center communications have kept shrinking. As a consequence, under such

conditions, congestion control schemes in standard TCP protocols, which were origi-

nally tailored to WAN/LAN with high/medium RTT and medium/low bandwidth, are

not able to converge fast enough, ultimately leading to poor performance. This is also

exacerbated by the small size of most of the traffic flows. Indeed, the majority of flows

do not last long enough to trigger congestion control mechanisms, which were origi-

nally designed for long-lasting flows.

This fact has motivated the networking community to devise ad-hoc proactive trans-

port schemes, exclusively designed for DCNs, able to minimize the latency within the

data center. Being proactive, those schemes require additional knowledge about what

is happening in the network in order to operate correctly. Such a concept is similar

to SDN which was exhaustively discussed in 2. Indeed, in 2 we showed that LOADER

finds excellent applicability in scenarios such as wide-area networks (Section 2.7.5) and

DCNs (Section 2.7.5) by conveying global state information directly to network devices

required to take performance-critical decisions. Yet, as discussed in Section 2.5 in con-

texts characterized by high network dynamics the effectiveness of LOADERmay suffer.

Such is the case of DCNswhich have a limited physical extension and small propagation

delays, ultimately leading to high state mutability and, consequently, high state incon-

sistency for potential distributed network applications. In such a scenario, keeping all

states at a central entity would lead to a more accurate representation of the network,

although penalizing the scalability of the approach.
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Centralized control provides the possibility to globally monitor the network state

in real-time and to optimize the packet transmissions in a proactive way1. An example

of such an approach has been proposed by the authors of Fastpass [43] who define a

centralized scheduler for the DC capable of performing fine-grained proactive coordina-

tion of the data transfer between pairs of servers. The main idea is to abstract the DCN

as a logical “big switch” in which each server is connected to a single port. Fastpass

aggregates information about the offered load of each server and performs per-packet

scheduling in such a way to ensure that at any time at most one packet is transferred to

and from each server. This guarantees almost no congestion within the DCN switches

and very low, close to ideal, DCN crossing latencies, accounting only for the store-and-

forward delays and for the link propagation delays. However, this property comes at a

cost: mainly the requirement of DC-wide synchronization among servers. Indeed, all

servers must have a common time reference to trigger the transmission of each individ-

ual packet at a predefined time instant, chosen by the packet scheduler. Hence, Fastpass

mimics a synchronous TDM-based network. The downside of minimizing the DCN la-

tency is that most of the delay is now experienced at the servers, as later shown in the

numerical results in Section 3.3.7, which investigate the queuing spreading across the

various levels of the data center hierarchy, from servers to the higher layer switches.

Nevertheless, the predictability of DCN crossing delays permits to better control the

overall performance of data transfers, providing a nice solution in the design of high-

performance data centers.

In [44], we address the following question: Is it possible to achieve performance sim-

ilar to an almost ideal synchronous architecture by relaxing the constraint on synchro-

nization, thus reducing its cost and complexity? We show that the answer is positive.

Indeed, fully asynchronous data transfers can achieve performance similar to Fastpass

without any strict synchronization among the servers. The asynchronous solution is

still based on a centralized controller, that now only orchestrates the actual rates at

which each server injects packets in the DCN, instead of controlling the exact time

when every single packet is transmitted by the servers. Consequently, we claim that

architectures based on rate allocation are able to achieve a better trade-off in terms of

1Note that these ad-hoc solutions coexist with the legacy transport protocols adopted in the servers.
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performance and complexity than synchronous architectures.

To this end, in this Chapter we describe the considered synchronous and asyn-

chronous traffic control models for DCNs. For a fair comparison, we provide a general

framework to compare the two traffic control schemes while highlighting the benefits

and the drawback of each approach. After such an analysis, to motivate our main claim

regarding the limited advantages of the synchronous architecture, we conduct an ex-

tensive simulation campaign, with a detailed and realistic simulation model of a DC.

Finally, we analyze the obtained results which allow us to assess the performance of

the two traffic control approaches and confirm our initial claims.

3.1 Related work

Themost relevant work to our is the alreadymentioned Fastpass [43]. Fastpass provides

proactive network-wide packet scheduling for the DCN by i) actively gathering server

transmission requests ii) optimally scheduling packet transmissions among all servers

present in the network and iii) routing packets through the network in such a way to

avoid packet collisions.

Flowtune [45] follows all the three phases described for Fastpass architecture. In-

stead of operating on a per-packet basis Flowtune operates on a per-flowlet granularity.

Instead of a per-packet scheduler, it employs a centralized rate normalization algorithm

based on the solution of a network utility maximization (NUM) problem. Yet, operat-

ing on such a coarse-grained scale makes it impossible to perform collision-free load

balancing, forcing it to employ the suboptimal ECMP load balancing scheme. While

proposing a scalable alternative to Fastpass, in their evaluation the authors of [45] fo-

cus completely on the scalability aspect of centralized rate assignment while obviating

the comparison of the proposed approach with the synchronous one.

Numfabric [46] leverages the same architecture as in [45] butwith theNUMproblem

being solved in a distributed way by relaxing the constraint on the maximum utiliza-

tion of a link, which leads to suboptimal rate allocations. Finally, due to its distributed

nature, the solution for the NUM problem requires multiple RTT in order to converge.

Hedera [47] provides a load balancing scheme based on fine-grained load estimation,

thus neglecting the rate normalization. Differently from the model proposed in this

68



To Sync or not to Sync: Why Asynchronous Traffic Control is Good Enough for Your Data Center

Chapter, the load balancing scheme reroutes flows to balance the offered traffic across

the topology, leaving to TCP the overall maximization of the network utilization. Thus,

the rate estimation is based on the link load, without the interaction with the servers.

Finally, all these previous works [45]–[47] do not provide any performance com-

parison with a fully synchronous architecture, which is instead our main contribution.

3.2 Scheduling and routing in DCN

As shown in Figure 3.1, we assume a data center with 𝑁 servers connected by a mul-

tilayer DCN, in which each server is connected to a ToR switch. ToR switches are

interconnected through a multilayer Clos-based topology, e.g., leaf-spine in the case of

a two-layers topology. For simplicity, we assume that the bisection bandwidth of the

DCN is maximum, thus no over-subscription is present2. We also assume a homoge-

neous scenario with all the links have the same capacity. For inhomogeneous scenarios

with link rates, at some layer, 𝑓 times faster than at another layer, it is possible to con-

struct an equivalent topology in which the faster links are split into 𝑓 parallel disjoint

slower links, replicating 𝑓 times the switches with the higher rate ports. The process

can be iterated across all the layers until all the links in the DCN equivalent topology

have the same capacity.

Traffic flows are transferred between pairs of servers. The packet transmission from

the servers to the ToR switches and the corresponding routing path are coordinated by

central traffic control. Transmission queues at the servers are organized on a per-server

destination basis, to avoid throughput degradation due to the well-known head-of-line

problem. Thus, a maximum of 𝑁 (logical) queues are managed by each server.

3.2.1 Synchronous (SYN) architecture

This architecture is based on Fastpass and the implementation issues are discussed

in [43]. We assume that all server linecards are synchronized; time is slotted according

to a fixed packet transmission time. At a generic timeslot 𝑡, a synchronous controller

runs a sequence of three phases, as depicted in Figure 3.2:

2The model can be easily adapted to DCNs with over-subscription.
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Figure 3.2: Synchronous (SYN) vs Asynchronous (ASY) architecture

1. Queue state collection. The state of all the transmission queues at the servers is

retrieved (e.g., by interacting with proper socket monitoring tools installed in the

server kernel [43]). Let 𝑄(𝑡) = [𝑞𝑖𝑗(𝑡)] be a 𝑁 × 𝑁 matrix such that 𝑞𝑖𝑗(𝑡) denotes
the priority to transmit a packet from server 𝑖 to server 𝑗, at timeslot 𝑡. As an

example, 𝑞𝑖𝑗(𝑡) can be the queueing delay of the packet at the head-of-line of the

corresponding transmission queue. Thus, packets with higher queueing delay

have a higher transmission priority.

2. Packet scheduling. Based on 𝑄(𝑡), a packet scheduler chooses a set of source-

destination server pairs for transmission during timeslot 𝑡, such that at there is at

most one concurrent transmission to and from each server. Thus, the scheduler

computes a matching between the source servers and the destination servers.

The matching is described by a binary 𝑁 × 𝑁 matrix 𝑀(𝑡) = [𝑚𝑖𝑗(𝑡)], such that

𝑚𝑖𝑗(𝑡) = 1 if server 𝑖 transmits the head-of-line packet directed to server 𝑗 during

timeslot 𝑡.

3. Load-balanced routing. The controller computes the routing path for each trans-

mitted packet in 𝑀(𝑡) to balance the packets across the links of the DCN, to

guarantee that all packets traverse different links. The outcome is a data struc-

ture ℛ(𝑡) that describes the routing path for all the packets in 𝑀(𝑡).

The adopted constraints in the packet scheduling and routing phases completely

avoid queuing at each interface of the DCN, if assuming the same number of hops in the
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multilayer DCN and the same propagation delays of all links. In practice, very limited

congestion can be experienced to compensate different path lengths and different link

propagation delays. Section 3.3.7 will be devoted to evaluate the actual queuing.

One major practical issue of the considered SYN approach is the requirement to

guarantee synchronous behavior of all the servers. Indeed, the required time accuracy

becomes more strict with high port bitrates. As a reference example, consider that the

transmission time of the smallest Ethernet packet (e.g., a TCP ACK) is about 50 ns at

10 Gbps and the one of an Ethernet MTU is about 1.2 𝜇s. Given the quartz clock gen-

erators present in the servers and their unavoidable thermal drift (affected also by the

server computation load), the precise synchronization across all servers can be achieved

if relying on expensive dedicated hardware [48].

The choice of the timeslot duration is also very critical for performance, due to

the possible partial filling of the transmission timeslots. In terms of throughput, small

timeslots permit to reduce the waste due to partial filling, but at the expense of in-

troducing some control overhead to manage the fragmentation of large packets into

multiple timeslots. On the contrary, large timeslots remove or mitigate the fragmenta-

tion problem, but suffer from the partial filling of the timeslots due to small packets. In

terms of control information, small timeslots require higher bandwidth for the control

channel between the controller and the data center components. We will evaluate in

Section 3.3.6 the effects of the partial filling on the performance.

3.2.2 Asynchronous (ASY) architecture

We now remove the constraint of synchronization and propose an architecture based

on rate control; the centralized controller assigns transmission rates at each server, one

for each possible destination server, instead of assigning packets to timeslots as in the

SYN scenario. The considered scheme runs each time the offered load changes at the

servers, tracking flow-level dynamics instead of packet-level dynamics as in the SYN

case. As shown in Figure 3.2, a sequence of three phases occurs at time 𝑡:

1. Offered rate estimation. The control gathers the statistics about the offered load

between any pair of servers. Similarly to the previous scenario, the statistics can

be obtained by interacting with proper socket monitoring tools installed in the
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server kernel. Let 𝑅(𝑡) = [𝑟𝑖𝑗(𝑡)] be a 𝑁 ×𝑁 matrix, denoted as offered rate matrix,

with 𝑟𝑖𝑗(𝑡) be the offered load from server 𝑖 to server 𝑗 at time 𝑡, normalized by

the link rate, i.e. 𝑟𝑖𝑗 ∈ [0,1].

2. Rate normalization. Now 𝑅(𝑡) is renormalized to become admissible and avoid

link overloading, i.e. the overall transmission rate from any server and towards

any server must be lower than the link rate. The outcome of this phase is a

𝑁 × 𝑁 matrix 𝑊 (𝑡) = [𝑤𝑖𝑗(𝑡)], denoted as transmission rate matrix and 𝑤𝑖𝑗(𝑡)
be the actual transmission rate to adopt from server 𝑖 to server 𝑗 at time 𝑡. The

algorithm maximizes the overall throughput ∑𝑖 ∑𝑗 𝑤𝑖𝑗(𝑡). By construction 𝑊 (𝑡)
is a double sub-stochastic matrix, i.e., ∑𝑖 𝑤𝑖𝑗(𝑡) ≤ 1 and ∑𝑗 𝑤𝑖𝑗(𝑡) ≤ 1.

3. Load-balanced routing. Based on 𝑊 (𝑡), the controller chooses the paths to bal-

ance the traffic across the DCN. The outcome is a proper data structure ̂ℛ(𝑡) that
describes the routing paths for the packets transferred starting from 𝑡.

Similarly to the SYN architecture, the ASY one can be easily extended to support

traffic priorities, by properly scaling each value in 𝑅(𝑡).
Whenever the offered rate changes, i.e. 𝑅(𝑡) varies, the controller must re-run the

three above steps. In the worst case, this occurs with a frequency which is related

to the packet transmission time. Thus, the ASY system incurs (in the worst case) in an

overhead similar to the SYN system in terms of exchanged control information. Instead,

during the time intervals in which 𝑅(𝑡) does not change, ASY incurs in a much lower

overhead than SYN.

3.3 Performance evaluation

To analyze the performance of SYN and ASY architectures, we first describe the specific

algorithms adopted for the controllers. Then, we detail the simulation methodology

and, finally, we present the numerical results.

3.3.1 Algorithms for SYN architecture

We assume a greedy maximal matching adopted for packet scheduling, based on the

state of the transmission queues at the server. We consider different priority functions
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to define the 𝑄(𝑡) matrix:

• Oldest cell first (OCF): the matching is performed by looking at the queuing delay

of the head-of-line packets.

• Shortest remaining job first (SRJF): the matching is performed by looking at the

amount of residual bytes of each flow needed to be transferred. Shortest flows

are prioritized over the longest ones.

• Max-min fair (MMF): the matching is performed by looking at the waiting time

of the packets since they become the head of the queues.

