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Abstract

Several studies highlighted the relevance of extrinsic noise in shaping cell decision making

and differentiation in molecular networks. Bimodal distributions of gene expression levels

provide experimental evidence of phenotypic differentiation, where the modes of the distri-

bution often correspond to different physiological states of the system. We theoretically

address the presence of bimodal phenotypes in the context of microRNA (miRNA)-mediated

regulation. MiRNAs are small noncoding RNAmolecules that downregulate the expression

of their target mRNAs. The nature of this interaction is titrative and induces a threshold

effect: below a given target transcription rate almost no mRNAs are free and available for

translation. We investigate the effect of extrinsic noise on the system by introducing a fluctu-

ating miRNA-transcription rate. We find that the presence of extrinsic noise favours the

presence of bimodal target distributions which can be observed for a wider range of parame-

ters compared to the case with intrinsic noise only and for lower miRNA-target interaction

strength. Our results suggest that combining threshold-inducing interactions with extrinsic

noise provides a simple and robust mechanism for obtaining bimodal populations without

requiring fine tuning. Furthermore, we characterise the protein distribution’s dependence on

protein half-life.

Author summary

Phenotypic differentiation often relies on bimodal distributions of gene expression levels,

which can normally be achieved by different molecular mechanisms. During the past

decade microRNAs, small noncoding RNAmolecules, were found to downregulate the

expression of preferred mRNA targets by sequestering and successively degrading them,

thus influencing the level of gene expression. We theoretically address the question on

how microRNA-mediated regulation can induce the appearance of bimodal phenotypes.

Our findings show that the presence of extrinsic noise favours bimodal distributions. This

suggests a simple mechanism for obtaining bimodal populations where the presence of

extrinsic noise relaxes the requirements on parameters fine tuning.
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Introduction

Gene-expression data displays bimodal distributions in several systems ranging from cancer

to immune cells [1, 2]. The two peaks of the distribution are usually associated with different

physiological states of the system, be that different stem-cell fates or different disease states or

cancer subtypes [3–6]. From a theoretical point of view, a common belief is that bimodality is

directly related to bistability, i.e., to multiple steady states appearing in the absence of noise.

However, as shown in [7] and reviewed in [8], bimodality in some biological systems is solely

due to stochastic effects. Environmental fluctuations, usually referred to as extrinsic noise [9,

10], can be a source of noise in molecular networks. Together with intrinsic fluctuations due

to the probabilistic nature of chemical reactions, extrinsic noise shapes gene expression and

may in principle drive cell differentiation.

In the past, both theoretical [11, 12] and in vitro [13] studies, have highlighted the possibil-

ity that microRNAs (miRNAs), in particular stoichiometric conditions, may induce bimodality

in the expression of their targets simply because of stochastic effects related to their specific

titrative interactions and not because of a bistable system. This is similar to the action of miR-

NAs’ bacterial counterpart [14].

MiRNAs are small molecules of non-coding RNA, found in eukaryotes to act as post-tran-

scriptional regulators. Although they were found in several different eukaryotic kingdoms,

their role is known to be vital in multicellular organisms. They perform this function by recog-

nising mRNA targets through Watson-Crick base pairing. Once bound to the target, they pre-

vent its translation and can enhance its instability by degrading it. Interestingly, different levels

of miRNA-target interactions can be achieved by different numbers of miRNAs [15–17]. The-

oretical predictions [12] together with in vitro single-cell experiments [13] suggested that

bimodality in the expression levels of miRNA targets can be achieved with a high miRNA-tar-

get interaction strength. In terms of genetic sequences, this would imply a high specificity

between target and miRNA, and therefore a high number of complementary binding sites (bs)

per target.

As long as a miRNAmolecule is bound to the target, it cannot be translated. It is then possi-

ble to define a threshold for the mRNA transcription rate such that below the threshold many

of the mRNA target molecules are bound to miRNAs and above the threshold there are mole-

cules of mRNA free for translation [12, 18, 19]. The titrative interaction between miRNA and

mRNA thus induces a specific dependence between the amounts of the two species in the sys-

tem. Such a threshold mechanism involves two regimes that can be explored by varying, e.g.,

the mRNA transcription rate. The two regimes are characterized by a low and a high expres-

sion of mRNA. In more detail, the threshold behaviour of mRNA expression crucially depends

on three main parameters: the transcription rate of miRNA, the transcription rate of mRNA,

and the interaction strength between miRNA and mRNA, which is related to the affinity

between them and to the number of miRNA binding sites on the target. If the amount of

miRNA is high compared to that of mRNA, mRNA will be sequestered and repressed. Con-

versely, if the quantity of miRNA is low compared to the mRNA, mRNA will be expressed and

free for translation. The two regimes can be explored by varying the parameters. For instance,

starting with very few free molecules of mRNA and gradually increasing the mRNA transcrip-

tion rate moves the system from the repressed to the expressed state as shown in Fig 1E. The

transition from repressed to expressed upon increasing the mRNA transcription rate occurs

in a non-linear fashion when the amount of mRNAmolecules roughly matches that of miR-

NAs. The steepness of the threshold at this point depends on the interaction strength between

miRNA and mRNA. The presence of the threshold was first detected in [18] where the

mechanism described above was shown and explained in terms of a titrative interaction. The
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Fig 1. Model and steady-state trajectories. The reference circuits (with and without extrinsic noise on the miRNA transcription rate) are represented in (C) and (A)
respectively with the rates considered in the model. kR and kS are the target mRNA and miRNA transcription rates, gR and gS are respectively the mRNA and miRNA
degradation rates. kP is the protein translation rate and gP is its degradation rate. g is the miRNA-target interaction strength and α is the fraction of miRNAs that are
not recycled after binding to the mRNA. In panels (B) and (D) there are three different trajectories for the mRNA, corresponding to the model on the left. For both
panels, the steady-state distributions of the number of free mRNAmolecules are bimodal. In (B) the parameters are kS = 1.2 × 10−3 nMmin−1, kR = 2.7 × 10−3 nM
min−1, gS = 1.2 × 10−2min−1, gR = 2.4 × 10−2min−1, g = 1.5 × 103 nM−1min−1, kP = 6.0 min−1, gP = 1.2 × 10−2min−1 and α = 0.5. In (D) the parameters are kR =
3.1 × 10−3 nMmin−1, gS = 1.2 × 10−2min−1, gR = 2.4 × 10−2min−1, g = 1.2 × 102 nM−1min−1, kP = 6.0 min−1, gP = 1.2 × 10−2min−1 and α = 0.5. kS are picked from a

Gaussian distribution with mean kS ¼ 1:2� 10
�3

nM min
�1 and standard deviation σ = 2.4 × 10−4 nMmin−1. (E) Cartoon of the free mRNA threshold behaviour as

Extrinsic noise and microRNA-mediated bimodal gene expression
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dependence of the threshold location on miRNA expression was investigated in two different

papers, namely in [13] for the highly expressed miRNA regime and in [20] for the weakly

expressed miRNA regime.

Close to the threshold the number of both free miRNAs and targets is small. Their fluctua-

tions are highly coupled by the non-linear interaction between the two and a small fluctuation

in their amounts may lead the system from the “bound” to the “unbound” state [12, 13, 19].

As anticipated, if the interaction strength between miRNA and target is high, then the tran-

sition from the bound to the unbound state is sharp. Close to the threshold, a subset of the tar-

gets will be bound to the miRNA and a subset will be unbound. This is because of the intrinsic

fluctuations in the amount of both miRNA and target. Picturing this in terms of the target

distribution would lead to a bimodal distribution whose two modes are associated with the

bound and unbound state. It is worth underlining that this kind of bimodality is due to the

presence of noise and not to peculiar molecular mechanisms introducing multiple determin-

istic stable states in the system.

