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Artificial Intelligence for damage detection in automotive composite parts: a use 

case 
 
 
 
 
 

Abstract 

The detection and evaluation of damage in composite materials 

components is one of the main concerns for automotive engineers. It 

is acknowledged that defects appeared in the manufacturing stage or 

due to the impact and/or fatigue loads can develop along the vehicle 

riding. To avoid an unexpected failure of structural components, 

engineers ask for cheap methodologies assessing the health state of 

composite parts by means of continuous monitoring. Non Destructive 

Technique (NDT) for the damage assessment of composite structures 

are nowadays common and accurate, but an on-line monitoring 

requires properties as low cost, small size and low power that do not 

belong to common NDT. The presence of a damage in composite 

materials, either due to fatigue cycling or low-energy impact, leads to 

progressive degradation of elastic moduli and strengths. Since there is 

a well-known relationship between the elastic modulus reduction and 

the amount of damage, the stiffness degradation can be used for the 

scope of detecting the position and the amount of damage that has 

taken place.  Relying on these concepts, a novel strain-based damage 

sensing procedure is here proposed, that can identify damages in 

composite structures by processing strain measures from a distributed 

sensors network. To achieve this result a combined Machine 

Learning pipeline, composed by Principal Component Analysis 

(PCA) and One Class Support Vector Machine (OC-SVM) is 

proposed. First, PCA learns a linear transformation on the 

undamaged measurements to reduce the data dimensionality; 

secondly, OC-SVM trained to detect anomalies in the projected 

components. A cross-validation procedure is used to find the optimal 

pipeline configuration. The methodology is virtually tested on a 

carbon fiber suspension. The results suggest dropping the first 

components of the PCA to feed the classifier. In addition, results 

show the capability of the algorithm to detect anomalies in the 

component strain response. 

Introduction 

Composite materials have been proved to be a powerful solution in 

the hands of automotive structural designers to meet the lightweight 

requirements imposed by the always more restricting regulations on 

vehicle emissions. Despite numerous researchers demonstrating the 

high capability of Fiber Reinforced Polymeric (FRP) materials as an 

alternative to high strength metals, their application to cars on the 

market is still restricted to a small niche of sport and luxury vehicles. 

Among the drawbacks that designers identify in the implementation 

of FRP, there is the possible material degradation after even small 

energy impact events. Indeed, the damage mechanism governing the 

laminates failures is the result of the coalescence of different and 

complex interacting failure modes that can be triggered by small 

impact, inducing a degradation of the material mechanical properties 

[1,2]. The evaluation of damage induced by small impacts has been 

studied by Belingardi et al. [3–5] introducing a Damage Index (DI), 

which indicates the severity of the damage relying on an energetic 

approach. Later, Tridello et al. [6] correlated the DI with the residual 

elastic properties of the laminates, experimentally demonstrating how 

this parameter is correlated with the material properties degradation. 

Boursier et al. [7] compared the experimental results of this method 

with a Finite Element model, demonstrating that the material 

properties degradation due to small energy impact can be effectively 

simulated by imposing lower Young’s Moduli to the damaged area. 

The research underlined that a material degradation could occur after 

small energy impact and this should be considered when designing 

structural components exposed to potential impact, as in the case of a 

vehicle suspension arm. 

A solution to handle this issue could be a Structural Health 

Monitoring (SHM) system. SHM systems are composed of a set of 

sensors providing data that, properly processed, gives information 

about the structural integrity of the monitored component [8]. Boller 

defined several levels of SHM: load monitoring, damage detection, 

damage location, damage size and severity estimation. In this works 

authors want to define a damage detection system. SHM principally 

differentiate by the type of sensor used to collect information about 

the structure. The composite materials, especially laminates, allow 

the adoption of in-situ sensors, which can be directly embedded in the 

material. In this way, on one hand, the sensor and the connection 

cables are protected by external agents, on the other hand it provides 

information coming directly from the core of the material. Koecher et 

al. [9] embedded piezo-resistive in-situ strain sensors for SHM. 

Numerous researchers [10–16] have proven the validity of optical 

fiber has embedded strain and temperature sensors inside composite 

components. In this research authors will consider data coming from 

Fiber Bragg Grating (FBG) sensors, which are able to measure axial 

strains with a precision of 1με. The advantage of this technology is 

the possibility to distribute a large number of strain sensors, limited 

only by the spectral band of the optical interrogator, on a  fiber with a 

diameter of 125μm [17] that can be embedded into the laminates 

since it can stand temperature above the standard curing temperature 

of thermoset and thermoplastic resins. 