Routing computation, coherently with Fastpass, is performed to minimize the con-

tention on the switch output ports. To achieve this, we implemented the solution of the

edge coloring problem for bipartite graphs starting from 𝑀(𝑡) by adapting the classical

Paul algorithm for Clos networks in [49]. Notably, in the case of a two layers DCN,

each color is associated with one distinct spine switch.

3.3.2 Algorithms for ASY architecture

To implement rate normalization, we consider a simple algorithm based on iterative

matrix renormalization presented in [50]. The algorithm iteratively renormalizes rows

and columns of the rate matrix 𝑅(𝑡), as shown in Algorithm 2. The convergence of such

an algorithm is guaranteed if all elements of the matrix are strictly positive while in the

presence of zeros the process oscillates around the solution. In spite of the oscillations,

for sufficiently large 𝑁, the error in respect to the theoretical convergence point is

negligible. To achieve the desired rate of convergence we define the target error rate

𝜖𝑡 which once reached terminates the renormalization procedure. At each iteration

of the algorithm the error is computed after the column normalization is performed

which guarantees that all inbound traffic at each server is admissible while allowing

bandwidth overallocation at each servers’ egress. Nevertheless, even in the presence

of outbound rate overallocation backpressure mechanisms employed At the same time,

we define amaximum number of allowed iterations 𝑖max which once reached terminates

the execution of the procedure which precludes infinite oscillations around the optimal

solution.
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Algorithm 2 Iterative rate matrix renormalization algorithm employed in ASY archi-
tecture
1: procedure {𝑤} = RateNormalization(𝑅𝑖𝑗, 𝑖max, 𝜖𝑡)
2: 𝑤𝑖𝑗 ← 𝑅𝑖𝑗 ∀𝑖, 𝑗 = 1, ..,𝑁 ▷ 𝑁 × 𝑁 rate matrix
3: 𝜖 ← 𝜖𝑡
4: 𝑖 ← 0
5: while 𝜖 ≥ 𝜖𝑡 or 𝑖 > 𝑖max do ▷ While the current error is greater or equal

to the target error or until the maximum
number of allowed iterations is reached

6: 𝑤𝑖𝑗 ← 𝑤𝑖𝑗/ ∑𝑁
𝑗=0 𝑤𝑖𝑗 ∀𝑖 = 1, ..,𝑁 ▷ Row normalization

7: 𝑤𝑖𝑗 ← 𝑤𝑖𝑗/ ∑𝑁
𝑖=0 𝑤𝑖𝑗 ∀𝑗 = 1, ..,𝑁 ▷ Column normalization

8: 𝜖 ← |1 − 1
𝑁 ∑𝑁

𝑖=0 ∑𝑁
𝑗=0 𝑤𝑖𝑗| ▷ Average outgoing rate over-allocation

9: 𝑖 ← 𝑖 + 1
10: end while return 𝑤
11: end procedure

Each server implements one leaky bucket scheduler for each active per-destination

queue, to guarantee an instantaneous rate 𝑤𝑖𝑗(𝑡) between server 𝑖 and server 𝑗. For the
purpose of this analysis we use a fluid leaky bucket whose rate is updated instanta-

neously whenever there is a variation of the assigned rate.

For load-balanced routing, we deployed a standard flow-by-flow ECMP, which will

be shown in Section 3.3.7 to be good enough to provide low buffer occupancy, and, as

a consequence, small queuing delays inside the DCN.

3.3.3 Simulation methodology

We performed the analysis using the discrete-event simulator OMNeT++ [51] in com-

bination with the libraries of the INET framework, which provides detailed simulation

models for the Internet protocols stacks from the MAC layer up to the application layer.

We considered a standard Ethernet-based leaf-and-spine topology for the DCN to

compare SYN with ASY architectures, as shown in Figure 3.1. The chosen topology

provides full bisection bandwidth, connecting 𝑁 = 120 servers, built with 3 spine

switches, 4 leaf switches and 30 servers per leaf switch. All servers are connected to

the leaf switches via a 1 Gbps link while leaf switches are connected to spine switches

via a 10 Gbps link. The buffers at the servers and at the switches are assumed infinite.

Traffic flows are generated according to a Poisson process with bursty arrivals of
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packets belonging to the same flow and the flow size is exponentially distributed with

an average of 46 kB. This value has been derived by the Facebook data center [52].

IP packet lengths are chosen according to one of the following methods:

1. fixed and equal to 1500B to simulate bulk data transfers.

2. randomly chosen according to a bimodal distribution with 0.4 probability of gen-

erating 40B packets and 0.6 probability of generating 1500B packets; this scenario

approximates the scenario typical of many applications such as Hadoop, as ob-

served in [52];

3. randomly chosen according to the FacebookWeb Server distribution (FBW) taken

from [52], which refers to a web service scenario in a data center. In this scenario

only 15% of the packets have are 1500B size with a median centered around 150B.

In SYN architecture, we set the timeslot corresponding to 1500B at the IP layer, coher-

ently with Fastpass [43].

We considered two different traffic patterns:

1. incast, where all the servers sends traffic to the same hot-spot server;

2. uniform, where the traffic is uniformly distributed across all servers;

The data center load is defined as the average normalized amount of traffic destined to

the servers. Finally, the centralized controller is assumed to operate out of bandwidth

and with zero latency.

We evaluate the normalized per-server throughput and the Flow Completion Time

(FCT), in terms of average and coefficient of variation. FCT is measured from the gen-

eration of the first packet belonging to a flow until the reception of the last packet by

the destination application. Each FCT is then normalized by the theoretical minimum

FCT that would be achieved by that flow in an empty DCN.

FCT has been chosen among the primary confrontation metrics due to its impor-

tance in assessing the performance of typical DC delay-sensitive applications, which

directly affects the quality of experience of end-users. We further highlight the compo-

sition of FCT by analyzing the server latency, i.e. the average amount of time packets

spend in the transmission queues inside each server before entering the DCN and the
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Figure 3.3: Fairness comparison between SYN MMF packet scheduling and ASY rate
normalization algorithms under uniform traffic

network latency, which is the average time it takes for packets to arrive to the destina-

tion server once they enter the DCN.

3.3.4 Fairness comparison

As a preliminary result, we show that the two architectures behave in a similar way

in terms of fairness. We compare the ASY architecture computing the MMF matching

with the SYN architecture with the previously described rate normalization algorithm.

Figure 3.3 depicts the Jain’s fairness index of the two systems under uniform traffic for

different loads. For a small load, the ASY system achieves lower fairness due to the

sparseness of the offered rate matrix. However, for load higher than 0.2, which is a

typical scenario in DCNs, the matrix becomes denser and the two architectures rapidly

converge to the same, close to the optimal one, fairness index.

3.3.5 Influence of the matching policy on FCT

We investigate the effect of the metrics adopted in the computation of maximal size

matching, as described in Section 3.3.1, under fixed-length packets. Similar results have

been obtained for variable-size packets.

Figure 3.4 depicts the influence of each matching metric on the FCT, under the sce-

nario of the incast traffic. OCF yields the highest average FCT but at the same time,

the lowest variance (results not reported for the sake of brevity). On the contrary SRJF

by its nature minimizes the FCT but may lead to unfairness which in return increases
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Figure 3.4: Comparison among different maximal size matchings under incast traffic
pattern.

variance and the amount of potentially missed application deadlines. MMF is a reason-

able trade-off between average FCT and the corresponding variance as it balances the

two metrics. All the metrics permit to achieve the maximum throughput and the same

(optimal) fairness. The main factor responsible for the slight reduction in FCT in the

case of the ASY system is packet contention at the switches, which will be shown in

Section 3.3.7 to be negligible.

3.3.6 Influence of packet-length distribution

In our subsequent analysis we considered the influence of packet-length distribution

on the two systems.

Fixed packet lengths

We obtained results similar to the case of the incast traffic pattern. From Figure 3.5a

it can be seen that there is no significant variation in terms of FCT between the two

systems. Noticeably at higher loads the ASY system yields smaller FCTwhile still main-

taining comparable variance. The reason behind this behavior will be later explained

in Section 3.3.7.

Bimodal packet lengths

Bimodal packet length distribution is common to applications using TCP as the trans-

port protocol. In the case of fixed-size packets, each timeslot of the SYN system was
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Figure 3.5: FCT for fixed-length packets and uniform traffic pattern.

fully exploited because the packet lengths were tailored in such a way to perfectly fit

inside the timeslot, leading to 100% throughput inside each timeslot. We observed that

the performance of the SYN system changes significantly in the presence of variable-

size packets. For a bimodal packet distribution, the FCT of the SYN system quickly

diverges from the ASY one, which as it can be seen from Figure 3.6a increases by more

than one order of magnitude. It is easy to build an adversarial traffic pattern repeatedly

composed of one MSS-sized packet followed by one ACK packet which may reduce the

throughput of the SYN system down to ≈ 50%.

FBW packet lengths

Similarly to the bimodal packet length distribution, in the case of FBW the SYN system

does not achieve 100% throughput due to the partial timeslot filling. Results depicted in

Figure 3.6b show how at low load the two distributions lead to similar FCT. However,

at higher load, even if FBW packet lengths lead to smaller FCT with respect to the pure

bimodal one, it is still one order of magnitude larger with respect to the ASY case.

3.3.7 Queueing within the data center

Figures 3.7, 3.9 show a 100ms trace of buffer occupancy averaged across all servers, for

0.8 load under uniform traffic pattern and fixed packet lengths. It is immediate to notice

that the ASY system provides a more balanced distribution of buffer occupancies across

the entire data center. The ASY system is able to keep the server memory 40% lower
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Figure 3.6: FCT for bimodal and FBW packet lengths and uniform traffic pattern.
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Figure 3.7: Transmission buffer occupancy at the servers

with respect to the SYN architecture at the expense of slightly bigger buffering at the

switches. Notably, this reduction is relevant because it mitigates the resource overhead

of managing per-destination queuing at the servers. In particular, we observed that the

40% reduction in the buffer occupancy at the servers corresponded to a 45% increase

in the average buffer occupancy at leaf switches (but no significant variation in the

99th percentile with respect to the SYN case) and 100% increase in the average buffer

occupancy at spine switches (with a 99-percentile around 7.5 kB, which is still very

small).

In Figure 3.10a we show the impact of queuing on the experienced delays under

uniform traffic pattern with fixed-length packets. Although the 50th percentile of the

packet network latency for ASY architecture is double that of the SYN, the overall FCT
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Figure 3.10: Latency distribution inside the network for SYN and ASY systems under
0.8 load and uniform MTU-sized traffic.

is still dominated by the latencies at server queues. In fact, when compared with the
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CDF of FCT in Figure 3.10b, the contribution due to network latency can be seen to be

negligible. The cost of providing protection against contention inside the DCN in SYN

architecture is that of experiencing larger delays at the servers, which, as shown, for

high load becomes the dominant cause of an increased FCT.

3.4 Discussion

Asynchronous architectures appear to be very promising for their trade-off between

performance and complexity. Nevertheless, employing centralized schemes for such

a critical task as traffic control has its own drawbacks. Scalability is among the main

factors pushing vendors away from centralized traffic management solutions, leaving

distributed approaches as the preferred ones. However distributed approaches typi-

cally are not capable of reaching the same level of performance as the centralized ones

unless employing expensive dedicated hardware. In Chapter 4 we will show that dis-

tributed flow scheduling can be performed on commodity switches, thus not requiring

any hardware modification, while at the same time achieving performance close to the

state of the art expensive solution.
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Chapter 4

NOS2: Simplifying Flow Scheduling
in Data Center Networks

Part of the work presented in this chapter has been published in:

• Sviridov G, Bianco A, Giaccone P. ”Low-complexity Flow Scheduling for Com-

modity Switches in Data Center Networks.” In IEEE Global Communications Con-

ference (GLOBECOM). 2019.

In Chapter 3 we analyzed how an asynchronous traffic control is capable of mini-

mizing the congestion in DCNs by accurately adjusting the transmission rate of each

server, ultimately leading to low flow completion times. Nevertheless, in our discus-

sion we conclude that centralized traffic control schemes are difficult to realize in prac-

tice. Furthermore, building upon those solutions to support more sophisticated flow

scheduling mechanisms can result in even higher complexity and poorer scalability.

Yet modern DCs call for flow scheduling mechanisms capable of discriminating among

different flows.

Indeed, most of the modern DCs are employed as multi-tenant environments, thus

being composed of multiple servers running different tasks and services such as inter-

active applications, data processing and machine learning. As a consequence, DCNs

observe different types of flows with different requirements in terms of latency. Multi-

ple studies [52], [53] have shown that the majority of flows present in a DCN are short

(i.e., “mice” flows). While being the dominant type of flows in the DCN, mice flows

are far from being responsible for the majority of the bandwidth utilization. Very long
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flows (i.e., “elephant” flows), although being scarce in numbers, contribute to more than

80% of the total network utilization.

Mice flows require a small flow completion time (FCT) because they typically be-

long to delay-sensitive applications, such as remote procedure calls (RPCs) or real-time

interactive applications. On the contrary, elephant flows are bandwidth sensible and

typically require a large amount of bandwidth for a prolonged time while being able

to tolerate high latency. The coexistence of the two types of flows inside DC poses

significant challenges for the performance optimization of the respective type of flow.

Traditionally, DC flow management schemes are based on classic transport protocols

and on switches employing buffers shared among all flows without any discrimination

between different types of flows. Thus, in such scenarios all flows are treated likewise.

However, such approaches lead to strong penalties for the FCT of mice flows whose

performance is deteriorated by the coexistence with bandwidth-hungry and aggressive

elephant flows.

Multiple proposals have beenmade aiming to achieve the best possible performance

for both mice and elephant flows by exploiting knowledge about the lengths of individ-

ual flow [54]–[56]. However, in realistic scenarios such detailed information about each

flow is typically impossible to obtain.