MiRNAs are predicted to regulate more than 60% of our genome through a combinatorial

action: every single miRNA can regulate several targets and one target can be regulated by

different miRNAs [17, 21]. The variety of targets they regulate is so wide and important for

different signalling pathways or developmental stages [22, 23] that the alteration of their

expression levels is thought to contribute to tumour development and metastatisation [24–

27]. As discussed in [28], a role for miRNA in generating expression variability can be

remarkable. If miRNA activity increases the cell-to-cell variability of pivotal pluripotency

factors, (consistent with observations in [29]), and in turn of pluripotency networks, then

miRNA expression variability can provide an efficient mechanism for generating transitions

between cell states.

Although extrinsic noise may influence gene expression and regulation at different levels,

large variability across a cell population seems to be dominated by the population dynamics

[30]. Even a monoclonal population has cells in different phases of their cell cycle because of

growth and divisions. It is nowadays well established that multiple cell-cycle regulators are

controlled by miRNAs, whose regulation could be in turn cell-cycle dependent [31–34]. The

expression level of miRNAs may thus change with cell-cycle progression, and there are indeed

miRNAs differentially expressed according to the particular phase of the cell cycle [35]. As a

consequence, in a population of cells heterogeneous with respect to the cell cycle, such as non-

quiescent cancer cells, the amount of miRNAs can strongly fluctuate from cell to cell. This

introduces an extra source of noise in the system besides the intrinsic stochasticity of chemical

reactions involving gene transcription, translation and regulation.

The aim of this work is to understand, with the aid of analytics and numerics, how extrinsic

noise on miRNA expression can induce bimodality on the miRNA targets. Of course, such

bimodality is not omnipresent but restricted to particular stoichiometric conditions and levels

of noise. We show how a distribution of miRNA transcription rates reshapes the threshold

between miRNA and target and defines a wider region of bimodality compared to case without

extrinsic noise. Such a bimodal distribution can be seen at a “population level”, since the

amount of miRNA is heterogenous throughout the different cells. This outcome is significantly

different from previous results where differential phenotypic expression is induced by the

strong coupling between miRNA and its target at the “single-cell level”. We also show that, if

the miRNA target is protein coding, the protein half-life can alter the protein distribution.

a function of its transcription rate. Below the threshold the amount of free miRNA is greater then the amount of free mRNA, in proximity to the threshold their
amount is nearly the same, above the threshold the free mRNA amount exceeds the miRNA.

https://doi.org/10.1371/journal.pcbi.1006063.g001
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With respect to the shape of the mRNA distribution, an increased protein half-life leads to a

narrowing of the protein distribution around its mean. This may promote or suppress bimo-

dality, suggesting that bimodal distributions at the level of mRNAmay still correspond to a

specific single phenotype at the protein level. Conversely, repressed heavy tailed mRNA distri-

butions may give rise to bimodal protein distributions.

Finally, given the existence of multiple targets competing for one type of miRNA, we ask

whether these properties can be maintained in a more complex circuit made of two compet-

ing endogenous RNAs (ceRNAs) and one miRNA [36]. The different target genes indeed

act as sponges for the miRNA molecules and may sequester them from the environment. As

a result, the overexpression or underexpression of one of the targets can lead respectively to

an increase or decrease in the level of expression of the other competitors. The intensity of

such cross regulation depends on the distance from the threshold of quasi equimolarity

between miRNAs and targets [12, 19]. This suggests that, if one target has a bimodal distri-

bution, such bimodality may be influenced by the expression levels of the other miRNA

competitors.

Materials andmethods

Stochastic model for miRNA-target interaction with extrinsic noise

Models of microRNA-mediated circuits have been the subject of several recent studies [18, 37–

41]. Here we will describe one of the simplest ways of accounting for microRNA-driven inhibi-

tion, depicted in Fig 1A. The molecular species involved in this circuit are miRNAs (S), target

mRNAs (R) and proteins (P), resulting from the translation of the target mRNA.

In the following, we shall assume miRNAs and mRNAs are transcribed from independent

genes. For simplicity we neglect all the intermediate reactions leading to the synthesis of

mRNAs, therefore assuming they are produced at constant rate kR. For the miRNA, we con-

sider it to be transcribed with a constant rate kS which we let fluctuate between different cells

to probe the effects of extrinsic noise on the system. This approach is equivalent to having kS
slowly fluctuating in time with respect to the systems’ reactions while different cells are sto-

chastically unsynchronised. We also remark that, in the opposite limit of very rapid extrinsic

fluctuations, these variations average out and the system effectively behaves as if subject to

intrinsic noise only. A more detailed analysis of the interplay between the time scales of extrin-

sic fluctuations and those of the system is reported in a devoted section of the Results. MiRNAs

and mRNAs can also be degraded by the action of specialised enzymes. Here we assume these

reactions are governed by mass-action laws with rates gS and gR. The associated molecular

reactions read:

;Ð
kR

gR
R; ;Ð

kS

gS
S: ð1Þ

MiRNAs act as post-transcriptional regulatory elements, by binding the target mRNAs in a

complex that can be subsequently degraded. Such interactions between miRNAs and

mRNAs are quantified by the effective parameter g, which takes into account the strength of

the miRNA-target coupling: from a biochemical point of view, it depends on the affinity

between the two molecular species and on the number of miRNA binding sites dedicated to a

specific target [18]. The formation of the miRNA-mRNA complex reads:

Rþ S�!
g

RS: ð2Þ

Extrinsic noise and microRNA-mediated bimodal gene expression
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While the mRNAs are always degraded due to the titrative interaction, the miRNAs can be

recycled with probability 1 − α in the following way:

RS�!
1�a

S: ð3Þ

Whenever the mRNAs are not bound to miRNAs, they can be translated into proteins with

translation rate kP and, as assumed for the other molecular species, proteins can also be

degraded with rate gP, i.e.:

R�!
kP Rþ P; P�!

gP ;: ð4Þ

From now on, we define as “intrinsic noise” the fluctuations due to the stochasticity of the

chemical reactions with constant rates (Fig 1A) and as “extrinsic noise” those due to the fluctu-

ating miRNA transcription rate (see Fig 1C).

The system can be described by the probability distribution PðnS; nR; nP; tjKÞ of observing

nSmolecules of miRNA, nRmolecules of mRNA and nP proteins at time t given a set of param-

etersK ¼ fkR; kS; kP; gR; gS; gP; g; ag. This probability distribution follows the same master

equation presented in [12] that can be either solved numerically or at the steady-state with

some approximations. If the parameters fluctuate, this must be taken into account in order to

obtain the full distribution at steady state Pss(nS, nR, nP). This can be achieved by using the law

of total probability [42], which states that PðnS; nR; nPÞ ¼
R

PðKÞPðnS; nR; nPjKÞdK. As our

aim is to test the effects of a fluctuating miRNA transcription rate, we shall assume this to be

the only parameter drawn from a probability distribution, specifically a Gaussian centred

around hkSi with variance s
2

kS
and defined only for positive values of kS. As previously men-

tioned, this is equivalent to assuming the extrinsic noise fluctuates slowly compared to the typ-

ical time scale of any other reaction in the system.

To obtain the steady-state distribution P(nS, nR, nP|kS) conditional on a specific miRNA

transcription rate we could choose different approximation methods. Pivotal examples are the

Van Kampen [43] and the Gaussian approximations [12]. In the following we focused on the

former one, leaving to the Supporting Information a comparison between the two methods

(see S1 Fig). We therefore performed a system-size expansion, thus assuming the system distri-

bution at fixed parameters to be Gaussian.