Beside the type of sensor monitoring the physical properties of the 

structure, the way the data are processed should be defined. At this 

scope, several researchers have investigated the capability of the 

Artificial Intelligence (AI) methods to identify the data-patterns 

revealing the structural damage. Grassia et al. [18] demonstrated how 

the damage can be detected in stiffened composite panels by 

monitoring the change in the correlation between strain 

measurements of near sensors with Neural Networks, without 

knowing the applied load apriori. Jang and Kim [19] implemented an 

AI algorithm to triangulate the signal coming from FBGs to identify 

an impact in the structure. Kesavan et al. [20] demonstrated how a 

neural network can be used in a SHM system to identify, localize, 
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and estimate the entity of a damage in stiffened composite structures, 

starting from strain measures. All the mentioned research has proved 

the suitability of AI solutions for SHM, but they have been tested 

under load conditions with low variance. Sierra-Perez et al. [21] 

demonstrated how the load condition influences the accuracy of a 

SHM of an aluminum structure and proposed a two-step approach, 

combining a non-linear Principal Component Analysis (PCA) with 

damage estimation algorithm to overcome this issue. In fact, PCA has 

been proved to be a powerful tool to identify the hidden data patterns 

describing the structure response. Furthermore, PCA allows us to 

reduce the amount of information to be managed without losing 

information [22–24]. 

In this work authors propose a SHM system for automotive 

suspension composite parts which relies on strain measurements 

coming from embedded FBG optical fibers sensors. The Structural 

Health Monitoring system for automotive parts proposed in this 

article is designed to be: 

● capable of detecting damage in the suspension component 

independently of the driving loads. 

● trained with data collected on a pristine structure. 

● functioning with a limited number of strain measures. 

To satisfy this requirements the SHM algorithm is designed with a 

combined Principal Component Analysis, computed on a training set 

containing only data coming from the healthy structure, and a One 

Class Support Vector Machine (OC-SVM) classifier, trained with a 

reduced dataset of strain measures referred to the pristine structure. 

The system has been tested in a virtual environment: first, the tyre 

loads are computed through a simplified vehicle dynamic algorithm 

accounting for vertical, lateral, and longitudinal dynamic. Second, the 

loads are imported in a Finite Element model where all the structural 

components of the front chassis are modelled and the strain on the 

monitored part is computed. Third, the strain measurements 

corresponding to a set of FBG embedded in the component are 

exported. The analogue procedure is then replied on a FEM model in 

which the monitored component presents a damaged zone, with 

decreased elastic properties. The collected strain data are used first to 

train, and then to validate the SHM system. In section 4 the results 

are discussed, highlighting the pros and cons of the method, together 

with the possible development of the methodology. 

Methods 

Virtual environment 

The validation of the damage detection system has been performed in 

a virtual environment, where the behavior of an automotive 

suspension has been simulated reproducing the real boundary 

conditions. The full suspension system has been modeled with a 

Finite Element model where the full front chassis, comprehensive of 

all the elastic elements, has been accounted for. 

The load acting on the wheels have been computed with a MatLab 

Simulink code. Considering a New European Driving Cycle (NEDC) 

lap, the longitudinal force due to braking and accelerating maneuvers 

have been computed with a simplified 1D longitudinal vehicle model. 

With reference to a common urban path, lateral load acting on the 

wheels have been calculated implementing a 1D lateral vehicle 

dynamic model. Additionally, vertical loads on the tyre have been 

simulated considering the Power Spectral Density (PSD) defined in 

the ISO 8608: 2016 for vertical displacement. The PSD relative to a 

road irregularity of class B has been properly transformed in the 

equivalent vertical load acting on the tyre. 

Once the tyre loads have been computed, a Finite Element Model 

(FEM) comprehensive of all the structural elements of the front 

chassis has been created (Figure 1a).  

 
Figure 1. a) Finite element model of front suspensions; b) Strain map of 

composite part; c) Strain measures collected on sensors locations 

The Finite Element analysis was carried out with commercial 

software Ls-Dyna with an explicit solver. Details on the adopted FE 

model are contained in [28]. After the analysis, nodes corresponding 

to the sensor’s locations (Figure 1b) were identified and the strains 

averaged at those nodes were extracted. 