Recent proposals like PIAS [57] and Homa [58] try to address this issue by assuming

all flows to be mice up to a certain amount of transmitted data, thus performing prior-

itization of new flows over the already existing ones in both servers and DC switches.

This approach does not require any preliminary information about the flow length and

permits to reduce the FCT for mice flows, even though they may initially compete with

elephant flows. At the same time, elephant flows do not starve, thus satisfying their

bandwidth hungriness. From a practical point of view, such an approach employs in-

network prioritization employing different priority queues (PQs) with different types

of flows being assigned a different priority. This leads to the creation of leading “spatial

division” of flows of different lengths between different PQs, with the highest priority

being assigned to mice flows. It was shown that 8 PQs at the servers permit to achieve

a reduction in the average FCT up to a factor of 3 with respect to traditional scheduling

using a single buffer [57]. Unfortunately, even if high-end switches are often equipped
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with 4 to 8 PQs, such queues are not fully usable as they are typically devoted to DC-

critical tasks. Such tasks may include separation of different types of traffic [59] such

as RDMA [60], DCTCP [61] and traditional TCP-based traffic or isolation of the signal-

ing flows. The few available PQs poses substantial restraints on the use of fine-grained

PQ-based scheduling mechanisms, making them unpractical in realistic scenarios. On

the other hand, flow scheduling at servers has observed small interest from the research

community and its possible coupling with DCN scheduling has not been widely inves-

tigated.

In this work, we propose Network Optimized Split 2 (NOS2), a flow scheduling algo-

rithmwhich aims at a sweet spot between practicality and performance gain by combin-

ing fine-grained server-side flow scheduling with simple DCN flow scheduling. NOS2

closely approximate the performance of PIAS and Homa while employing only 2 PQs

in the switches, thus making a step towards the practicality of this kind of scheduling

mechanism in realistic scenarios. NOS2 employs a simple PQ-based flow scheduling at

each server using 8 PQs, thus providing high scheduling granularity, while maintain-

ing coarse-grained scheduling based on 2 PQs inside switches, effectively decoupling

server-side and network scheduling.

NOS2 is tuned to achieve low FCT by leveraging the information about the DC-wide

flow length distribution (denoted as workload in the following). We show that combin-

ing such information with fine-grained scheduling at servers is sufficient to achieve

performance similar or even better (depending on the scenario) than schemes based

on 8 PQs while employing a considerably smaller amount of PQs inside switches. A

preliminary version of this work was presented in [62].

To this end in this Chapter, we describe the main issues related to flow schedul-

ing employing flow prioritization in DCNs an how such issues have been addressed in

previous work. Following this analysis we propose NOS2, a novel flow scheduling algo-

rithm and describe its architecture. Finally we investigate the performance of NOS2 by

performing an exhaustive simulation campaign under realistic scenarios and by com-

paring it to existing solutions.
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4.1 Related work

The authors of [57] propose PIAS, a flow scheduling algorithm which aims at mini-

mizing the FCT by splitting flows among different priorities without precise a priori

knowledge of each flow length. While the benefits of this approach idea has already

been investigated in [63], the authors of [57] provide a formulation to find an optimal

split of traffic among different PQs by exploiting information on the average DC-wide

flow length distribution. However, the authors do not address issues related to the het-

erogeneity of workload across the DC and the performance penalty due to the usage

of a DC-wide global flow length distribution. Furthermore, the proposed architecture

requires a large number of PQs inside switches, which may not be easily available.

In [64] the authors compute the optimal traffic split by employing reinforcement

learning algorithms. While being a considerable step forward in solving the scalability

issues, the proposed solution still operates on average DC-wide flow length distribution,

thus not taking into account fine-grained scheduling at each host.

In [59] the authors propose a flow prioritization scheme that exploits only two PQs

at network switches. However, differently from NOS2, the architecture introduces a

modification of the scheduling algorithm running at the servers and requires expensive

modifications of the switch to execute the proposed prioritization mechanism.

In [54] the authors propose a scheduling algorithm, namely pFabric, and show that

it is able to achieve a near-optimal FCT under realistic workloads. pFabric employs a

fine-grained flow prioritization scheme that, in the worst case, needs an unbounded

number of PQs, limiting its practical applicability. Furthermore, it requires a priori

knowledge of the length of each individual flow, which is typically unknown and/or

difficult to obtain in realistic scenarios.

The work in [65] proposes to emulate the presence of PQs inside the network by act-

ing on the congestion window of the transport protocol and givingmore aggressiveness

when sending the segments of short flows. However, this system provides marginal im-

provements with respect to a traditional transport protocol, and the performance is still

worse than a system based on flow separation in different PQs.

In [58] the authors propose Homa, a credit-based transport protocol in which re-

ceivers drive the senders by assigning transmission credits. The credits serve a double
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Figure 4.1: Example of flow scheduling in function of the time.

purpose: i) to specify which senders are permitted to transmit over the DCN to re-

ceivers and ii) to define the network priority to be used during the data transmission.

The priority is selected by exploiting information on the flow length distribution so

as to prioritize short flows over long ones. However, similarly to [57], this approach

requires a large number of PQs inside switches. Furthermore, Homa requires to com-

pletely rework the transport protocol inside each server.

4.2 Reducing FCT with flow prioritization

The problem of scheduling flows consists of choosing a particular set and an order of

flows to serve from an available pool of active flows so to minimize a given objective

function (e.g., FCT, number of deadline violations, average throughput). Depending on

the metric employed for such a choice, different scheduling algorithms can be imple-

mented. Figure 4.1 depicts an example of a pool of 3 flows of different length, in terms

of packets, to be transmitted over a single link. Time is slotted with a timeslot equal

to the packet transmission time. Without any flow scheduling, all three flows will be

served concurrently and they will fairly share the available link bandwidth leading to

an FCT of 3, 7 and 9 for flows 1, 2 and 3 respectively, achieving an average FCT of

6.33 timeslots. On the other hand, a flow scheduler which privileges short flows over

long one, for the same pool of flows, will lead to an FCT of 1, 4 and 10 with an aver-

age FCT of 5 timeslots. In the latter example, the FCT of short flows (flows 1 and 2) is

reduced considerably without affecting significantly the performance of the long flows

(flow 3).
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In realistic workloads the majority of flows inside a data center are mice flows. In-

deed, measurements from [66] show that 80% of flows are mice flows less than 10MB.

Flow schedulers that privilege short flows over long ones may lead to considerable FCT

reductions for mice flows at the expense of the elephants. Nevertheless, [66] showed

that mice flows account for less than 1% of the global DCN traffic, thus the performance

penalty of long flows is expected to be negligible. In general, the performance of ele-

phant flows depends on the overall flow length distribution, in particular it is highly

influenced by the shape of the tail of the distribution. It is expected to observe smaller

performance degradation for shorter tails and vice-versa.

One way of realizing the aforementioned idea is to employ scheduling based on the

flow length of each flow, as discussed in the following.

4.2.1 Flow length-aware scheduling

In flow length-aware scheduling algorithms, the length of individual flows is assumed

to be known in advance and packets belonging to shorter flows are served at higher

priority with respect to packets belonging to longer flows. A flowmaintains the priority

level for its entire lifetime. This scheduling policy, known as Shortest Job First (SJF),

has been shown to have a dramatic benefit for the average FCT [67]. A preemptive

version of SJF, known as Shortest Remaining Job First (SRJF), assigns priorities to each

flow based on the amount of bytes left to transmit until their completion. Flows with

the least amount of missing bytes are served with a higher priority with respect to flows

requiring more bytes to transfer.

To implement prioritization of individual packets in real scenarios, strict priority

(SP) scheduling is adopted and packets are stored in 𝑁 separated queues. Let 𝒬 =
{𝑞𝑝}𝑁−1

𝑝=0 be the set of all queues, with 𝑝 being the priority level (with 0 being the level

corresponding to the highest priority). At each time instant the scheduler selects the

highest priority queue 𝑞𝑠 ∈ 𝒬 to serve, i.e., 𝑠 = min0≤𝑝≤𝑁−1{𝑝 ∶ 𝑞𝑝 is not empty}.
SRJF has been widely studied and its practical implementation was proposed in

pFabric [54] proving to be optimal [68] in terms of average FCT.

The main limitation of flow length-aware schedulers is that they require knowledge

about the length of individual flows. Furthermore, such approaches are made further

more impractical when considering that SJF and SRJF require a per-flow queueing that
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can be approximated with a large 𝑁 for the SP scheduler.

4.2.2 Flow length-agnostic scheduling

In realistic scenarios the length of individual flows is typically unknown or difficult to

be obtained without undergoing into deep modifications of the application layer [69].

Furthermore, the amount of PQs available in commercial switches typically ranges from

𝑁 = 4 to 𝑁 = 8 PQs, far less than the amount of PQs required for fine-grained schedul-

ing policies as SJF or SRJF.

In the absence of any knowledge about the length of individual flows, scheduling

policies leverage the amount of transferred data for each flow (which can be locally

computed based on per-flow counters) to approximate flow length-aware schedulers.

Least Attained Service (LAS) scheduler [70] always gives priority to flows with the

least amount of attained service (i.e., transferred bytes) leading to small FCT for mice

flows as, similarly to SRJF, they are prioritized over large flows. LAS is known to be

optimal when the cumulative distribution function of the flow length 𝐹 (𝑥) is known in

advance and its hazard rate ℎ(𝑥) = 𝐹 ′(𝑥)
1−𝐹 (𝑥) is decreasing [71]. Although mitigating the

issue related to the absence of information about the length of individual flows, LAS

still requires a number of PQs as large as pFabric, thus making it impractical in real

scenarios.

This limitation can be overcome by employing a discretized version of LAS, based

on few queues (i.e., small 𝑁). This solution is known as Multilevel Feedback Queue

(MLFQ). Similarly to an SP scheduler, MLFQ is composed of 𝑁 queues (namely levels)

served in a strict priority manner. However, differently from a normal SP scheduler,

MLFQ permits flows to be demoted to lower priorities using a set of demotion thresh-

olds Ω = {𝜔𝑖}𝑁−1
𝑖=1 , which are based on the amount of service (in terms of transmitted

bytes) 𝑏𝑓(𝑡) a given flow 𝑓 has obtained up to time 𝑡. Notably, 𝑏𝑓(𝑡) is a per-flow counter

available in many commercial switches for data centers. Figure 4.2 depicts an example

of an SP and 3-level MLFQ schedulers with the corresponding demotion thresholds in

the latter case. Figure 4.2 depicts two implementations of an MLFQ scheduler, being

black the common datapath among the two implementations; the blue datapath depicts

the logical behavior of an MLFQ scheduler, while the red datapath shows the actual im-

plementation of anMLFQ scheduler operating on a per-packet level, as used in practical
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Figure 4.2: Comparison of a SP (left) and an MLFQ scheduler (right) with per-flow dat-
apath (blue) and per-packet datapath (green)

implementations.

In a classic MLFQ scheduler each new job is initially placed in the highest priority

queue and once it obtains enough service from a queue it is either demoted to a lower

priority queue or, if its required service has been obtained, is removed from the system.

This behavior is represented by the blue datapath in Figure 4.2. However, in an MLFQ

scheduler operating on a per-packet basis, jobs (i.e., flows) arrive in chunks of packets.

Here flows observe “soft demotions” with their packets being enqueued in the corre-

sponding queues at the time of new packet arrival according to the obtained service of

the flows they belong to. This behavior is represented by the red datapath in Figure 4.2.

In the following, we will always consider the per-packet version of MLFQ.

Adding 𝜔0 = 0 and 𝜔𝑁 = +∞ to Ω, at any given time 𝑡 the priority 𝑝 of a flow

𝑓 is set such that 𝜔𝑝 ≤ 𝑏𝑓(𝑡) < 𝜔𝑝+1. When a new flow 𝑓 arrives at the transmission

buffer of a network interface, the flow is assigned a priority 𝑝 = 0 and its packets are

stored in the highest priority queue 𝑞0. When the amount of served bytes exceeds the

first threshold, i.e., 𝑏𝑓(𝑡) > 𝜔1, the flow is demoted and assigned a lower priority 𝑝 = 1.
Consequently, all the new packets belonging to the demoted flow will be stored in 𝑞1.

This process repeats until the flow terminates or eventually reaches the lowest priority

queue 𝑁 − 1, where it remains up to completion.

The most crucial aspect in an MLFQ scheduler is the definition of a proper set Ω of

demotion thresholds. A simple approach, derived from [54], named Equal Split with 𝑁
levels (ES-𝑁), splits 𝐹 (𝑥) in 𝑁 equal percentiles, as follows:

𝜔𝑖 = 𝐹 −1
(

𝑖
𝑁) , 𝑖 = 1,… ,𝑁 − 1
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However, such an approachmay lead to early flowdemotion, withmice flows quickly

ending up in lower priorities together with elephant flows. Similarly, it may lead to late

elephant demotion by keeping elephant flows mixed with mice flows for too long in

high priority queues before demoting them. This ultimately leads to unbalanced uti-

lization of available PQs, and, as a consequence, to FCT deterioration.

The authors of PIAS [57] try to overcome this limitation by proposing an information-

agnostic scheduler able to achieve performance similar to that of pFabric while employ-

ing 𝑁 = 8 PQs and using only the knowledge about the overall DC-wide flow length

distribution. PIAS addresses the issue related to unbalanced PQs utilization by provid-

ing a formulation for an Optimal Threshold Assignment (OPT) so as to provide the best

PQs utilization and to minimize the average FCT inside the MLFQ scheduler.