The marginal distribution P(nS, nR, nP) was then found by using the law of total probability,

i.e., by performing a weighted average over all possible values of kS.

Finally, we applied the same approach when considering two targets interacting with the

same miRNA (Fig 5A). In this case the conditional distribution is P(nS, nR1, nR2, nP1, nP2|kS)

from which one can obtain the full distribution by integrating over the values of the miRNA

transcription rate.

Analytic approach. The equations governing the dynamics of the system considered in

Fig 1 are given by:

dR

dt
¼ kR � gRR� gRS

dS

dt
¼ kS � gSS� gaRS

dP

dt
¼ kPR� gPP ;

ð5Þ

Extrinsic noise and microRNA-mediated bimodal gene expression
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where R, S and P are the concentrations of the three species involved in the circuit expressed in

nanomolars and the parameters are the same as in Fig 1.

Because of the inherent stochastic nature of molecular reactions, intrinsic noise should be

taken into account by defining the probability distribution of observing n ¼ ðnR; nS; nPÞmole-

cules at time t, namely Pðn; tÞ. The number of molecules of species X, nX, relates to the concen-

trations, ρX, as nX = VcellρX. The dynamics of this system can be rewritten in terms of the

master equation, that reads:

dPðn; tÞ

dt
¼ kR PðnR � 1; tÞ � Pðn; tÞ

h i

þ

gR
Vcell

ðnR þ 1ÞPðnR þ 1; tÞ � nRPðn; tÞ
h i

þ

kS

h

PðnS � 1; tÞ � Pðn; tÞ
i

þ

gS
Vcell

ðnS þ 1ÞPðnS þ 1; tÞ � nSPðn; tÞ
h i

þ

kPnR

Vcell

PðnP � 1; tÞ � Pðn; tÞ
h i

þ

gP
Vcell

ðnP þ 1ÞPðnP þ 1; tÞ � nPPðn; tÞ
h i

þ

ga

V2

cell

ðnS þ 1ÞðnR þ 1ÞPðnR þ 1; nS þ 1; tÞ � nSnRPðn; tÞ
h i

þ

gð1� aÞnS

V2

cell

ðnR þ 1ÞPðnR þ 1; tÞ � nRPðn; tÞ
h i

:

ð6Þ

Solving the master equation, or even determining the first and second moments of Pðn; tÞ

might be a difficult task due to the non-linear terms appearing from the miRNA-mRNA inter-

actions. Therefore, it is common practice to use approximations, particularly van Kampen’s

system-size expansion [43].

The van Kampen system-size expansion relies on the assumption that the number of mole-

cules of any species X can be split into two contributions, one due to the deterministic system,

and the other due to the intrinsic noise in the system, namely:

nX ¼ VcellrX þ V1=2
cell xX; ð7Þ

where ξX is a Gaussian-distributed variable with zero average. The cell volume, Vcell, represents

the system size and it is assumed to be sufficiently large. Rewriting the master equation using

Eq 7 to leading order in Vcell, one finds the probability distribution to be a Dirac delta function

in terms of the number of molecules. Thus the deterministic Eq 5 are recovered. The next-to-

leading order in the expansion leads to a linear Fokker-Planck like equation in terms of the

noisy variables {ξX}. The resulting probability distribution for the number of molecules is

Gaussian, centred around the deterministic concentration ϕX, with finite variance. By using

this equation, one can compute the variances and the cross-correlations of the noisy variables,

namely hx2Xi and hξX ξYi that can be related to the molecules’ variances and cross-correlations.

Extrinsic noise and microRNA-mediated bimodal gene expression
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In the specific case of the circuit we analysed, the variances and cross-correlations are

steady-state solutions of the following system:

_hx2Ri ¼ kr � 2grhx
2

Ri þ grR� 2agRhxSxRi � 2agShx2Riþ

agSR� 2ð1� aÞgShx2Ri þ ð1� aÞgRS� 2ð1� aÞgRhxSxRi

_hx2Si ¼ ks � 2gshx
2

Si þ gsS� 2agRhx2Si � 2agShxSxRi þ agRS

_hx2

Pi ¼ kpR� 2gphx
2

Pi þ gpP þ 2kphxPxRi

_hxRxSi ¼ �grhxSxRi � gshxSxRi � agRhx2Si � agShxSxRi�

agRhxSxRi � agShx2Ri þ RSag � ð1� aÞgShxSxRi�

ð1� aÞgRhx2Si

_hxRxPi ¼ �gPhxPxRi þ kPhx
2

Ri � agRhxPxSi � agShxPxRi�

ð1� aÞgShxPxRi � ð1� aÞgRhxPxSi � grhxPxRi

_hxSxPi ¼ �gPhxPxSi � gshxPxSi þ kPhxSxRi � agRhxPxSi�

agShxPxRi :

ð8Þ

Using the expressions obtained from the previous system, specifying all the parameters, one

can compute the probability distribution of the system, Pðn; tÞ.

To investigate the role of environmental fluctuations (i.e. extrinsic noise) in our system of

interest, we consider a fluctuating rate of miRNA production kS. For the sake of simplicity, we

assume this parameter to be drawn from a Gaussian distribution, PðkSÞ ¼
1
ffiffiffiffiffiffiffiffi

2ps2
kS

p e
�
ðkS�hkSiÞ

2s2
kS ,

defined for positive values of kS, where hkSi and s
2

kS
are the average and variance of kS,

respectively.

Due to the further stochasticity introduced by the extrinsic noise, the master equation pre-

viously derived no longer holds. Fluctuations on the parameter kS do not allow us to rewrite a

similar equation for this system in a simple way. However, as shown in [42], the probability

distribution of the entire system, PðnÞ can be rewritten in terms of conditional probabilities by

using the law of total probability in the following way:

PðnÞ ¼

Z

PðkSÞPðnjkSÞdkS; ð9Þ

where P(kS) is the Gaussian distribution in kS and PðnjkSÞ is the conditional probability of

observing a certain configuration of the system, n, given a specific value of kS. This probability

distribution is a solution of the master equation Eq 6 for any given kS. One can therefore

again apply the van Kampen expansion on the master equation of PðnjkSÞ and obtain all the

moments of this distribution (these will all be functions of the fluctuating parameter kS). The

full solution can be obtained by averaging the result over all the values of kS.

Molecular simulations of microRNAmediated circuits via the Gillespie algorithm.

Stochastic simulations have been performed by implementing the Gillespie direct algorithm

[44]. All the results presented in this paper are obtained at the steady state.

Parameter setting. The parameters used to illustrate our results explore different ranges

of experimentally measured values. While the mRNA half-lives, with typical values of 5−10

hours [45, 46], may range from a few minutes to about a day [47, 48], protein lifetimes nor-

mally vary between minutes and several days [49]. The variability of miRNA half-lives is large:

many miRNAs expressed in the brain show a short half-life [50] although in most cases mature

Extrinsic noise and microRNA-mediated bimodal gene expression
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miRNAs are stable with half-lives that can span days [51, 52]. The parameter characterising

the fraction of miRNAs recycled after the interaction with their targets, i.e. the degree of cataly-

ticity α in the model, is poorly understood. Some studies support an almost complete catalyti-

city [53, 54], some others an almost complete stoichiometric interaction [52, 55, 56], with

intermediate values reported in [57]. Hereby, we took a value of this parameter such that the

mRNA amount is in the range of 10 − 1000 molecules per cell, in agreement with [58, 59], and

the total amount of a given miRNA is well within 2000 molecules per cell, as measured in [13,

18] and inferred from [60]. All other parameters, when not varied, are of the same order of

magnitude as those inferred in [39, 61]. Since the amount of extrinsic noise is an unknown

quantity, we performed our analyses for values that give levels of fold repression of the target

comparable with the experimentally measured ones [13, 18]. The fold repression, measured as

the ratio between the constitutive expression of the target (i.e. the value the target would have

in absence of miRNA regulation, when g! 0) and the target itself, ranges between 1 and 10.