First, a simulation was run on the pristine structure to define the 

undamaged baseline. Second, the damage of the part was introduced 

by reducing the composite stiffness by 20% in a circular area, 

simulating a small energy impact as described in [7]. Strain data from 

the two simulations were collected to build the dataset. 

Algorithm 

Principal Component Analysis 

Principal Component Analysis (PCA) is a method to project data 

from an higher dimensional space into a lower dimensional space by 

maximizing the variance of each dimension [25] .The objective is to 

transform a set of data described by a set of variables that could 

exhibit hidden correlation, into a set of data which are uncorrelated. 

To achieve this result, a linear transformation is applied to the 

original data, consisting of a rotation and a stretch, that maps the data 

onto an orthonormal basis of the original data space made of 

eigenvectors of the sample covariance matrix of the data under 

scrutiny. Furthermore, the transformation is usually followed by an 

orthogonal projection on the subset of basis vectors of the most 

varying components, to reduce the data dimensionality. 

Considering a set of data composed by signal coming from L sensors, 

sampled at N discrete instants, they can be contained in a  N-by-L 

matrix, called X, where each column represents the signal of a single 

sensors in each instant, while each row represent the data from all 

sensors in a specific instant. It will be assumed, without loss of 

generality, that the columns of the matrix X have all mean equal to 

zero. This can be obtained simply subtracting to each column the 

mean of the values measured by the sensor it is associated with. 

Projecting the X matrix in a new reference system aligned to the 

principal components requires to define the matrix P, named 

coefficient matrix, so that: 
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𝑇 = 𝑋𝑃    ∈ 𝑅𝑁𝑥𝐿     (1) 

where T is the matrix containing the data projected in the principal 

component space. P is a L-by-L matrix, defined with the Singular 

Value Decomposition (SVD) of the covariance matrix of X. Indeed, 

the subspace in PCA are spanned by the eigenvectors of the covariance 

matrix 𝐶𝑋: 

𝐶𝑋 =
1

𝑁−1
𝑋𝑇𝑋     (2) 

𝐶𝑋𝑃 = 𝑃𝛬     (3) 

The eigenvectors of CX are the columns of the matrix P, in 

descending order according to the associated positive eigenvalue, 

constituted by the diagonal terms of the matrix 𝛬. Thus, the 

eigenvectors associated with the larger eigenvalues are the most 

descriptive of the data variance, as schematically reported in Figure 

2. 

 
Figure 2. A block scheme of the PCA modelling step. 

As results of the PCA, the original dataset is explained by the new 

variables aligned to a new coordinate system, where the greatest 

variance of the data comes to lie on the first coordinate (called the 

first principal component), the second greatest variance on the second 

coordinate, and so on [26]. These results are explained by: 

● the coefficient matrix P, describing the linear transformation on 

an orthogonal basis. 

● the score matrix T, containing the transformed variables of each 

data row. 

● the latent vector V, describing the variance of the original 

variables by the eigenvalues of its covariance matrix. 

● the explained variance E, a column vector containing the 

percentage of the total variance explained by each principal 

component. 

In the context of machine learning, PCA is usually applied to 

determine the minimum number of components containing most of the 

data variance, reducing the dimension of the data.  

In this work PCA is applied in a different way. Inspired by the work of 

[27], the j principal components containing most of the data variance 

are dropped, thus the data are projected on the residual subspace. 

Defining as 𝑃𝑗 the matrix composed by the j first principal components, 

that is the j eigenvectors corresponding to the greatest eigenvalues of 

𝐶𝑋, the residual subspace is the subspace mapped by the projection 

matrix  

𝑄 = 𝐼 − 𝑃𝑗𝑃𝑗
𝑇     (4) 

The matrix Q projects the data on the space spanned by the L-j 

remaining eigenvectors of 𝐶𝑋. In addition, to reduce the data 

dimensionality, here not all the L-j subspace principal components are 

kept, but only the first m of them. Summarizing, the kept principal 

components are those from the j+1 to the j+m in the decreasing 

sequence according to the data variance. 