The formulation represents the MLFQ scheduler as a tandem of 𝑁 M/M/1 queues,

each queue corresponding to a priority level of theMLFQ scheduler. The service time of

each queue is made dependent on the measured average DC-wide flow length distribu-

tion. The resulting objective function of the OPT problem is constructed in such a way

to minimize the average queueing delay inside the tandem of queues, thus minimizing

also the average FCT. The OPT objective function is modeled by:

min
Ω

𝑁

∑
𝑖=1

𝜃𝑖

𝑖

∑
𝑚=1

𝑊𝑚

being 𝑊𝑚 the average delay of the 𝑚th queue, computed with a M/M/1 queuing model,

and with 𝜃𝑖 = 𝐹 (𝜔𝑖) − 𝐹 (𝜔𝑖−1) being the fraction of flows whose response time is

affected by being processed in the first to 𝑖th queues.

4.2.3 Practical implementation offlow length-agnostic schedulers

Figure 4.3 shows two alternative architectures, one based on PIAS and the other on

ES-𝑁 to compute Ω. Both architectures employ a MultiLevel Feedback Queue (MLFQ)

but the thresholds in each server to serve data flows coming from upper layers is com-

puted either with OPT or with ES. A central threshold controller collects statistics on

the flows generated at the servers, derives the corresponding workload and executes

the OPT (or ES) algorithm. At the same time, servers monitor and notify the threshold
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Figure 4.3: High-level architecture of PIAS and of ES-𝑁, with many PQs at the servers
and at the switches.

controller their flow statistics, and receive the updates on Ω.

Each server, prior to transmitting a packet to the network, tags the packet with a

priority equal to the MLFQ level within which it has been previously enqueued. The

priorities assigned by each server must be consistent throughout the DCN, meaning

that switches must have a number of PQs equal to the number of levels of the MLFQ

employed at servers. Upon packet reception, switches are left with the sole role of per-

forming SP scheduling based on the priority tag. To do so, standard mechanisms based

on IEEE 802.1p [72] can be exploited, being already available in most of the commercial

DC switches.

4.2.4 Applicability in a realistic scenario

The OPT threshold assignment formulation employed in PIAS belongs to the family of

sum-of-linear-ratios problems, which are known to be NP hard [73] and, to the best of

our knowledge, no proven approximation exists for 𝑁 > 2. Thus, the solution can only

be found by means of heuristic algorithms, which do not provide any guarantees on

the optimality of the obtained solution and possibly require a large amount of time to
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converge.

PIAS presents a major restraint in the case of a sudden change in the workload or in

the case of sub-optimal solutions, which may lead to a threshold-workload mismatch,

which was shown to deteriorate PIAS performance by up to 25% [57]. Furthermore,

due to the fact that PIAS employs the average DC-wide flow length distribution, in

the case of mixed workloads servers will use demotion thresholds which are naturally

mismatched with respect to their actual fine-grained local workloads.

For a wide range of traffic types, most of the demotion thresholds in Ω are located

after the 90th percentile of the flow length distribution. Since the majority of realistic

workloads are heavy-tailed and their empirical estimation is hard to achieve, the es-

timation errors reduce the efficiency of MLFQ. Indeed, if the tail of the workload has

been underestimated, flows may be demoted too early, leading to most flows ending up

in the low PQs too early. On the contrary, if the tail has been overestimated, flows may

never be demoted to lower priorities, thus reducing the potential performance gain of

MLFQ.

Despite the previously cited drawbacks, the main disadvantage of PIAS is the large

number of required PQs. Indeed, although the majority of commercial switches offer

up to 8 PQs, as previously discussed, most of them are typically unavailable since they

are utilized to perform isolation of different types of traffic.

4.3 NOS2 overview

Differently from switches, implementing fine-grained scheduling at hosts does not pose

significant difficulties thanks to the possibility of defining custom schedulers in the pro-

tocol stacks or using hardware accelerators [74] readily available in most of the com-

mercial DC servers. On the contrary, commodity switches used in DCNs cannot imple-

ment sophisticated scheduling algorithms and even when they are capable of doing so

they are restrained by the scarce amount of stateful resources. Furthermore, employing

DC-wide distribution of flow length in order to set demotion thresholds for all servers

present in the data center may lead to unfairness scenarios. Since the demotion thresh-

olds are computed by taking into account the dominant workload type, rare workloads

will be scheduled using a mismatched set of thresholds before even leaving the servers.
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2 PQs in all the switches.

Inspired by the aforementioned observation, to overcome the shortcomings of pre-

viously proposed approaches, we propose the NOS2 architecture. Our key idea is to

decouple the MLFQ system with multiple queues at the servers from the queueing oc-

curring at the switches, which now adopt only 2 PQs, independently from the number

of queues at the servers. The high priority queue at the switches is devoted to mice

flows and the low priority one to elephant flows. Such choice is made on the basis that,

as it will be shown in Section 4.4, fine-grained scheduling at hosts plays a fundamental

role in the reduction of FCT while partially overshadowing the benefits of fine-grained

network scheduling.

Figure 4.4 depicts the NOS2 architecture. Differently from PIAS and ES-𝑁, NOS2

leaves to servers the complete freedom in managing their demotion thresholds on the

basis of the locally observed workload. However, this does not introduce any expensive

threshold computation since NOS2 involves simple ES thresholds for MLFQ scheduler

at the servers. Furthermore, per-flow counters are not required in the switches, sim-

plifying their operations. At the same time, to compensate for eventual performance

losses due to non-optimized thresholds at servers, demotion thresholds inside switches
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are computed by the threshold controller based on the DC-wide flow length distribu-

tion, as in PIAS.

4.3.1 Threshold controller

The central controller gathers flow statistics from the servers, computes the DC-global

flow length distribution and computes Ω for the switches based on the OPT algorithm,

which is provably optimal. Since the switches adopt only 2 queues and just one thresh-

old is needed (i.e., Ω = {𝜔1}) the complexity of the OPT algorithm is considerably

lower with respect to the case of multiple thresholds. Intuitively, the controller must

identify just the elephant and mice flows globally in the DC and instruct the switches

to enqueue them in low priority and high priority queues, respectively. As shown in

Figure 4.4, a single optimal threshold 𝜔1 is sent to all the servers.

Computing the optimal 𝜔1 represents a critical point in NOS2 architecture. We as-

sume Poisson flow arrival and exponential service time. Given the average DC cumu-

lative flow length distribution 𝐹 (𝑥), the flow arrival rate 𝜆 and average flow length 1/𝜇,
by recalling the formulation from Section 4.2.2 it is possible to find 𝜔1 by minimizing

the following expression:

min
𝜔1

1
𝜇 − 𝜆𝜔1

+
1 − 𝐹 (𝜔1)

𝜇 − 𝜆(𝐹 −1(1) − 𝐹 (𝜔1)(𝐹 −1(1) − 𝜔1))

where the first term corresponds to the normalized queueing delay 𝑊1 for the high

priority queue. This queue, modeled as an M/M/1 queue, is fed by an amount of data

equal to 𝜆𝜔1, being 𝜔1 an upper-bound for the average flow length observed by the

queue. The second term corresponds to the normalized queueing delay 𝑊2 for the low

priority queue; here, 1 − 𝐹 (𝜔1) is the fraction of the flows feeding the low priority

queue, as 𝐹 (𝜔1) leave the system before reaching the second queue, and 𝐹 −1(1) is the
maximum flow length which is assumed to be finite. As in the previous case, 𝜆 is multi-

plied by the upper bound of the average length of flows, computed by integrating over

the distribution entering the second queue.

The previous expression can be easily solved by employing numerical methods such
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Figure 4.5: Average queueing delay 𝑊 in function of 𝜔1 and 𝜆. The 𝜔1 values computed
according to (optimal) OPT and to ES-N are also shown.

as global minimization heuristics or by simply performing an iterative search. Further-

more, in [75] it is shown that, under non-restricting conditions, there exists a closed-

form approximate expression to compute the optimal value of 𝜔1 with a good degree

of approximation.

For the implementation of NOS2 we consider a simple heuristic based on local min-

imization with random sampling [76] inside the possible solution space which achieves

an average convergence time in the order of seconds on an i7-6700K CPU, with a target

relative accuracy of 10−3. Figure 4.5 depicts how 𝜔1 computed with OPT and ES-𝑁,

changes in function of 𝜆 for two realistic flow length distributions, namely web-search

and data-mining, described later in Section 4.4.1. It is worth noticing that the optimal

𝜔1, computed by OPT, is always located in the tail of the flow length distribution and

leads to a considerably lower queuing delay with respect to ES-N.

4.3.2 Server scheduling and tagging

At each server NOS2 employs MLFQ with a simple ES-𝑁 threshold policy based on

the local estimation of the workload, as shown in Figure 4.4. ES-𝑁 introduces greater
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adaptability to variable traffic patterns. Indeed, in the case of a sudden change in the

workload, a new set Ω can be obtained as soon as the new flow length distribution is

evaluated, without incurring additional latency of running complex OPT algorithm for

multiple thresholds.

However, the aforementioned increased workload adaptability thanks to the use

of ES-𝑁 comes at an inevitable cost of a decreased performance in terms of average

FCT when compared to the OPT thresholds. Nevertheless, in [57] it was shown that

when using ES-8, i.e., with 8 PQs, there is a mere 10% penalty in FCT with respect

to using thresholds obtained by the OPT algorithm. This behavior is confirmed later

in Section 4.4 by our simulation results which show an even smaller performance gap

between ES-8 and OPT thresholds.

As described before, the role of discriminating flows between mice and elephant

flows is left to the threshold controller. Given 𝜔1, servers perform a simple packet

tagging with the use of a Tagging Engine depicted in Figure 4.4. Packets are tagged

with either a high or low priority tag depending on the amount of already transmitted

bytes for the corresponding flow.

4.3.3 Switch scheduling

As shown in Figure 4.4, the switch enqueues the incoming traffic into one of the two

PQs based on the priority level specified by the tag present in the packet and set by the

servers. Then, the 2 queues are served with a strict priority scheduling policy. Switches

do not require tomaintain any per-flow state, since the discrimination between elephant

and mice flows is delegated to the servers and to the central threshold controller.

In summary, the NOS2 approach integrates fine-grained scheduling with multiple pri-

ority levels at each server with coarse-grained scheduling at the switches that simply keep

mice and elephant flows separated inside the DCN.

4.4 Performance evaluation

To understand the effectiveness of the proposed approach, in this section we analyze

the performance of NOS2 by means of extensive simulations.
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Figure 4.6: Data center topology used for the simulations.

4.4.1 Simulation methodology

We perform the analysis using the discrete-event simulator NS3 [77], which provides

detailed simulation models for the Internet protocols stacks from the MAC layer up

to the application layer. We consider a standard Ethernet-based leaf-and-spine topol-

ogy for the DCN, as shown in Figure 4.6. The chosen topology connects 120 servers

and comprises 3 spine switches and 4 leaf switches with 30 servers connected to each

leaf switch. All servers are connected to the leaf switches via a 1 Gbps link, while

leaf switches are connected to spine switches via a 10 Gbps link. Thanks to this link

dimensioning, the DCN provides full bisection bandwidth.

The queueing mechanisms described in Section 4.3 are implemented at the out-

put network interfaces of servers and switches. We employ DCTCP as the end-to-end

transport protocol with marking thresholds and gain parameters set according to the

guidelines provided in [61], while load balancing across the DCN is performed using

equal-cost multi-path routing (ECMP).

Traffic flows arrive according to a Poisson process and the flow lengths are ran-

domly generated according to the desired distribution. We classify flows into mice

flows (<100kB), medium flows (>100kB and <10MB) and elephant flows (>10MB). The

destination of each flow is uniformly chosen at random among the other 119 servers.

The data center normalized load 𝜆 is defined as the average amount of traffic destined to

the servers, normalized with respect to the bisection bandwidth. We vary 𝜆 between 0.5

and 0.8 to simulate different loads inside the DC. We do not show the results for 𝜆 < 0.4
since the difference in the performance of all the considered schemes is negligible.

We consider for our experiments two realistic, heavy-tailed flow length distribu-

tions, depicted in Figure 4.7: Data-Mining (DM) [66] and Web-Search (WS) [61]. The
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Figure 4.7: Flow length distributions employed in simulation.

former is composed predominantly of mice flows (80%) and elephant flows (20%). The

latter instead shows a smoother transition frommice to elephants. We consider two sce-

narios: in the case of homogeneous workload, all the servers generate traffic according

to one of the two flow length distributions (DM or WS), whereas in the case of hetero-

geneous workload, 50% of the servers, chosen at random, generate traffic according to

the DM workload and the remaining servers according to the WS workload.

We report the FCT gain, defined as the FCT achieved by DCTCP divided by the FCT

of the considered scheme. Thus, an FCT gain 𝐺 >1 means that the FCT is reduced by a

factor 𝐺 with respect to DCTCP. We evaluate the average value and the coefficient of

variation (CV) of the Flow Completion Time (FCT) gain, for all the flows, and, indepen-

dently for each class of flows (mice, medium and elephant). The FCT is measured from

the generation at the source server of the first packet belonging to a flow until the recep-

tion of the last packet at the destination server. Evaluating the FCT is important to infer

the performance of typical DC delay-sensitive applications, which directly affects the

Quality of Experience perceived by the end users accessing cloud-based applications.

We compare NOS2 with respect to the following alternative solutions:

• ES-8: the architecture in Figure 4.3 with MLFQ, 𝑁 = 8 and ES-8 threshold com-

putation.

• PIAS: the architecture in Figure 4.3 with MLFQ, 𝑁 = 8 and OPT thresholds com-

putation. The optimal threshold values are taken from the publicly available PIAS
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Figure 4.8: Impact of the number of PQs and their location

source code [78].

• DCTCP: as a reference case, we run bare DCTCP at servers with a single queue at

servers/switches, thus disabling completely any flow prioritization scheme.