Results

Single-cell versus population-induced bimodality

The understanding of bimodal distributions is usually related to cell-fate determination and

differentiation. These mechanisms are at the basis of organism development and mis-develop-

ment. It is therefore important to address the question of what might be the underlying molec-

ular mechanisms allowing cell diversity and variability. Given the strong involvement of

miRNAs in developmental decisions, we focus here on the miRNA network represented in Fig

1A, at the single-cell level. Previous works [18, 36] showed that the binding and unbinding

reactions between miRNA and target give rise to non-trivial threshold effects in quasi equimo-

lar conditions between miRNA and target (see Fig 1E) where the threshold is defined, in terms

of miRNA and mRNA transcription rates, as k�S ¼ ak�R [18]. If the miRNA is transcribed at a

rate above the threshold value, kS > k�S , the system is enriched in microRNA, which tends to

bind most of the present mRNA and prevents its translation. In this regard, the system can

be seen as below the threshold with respect to the target and we shall refer to it as in the

“repressed state”. Above the threshold, the mean amount of free target increases linearly with

its transcription rate. The scenario with free mRNAmolecules will be denoted as the “unre-

pressed state” of the system. This threshold effect displaying a transition between the repressed

and the unrepressed state gets more marked as the interaction strength between miRNA and

targets increases. Close to the threshold value of the target transcription rate, due to the proba-

bilistic nature of chemical reactions, the system will stochastically switch between the repressed

and unrepressed state. Such stochastic switching is enough to give rise to bimodal target distri-

butions which appear for a narrow range of the target transcription rate kR [12] (Fig 1B). This

bimodality characterises the single cell where the miRNA network is defined: every single cell

can jump from the repressed to the expressed target state if the coupling constant with the

miRNA is high enough.

On the contrary, in presence of extrinsic noise, the miRNA transcription rate is not the

same for every cell (Fig 1C and 1D). Hereby, we model the extrinsic noise through a Gaussian-

distributed miRNA transcription rate. To understand intuitively the consequences of this kind

of extrinsic noise, let us consider the case of a miRNA transcription-rate distribution with

fixed average hkSi. When the mRNA transcription rate (kR) is very low and the average

miRNA transcription rate is much larger than the threshold value (hkSi � αkR), most of the

drawn transcription rates kS will be larger than the threshold value. This would place the net-

work in the parameter range where the targets are almost all bound to the miRNAs (see Figs 2

and 3). For larger kR, approaching the threshold, values of kS extracted from the left-tail will
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Fig 2. Emergence of bimodality in the presence of extrinsic noise. (A) Qualitative representation of the miRNA
production rate distribution. The black vertical line indicates the value of the miRNA transcription rate kS = αkR for
different values of the target transcription rate kR. The distributions represent the different conditions labelled from 1
to 4 shown in (B). The region of the distribution contributing to the repressed state is coloured in orange. (B) The
amount of free mRNAmolecules as a function of the target transcription rate kR. Solid lines are analytic predictions
while blue squares correspond to numerical simulations. (C) Free mRNAmolecule distributions corresponding to the
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correspond to the case with some unbound targets. Below the threshold, as hkSi< αkR, the
majority of the drawn kSwill belong to the unrepressed state with the right tail of the distribu-

tion sampling from the all-bound region (Figs 2A–2C and 3A and 3B). However, this scheme

is the same as the previously mentioned population level scenario. The presence of rates above

and below the threshold across the population can give rise to a bimodal distribution in the

number of free targets (Figs 2C and 2D and 3B and 3C). In particular, the higher the extrinsic

noise, the larger the range of target transcription rates for which bimodality is present and the

greater the separation between the two phenotypes (bound and unbound targets), as depicted

in Fig 4A. This implies that, in contrast to the case without extrinsic noise, it is no longer nec-

essary to fine tune the transcription rates to obtain a bimodal distribution. Even for high values

of kR, the fraction of randomly picked kS that results in the bound state is not negligible and

forms a visible peak in the distribution (Figs 2B–2D and 3A–3C). The bimodal distribution is

in this case given by the superposition of unimodal distributions obtained for different kS and

weighted by the probability P(kS) (see S2 Fig in SI).

Focusing on one particular value of the variance s2

kS
and varying the target transcription

rate, kR, we monitored the appearance of bimodal distributions. We ran Gillespie’s simulations

from which we sampled the number of targets for the histograms shown in Figs 2 and 3. By

using system-size expansion and the law of total probability, we analytically obtained the target

number distributions, shown in Figs 2 and 3. The analytic approximation captures the behav-

iour of the system for the mean, the Coefficient of Variation and the probability distribution,

as testified by the agreement with the simulations (see Figs 2B–2D, 3A–3D and S3 in SI). In

Fig 3 we showed that the results are maintained for a set of endogenously meaningful parame-

ters, with low mean amount of free mRNAs. In this case, right because of the small amount of

molecules involved, our approximation method is quantitatively less precise, though still keep-

ing the qualitative shape of the distributions (see SI for details).

A noisy environment can compensate for low miRNA-target interaction to
obtain a bimodal distribution

To dissect the properties of bimodal distributions, we first ran Gillespie’s algorithm simulating

the network in Fig 1C for different target transcription rates, kR, and different variances of the

Gaussian noise on the miRNA transcription rates s2

kS
. Monitoring the appearance of bimodal-

ity, one can build up a phase diagram like the one shown in Fig 4A. In the absence of extrinsic

noise but in the presence of intrinsic noise, bimodal distributions appear only for high cou-

pling between the miRNA and the target and this region gets wider upon increasing the cou-

pling constant g. Therefore the interaction strength between the miRNA and the target, g,

affects the range of values of kR in which bimodality is present.

Since in this case bimodality is a single-cell effect, only those cells having the target interact-

ing strongly with the miRNA have a chance to experience the repressed and unrepressed state

when kR is close to its threshold value.

points highlighted in (B). Solid black lines correspond to numerical simulations while solid red lines are analytic
predictions. The repressed region is coloured in orange. (D) Protein molecule distributions corresponding to the
mRNA distributions in (C). Solid black lines correspond to numerical simulations while solid red lines are analytic
predictions. The repressed region is coloured in orange. In (B) the parameters are gS = 1.2 × 10−2min−1, gR = 2.4 × 10−2

min−1, g = 1.2 × 102 nM−1min−1, kP = 6.0 min−1, gP = 1.2 × 10−2min−1, α = 0.5. kS are picked from a gaussian

distribution with mean �kS ¼ 1:2� 10
�3

nM min
�1 and standard deviation σ = 4.8 × 10−4 nMmin−1. kR ranges from

2.4 × 10−4 nMmin−1 to 5.2 × 10−3 nMmin−1. In (C) and (D) the parameters are the same as in (B) except for kR, which
is fixed for each distribution and for dashed lines from 1 to 4 takes the values kR = 1.2 × 10−3 nMmin−1, 3.1 × 10−3 nM
min−1, 4.0 × 10−3 nMmin−1, 4.8 × 10−3 nMmin−1.