Following the aforementioned procedure, the PCA can be applied to 

detect anomalies in the strain field pattern recognition. Indeed, the 

strain field tensor presents an innate cross correlation of the strain 

values along its components, which is described, in the elastic region, 

by the theory of elasticity. To deeper understand this concept, here a 

simplified example of a one-dimensional structure is proposed: a 

cantilever beam, subjected to a tip load. The strain field of the beam 

can be exactly computed by the equation: 

𝜀𝑥 =
𝑀𝑦

𝐽𝐸
      (5) 

where M is the local bending moment, y the distance from the neutral 

axis, J the section flexural resistance and E the material elastic 

modulus. Let us consider a random force history applied at the tip, 

the strain field data along the beam at a certain distance from the 

neutral axis are collected and used to compute the Principal 

Component Analysis. It will be observed that the first component will 

have 100% variance, which means that only one variable governs the 

variation in the data, this is the applied force. In fact, all the strains 

are mutually correlated by the elastic properties of the structure 

depending on the geometry and the material stiffness. The PCA is 

then capable of giving an insight on the equations governing the 

structural behavior. When it comes to more complex structures, 

where the geometry is not simple anymore and materials could 

behave non isotropically (as it is for composite), the variance 

associated to the variables is distributed among a larger number of 

components. However the fundamental concept is still valid: in the 

limit of the elastic field, the PCA is able to reduce the number of 

variables necessary to study the structural response and facilitate the 

identification of patterns and anomalies.  

In this work, a coefficient matrix Pd0 is computed with a PCA 

performed on the training set, constituted by data coming from the 

undamaged structures (Figure 2). During the PCA modelling the 

strain sensors variables are projected on a subspace which 

coordinates are aligned to the principal components. The built 

subspace is useful to analyze the patterns contained in the matrix Xd0, 

descriptive of the structural response of the undamaged structure. 

Once obtained the coefficient matrix, it is possible to project the data 

collected on the monitored structure Xu, whose health state is 

unknown to the system, on the principal components defined by the 

PCA (see the scheme of Figure3). The score matrix Td0 calculated in 

the PCA modelling, together with the projected data Tu are used to, 

respectively, train and test the SVM one-class classifier in charge of 

identifying the damaged structures recognizing the change in the data 

patterns. 
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Figure 3. A block scheme of the PCA projection of data collected on the 
monitored component 

SVM one-class classifier 

One-class SVM is an anomaly detection machine learning algorithm, 

capable of learning a hyperplane to separate most of the training data 

from the origin with maximum margin. If correctly trained, the 

algorithm will then identify the outliers as points lying on the region 

including the origin.  A one-class classification problem, given a 

training set 𝑆 = {𝑠𝑖
𝑘}

𝑖=1

𝑁𝑘

 ,can be formulated as follows [28]: 

min
𝜃

1

2
‖𝜃‖2  +

1

𝜈𝑁𝑘
∑ 𝜉𝑖 − 𝜌𝑁𝑘

𝑖=1     

𝑠. 𝑡.    𝜃𝑡𝜙(𝑠𝑖
𝑘) ≥ 𝜌 − 𝜉𝑖  , 𝜉𝑖 ≥ 0 , 𝑖 = 1, … , 𝑛  (6) 

where 𝜃 is the learned weight vector,  𝜌 is the offset, 𝜙(∙) is the 

feature map which maps the features vector 𝑠𝑖
𝑘 into a higher 

dimensional feature space. The expected fraction of outliers is user 

defined by the parameter 𝜈 in Eq. 2 which can assume value in the 

range of (0,1]. The feature map 𝜙(∙) can be implicitly defined by an 

associated kernel function (𝑠𝑖
𝑘, 𝑠𝑖

𝑘) = 𝜙(𝑠𝑖
𝑘)𝑇𝜙(𝑠𝑗

𝑘) , defining a 

nonlinear mapping. For the sake of this work, a radial basis kernel 

function has been adopted in the form of: 

𝑘(𝑠𝑖
𝑘, 𝑠𝑖

𝑘) = 𝑒
−‖(𝑠𝑖

𝑘−𝑠𝑗
𝑘‖2

2𝜎2     (7) 

In the optimization algorithm, the parameter 𝜎 is remapped to the 
parameter 𝛾 =  −1/(2𝜎2). The parameter 𝛾 is called also the scale 

parameter since it defines the scale which the radial basis function 

kernel is most sensible to. Having learned the optimal 𝜌 and 𝜃 from 

Eq.2, it is then possible to compute the outlier score for a test sample 

𝑠𝑡
𝑘: 

𝐴(𝑠𝑡
𝑘) = 𝜃𝑡𝜙(𝑠𝑡

𝑘) − 𝜌    (8) 

The classification step is schematically represented in Figure 4. 