4.4.2 MLFQ granularity comparison

To highlight the importance of isolating different types of flows in different queues, we

conduct a series of preliminary experiments by using WS distribution and by varying

the amount of PQs inside servers and switches. For these experiments, we consider the

ES-𝑁 architecture.

Figure 4.8a shows that server scheduling plays the most significant role for the re-

duction of FCT with respect to switch scheduling. Indeed, using an MLFQ with 8 PQs

at the server while keeping only 1 PQ at switches leads to a reduction in FCT by a factor

1.33 when compared to the opposite scheme with 1 PQ at servers and 8-level MLFQ at

switches. Combining the two schemes leads to an ever further reduction in FCT with a

mere increase by a factor of 2 in FCT when moving from 𝜆 = 0.5 to 𝜆 = 0.8.
Figure 4.8b instead shows the 99-percentile FCT for the same set of experiments.

The FCT of the scenario employing 8-layer MLFQ at switches presents a considerable
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increase in FCT compared to other schemes, which remain comparable up to 𝜆 = 0.7
after which they start to diverge from the scenarios employing 8 PQs both at servers

and at switches.

4.4.3 Comparison to other scheduling mechanisms

To show how NOS2 compares to other scheduling mechanisms, we conduct a series

of additional experiments by considering the scheduling mechanisms described in Sec-

tion 4.2. Notably, we consider SRJF and LAS, which, as previously discussed, require

complex switch architectures and in the case of SRJF detailed information about the

length of each individual flow.

Figure 4.9 shows a comparison of the different scheduling mechanisms. Similar

results have been obtained using the data-mining distribution. While all scheduling

mechanisms have a comparable CV of FCT gain, Figure 4.9a shows that there is a big

discrepancy in the average FCT when comparing algorithms using a fixed amount of

PQs to SRJF and LAS. When observing the FCT subdivided by flow type in Figure 4.9c,

both LAS and SRJF are shown to achieve considerable FCT gain both in the case of

medium and mice flows, while having their performance considerably deteriorated in

the case of elephant flows. Since ES8 offers fine scheduling granularity for mice flows,

it achieves a comparable gain for that kind of flows. However, it penalizes medium

and elephant flows, with the former case having worse performance gain than NOS2.

Interestingly, PIAS targets the improvement of medium flows, which are the dominant

type of flows in the web-search distribution and thus contribute to the overall better

average FCT in respect to NOS2 and ES8.

4.4.4 Performance under homogeneous workload

Figures 4.10a, 4.11a show the aggregate average FCT under WS and DM workloads re-

spectively. In both cases, NOS, ES-8 and PIAS behave very similarly in terms of average

FCT. We now focus on the performance of mice, medium and elephant flows. Under

the WS workload, Figure 4.10c shows that, for mice flows, the best FCT is obtained by

ES-8, the worst by PIAS, with NOS2 showing an intermediate behavior. The opposite

holds for the elephant flows, while for medium flows the FCT is almost unaffected by
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Figure 4.9: Comparison of different scheduling schemes

the adopted scheme. On the contrary, Figure 4.11c shows that, for the DM workload,

only the performance experienced bymedium flows are affected by the adopted scheme,

and, in this case, the best scheme is PIAS while the (relatively) worst is NOS2, which

still keeps the FCT gain larger than one. It is worth noting that under DM workload

the amount of medium flows accounts only for 4% of the flows, which explains why the

performance gap between the three architectures in Figure 4.11a is so mild.

The explanation behind the relative performance degradation for NOS2 formedium-

sized flows is that 2 PQs cannot offer enough scheduling granularity to differentiate
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Figure 4.10: Web-search workload

among all flow types. Since the majority of flows in DM workload are either mice

or elephant, the threshold setting which optimizes the average FCT tries to optimize

those two types of flows at the price of sacrificing the performance of medium flows.

On the contrary, the WS workload presents a higher concentration of medium flows,

which leads to the threshold being optimized for those flows. Similar reasoning applies

when it comes to explaining the performance of elephant flows. For the WS workload,

the performance for elephant flows is penalized considerably compared to DCTCP. Al-

though WS and DM have a similar fraction of elephant flows, WS distribution presents
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Figure 4.11: Data-mining workload

a considerably shorter tail, thus a smaller average length of elephant flows. In view of

the discussion made in Section 4.2, this leads to a bigger penalty when mice flows are

prioritized over them. On the other hand, in the case of DM workload the tail of the

distribution is considerably longer, thus this effect is less visible.

For what concerns the CV of the FCT gain, reported in Figures 4.10b, 4.11b, NOS,

ES-8 and PIAS perform similarly, with NOS2 performing slightly better than ES-8 and

PIAS for both WS and DM workloads. There is still a considerable gap between the
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three architectures and DCTCP. This is not surprising, since DCTCP aims at treating

each flow fairly while NOS2, ES-8 and PIAS privilege short flows at the expense of long

flows, thus increasing the variance of the FCT.

4.4.5 Performance under heterogeneous workload

Under heterogeneous workload, as defined in Section 4.4.1, we compare NOS2 only

with ES-8, because the publicly available source code for PIAS provides the values of

the demotion thresholds only for homogeneous DM and WS workloads. Figure 4.12a

shows that, for 𝜆 ≥ 0.7, NOS2 outperforms ES-8 because each server employs demo-

tion thresholds tailored to their own specific workload instead of using those based

on the average data center flow length distribution, as in ES-8. At the same time, the

DC-wide optimized thresholds, which are instead based on the average flow length dis-

tribution, are able to compensate for the mixture of two different workloads. As shown

in Figure 4.12b, there is no significant difference in terms of the CV of FCT gain in the

heterogeneous case when compared to the homogeneous one.

To show the robustness of NOS2 to different concentrations of workloads, we vary

the fraction of servers employing DM workloads from 10% to 90% for load 0.7 as to

simulate different mixed workload patterns. Figure 4.13 show that the performance of

NOS2 are almost independent of the fraction of DM workload with an average FCT

gain that stays stable around 1.5 for all of the considered mixed workloads. Further-

more there is no substantial variation in the CV of the FCT gain which confirms the

robustness of NOS2 to different workloads.

4.4.6 Robustness to wrong workload estimations

The estimation of the tail of the flow length distribution requires observing the com-

pletion of elephant flows. During workload changes, a considerable amount of time is

required to estimate correctly the contribution of elephant flows and thus update the

flow size distribution. During this transient phase, the assignment of thresholds is per-

formed in a suboptimal way since it is based on incomplete information which in turn

affects how different flows are distributed among different queues inside the network

and ultimately affects the FCT.
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(a) Average FCT gain (b) Average CV of FCT gain

Figure 4.12: Heterogeneous workload

(a) Average FCT gain (b) Average CV of FCT gain

Figure 4.13: Performance under heterogeneous workload and variable fraction of DM
workload, for normalized load 0.7

As shown in Figure 4.5b and Figure 4.5a the position of the demotion threshold is

agnostic to the shape of the lower percentiles of the flow length distribution as it highly

depends on the shape of the tail of the flow length distribution. This effect is noticeable

especially for high loads which observe 𝜔1 being positioned after the 95-percentile of

the flow length distribution. Consequently, even such a small underestimation of the

flow length distribution will lead to suboptimal 𝜔1.
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Figure 4.14: Performance of mice (left), medium (middle) and elephant (right) flows in
the case of workload underestimation.

To highlight this effect we consider a scenario in which the tail of workload is un-

derestimated. We consider a truncated flow length distribution 𝐹 (𝛼)(𝑥) for the threshold
assignment, while keeping invariant the actual distribution 𝐹 (𝑥) for the traffic genera-

tion. In more detail, we truncate the original flow length CDF 𝐹 (𝑥) at a given 𝛼 factor

such that the support is limited by 𝐹 −1(𝛼), as follows (assuming 𝐹 (0) = 0):

𝐹 (𝛼)(𝑥) = 𝐹 (𝑥)
𝐹 −1(𝛼)

for 𝑥 ∈ [0,𝐹 −1(𝛼)]

This approach provides a scenario in which the CDF are perfectly estimated up to

a given percentile but elephant flows have still not been observed.

Figs. 4.14a and 4.14b show respectively the FCT of web-search and data-mining

workloads with 0.8 normalized load and with 𝛼 varying from 1 (i.e., the ideal case with
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no truncation) to 0.8 (i.e., 20% of the elephant flows have not been considered). In

the case of WS workload there is no significant variation in the FCT in respect to the

truncation factor for mice flows. For other types of flows ES8 trades the performance

of medium flows for the performance of elephant flows while the performance of NOS2

remains consistent in respect to the truncation factor. On the other hand, in the case

of DM workload the performance of elephant flows stays invariant in respect to the

truncation factor, but ES8 suffers considerably when the truncation factor decreases

with a loose of performance of almost a factor 2 when the truncation factor is set to

0.8. In conclusion, NOS2 appears robust to workload underestimation, occurring during

workload changes.

4.5 Future work

As discussed throughout the chapter, NOS2 considerably simplifies the complexity of

employing MLFQ schedulers in commodity DCNs, achieving a better trade-off between

complexity and performance than alternative solutions.

Although presenting a simple and concise architecture, NOS2 still relies on a central

entity to compute the demotion thresholds for the traffic split. Recent advances in the

field of programmable data planes [3], [8],

and their adoption in commercial DC solutions enable to offload the estimation of

the network-wide CDF directly to the DCN switches. Furthermore, programmable data

planes offer enough flexibility to perform also the computation of the demotion thresh-

olds directly within the DCN, thus removing all the limitations that derive from having

a single central entity.

Although, NOS2 solves the issue of theworkload-thresholdmismatchwhen schedul-

ing flows at servers, it still does not take into consideration the diversity in the spatial

distribution of workloads. Since realistic workloads typically present a clustered behav-

ior for different workloads [52], to achieve even better performance a higher number of

demotion thresholds could be employed. Investigating the possible benefits of such an

increase in scheduling granularity and the consequences from the computational point

of view is an important research direction left for future work.
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4.6 Discussion

In this Chapter we introduce NOS2, a low complexity flow scheduling mechanism. We

design NOS2 with the aim of achieving a simple yet performant scheduling algorithm

which is ready to be deployed on commodity switches already present in modern DCs.

Indeed, our simulation results show that NOS2 is capable of achieving close to the state

of the art performance while keeping a low complexity which remains comparable with

capabilities of currently deployed commercial switches. Finally, we believe that NOS2

hits the sweet spot in terms of trade-off between performance and complexity.
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Chapter 5

Removing Human Players from the
Loop: AI-Assisted Assessment of
Gaming QoE

Part of the work presented in this chapter has been published in:

• Sviridov G, Beliard C, Bianco A, Giaccone P, Rossi D. ”Removing human play-

ers from the loop: AI-assisted assessment of Gaming QoE.” In IEEE INFOCOM

Workshop on Network Intelligence. 2020.

• Sviridov G, Beliard C, Simon G, Bianco A, Giaccone P, Rossi D. ”Leveraging AI

players for QoE estimation in cloud gaming.” In IEEE INFOCOM Demo and poster

session. 2020.

In previous Chapters major attention has been dedicated to analyzing and improv-

ing flow performance at different levels of the network. We went from generic mini-

mization of congestion using programmable data planes in wide-area network in Chap-

ter 2 to fine-grained traffic control and flow scheduling in DCNs in Chapters. 3-4. Yet,

as we discussed in Chapter 1 the majority of traffic in the Internet nowadays is related

to user-centric applications. Notably, users do not require the smallest possible flow

completion time nor do they care. Instead they demand a given level of performance

and interactivity depending on the actual application they are using. This leads to the

question whether a blind reduction of the flow completion time is the correct approach
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for traffic optimization. Following the previous observation one must adapt the traf-

fic optimization schemes employed in the network based on the nature of the service

carried inside individual flows and to guarantee a certain level of satisfaction for the

end-user. A service such as video streaming can tolerate high latency, (as long as the

bandwidth stays adequate during the flow existence). On the other hand, video calls,

trading applications or remote surgery have very strict requirements in terms of latency.

Finally, there exists a grey area of applications for which such kinds of requirements

are usually unknown or difficult to achieve. Such is the case of online video games.

The video game industry is skyrocketing, with a market value that has surpassed

that of the film industry and is expected to exceed 230 B$ by 2022. Due to its booming

user base and the increasing social factor in recent games, the video game industry is

starting to have a significant influence on society. Single or two-player mode games

are long surpassed: most games today either offer an optional online mode, or can be

exclusively played online with other users. Due to the necessity of interconnecting

different players and guaranteeing high levels of gaming experience, the gaming in-

dustry has begun to attract a significant interest of network operators. ISPs (such as

Comcast [79]) have started to offer game-specific broadband plans that promise higher

Quality of Experience (QoE) for online games. Equipment vendors (such as Ciena [80]

and Barefoot [81]) put the game use-case at the heart of their network architecture

evolution. Game service providers (such as Google Stadia [82]) have started to offer

cloud-rendered games directly streamed to the user’s home. However, the initial cus-

tomer experience appears to be disappointing [83] at best. This calls for further research

to ensure that networks appropriately handles gaming traffic.

The large spectrum of video game genres, and the large overall video game catalog,

makes the above task very complex [84]. Some games (e.g., first-person shooters or

brawlers) are extremely fast-paced and require swift reaction times from the players,

while others (e.g., strategy or turn-based games) are intrinsically less sensitive to la-

tency. Network conditions clearly play a significant role in the user experience for the

former. Large network latency or packet drops can reduce the player’s performance to

well below the natural score. Furthermore, among similar interactive games, the effect

of a given amount of latency (or packet drop rate) may have a different impact, sig-

nificantly hampering playing ability in one game while and being unnoticeable to the
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player in another.