https://doi.org/10.1371/journal.pcbi.1006063.g002
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Fig 3. Bimodal distributions in the low-molecules regime. (A) Free mRNAmolecules amount as a function of the target transcription rate kR.
Solid lines are analytic predictions while blue squares correspond to numerical simulations. (B) Free mRNAmolecules distributions corresponding
to the conditions labelled from 1 to 5 in (A). Solid black lines correspond to numerical simulations while solid red lines are analytical predictions. (C)
Protein molecules distributions corresponding to the mRNA distributions in (B). Solid black lines correspond to numerical simulations while solid
red lines are analytical predictions. In (A) the parameters are gS = 1.2 × 10−2min−1, gR = 2.4 × 10−2min−1, g = 1.2 × 102 nM−1min−1, kP = 6.0 min−1,

gP = 1.2 × 10−2min−1, α = 0.5. kS are picked from a gaussian distribution with mean �kS ¼ 4:8� 10
�4

nM min
�1 and standard deviation σ =

1.2 × 10−4 nMmin−1. kR ranges from 1.2 × 10−4 nMmin−1 to 19.2 × 10−4 nMmin−1. In (B) and (C) the parameters are the same as in (A) except for
kR that is fixed for each distribution and from left to right takes the values kR = 1.0 × 10−3 nMmin−1, 1.2 × 10−3 nMmin−1, 1.3 × 10−3 nMmin−1,
1.4 × 10−3 nMmin−1, 1.6 × 10−3 nMmin−1.

https://doi.org/10.1371/journal.pcbi.1006063.g003
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Adding some extrinsic noise relaxes the constraint on the interaction strength. Bimodality

becomes a population effect, with some cells being locked in the repressed state (by having

large miRNA transcription rates kS) and some others (with smaller kS) displaying free targets.

Fig 4B shows how it is possible to have similar bimodal distributions either increasing the

miRNA-target interaction strength (blue histogram) or increasing the extrinsic noise (orange

histogram) with respect to a reference case with pure intrinsic noise and low miRNA-target

interaction (black line). The extrinsic noise and the miRNA-target interaction strength act at a

similar level with respect to bimodality, where a higher extrinsic noise can compensate for a

low interaction strength (small number of miRNA binding sites on the target) in order to

obtain two differentially expressed phenotypes.

Interplay between different targets increases the stability of bimodal
phenotypes

The study so far led us to consider the possible importance of extrinsic noise in cell phenotypic

variability. Given the existence of multiple miRNA-target networks, we now investigate how

the results for the one-target case extend to the multiple-target one. Let us consider a minimal

Fig 4. Bimodality as a function of the parameters. (A) Phase diagram for bimodality in the free mRNAmolecules distribution. On the x axis there is the target
transcription rate kR, on the y axis the extrinsic noise on the miRNA transcription rate. The color map indicates the presence of bimodality for different values of the
miRNA-target interaction strength g. The presence of bimodality was computed by running several Gillespie’s simulations for fixed sets of parameters and sampling
targets’ probability distributions. By using Matlab interpolation functions, we extracted the number of maxima of the distributions and used this value as a first
measurement of bimodality. In the SI, we discussed a more refined version of this measurement. The width of the bimodality range increases as the interaction
strength or the extrinsic noise are increased. The following parameters are equal for all the simulations: gS = 1.2 × 10−2min−1, gR = 2.4 × 10−2min−1, kP = 6.0 min−1,
gP = 1.2 × 10−2min−1, α = 0.5. Target mRNA transcription rate is one of the control parameters and ranges from kR = 2.3 × 10−3 nMmin−1 to kR = 5.8 × 10−3 nM
min−1. miRNA-mRNA association rate is one of the control parameters and takes the following values: g = 1.2 × 102 nM−1min−1, 3.0 × 102 nM−1min−1, 4.8 × 102

nM−1min−1, 9.6 × 102 nM−1min−1. Extrinsic noise is tuned by varying the standard deviation of the distribution with mean �kS ¼ 1:2� 10
�3

nM min
�1 from which

miRNA transcription rates are picked, the standard deviation takes the following values: σ = 0 nMmin−1 (no extrinsic noise), 7.1 × 10−5 nMmin−1, 2.4 × 10−4 nM
min−1, 4.8 × 10−4 nMmin−1. To define the origin of the bimodality region for the case with g = 1.2 × 102 nM−1min−1 the value σ = 1.2 × 10−4 nMmin−1 was also used.
In the SI, a more systematic non-binary study of the appearance of the bimodality is reported (see S5 Fig). (B) Free mRNA distribution in case of pure intrinsic noise
and small (g = 3.8 × 102 nM−1min−1) miRNA-target interaction strength (black line), pure intrinsic noise and high (g = 1.1 × 103 nM−1min−1) miRNA-target
interaction (blue histogram) and extrinsic noise (σ = 7.9 × 10−5 nMmin−1) and small (g1 = 3.8 × 102 nM−1min−1) miRNA-target interaction strength (orange
histogram). The other parameters are as follows: kS = 1.2 × 10−3 nMmin−1, gS = 1.2 × 10−2min−1, kR = 2.7 × 10−3 nMmin−1, gR = 2.4 × 10−2min−1, kP = 6.0 min−1, gP =
1.2 × 10−2min−1, α = 0.5. The plot shows how extrinsic noise can compensate for small miRNA-target interaction strength in order to obtain bimodal distributions.

https://doi.org/10.1371/journal.pcbi.1006063.g004
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model with two targets, R1 and R2, competing for the same miRNA, S (Fig 5A). We start by

investigating the effect of an increase in the expression of target R2 on target R1 with and with-

out extrinsic noise. Upon increasing the transcription rate kR2 of target R2, the threshold of the

target R1 shifts towards lower expression levels: the miRNAs are indeed sequestered by R2 and

a lower amount of R1 is needed to overcome the threshold.

Fig 5. Competition between two targets of the same miRNA. (A) Reference circuit including extrinsic noise for the case of two genes competing for the same
miRNA. kS is the miRNA transcription rate. kR1 and kR2 are the mRNA transcription rates and gR1 and gR2 are the mRNA degradation rates of target 1 and 2
respectively. kP1 and kP2 are the translation rates and gP1 and gP2 are the degradation rates of protein 1 and 2 respectively. g1 and g2 are the miRNA interaction rates with

target 1 and 2. α is the fraction of miRNAs that are not recycled after binding to the mRNAs. (B) Phase diagram for the bimodality of the target R1 for a fixed level of
extrinsic noise (σ = 4.8 × 10−4 nMmin−1), small miRNA/target 1 interaction strength (g1 = 1.2 × 102 nM−1min−1) and different miRNA/target 2 interaction strengths
g2. Bimodality here has been measured as in Fig 4. The other parameters are as follows: kR1 and kR2 range from 0 nMmin−1 to 5.1 × 10−3 nMmin−1,
�kS ¼ 1:2� 10

�3
nM min

�1, gS = 1.2 × 10−2min−1, gR1 = gR2 = 2.4 × 10−2min−1, kP1 = kP2 = 6.0 min−1, gP1 = gP2 = 2.4 × 10−2min−1, α = 0.5. (C) Explanatory example of
how it is possible to modulate target 1 distribution by increasing the expression of target 2 for small interaction strength between miRNA and targets (g1 = 1.2 × 102

nM−1min−1, g2 = 30 nM−1min−1). The extrinsic noise here is σ = 2.4 × 10−4 nMmin−1. The other parameters are as in (B). (D) Intersection between the bimodality
phase diagrams of both targets for g1 = 1.2 × 102 nM−1min−1 and g2 = 30 nM−1min−1. The other parameters are as in (B). Bimodality here is measured as in Fig 4. As a
reference, with g1 = 1.2 × 102 nM−1min−1 and g2 = 30 nM−1min−1, in the bimodality region of the distribution of target 1, the average number of mRNAmolecules of
target 1 ranges from 40 to 250 and the average number of mRNAmolecules of target 2 ranges from 0 to 125. In the bimodality region of the distribution of target 2, the
average number of mRNAmolecules of target 1 ranges from 0 to 60 and the average number of mRNAmolecules of target 2 ranges from 5 to 180.

https://doi.org/10.1371/journal.pcbi.1006063.g005
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If R1 has a high interaction strength g1 with the miRNA, then the range of bimodality shifts

towards lower expression levels as well. The width of the range of R1 bimodality is determined

by the interaction strength g2 of the target R2 with the miRNA. If g2� g1, then the miRNAs

are sequestered by the second target with such a high frequency that the net effect is a reduc-

tion in the amount of miRNAs available to target R1. This entails a shift not only of the kR1
threshold value but also of the range of bimodality. If g2< g1, the second target R2 interacts

with low frequency with the miRNA, R1 is slightly derepressed and the net effect on its bimodal

distribution is a reduction of the range of transcription rates for which it is present. The

emerging picture is that, for a given transcription rate kR1 , it is possible to tune the distribution

of target R1 from monomodal to bimodal and from unrepressed to repressed and vice versa via

the expression of target R2.