 
Figure 4. A block scheme of the classification step with the OC-SVM 
classifier 

Pipeline 

The overall pipeline used to detect anomalous behavior consist of the 

application of the PCA, the selection of the retained principal 

components, and the training of the OC-SVM on the transformed and 

projected normal data.  

As described in the previous section, here the first j principal 

components are dropped, corresponding to the greatest eigenvalues of 

the covariance matrix. The principal components retained are those 

from the j+1 to j+m where m is the number of principal components 

kept, and 1 ≤ 𝑗 + 𝑚 ≤ 𝐿. 

Cross-validation procedure has been adopted to select the pipeline 

parameters. In this work the pipeline hyperparameters consist of: 

1. the number of principal components dropped starting from the 

most varying, that is j, 

2. the number of principal components retained, that is m,  

3. the expected fraction of outliers 𝜇 and the scale parameter 𝜎 of 

the SVM kernel. 

The cross-validation procedure allows to estimate the metric error for 

each hyperparameter configuration, reducing the variance of the 

estimated metric error by averaging over k stratified fold of (train, 

validation) subset pairs of the original dataset. The obtained estimates 

can be compared to select the best hyperparameter configuration and 

the best classifier. In the context of one-class classification, first a 

subset consisting of both sane and damaged data is held out to 

compose the test set. Second train-validation folds are designed to 

allow the training subset to include only sane data. The overall 

subdivision is depicted in figure 5. 

Summarizing, the number of folds is set to k=3 and the test set size is 

set to the 20% of the complete dataset. The metric used to compare 

the different configurations is the Receiver Operating Characteristic 

(ROC), commonly used for classification methods requiring setting a 

threshold. In this context, the threshold is the OC-SVM anomalous 

score. Each value of the threshold corresponds to a different 

anomalous classifier. For each classifier, the ratio between true-
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positive rate (TPR) and false-positive rate (FPR) on the validation set 

indicates a value in the TPR-FPR domain. The interpolation between 

all the values gives the ROC curve. A measure of the consistency of 

the procedure with respect to the classification problem is given by 

the Area Under Curve of the ROC curve (AUC-ROC). 

 
Figure 5. Scheme of the cross-validation procedure. Phase 1: selecting the best 
hyperparameters. Phase 2: training the final classifier 

Results 

The described methodology has been applied to carbon fiber 

reinforced suspension arms designed by Ciampaglia et al. [29]. First, 

the pristine structure has been tested in the virtual environment and 

averaged strains from 250 nodes on the structure have been collected 

(Configuration A). To simulate the implementation of optical fiber 

sensors, only strains along one direction have been considered. 

Specifically, a virtual spline line has been drawn in the FEM to 

define the normal direction of the optical fiber defining the direction 

of the measured strains. 

The cross-validation has been performed on 31.500 points defined by 

the combination on the parameters reported in Table 1. 

Table 1. Hyperparameters of the pipeline explored in the cross-validation and 

optimum configurations 

 
PCA OC-SVM 

Dropped Number Gamma Nu 

Cross-validation 1-10 1-30 0.001-0.01 0.1-0.9 

Config. A 10 30 0.0001 0.1 

Config. B 10 10 0.01 0.7 

Config. C 5 5 0.01 0.55 

 

Results show that the algorithm is more sensitive to the selected PCA 

components considered to train the classifier than other 

hyperparameters. The accuracy of the damage sensing system, 

defined as the mean of the area under the ROC’s curve (AUC) of the 

three validation sets, asymptotically grows with the number of 

principal components considered. The cross-validation reveals that 

the more principal components are dropped the steeper is the growing 

trend of the mean AUC (Figure 6). 

 

 
Figure 6. Mean test score vs number of components at different values of 

dropped components 

This could be explained by the fact that PCA decorrelates the strains 

data. The measure projected on the principal components are non-

correlated, thus each component can be physically associated with an 

independent mechanistic input of the system that makes the structure 

deform. In this case, the first components are addressable to the 

forces acting on the structure, that do not vary in their frequency and 

amplitude when passing from a sane to a damaged state. Based on 

this observation, the first components will keep being similar, while 

the latter would be affected by the changing in the structure stiffness 

that defines the relation between the dataset features (strains).  