Due to the presence of complex in-game dynamics, it is usually wrong to assume

that two apparently similar video games will lead to similar QoE under the same net-

work conditions. Even different modes of the same first-person shooter game may lead

to different responses from users depending on network conditions, as shown in [85].

This heterogeneity precludes any kind of generalization of existing results to different

video games and therefore forces us to analyze QoE on a game-by-game basis. This

analysis is typically done with the participation of human players and is notably a very

time-consuming and expensive task that cannot keep up with the steady introduction

of new games to the market.

In this work, we take a completely different approach and advocate that it is pos-

sible to remove human players from the QoE assessment loop. While this may seem a

bold statement at first, we base our claim on the observation that player satisfaction is

naturally related to the score they are able to achieve. Whereas everybody is aware of

the famous Pierre de Coubertin quote “The important thing in the Olympic Games is not

to win, but to take part”, there is little doubt that the winner of the 2019 Fortnite game

competitions that brought home $ 3M [86] would think the same. We can also under-

stand the feelings of any player who fails to win the prize or is not able to compete

fairly because of bad network conditions.

Our key idea is to use scores as a proxy for user satisfaction, allowing us to automate

and scale up the game assessment process. More explicitly, we propose to exploiting

recent advances in the field of Artificial Intelligence (AI), whereby AI agents are able

to autonomously learn complex tasks such as video game playing [87] without any hu-

man intervention. Based on these agents, in [88], [89] we thus propose and implement

a framework for automated assessment of game scores, and in particular of game score

degradation in presence of network impairments. We use this framework on three games,

gathering insights on their score degradation characteristics. These data are then used

to explore how network device packet handling mechanisms might be designed to re-

instate game score fairness, using scheduling as a proof of concept. Finally, we discuss

the issues raised in this work and draw conclusions.
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5.1 Related work

A first class of work related to our concerns QoE assessment in video games, which has

been widely studied throughout the first decade of the 2000s. A major effort has been

put into analyzing the impact of network conditions on different games (Section 5.1.1).

A second, and so far separate, class of work concerns the use of AI for video game

playing. This is a much more recent field with significant contributions during the last

few years (Section 5.1.2).

5.1.1 Assessing video game QoE

On the track of perceived QoE, the authors of [90] analyze how theMean Opinion Score

(MOS) for the game “Call of Duty” depends on network conditions. They show that the

MOS of novice players remains constant even when latency exceeds 100ms, while it

sharply decreases for experienced players after only 50ms of latency. Similarly, in [91]

the authors show that there is a substantial difference in the satisfaction of different lev-

els of racers in an online racing game. It is shown that there is a big discrepancy on how

both the game score and the perceived QoE varies for professional and novices play-

ers with former players being able to compensate better for induced network latency

without score deterioration but stating that the game felt unrealistic.

More quantitative results are provided in [85], which evaluates the impact of net-

work conditions on user score in the “Unreal Tournament 2003” game. The authors

show that, depending on the game mode, a score degradation of 10%-25% is experi-

encedwith 250ms of latency. This is heavily in contrast with numerous previous studies

which fixed the usability threshold for fast-paced games at 100ms [84]. On the same

track in [92] the authors measure the frustration level of the players by analyzing the

average game session duration of an MMORPG in function of the network conditions.

They show that the session duration has an exponential decay in function of both net-

work latency, jitter and packet loss. Although being a coarse view these results give

insight on the average behavior of the users.

Given the above inconsistencies arising from human players, the research commu-

nity has used in-game bots to estimate the impact of latency on the average score
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in “Quake” game [93]. Nevertheless, in-game bots are practically encoding expert-

knowledge concerning a specific game as a set of human-programmed software heuris-

tics.

The above approaches are thus both time consuming and cannot be generalized to

other games. We seek to avoid these disadvantages by leveraging self-learning agents.

To the best of our knowledge, no literature work has so far employed AI agents for the

purpose of automated score estimation across a set of games, which is thus one of our main

contributions of this work.

5.1.2 AI for video game playing

More recently, significant research effort has been devoted by the AI research com-

munity to develop artificial agents capable of generalizing to multiple environments.

Whereas it is out of the scope of this work to provide full coverage, for which we refer

the reader to a comprehensible survey [94], we cover here the techniques we use in this

work.

In particular, [87] proposes Deep Q-Networks (DQN), an application of the classic

Q-Learning algorithm in the context of DeepNeural Networks. The proposed algorithm

is able to learn to play Atari games by observing raw pixels and is able to achieve

super-human score levels for most of them. Many improvements over the original DQN

proposal have then since been proposed in follow-up research [95]–[98] with some of

them targeting more complex video games such as “Doom” game [96] or “Starcraft”

game [98]. Yet in the Atari environment most of the DQN variations perform similarly

to the original algorithm.

Among them, Deep Recurrent Q-Network (DRQN) [95] introduces a recurrent neu-

ral network at its core. DRQN has been extensively used to develop agents for more

complex games such as Doom [96] and showed excellent results against agents trained

with more complex model [97].

Our work differs from this prior work in that we leverage the proposed techniques

to achieve a different goal, namely estimating QoE under network impairments.
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5.2 Methodology

In a nutshell, our methodology consists in (i) emulating a controlled Cloud Gaming

(CG) environment and (ii) training AI agents to let them play in our environment. We

tune the network conditions and measure the agents’ gaming performance.

5.2.1 System model of Cloud Gaming (CG)

Although being fairly novel, CG [99] is rapidly gaining momentum in the gaming com-

munity with numerous services having been released in recent years including the well-

known Stadia platform [82]. Figure 5.1 depicts a basic CG model.

The fundamental idea of CG consists in employing remote rendering of the video

game environment and streaming the high-definition rendering to the clients in the

form of real-time video. This is in contrast with traditional video games that are ren-

dered on a local machine owned by the player. In the case of traditional single-player

games, the entire state of the game is kept locally on the local machine, so that the per-

ceived QoE is influenced only by the performance of the user hardware. In the case of

traditional multi-player games, only metadata related to player actions are transmitted

to the server, that maintains the entire state of the game.

CG on the other hand, delegates the rendering responsibilities to the cloud and

clients are no longer required to possess expensive dedicated hardware for local ren-

dering. Instead, it suffices for them to be equipped with a device capable of displaying a

basic video stream, such as a smartphone or a low-end laptop, for instance. CG clients

interact by sending actions (e.g., keystrokes, pad or mouse movements) to the cloud,

that affect the game state. The disadvantage is that, unlike in traditional video gaming

rendered on local hardware, the streaming of the cloud-based rendering can be affected

by varying network conditions.

From the point of view of the network requirements, CG gives rise to additional

challenges as it combines elements of bandwidth-hungry applications (such as high-

definition streaming) with highly delay-sensitive applications (such as real-time com-

munication and control). It is reasonable to assume that different video games running

in the cloud have roughly the same requirements in terms of bandwidth, as all require a
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Figure 5.1: Cloud Gaming (CG) emulated system.

steady stream of 4K video data. However, when it comes to latency, under the same net-

work conditions user-perceived QoE may vary significantly depending on the nature

of the considered video game.

In our experimental setup, both the agents and the server are in the same high-

performance network, so that we are able to measure the gaming experience (i.e., AI

agent score) in both ideal conditions (sub-millisecond delay, high-bandwidth, no loss)

as well as under controlled network degradation. In particular, as depicted in Figure 5.1,

we can actively control latency and losses at the frame level, with several scenario set-

tings and on several games, as we detailed later in the experimental section (Section 5.3).

5.2.2 Automatizing game playing

In [93] a first attempt has beenmade to substitute real human players by in-game bots to

assess video game QoE. However, bots are not representative of real human behavior

as they can exploit hidden game states, and are not limited to using only the visual

information available to humans. Additionally, this approach cannot be applied when

internal game states are not available, as in the case of online video games and for CG.

Recent advances in the field of AI have led to multiple models of artificial agents

having great flexibility in adapting to different environments. As an example, an AI

agent developed to play Atari games is equally capable of learning to play almost any

Atari game without any human intervention or modification to the actual algorithm.

Without loss of generality, in this work we consider three different Atari games,

whose screenshot is depicted in Figure 5.2. The choice of using Atari games instead

of more complex ones is due to the (relative) simplicity of training artificial agents.
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Figure 5.2: The set of Atari games considered in this work. From left to right: Beamrider,
Seaquest, Breakout.

Furthermore, the Atari suite provides a large variety of games, which allow us to high-

light the aforementioned heterogeneity in latency sensitiveness. We discuss how our

technique applies to more complex games in Section 5.4.

Analogously to real humans, AI agents are built on top of their ability to directly

employ the raw pixels as input to their decision-making process. Furthermore, as in the

case of real humans, the agent decision process is built using a process of “trial and

error”, to progressively improve the gaming performance (i.e., the game score). This

allows agents to generalize to different scenarios by decoupling them from the actual

game engine and makes them a promising technology for replacing humans in game

QoE assessment.

5.2.3 Training AI players

More formally, we use Reinforcement Learning (RL) techniques to train our artificial

agents. In RL, an artificial agent interacts with an environment (i.e., our emulated CG

system) by means of a closed-loop feedback system. At each time instant 𝑡 the agent

receives as input a representation of the environment (i.e., a state 𝑠𝑡 that in our case is a

video frame) and in turn reacts by performing an action 𝑎𝑡 (i.e., a keypress). Following

the action, the agent receives a new state 𝑠𝑡+1 and the reward 𝑟𝑡 (in our case, a possible

change in the game score) corresponding to the state transition 𝑠𝑡
𝑎
−→ 𝑠𝑡+1.
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Practical limits of RL for games

An ideal agent must be able to perform actions so that at each time 𝑡, given the current

state 𝑠𝑡, the action will lead to a maximum future discounted reward 𝐺𝑡 = ∑𝑘≥0 𝛾𝑘𝑟𝑡+𝑘.

The discount rate 𝛾 ∈ [0, 1] tunes the decisionmaking process bymaking a compromise

between immediate rewards (small 𝛾) and possible future rewards (large 𝛾).
As the definition of the future discounted reward depends on 𝑠𝑡 only, it intrinsically

incorporates a notion of agent behavior. Future rewards 𝑟𝑡+𝑘 are given by the current

behavioral model of the agent, i.e., by its policy function 𝜋(𝑎|𝑠). This function dictates

the probability of taking an action 𝑎 given the current state 𝑠. In principle, it is then

trivial to build an explicit expression for the optimal policy 𝜋∗(𝑎|𝑠) which maximizes

❊[𝐺𝑡]. However, explicitly computing 𝜋∗(𝑎|𝑠) becomes burdensome when the number

of states grows large.

Human-like “trial and error” and Q-Learning

A first practical limitation of RL is that learning the optimal policy proves to be chal-

lenging due to its excessive computation cost. Thus, multiple approximate algorithms

have been proposed, including Q-Learning, which is among the most widely used and

studied approximate RL techniques. The main concept behind Q-Learning is finding

an optimal state-action function 𝑄∗(𝑠, 𝑎), which rewards ❊[𝐺𝑡] by performing action

𝑎 while in state 𝑠 at time 𝑡. Q-Learning employs a fundamental result from the field of

dynamic programming, namely the Bellman equation, that determines 𝑄∗ in an itera-

tive fashion. Briefly, Q-Learning works in an incremental fashion by updating the 𝑄
function at each time step 𝑡 as in (5.1).

𝑄(𝑠𝑡, 𝑎𝑡) = 𝑄(𝑠𝑡, 𝑎𝑡) + 𝛼(𝑟 + 𝛾max
𝑎′

𝑄(𝑠𝑡+1, 𝑎′)) (5.1)

Starting from sub-optimal 𝑄 and simply selecting at each time step the action 𝑎
that maximizes 𝑄, i.e., 𝑎 = argmax𝑎′ 𝑄(𝑠, 𝑎′), and updating the new estimate of 𝑄,

provides guarantees of converge with probability 1 to optimal 𝑄∗ under non-restrictive

conditions. From 𝑄∗ it is immediate to define the optimal policy 𝜋∗(𝑎|𝑠). This allows
agents to improve their score over time, learning to play like humans do.
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Human-like vision and CNN

A second practical limitation of RL is that approximate methods reach their limits when

the state space becomes very large since building an explicit 𝑄 function is then unfea-

sible. Consider a simple arcade game whose state is represented by the current frame.

Even a monochrome resolution as small as 64×64 pixels will lead to a state-space of

264×64.

Deep Q-Network (DQN) [87] has been proposed as a solution to overcome the lim-

itation of the exploding state-space, by leveraging recent advances in the field of com-

puter vision achieved through Deep Learning (DL) techniques. In particular, instead of

employing an exhaustive 𝑄 function, DQN employs a Convolutional Neural Network

(CNN) to infer the 𝑄 function, starting from the raw pixels of the frames. Specifically,

DQN extracts the most significant game features from raw pixels followed by a multi

layer perceptron which performs the regression over the extracted features and out-

puts the estimate of the 𝑄 function. This approach allows agents to play any game, as

a human would do, through a CNN equivalent of a visual interaction with a rendered CG

game.

Training in practice

We use OpenAI Gym toolkit [100] with the ALE environment [101] to train agents to

play three different Atari games shown in Figure 5.2 using the model described in [87].

The agents are trained on two NVIDIA V100 GPUs, letting them interact with our em-

ulated CG in unperturbed settings, i.e., with ideal network performance. We report

the training results in Figure 5.3 showing the average score achieved by the agent as a

function of the number of update steps. On average a training time of 22 hours (equiv-

alent to 10M training epochs) is sufficient to reach the maximum score for all of the

considered games.

5.3 Experimental evaluation

In this section, we first provide details about the experimental setup (Section 5.3.1). We

then use the agents trained as described in the previous section to assess the impact of
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Figure 5.3: Training performance of DQN for three Atari games.

network conditions on score degradation (Section 5.3.2). Finally, we show how we can

exploit our findings to improve the QoE by acting on network scheduling (Section 5.3.3).