The presence of extrinsic noise also makes such cross regulation possible for cases with

lower miRNA-target interaction on both targets. In Fig 5B we show the bimodality phase dia-

gram for R1 at a fixed interaction strength g1 between miRNA and target R1, and for a fixed

level of extrinsic noise (see S4 Fig in SI for a different noise level). The interaction strength is

such that in the case of pure intrinsic noise R1 does not show a bimodal distribution. As an

explanatory example, Fig 5C shows that the peaks of R1 distribution can be tuned towards the

repressed or the unrepressed case by decreasing or increasing the expression of a second target

R2. Here, the two targets R1 and R2 are both coupled through the noisy miRNA with small

interaction strengths. Also in this case, the same analytic approach as before gives good agree-

ment between theory and simulations.

These observations suggest that even if the miRNA repression is low and diluted over a net-

work of multiple targets, the noisy environment allows cross-regulation between ceRNAs at

the population level (see Fig 5D, with the intersection between the bimodality phase diagrams

for both targets for a fixed level of noise and miRNA interaction strengths).

Protein stability and bimodal phenotypes

Given the relevance of the final product of gene expression, it is important to consider what is

the effect of extrinsic noise on proteins’ distributions. From the deterministic system, one can

see that the mean amount of target protein is proportional to the amount of its unrepressed

mRNA. That is, those molecules not bound to miRNAs and free for translation. In the pres-

ence of extrinsic noise the target mRNA can show bimodality even without having a clear

double steady state in the deterministic system. Here we investigate if this is the case for the

protein distribution. A key factor to keep account of is the time scale of protein synthesis and

degradation. In general, if the protein dynamics are fast, the protein distribution follows

closely that of the mRNA (see Fig 6A1, 6B1 and 6C1). Conversely, slower protein dynamics

tend to filter out the intrinsic fluctuations of the mRNA and lead to narrower distributions

(see the SI for a detailed discussion of the case without extrinsic noise). This is a single cell

effect. That is, for a given rate of miRNA transcription ks, the corresponding protein distribu-

tion gets more peaked as the protein dynamics get slower. The protein distribution subject to

extrinsic noise also tends to concentrate around its mean. This feature has different conse-

quences for the protein distribution shape according to the specific structure of the mRNA

distribution. If the mRNA distribution is bimodal, slower proteins will have a distribution con-

densing around their mean, which is located close to the unrepressed peak. They will therefore

preferentially display the unrepressed phenotype and may completely lose their bimodal struc-

ture (see Fig 6A2). Bimodality can persist for strongly bimodal mRNA distributions because

the noise reduction mechanism is acting at the single cell level. Hence it cannot overcome the

effects of the extrinsic noise (see Fig 6B1 and 6B2).
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Fig 6. Protein half-life and bimodality. In this panel three conditions (A), (B) and (C) in which the shape of the protein distribution is altered by an increased
protein stability are reported. Histograms are the result of numerical simulations. The free mRNA distributions are represented in orange, and the protein
distributions in blue, corresponding to different levels of scale separation between the mRNA and protein dynamics. Fast protein distributions are obtained for a
protein half life comparable to that of the mRNA; in this condition the state of the protein copies that of the mRNA and the distributions almost coincide. Slow
protein distributions are obtained for a protein half life up to 10 times longer than that of the mRNA. As a consequence of the higher protein stability different
outcomes can be achieved depending on the level of extrinsic noise, the miRNA-target interaction strength and the proximity to the threshold (kR). Starting with a
well defined bimodal distribution (A1) and (B1), for a fixed level of extrinsic noise, the repressed peak can be buffered (A2) or not (B2) depending on the value of kR.
If the initial distribution is unimodal repressed (C1), for a given range of parameters, it can be converted into a unimodal unrepressed (C3), crossing a bimodal state

(C2), by increasing the protein stability. In (A) the parameters are kR = 3.1 × 10−3 nMmin−1, �kS ¼ 1:2� 10
�3

nM min
�1, σ = 2.4 × 10−4 nMmin−1, gS = 1.2 × 10−2

min−1, gR = 2.4 × 10−2min−1, g = 1.2 × 102 nM−1min−1, α = 0.5, kP = 6.0 min−1, gP = 2.4 × 10−2min−1 for (A1) and kP = 6.0 × 10−1min−1, gP = 2.4 × 10−3min−1 for

(A2). In (B) the parameters are kR = 3.0 × 10−3 nMmin−1, �kS ¼ 1:2� 10
�3

nM min
�1, σ = 2.4 × 10−4 nMmin−1, gS = 1.2 × 10−2min−1, gR = 2.4 × 10−2min−1,

g = 1.2 × 102 nM−1min−1, α = 0.5, kP = 6.0 min−1, gP = 2.4 × 10−2min−1 for (B1) and kP = 6.0 × 10−1min−1, gP = 2.4 × 10−3min−1 for (B2). In (C) the parameters are

kR = 3.1 × 10−3 nMmin−1, �kS ¼ 1:4� 10
�3

nM min
�1, σ = 1.7 × 10−4 nMmin−1, gS = 1.2 × 10−2min−1, gR = 2.4 × 10−2min−1, g = 1.2 × 102 nM−1min−1, α = 0.5, kP =

6.0 min−1, gP = 2.4 × 10−2min−1 for (C1), kP = 3.0min−1, gP = 1.2 × 10−2min−1 for (C2) and kP = 1.2min−1, gP = 4.8 × 10−3min−1 for (C3). The ratio between kP and gP
is always kept constant in order to maintain the mean of the protein distributions at a fixed value. Note that we do not present the analytic curves for such cases as the
approximation fails to capture subtle features such as the (dis-)appearance of a small peak (see SI).

https://doi.org/10.1371/journal.pcbi.1006063.g006
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For a repressed (unimodal) mRNA distribution the mode is far from the mean, so the nar-

rowing around the mean implies the rise of a second (unrepressed) peak. For moderately

slower dynamics (see Fig 6C2) the protein distribution may be bimodal, and for even slower

ones it will be unimodal close to its mean (see Fig 6C3).

Altogether these results suggest that slow proteins promote the expression closer to the

mean of the corresponding mRNA distribution. This may or may not be sufficient to remove

the bimodal feature of the protein distribution depending on the interplay between the ampli-

tude of the extrinsic noise, the coupling between target and miRNA, and the transcription

rates.

Bimodality in endogenous scenarios, time-fluctuating miRNA-production
rates and fold repression

In the previous sections we considered cases in which the average number of molecules at play

is not too low so that the analytic approximation is expected to perform well. Here we investi-

gate how likely the titrative mechanism we analysed is to produce bimodal distributions in

regimes of fold repression and mean amount of molecules closer to the endogenous case. We

define the fold repression as the ratio between the constitutive expression of the target (i.e. the

value the target would have in absence of miRNA regulation, when g! 0) and the target itself.