The OC-SVM parameters analyzed in the cross-validations are 𝜈 and 

γ, which defines the shape of the hyperplane that the classifier tailors 

around the data, to assign scores to the samples (Equations 6 and 7). 

Figure 7 shows that parameters 𝜈 and γ have a relatively small effect 

on the AUC, with an improvement of the cross validation score of 

less than 1%. Due to the relatively small influence of these 

parameters on the mean AUC, the explored domain of 𝜈 and γ has not 

been expanded further, even if a maximum is not observed in the 

graph.  

 
Figure 7. The trend of the system accuracy with the one-class SVM 
hyperparameters µ and γ with principal components for configuration A. 
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The pipeline parameters for the optimum classifier for configuration 

A are reported in Table 1. The system with 250 sensors has a cross 

validation score of 0.875, computed on the ROC curve pictured in 

Figure 8. By selecting the ROC curve point closest to the point with 

coordinates (0,1), that would represent the perfect classifier, we can 

conclude that the monitoring system with configuration A classifies 

the test data with a false positive rate of 12% and a true positive rate 

of 80%.  

 
Figure 8. ROC curves for pipelines in configurations A, B and C. 

The selection of the hyperparameters should consider the practical 

implication they have on the monitoring system layout. The number 

of Principal Components dropped and selected in the pipeline reflects 

on the number of strain sensors necessary to properly monitor the 

structures. In fact, the number of computable principal components, 

as defined in Equation 1, is equal to the number of sensors L. This 

implicates that the more components are dropped and selected, the 

more sensors it would be needed. Given the asymptotic trend, it is 

worth optimizing the number of components to minimize the amount 

of strain sensors necessary to properly monitor the structure. At this 

purpose, a cross validation on a dataset with a reduced number of 

features has been carried out. The features have been selected by 

equally spacing strain sensors on the structure, to preserve the 

homogeneous spatial distribution of the measures. Future work will 

investigate the alignment of the original strain measurements with the 

principal components to define an optimization algorithm for the 

feature reduction. 

The new monitoring system configuration, composed of 20 strain 

sensors, has been studied, and a cross validation on the new dataset 

has been performed (Configuration B). The results, reported in Figure 

9, shows the sensitivity of the pipeline to the principal components, 

confirming that the best results are obtained with the maximum 

number of minor components. 

 
Figure 9. Pipeline sensitivity to PCA components on cross validation results. 

As for the system configuration with 250 strain measurements, the 

classifier parameters have negligible effect on the system accuracy 

(see Figure 10). The pipeline, optimized for the monitoring system 

with configuration B, has a cross validation score of 0.85. Analyzing 

the ROC curves, it can be noticed that setting the threshold to the 

value corresponding to the ROC Optimum, the false and true positive 

rate of the two configurations is equivalent. It can be concluded that 

the reduction of the number of sensors has not affected the 

performance of the classifier, revealing a probable redundancy of the 

data in the dataset with 250 features.  

 

  
Figure 10. The trend of the system accuracy with the one-class SVM 
hyperparameters µ and γ with principal components for configuration B. 

 

The results encourage further to reduce the number of sensors, 

making monitoring systems cheaper, lighter, and easier to interrogate. 

Thus, a third configuration with only 10 sensors, distributed 

homogeneously along the component, is tested (configuration C). 

Pipeline sensitivity to PCA hyperparameters (Figure 11) confirm the 

previous observation, even if a smaller influence of the number of 

components is observed.  
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Figure 11. Pipeline sensitivity to PCA components on cross validation results 
for configuration C. 

As stated for configurations A and B, OC-SVM hyperparameters 

have negligible influence on the cross validation score of the pipeline 

(Figure 12).  

 
Figure 12. The trend of the system accuracy with the one-class SVM 
hyperparameters µ and γ with principal components for configuration C. 

A cross validation score of 0.8 is found with the optimum 

configuration of the hyperparameters, listed in Table 1. The ROC of 

the optimized pipeline indicates that the best classification results 

presents a higher false positive rate respect to previous configuration, 

18%, but also a higher true positive rate, 83%. Considering the 

advantages of reducing the strain sensors, the reduction on the 

classification accuracy can be considered acceptable.  Furthermore, 

the pipeline could be expanded with an additional block that takes as 

input the time-history of the scores (or classes) and defines the 

damage state accounting for the irreversibility of the damaging 

phenomena. The development of this additional algorithm will be the 

object of future developments. 