5.3.1 Network model

With reference to the CG architecture depicted in Figure 5.1, we model the communica-

tion channel between the player and the game server as an asymmetric link character-

ized by the parameters depicted in Table 5.1. Notably, we tune (i) the probability that a

frame is delayed 𝑝𝑙𝑎𝑔, (ii) the amount of latency 𝑙 and (iii) the keystroke loss probability

𝑝𝑑𝑟𝑜𝑝. Note that 𝑙 is defined in respect to the action taken during the delayed frame and

is usually referred to as lag.

We consider the casewhere the communication channel is adequately over-provisioned

in terms of bandwidth to support multiple simultaneous games, thus no network con-

gestion is experienced. For the sake of simplicity, we assume no inter-frame video

encoding. Thus for each update of the game state a full frame containing the new state

of the visual playing environment is sent to the client. Frames are sent at a constant

rate of 60 frames per second. This simplistic setting is a reasonable simplification given

that, for the time being, we do not desire to tackle the problems of bandwidth adaptation

logic in the video streaming portion of the CG (see Section 5.4).

Frame delays and losses can thus be synthetically added to control network condi-

tions. For the sake of simplicity, we consider simple independent probabilistic models
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Table 5.1: Channel parameters employed in the experiments

Variable Description Range

𝑝𝑑𝑟𝑜𝑝 Per-keystroke drop probability [0, 0.5]
𝑝𝑙𝑎𝑔 Per-frame lag probability [0, 0.8]
𝑙 Lag duration [0, 300]ms

to add delay or to lose a packet. With probability 𝑝𝑙𝑎𝑔 we add a given amount of lag 𝑙
for each frame transmitted from the server. At the client-side, at time 𝑡0, if the received

frame relates to a time instant 𝑡 > 𝑡0, then the frame is rendered, otherwise the received

frame is discarded and the last rendered frame is re-rendered for that time instant, es-

sentially simulating a game freezing behavior. Note that for 𝑝𝑙𝑎𝑔 = 1 every frame is

delayed by 𝑙 corresponding to the case of a constant lag scenario. However, emulat-

ing correlated delays and losses (as would happen in the case of transient bandwidth

bottlenecks) can be easily realized by using simple Markovian models. The delay in the

reception of the new frames will alter the agent’s ability to play, exactly as would happen

to humans in the case of sluggish network conditions.

One last point is worth elucidating: the agent sends back an action for every re-

ceived frame in the form of a keystroke. For the case of 𝑝𝑑𝑟𝑜𝑝 > 0, whenever a keystroke

is dropped, the game server interprets it as a no action. The environment is then ad-

vanced by one frame without executing any action.

5.3.2 Assessing score degradation

We emulate a game played over synthetic network conditions using the trained agents.

As for traditional QoE assessment, our goal is to observe how our agent playing capa-

bilities are affected by network conditions. As typically done with human players [85],

we quantify the influence of the network on QoE by considering the average score that

the agent is able to achieve in a perturbed scenario. To compare scores across games,

we normalize the score over the average score achieved in a non-perturbed scenario: a

normalized score ≈ 1 corresponds to no noticeable game impairment (i.e., highest MOS

in an Absolute Category Rating scale), whereas a score ≈ 0 corresponds to the most se-

vere degradation (i.e., lowest MOS). We perform a set of experiments with a non-ideal

communication channel and report our findings in Figure 5.4. Furthermore, we report
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the 95% confidence interval of the obtained score to show the significance of the results.

Fixed latency

We consider the scenario of a communication channel with an added network latency.

We vary this lag between 0 and 300ms and observe the score achieved by the agent. Fig-

ure 5.4a shows that all three games have a sharp decrease in the score when additional

latency is added. However, for low lags there is a large discrepancy in the score degra-

dation across games: Breakout, Beamrider and Seaquest exhibit a significant, moderate

and negligible score degradation, respectively.

This provides initial insights on the dynamics of three games. Breakout dynamics

are very fast-paced, leaving small error margins. On the contrary, in Seaquest and

Beamrider the game dynamics are more forgiving, with the agent being able to easily

avoid obstacles and shoot at enemies even in the case of a delayed scenario. This allows

us to conclude that, in the low lag regime, not all games are equally penalized by the same

network conditions.

Second, it is also clear that after 100ms of extra latency, the latter two games become

unplayable. This is not different from the human perception timescale, where 100ms is

typically considered as a threshold that significantly affects the ability to retain control

in interactive tasks or communication [84]. This is also found in cloud-based games,

which strive to maintain latency at an even lower level [102]. Games are therefore un-

playable in these conditions and AI agents confirm this expectation.

Random keystroke drop

We repeated the experiment by this time-varying the keystroke drop probability 𝑝𝑑𝑟𝑜𝑝.

Figure 5.4b summarizes our findings: all three games have a similar score degradation

as a function of 𝑝𝑑𝑟𝑜𝑝 with Seaquest being themost tolerant among the three. This allows

us to deduce that latency is more important than drops, as dropped actions are naturally

repeated by players, realizing a sort of implicit Forward Error Correction (FEC)mechanism.
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Figure 5.4: Score degradation under perturbed network conditions

Random latency

We perform further evaluations by considering the case of probabilistic latency. Results

depicted in Figure 5.4c show the score evolution as a function of both 𝑙 and 𝑝𝑙𝑎𝑔. These

results closely mimic those obtained in Figure 5.4a with similar score degradation for all

three games. As in the case of fixed latency, Seaquest is able to tolerate higher latency,

while Breakout has rapid score degradation even for small 𝑙 and 𝑝𝑙𝑎𝑔.

The important takeaway from the figures is that our method is automated and is able
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Figure 5.5: Normalized game scores achieved by AI agents under Blind (left) vs QoE-
aware (right) schedulers

to gather very fine-grained score degradation maps for a combination of parameters. The

bottleneck is mostly represented by agent training time (i.e., 22 hours per agent in our

scenarios), whereas the experiments for Figure 5.4 took less than 30 minutes each.

5.3.3 Achieving per-game QoE fairness

Knowing a fine-grainedQoE response to network conditions as provided by ourmethod-

ology opens newopportunities for in-networkQoEmanagement such as resource place-

ment, or QoE-aware packet scheduling.

Taking inspiration from our previous work in Chapter 3 and Chapter 4 and build-

ing upon the results of Figure 5.4a, we make a simple proof of concept, where we take

scheduling decisions that are aware of the heterogeneous sensitivity of games to net-

work impairment. ISPs and CG providers need to perform resource arbitration in the

case of multiple concurrent players. The objective can be formulated loosely as en-

forcing inter-game fairness: in the case of two or more concurrent game sessions, a

QoE-aware scheduler could prioritize the most latency-sensitive games, as the experi-

ence of players of the other games would be less affected by extra latency.

We thus perform an experiment in which we alter the scheduling policy for two

concurrent sessions of the Breakout and Seaquest games. Figure 5.5 shows the time
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evolution of the score of both games. Both sessions share the same bottleneck link

which adds a per frame delay of 30ms with probability 𝑝𝑙𝑎𝑔 = 0.5, and both games are

equally treated by a Round Robin (RR) scheduler. Figure 5.5a shows that although both

game flows observe the same latency a big discrepancy is experienced in the obtained

scores. Breakout is heavily affected by the network impairments, achieving an average

normalized score of 0.35, whereas Seaquest is almost unperturbed, achieving a 0.96

average normalized score.

Using a game QoE-aware scheduler allows us to perform scheduling based on the

expected impact on gaming performance.

As a proof of concept, we switch the scheduling policy to Strict Priority which has

been previously discussed in Chapter 4 and depicted in Figure 4.2. Using SP schedul-

ing we assign the highest priority to Breakout flows while leaving Seaquest flows in a

lower priority. In this scenario, as reported in Figure 5.5b, the Breakout agent observes

an ideal channel and is able to achieve a normalized score of 1 while Seaquest sees

its normalized score decrease to 0.65. However, this priority scheduling increases the

average game score which goes from 0.67 in the case of RR scheduling, to 0.82 in the

latter case. The considered scenario is, of course, only considered as a proof of concept

to show the feasibility of the proposed approach: in practice one would use advanced

weighted scheduling mechanisms, with weights deduced from results in Figure 5.4. The

evaluation of this mechanism is left for future work.

5.3.4 Beyond Atari

Although being quite simple, Atari represents a versatile testbed for the evaluation of

the methodology as it includes a vast catalog of different games. Nevertheless, one may

be persuaded that such a methodology cannot be applied to more realistic 3D games

and is limited to Atari only. To highlight the applicability of the proposed methodology

to more complex games we considered the scenario of cloud gaming with classic Doom

instead of Atari.

Doom has rapidly become an important benchmark for the evaluation of DRL al-

gorithms with numerous works focusing on the development of AI models aiming at

reaching super-human performance in various game scenarios of the game [103] [104]

[96] [105] [106]. Due to this a vast research environment has been created around the
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game which provides ease of integration of the game with available DRL frameworks.

We tested our methodology by employing an artificial agent trained to play Doom

on the client-side. The agent is trained using the deep neural network architecture

described in [96] which achieved first place in the yearly ViZDoom competition [97].

Identically to a human player, the agent receives as input raw pixels and based on it

takes decisions in the form of keystrokes.

We consider the deathmatch game scenario with 8 in-game bots behaving according

to a hardcoded game logic present in the original game and one AI agent. In such

a scenario all players compete against each-other by trying to achieve the maximum

amount of kills in a given game duration. Similarly to the Atari case, we employ the

average in-game score as an indicator of the perceived QoE as previously done in [90].

We consider the kill over death ratio (K/D) as the primaryQoE indicator since it captures

various in-game statistics (including accuracy, avoidance, and reactiveness) and more

generally reflects how easy it is to play the game in a given network configuration.

Figure 5.6 depicts experimental results alongside with the 95% confidence intervals

after multiple deathmatches runs for a subset of selected network parameters.

The results provide insights similar to the atari case, highlighting the score degra-

dation in function of the added latency. Noteworthy, Figure 5.6a shows an increasing

rate in the agent suicide rate with the increase of latency. This metric can be used as a

proxy for partially defining the agent’s accuracy, as the employed game mode included

weapons capable of self-harming the agent if hitting a wall or an enemy too close to the

enemy. This is what has been empirically confirmed by observing the behavior of the

agent in real-time; the added latency contributed to spatial disorientation of the agent,

thus leading to the decrease of accuracy and an increase in the amount of times projec-

tiles were hitting to a wall close to the agent instead of hitting the enemy. In the case of

probabilistic keystroke drops, showed in Figure 5.4b, the suicide rate remained constant

in function of the drop probability which only led to a decrease in the amount of kills

performed by the agent, which can be attributed to the dropping of keystrokes related

to the firing action. Finally probabilistic latency depicted in Figure 5.6c highlights how

the agent is able to remain resilient to transient latencies whenever the amount of such

latency is kept below ≈ 90 ms.
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Figure 5.6: Score degradation in perturbed channel scenario for the game of Doom

5.4 Discussion

Our proposal raises some interesting questions which still remain unanswered and

which we now discuss briefly.

5.4.1 Game stages classification

During our analysis, we considered only games requiring the same playing style through-

out the entire game. Modern games are typically composed of a series of different

stages, e.g., action stages, exploration stages, dialogue stages, etc. Identifying different

stages would lead to even finer-grained control over the resources to be allocated to

single games. As previously shown, low lags added in a fast-paced action stage may

lead to catastrophic performance degradation, whereas a 500ms lag in a dialogue stage

would be hardly noticed by the player. Automatic game stages detection and classifica-

tion can be achieved using a methodology similar to the one we presented by observing

how the agent reacts to channel perturbation throughout its play-through. Including

more diversity and newer games is part of our ongoing work.

5.4.2 Delay-tolerant agents

Our results show that latency plays a fundamental role for the performance of the agent.

These results are consistent with other studies performed with real human players [85],

126



Removing Human Players from the Loop: AI-Assisted Assessment of Gaming QoE

[90]. On the other hand, studies such as [91] showed that, to a certain extent, experi-

enced players are able to tolerate the effects of latency on their gaming performance,

and incur smaller score penalties. In the field of DRL, there has been limited interest

in building agents resilient to delayed environment response. Examples such as [107]

or [108] perform future planning knowing the present observations, instead of using de-

layed observations to predict the present. Nevertheless, there exists a significant body

of work in the field of classic RL that considers these issues [109] and provides strong

theoretical results on model requirements [110]. We are currently experimenting with

delay-tolerant DRL agents to refine our framework.

5.4.3 Agent calibration

Building artificial agents capable of adapting to scenarios with network impairments

introduces another degree of freedom in the assessment of QoE by tuning the “expe-

rience level” [91] or the “play style” [111] of the artificial player. In [111] significant

steps have been made towards creating agents with different play styles, that can make

AI performance closer to human performance. Validating the results that we gathered

in this work with a study including real human subjects is a necessary step in our future

work agenda.

To summarize, in this Chapter we propose a novel methodological approach for effi-

cient and reliable QoE assessment in Cloud Gaming scenarios. At its core, the proposed

approach employs artificial players instead of real humans to assess game session QoE

under different network impairments. We show performance results for three Atari

games for different communication conditions that are in line with related literature

employing human subjects.

We argue that this development yields a versatile and efficient tool for automating

QoE assessment, by employing artificial players instead of real human subjects. We

expect this to bring a substantial reduction in the cost and complexity of the entire

process while introducing a rigorous, methodological and scalable strategy for the as-

sessment of game QoE. Furthermore, in future work we will investigate whether such

an approach can be applied for other interactive services, thus expanding the proposed

methodology to a broader set of applications.
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Chapter 6

Conclusion

In this Thesis a major focus has been devoted towards analyzing traffic flow perfor-

mance inmodern network infrastructures. Starting fromhowprogrammable data planes

can improve the performance of flows in thewide-area networks, moving to flow schedul-

ing in DC networks and finally descending into fine-grained optimization of traffic flow

performance based on the user-perceived QoE.