As discussed in detail in SI, the fold repression decreases greatly when adding even a little off-

set in the amount of mRNAmolecules (see S6 Fig). Since our model has no offset, the fold

repression we measured should be taken as an upper bound to the ones obtainable in experi-

ments. Fig 7 shows the phase diagram of bimodality for two sets of mean miRNA transcription

rate kS and miRNA interaction strength g plotted against the mean amount of free mRNAs

and proteins (Fig 7A and 7C) and against the fold repression (Fig 7B and 7D). Red lines show

the bimodality region. As the figure shows, the bimodality region shrinks and shifts upon

decreasing the miRNA transcription rate. The mean values of free mRNAs are of order of hun-

dreds in Fig 7A and of order of tens in Fig 7C (as measured in [58, 59]) and the fold repression

ranges between 2 and 10. The amount of free miRNAs in this regime is of the order of tens,

while its total amount (measured as the ratio between its transcription and degradation rates)

is within 250 molecules per cell. This suggests titration interactions and extrinsic noise may

give rise to bimodal distributions also in endogenous regimes.

For the sake of simplicity, analytical and numerical tractability, the analysis presented so far

was performed by modelling the extrinsic noise as a gaussian random draw of the miRNA

transcription rate. The transcription rate was therefore “fixed” at the beginning of each simula-

tion and not assumed to vary in time. Such approximation is expected to describe adequately

the scenario where any variation of the miRNA expression rate takes place on longer time

scales than the typical ones in the system. However, this might not be the case for some sys-

tems: variation of gene expression may happen on time scales of minutes or hour depending

on cells’, and more widely organisms’, needs. One expects that, in the limit of very fast extrinsic

fluctuations, their effect will average out and the scenario will reduce to the case of intrinsic

noise only where the bimodality region is narrow, located in proximity to the threshold and

found only for strong interaction between microRNA and target mRNA, as discussed in [12].

To confirm these expectations and to investigate the case in which extrinsic fluctuations

take place on time scales comparable to the ones of the other reactions, we performed Gillespie

simulations allowing the transcription rate of the microRNA to fluctuate in time. In more

detail, we first set all parameters in the system as in Fig 6, where bimodality was observed for

static extrinsic noise. We then realised a dynamically fluctuating microRNA transcription rate

via an auxiliary birth and death process with finite pool N = 100 (see SI). The steady-state
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Fig 7. Mean molecules amounts and fold repression. (A,C) Mean mRNA free amount (R) and protein amount (P) for two different sets of parameters, as a
function of mRNA transcription rate and extrinsic noise level. The red line indicates the bimodality region. (B,D) Fold repression, i.e. ratio between the unregulated
and regulated expression level, as a function of mRNA transcription rate and extrinsic noise level. The red line indicates the bimodality region. Mean values and
fold repression are computed through the analytic approximation, while the bimodality region is obtained from numerical simulations. The set of parameters of
panels (C) and (D) resembles an endogenous scenario, where the mean values of free mRNAs are of order of tens and the fold repression ranges between 2 and 6. In
(A) and (B) the parameters are: gS = 1.2 × 10−2min−1, gR = 2.4 × 10−2min−1, kP = 6.0 min−1, gP = 1.2 × 10−2min−1, g = 3.0 × 102 nM−1min−1, α = 0.5. Target mRNA
transcription rate ranges from kR = 2.3 × 10−3 nMmin−1 to kR = 5.8 × 10−3 nMmin−1. Extrinsic noise is tuned by varying the standard deviation of the distribution

with mean �kS ¼ 1:2� 10
�3

nM min
�1 from which miRNA transcription rates are picked. The amount of free miRNAs in this regime is of the order of tens, while

its total amount (measured as the ratio between its transcription and degradation rates) is 250 molecules per cell. In (C) and (D) the parameters are: gS = 1.2 × 10−2

min−1, gR = 2.4 × 10−2min−1, kP = 6.0 min−1, gP = 1.2 × 10−2min−1, g = 3.0 × 102 nM−1min−1, α = 0.8. Target mRNA transcription rate ranges from kR = 0 nM

min−1 to kR = 1.5 × 10−3 nMmin−1. Extrinsic noise is tuned by varying the standard deviation of the distribution with mean �kS ¼ 4:8� 10
�4

nM min
�1 from

which miRNA transcription rates are picked. The amount of free miRNAs in this regime is of the order of tens, while its total amount is 100 molecules per cell.

https://doi.org/10.1371/journal.pcbi.1006063.g007
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distribution of kS is a Binomial that closely approximates a Gaussian distribution with mean
�kS ¼ 1:2� 10

�3
nM min

�1 and standard deviation skS
¼ 2:4� 10

�4
nMmin

�1, i.e. the same

distribution from which we drew the rates in the static case discussed in Fig 6. The time scale τ

on which the microRNA transcription rate fluctuates can be explored by changing the magni-

tude of the birth and death rates, keeping their ratio fixed. To probe regimes in which these

fluctuations are faster, comparable and slower than the typical time scales of the reactions we

let τ take the values of 8.3 × 10−2min, 0.83 min, 21 min, 83 min and 830 min (see Fig 8). These

should be compared with the typical time scales of the various reactions at play in the system.

For the target mRNA and protein, the time scale on which significative changes of concentra-

tion may occur ranges between about 10 min and 45 min (see the SI for details on how the

time scales were estimated). The numerical results confirm that if the miRNA transcription

rate varies very rapidly, the effect of the extrinsic noise is averaged out. Indeed, the first panel

on the left in Fig 8 shows how the distributions with fast fluctuating miRNA and without

extrinsic noise are the same. Considering progressively slower transcription rate variations,

the bimodality gradually reappears, and eventually recovers the static case in the slow-variation

regime. For τ = 830 min the resulting distributions are practically indistinguishable from the

static extrinsic noise case treated in the previous sections. This time scale is comparable to

(shorter than) 24 hours (1440 min). Then, we expect the results obtained for static noise to be

relevant for settings in which the extrinsic noise is caused by variations along the cell cycle, in

cells dividing every 24 hours.

Fig 8. Bimodality appearance in presence of time-dependent extrinsic noise. Solid cyan lines represent free mRNAmolecules distributions with a time-dependent
extrinsic noise on the miRNA transcription rate kS. The transcription rate is coupled to a birth and death process with finite pool N = 100. The steady-state

distribution of kS is a nearly Gaussian distribution with mean �kS ¼ 1:2� 10
�3

nM min
�1 and standard deviation σ = 2.4 × 10−4 nMmin−1. The time scale of this

process is tuned by changing the values of the birth and death rates, keeping their ratio fixed. The time scales of the fluctuations of the miRNA transcription rate, from
left to right are: 8.3 × 10−2min, 0.83 min, 21 min, 83 min and 830 min. The green histogram in the leftmost plot represents the free mRNAmolecules distribution in
absence of extrinsic noise. The orange histogram in the rightmost plot represents the free mRNAmolecules distribution with static extrinsic noise introduced as

described in the main text; the kS distribution used in this case is a Gaussian with mean �kS ¼ 1:2� 10
�3

nM min
�1 and standard deviation σ = 2.4 × 10−4 nMmin−1.