So far, the analysis of the monitoring system performance has been 

based on the best point on the ROC, defined as the one closest to the 

perfect classifier – with 100% of true positive rate and 0% of false 

positive rate.  

But actually, the ROC curves are obtained from the histograms 

(Figure 13) reporting the statistical distribution of the samples score 

of the test set: each ROC point represents the classification results – 

in terms of true and false positive rate – for a different score 

threshold.  

 
Figure 13. Histogram of score distribution of test set. 

Setting the score threshold represents the last monitoring system 

design choice. The best values can be selected on the base of the 

desirable true positive and false positive rate, that correspond, 

respectively, to the rate of samples targeted as damaged and actually 

in a damaged state or not.  As example, with a threshold score of 200, 

all the components with a smaller score, that would be classified as 

damaged, would have a high probability to be actually damaged. On 

the other hand, there would be a consistent number of damaged 

components that would not be recognized by the classifier (Figure 

14).  

 

 
Figure 14. The score of the test samples classified with the pipeline best 

parameters. The dashed lines represent the threshold defined to classify the 
samples on the base of the scores. 

The histogram shows that the classifier overlaps a set of damage and 

sane samples, labelling them with the same score range. This 

phenomenon can be attributable to strains sampled during driving 

condition at low load levels (e.g. stop at traffic light), that induce in 

the component a quite null strain map that the classifier has learned 

as “sane”. If this deduction is confirmed, then the samples overlap 

could be voided by filtering the low strain samples with a threshold 

block at the input of the pipeline. This will be object of future 

investigation. 
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Conclusions 

A statistical pattern recognition-based damage detection algorithm 

was proposed. The method uses an adaption of strain measurements, 

collected from a distributed sensor network, as damage sensitive 

features. Data from the undamaged structure are projected in a new 

reference system with a Principal Component Analysis, with the 

scope to un-correlate the strain and reduce the dataset. Strain 

measured on the monitored structures are then projected in the same 

reference system and passed to a One Class Support Vector Machine 

(OC-SVM) classifier. The OC-SVM with a Gaussian kernel function 

was trained to detect the anomaly in the structural response and 

assess the presence of damage. The entire pipeline was built, and the 

best parameters were investigated with a cross-validation procedure 

to test the robustness of the system.  

The algorithm was tested on an automotive suspension composite 

part. The strains were computed with a Finite Element Analysis of 

the full front chassis excited with tire loads computed with vehicle 

dynamic models in MatLab Simulink. To simulate the 

implementation of an optical fiber into the composite part, strains 

were collected with direction normal to a spline line representing the 

fiber. First, a simulation was run on the pristine structure to define the 

undamaged baseline. Second, a damage in the part was introduced by 

reducing the composite stiffness by 20% in a circular area, simulating 

a small energy impact. Strain data from the two simulations were 

collected to define the dataset. 

Cross-validation was performed on the suspension part with 80% of 

data used for the training and remaining 20% for validation and test. 

The variables investigated in the cross validation were: number of 

PCA components, number of dropped PCA components, ν and γ. 

Results show that the best configuration has an average value of the 

AUC of about 0.87, with thirty Principal Components selected by 

dropping the first ten. Influence of the parameter ν and γ on the 

system performance was proved to be minimal.  

With the aim of reducing the number of sensors necessary to 

correctly assess the health state of the component, two more 

configurations with, respectively, 20 and 10 sensors, were tested. 

Cross validation was performed to select the best hyperparameters in 

each configuration. The optimum set of parameters led to a cross 

validation score of 0.85 for the 20-sensors configuration, and 0.8 for 

the 10-sensors configuration. 

Finally, the histogram of the pipeline was discussed. The accuracy of 

the system would depend on the selection of the threshold: the best 

value, identified as the closest to the point (0,1) on the ROC curve, 

implies a damage sensing performance of the pipeline described by a 

true-positive rate of 80% and a false positive rate of 15%.  

Finally, it can be concluded that the system is capable of sensing 

damages in the composite suspension part, even in a driving scenario 

not simulated in the training data. Further research will focus on: 

1. An optimization algorithm for the assessment of the minimum 

number of sensors necessary to sense damage with the desired 

accuracy. 

2. Definition of a final step for the analysis of the time-history 

output of the classifier to set a threshold function for the damage 

sensing. 

3. Experimental test on a monitored part, with exciting load 

representing tyre loads. 
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