In Chapter 2 we presented LOADER, a novel framework for developing network ap-

plications based on non-local states for programmable data planes. The main objective

of LOADER is to overcome limitations with traditional network application embedding

mechanisms. Those approaches are notorious for having poor scalability in the case of

network applications operating on states with large network scopes, which may ulti-

mately lead to poor traffic flow performance.

We designed LOADER to operate on replicated states instead of employing only

local states which ultimately allowed us to obtain a scalable and versatile framework

able to cope with the limitations of traditional approaches. Our contribution included

an extensive analysis of the main practical design challenges of enabling switches to

operate on replicated states. Furthermore, we provided a high-level programming ab-

straction for the development of distributed network applications based on replicated

states. The developed abstraction model represents a step forward in making this kind

of approach practical. This is achieved thanks to the fact that LOADER combines the

expressiveness of a high-level programming model without ignoring the underlying

hardware architecture of programmable switches. Thus, while making it accessible to
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the network programmers by its ease of developing network applications, our model

can operate efficiently by providing a comprehensible abstraction for the compilation

and the embedding of network applications.

We validated LOADER using both P4 and OPP stateful data planes under a realis-

tic setting and with a realistic SDN controller. Our evaluation showed that distributed

network applications enabled by LOADER can be beneficial for the network perfor-

mance and can be efficiently implemented in high-performance programmable stateful

switches.

With LOADER we showed how centralized network management approaches com-

bined with network application offloading represent a big potential in improving the

network performance while enabling novel network applications. Among the example

applications enabled by LOADER we showed a DCN link-aware load balancer. Such

application has been widely used to greatly benefit the overall traffic flow performance

inside DCNs. Yet, as discussed in Chapter 3 and Chapter 4, traffic control and flow

scheduling still play a major role in respect to load balancing when it comes to improv-

ing the traffic flow performance. Starting from this observation and taking inspiration

from centralized management approaches, in Chapter 3 we investigated whether cen-

tralized schemes, used in SDN, can be applied to traffic control in DCNs to improve

the overall network performance. We investigated the use of centralized asynchronous

and asynchronous traffic control architectures. More in detail, we showed that, by re-

laxing the constraint on time synchronization of an ideal synchronous flow scheduler

and by employing simple rate limiting at each server, it is possible to obtain perfor-

mance comparable to the ideal system, both in terms of throughput, fairness and flow

completion time. In our evaluation we proposed a simple asynchronous traffic control

algorithm which allowed us to perform a detailed evaluation of queuing delays across

all the components of the DC. Ultimately this allowed us to gather insights on possible

culprits which contribute to the deterioration of flow-level performance. We showed

that the asynchronous approach is capable of reducing the memory overhead of the

transmission queues at the expense of increased network latency while keeping the

complexity significantly smaller in respect to the synchronous system.

We showed that asynchronous architectures appear to be very promising for their
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trade-off between performance and complexity. Nevertheless, we concluded that, while

in theory centralized approaches may be employed to implement fine-grained traffic

control, they are highly complex to implement from the practical point of view and will

unlikely find applicability in real Data Centers.

Following the outcome of Chapter 3 we dedicated our effort in analyzing practical

flow scheduling mechanisms for DCNs that are able to achieve high performance while

keeping the complexity as low as possible. In Chapter 4 we presented the result of our

works, namely NOS2. NOS2 is designed as a flow scheduler aiming at achieving a good

level of performance in terms of flow completion time while keeping the complexity as

low as possible. To achieve this goal we exploited a fine-grained MLFQ flow scheduling

at each host while adopting a simple strict priority scheduler at each switch with only

2 queues. NOS2 exploits centralized knowledge which, differently from the system

presented in Chapter 3, does not impact in any way the performance of the overall

system. Indeed, in NOS2 we exploit knowledge about the DC-wide estimation of the

flow length distribution to configure scheduling policy at hosts and switches. Such

operation can be done efficiently and rapidly, thus not introducing additional latency

or overhead in the overall system.

Our simulation results showed that NOS2, exploiting only 2 priority queues in switches,

is able to achieve a performance close to that of state-of-the-art flow schedulers which

instead rely on 8 priority queues in switches. Thus, given the lower number of queues

and the simpler and more accurate computation of the thresholds, NOS2 is shown to

achieve the best trade-off between performance and complexity.

The process of optimizing both wide-area networks and DC networks traffic flow

performance starts from the assumption of minimizing the average flow completion

time as in Chapters 3-4 or the amount of congestion as assumed in Chapter 2. Such an

assumption is almost never the case in realistic scenarios. What typically happens in

reality is that different flows, even if they are similar among each other, may require

different levels of performance in terms of throughput or latency. While fully under-

standing this kind of requirements may be a challenging task in Chapter 5 we try to do

so for a small, yet important, portion of Internet services, namely for the case of Cloud
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Gaming.

We propose a novel methodological approach for efficient and reliable QoE assess-

ment in cloud gaming scenarios. At its core, the proposed approach employs artificial

players instead of real humans to assess game session QoE under different network

impairment scenarios. While employing simple Atari games for our extensive evalua-

tion we prove the fact that it can be applied to more complex and realistic games such

as Doom. As cloud gaming streams are typically treated equally in the network, thus

observing similar network conditions, following the evaluation of the proposed QoE-

assessment methodology we highlight how the gained knowledge can be exploited to

provide more fine-grained QoS requirements for different games. We show that differ-

ent games have a different response to latency and starting from this observation we

propose an in-network strict priority scheduler. The proposed scheduler, which takes

inspiration fromChapter 4, is able tomaximize the average gaming performance among

different flows by exploiting the latency response curves of individual games.

In conclusion in this Thesis we analyze the impact on the traffic flow performance of

numerous elements of modern network infrastructure. We showed that programmable

data planes are capable of improving traditional SDN performance, yet they require

advanced state management techniques in case of complex network applications. We

showed that the DC traffic flow performance can be improved easily and without in-

troducing substantial complexity in the network. Finally, we showed that optimizing

traffic flow performance without considering the underlying service requirements can

be myopic for numerous real-time applications, thus requiring advanced analysis of the

QoE of users for different services.
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Appendix A

LOADER implementation of
reference applications

A.1 DDoS detection with LOADER

The DDoS detection application operates on a series of network states related to the

transit SYN packets on the edge routers of the network (line 20). To filter the corre-

sponding ports and the type of packets the scope attribute is used during the definition

of the state which is passed a helper function, namely extPortFilter. The reduc-

tion function is simply defined as the sum of the states (line 26) through a predefined

primitive. The trigger function (line 32) simply compares the outcome of the reduction

function against a predefined threshold R and invokes the activity function whenever

the condition is satisfied. The inconsistency level is defined as time obsolescence with

𝜖𝑡 = 0.2ms (line 24) forcing state replication to occur every 0.2ms. The activity function

targets all edge routers and acts by performing the notification of the controller about

the presence of an attack.

A.2 Distributed rate-limiting with LOADER

The distributed rate-limiting application is a variation of theDDoS application. Notably,

while the reduction function remains invariant to the DDoS case, the states are defined
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LOADER implementation of reference applications

1 from Controller import TopologyManager
2 from LOADER.PrimitiveActions import Drop, StateSum, Rate
3 from LOADER.Scope import Pkt
4

5 def extPortFilter(devices):
6 extPorts = []
7 for d in devices:
8 extPorts += [p for p in d.getPorts() if p.Type==EXTERNAL]
9 return (Pkt.ingressPort in extPorts) and (Pkt.TCP.Flag.SYN == 1)

10

11 R = 1000 # DDoS threshold in SYN pkts / s
12

13 # List of all edge routers
14 devices = TopologyManager.getEdgeRouters()
15 applicationStates = []
16

17 # Iterate over all edge routers
18 for i in range(devices):
19 # Create a state for each edge router
20 s = State(target=d,
21 scope=Rate(filter=Pkt(filter = extPortFilter([d]))))
22 applicationStates.append(s)
23

24 # Define the reduction function as the sum of application states
25 r = ReductionFunction(states=applicationStates,
26 operation=StateSum)
27

28 # Define the activity function to drop all incoming packets
29 a = ActivityFunction(target=devices, scope=Pkt(filter=extPortFilter(devices)), action

=Controller.Notify(”DDoS detected”))
30

31 # Define trigger function to perform probabilistic dropping
32 tr = TriggerFunction(s0=r.Result(),
33 trigger=r.Result()>R,
34 inconsistencyLevel=TimeObsolescence(0.2, ”ms”)
35 activity = a)

Listing A.1: DDoS detection with LOADER

as the total amount of traffic going through the edge routers (line 20). To perform rate-

limiting, the activity function (line 29) is defined to drop any incoming packet following

the activation of the trigger function. The trigger function is randomly activated, with

the probability of activating increasing whenever the total incoming traffic approaches

the predefined target threshold R. As in the previous case the inconsistency level is

defined as time obsolescence with 𝜖𝑡 = 0.2ms.

A.3 Link-aware load balancing with LOADER

In link-aware load balancing for data center networks, the objective is to find the least

congested path from a given source server to a destination one. The states are defined

as the congestion level on all uplink paths (line 25) and on the corresponding downlink
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LOADER implementation of reference applications

1 from Controller import TopologyManager
2 from LOADER.PrimitiveActions import Drop, StateSum, Rate
3 from LOADER.Scope import Pkt
4

5 def extPortFilter(devices):
6 extPorts = []
7 for d in devices:
8 extPorts += [p for p in d.getPorts() if p.Type==EXTERNAL]
9 return Pkt.ingressPort in extPorts

10

11 R = 100**6 # Desired rate in bps
12

13 # List of all edge routers
14 devices = TopologyManager.getEdgeRouters()
15 applicationStates = []
16

17 # Iterate over all edge routers
18 for d in devices:
19 # Create a state for each edge router
20 s = State(target=d,
21 scope=Rate(filter=Pkt(filter=extPortFilter([d]))))
22 applicationStates.append(s)
23

24 # Define the reduction function as the sum of application states
25 r = ReductionFunction(states=applicationStates,
26 operation=StateSum)
27

28 # Define the activity function to drop all incoming packets
29 a = ActivityFunction(target=devices,
30 scope=Pkt(filter=extPortFilter(devices)),
31 action=Drop)
32

33 # Define trigger function to perform probabilistic dropping
34 tr = TriggerFunction(s0=r.Result(),
35 trigger=(rand()<(r.Result()-R)/r.Result()),
36 inconsistencyLevel=UpdateError(10),
37 activity = a)

Listing A.2: Distributed rate-limiting with LOADER

paths (line 31). The uplink paths are considered by taking into account the set of leaf

switches (line 18), while the downlink paths are taken over the spine switches (line 19).

We assume that the topology manager exposes the appropriate methods to access the

set of those switches. The reduction function performs a minmax operation over all

the possible paths, thus leading to a path that minimizes the maximum congestion on

the uplink-downlink segment (lines 14-16). This kind of application presents a trigger

function which always returns true (lines 46-49). Consequently, the activity function is

always triggered. Since the scope of the activity function targets all SYN packets (line

40), the activity is executed whenever a new flow arrives. Whenever this condition

occurs, the activity function sets a new flow entry by assigning the least congested

path for the new flow (lines 41-44). Notably, in the scenario of data center networks the

load dynamics may change rapidly due to the presence of a big amount of flows. For
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this reason the inconsistency level is specified in the form of update error with 𝜖𝑟 = 10
writes (line 48), leading to a more updated information at the cost of potentially bigger

synchronization traffic.

1 from Controller import TopologyManager
2 from LOADER.PrimitiveActions import SetEgress, Rate, min, max
3 from LOADER.Scope import Pkt
4

5 # Filter for downlink ports (i.e. from spine to leaf)
6 def dlPortFilter(device):
7 return Pkt.getEgressPort() in [p for p in device.getPorts() if p.Type ==

DOWNLINK]
8

9 # Filter for uplink ports (i.e. from leaf to spine)
10 def ulPortFilter(device):
11 return Pkt.getEgressPort() in [p for p in device.getPorts() if p.Type ==

UPLINK]
12

13 # Reduction function for minimum path congestion
14 def minMaxCong(ulCong, dlCong):
15 dstLeaf = TopologyManager.getSpineID(Pkt.getDst())
16 return argmin([max(ulCong[i], dlCong[i][dstLeaf]) for i in range(len(

TopologyManager.getSpines()))])
17

18 l = TopologyManager.getLeafSwitches()[0]
19 spines = TopologyManager.getSpineSwitches()
20

21 dlCong = []
22 ulCong = []
23

24 for p in l.getPorts(filter = ulPortFilter):
25 s = State(target=l, scope=Rate(filter = Port(p)))
26 ulCong.append(s)
27

28 for sp in spines:
29 spineLoad = []
30 for p in sp.getPorts(filter = dlPortFilter):
31 s = State(target=sp, scope=Rate(filter = p))
32 spineLoad.append(s)
33 dlCong.append(spineLoad)
34

35 r = ReductionFunction(states=[ulCong, dlCong],
36 operation=minMaxCong)
37

38 a = ActivityFunction(
39 target = l,
40 scope = Pkt(filter = (Pkt.TCP.Flag.SYN == 1)),
41 action = insertRule(
42 match = Pkt.getTuple(),
43 action = SetEgress,
44 args = r.Result()))
45

46 tr = TriggerFunction(
47 s0=r.Result(),
48 inconsistencyLevel=UpdateError(10),
49 activity = a)

Listing A.3: Link-aware load balancing with LOADER
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