All the free mRNAmolecules distributions are obtained from numerical simulations. The parameters are kR = 3.1 × 10−3 nMmin−1, gR = 2.4 × 10−2min−1, gS =
1.2 × 10−2min−1, g = 1.2 × 102 nM−1min−1, α = 0.5.

https://doi.org/10.1371/journal.pcbi.1006063.g008
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Discussion

Previous studies pointed out the relevance of extrinsic noise in molecular networks in shaping

cell decision making and differentiation [9, 10]. Although extrinsic noise influences gene

expression and regulation at different levels, the dominating variability across a cell population

seems due to population dynamics [30]: even a monoclonal population has cells in different

phases of their cell cycle because of growth and divisions. Such intra-population variability

may manifest into heterogeneous expression patterns, which eventually develop a bimodal dis-

tribution [62, 63]. When bimodal distributions are observed in gene expression levels, these

modes often correspond to different physiological states of the system [1–6].

In this work we addressed the question of the role of extrinsic noise in shaping bimodal

gene distributions in the context of miRNA-mediated regulation, both with stochastic model-

ling and simulations.

As observed in vitro [13], in particular stoichiometric conditions miRNAs may induce

bimodality in the expression of their target genes simply due to peculiar titrative interactions.

In a theoretical system with pure intrinsic noise, such bimodal distributions can be observed

in conditions of high miRNA-target interaction strength and for a small range of target tran-

scription rates [12]. The binding and unbinding reactions between miRNA and target in

conditions of quasi equimolarity let the target “jump” from the bound to the unbound state,

giving rise to bimodal distributions. This bimodality is observed at a single-cell level: every sin-

gle cell can indeed switch from one state to the other so that, at a given time, part of the popula-

tion will be “bound” and part “unbound”.

We showed that introducing some extrinsic noise to the miRNA transcription widens the

range of target transcription rates for which one observes target bimodality. In this case the

bimodal distributions arise at the population level, made of several cells that are heterogeneous

with respect to miRNA expression and therefore amount. Hence, the bimodality arises from

the superposition of those unimodal distributions describing the single cells, i.e., each of them

obtained for a different value of miRNA transcription rate.

Interestingly, in this framework, a high miRNA-target interaction strength is not necessary

to obtain a population-induced bimodal distribution. We showed that extrinsic noise and

miRNA-target interaction strength act at similar levels with respect to the bimodality. The

interaction strength between miRNA and target in our model takes into account the possibility

of different numbers of miRNA binding sites on the mRNA target sequence. Since the miRNA

repression on a given target is usually small and possibly diluted over multiple targets, our

results suggest that some extrinsic noise can compensate for a low interaction strength in

order to obtain differentially expressed phenotypes.

Since every single miRNA may have many different targets that in turn compete for the

shared pool of miRNAs, a change in the expression level of one of them may alter the expres-

sion of the other ones depending on the prioritisation of their interaction strengths [12, 64].

Once sorted, the interaction strengths would indeed provide the specificity of the interaction

among a group of miRNAs and a group of targets, as shown in [12]. While from a purely theo-

retical point of view, there is in principle no limit on the number of genes that can be indirectly

regulated by another one (it is just a matter of parameters to tune), of course in physiological

conditions the number of genes involved in the crosstalk may be limited and case specific. If

one of these targets is bimodally distributed, then the bimodality may be influenced by the

expression level of the other miRNA competitors according to their prioritised interaction

strengths, and in turn may induce the expression of other targets to become bimodal. We

modelled the simplest version of this scenario considering two targets in competition for the

same miRNA and showed that cross regulation is possible even in the case of small miRNA-
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target interaction strengths if some extrinsic noise is present. In particular, different targets

may cross-regulate each other’s bimodal distributions and their interplay is pivotal in stabilis-

ing the presence of single phenotypes. This suggests that even if the miRNA repression is low

and diluted over a network of multiple targets, the noisy environment makes cross-regulation

among them possible.

One may then wonder whether the appearance of bimodality is due to unphysiological

amount of molecules or it may appear in endogenous situations, with a mean amount of

mRNAs in the order of 10 − 1000 [58, 59] and small fold repressions [13, 18]. As shown in Fig

7, the bimodality region may span values of mean mRNA amount in the order of tens and fold

repression values ranging between 1 and 10. The mean amount of free miRNAs corresponding

to these values is in the order of tens, while its total amount is below 250 molecules per cell.

These values suggest that bimodal distributions of the target might appear in endogenous

situations.

The importance of miRNAs in increasing protein noise in highly expressed genes was

recently suggested in [29]. This result should be read together with the finding that signalling

factors and developmental regulators in embryonic stem cells show bimodal expression pat-

terns only in presence of mature miRNAs [62, 63]. As pointed out in [28], as a whole these

studies suggest a role of miRNAs in generating gene-expression variability. Consistently with

the cell-to-cell miRNA variability observed in [29], they also suggest that variation in miRNA

expression may influence the co-variation of factors that are more likely to fluctuate together

to trigger transitions between cell states.

The outcome of regulatory systems is the control of protein expression. Concerning the

effect of extrinsic noise on their distribution, we showed that depending on the time scales of

protein synthesis and degradation, the protein distribution may suppress or amplify the bimo-

dality inherited from the mRNA.

Altogether our results suggest that the coupling between extrinsic noise and threshold

behaviour represents a possible mechanism to obtain bimodal phenotypes without the need

for fine tuning the rates of reactions which was required for the case of intrinsic noise only. On

one hand, we observed that the system is, for a broad range of parameters, able to buffer the

extrinsic fluctuations and channel only one final phenotype (unimodality region in Figs 4 and

7). On the other hand, we have highlighted how extrinsic noise widens the bimodality region

compared to the intrinsic-noise-only case. This suggests how bimodality can arise as a built-in

effect of the coupling between the miRNA-based titration and the presence of noise. This may

contribute to the understanding of the bimodal distributions observed in [13]. Such bimodality

may play a role in view of the advantages related to having a high variability among different

cells.

Given an estimate of the miRNA-target interaction strengths, the model allows the predic-

tion of the amount of extrinsic noise necessary to induce a bimodal phenotype. A feasible

strategy to test the experimental validity of these theoretical results involves building ad-hoc

synthetic circuits made of miRNA targets tagged with fluorescent labels, as previously done in

[13, 65], and performing transfection experiments. Even though the reporters are expressed at

artificial levels and with artificial dynamics, with the appropriate reporter-controls the experi-

mental set-up is controlled enough to check the validity of the model. By analysing the fluores-

cence patterns of the targets interacting with the miRNA throughout the entire population of

cells, the shape of the target distributions can then be extracted and compared to the theoreti-

cal predictions. MiRNAs are differentially expressed in different tissues and we also expect the

amplitudes of their extrinsic fluctuations to vary consequently. Hence, repeating the experi-

ment in cells derived from different tissues would allow the study of cells exposed to different

levels of extrinsic noise. This approach would enable the construction of a phase diagram for
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the bimodality linking extrinsic noise and model parameters, as done in [13]. Nowadays, rele-

vant experiments should use CRISPR-tagged endogenous proteins and inducible systems for

miRNA expression to move a physiological system into the desired region of the phase dia-

gram. This would provide a valuable and precise tool to define and control the key variables

for the appearance of bimodal target distributions, particularly in disease-related contexts.

Supporting information

S1 File. Details on different approximation methods, supplementary analysis, and simula-

tions.

(PDF)

S1 Fig. Comparison between Van Kampen and Gaussian approximations. In (A-C) mRNA

and protein distributions for unstable and stable proteins are shown together with the two

approximations. In (D) the mean number of mRNAmolecules as a function of the miRNA

transcription rate is shown, the blue line corresponds to numerical simulations, while the red

and black one are the theoretical predictions obtained through the Van Kampen and Gaussian

approximation respectively. The inset is a zoom of the region where the difference between

the two approximations is more evident. In (A) the parameters are kR = 3.1 × 10−3 nMmin−1,
�kS ¼ 1:2� 10

�3
nM min

�1, s2

S ¼ 2:4� 10
�4

nM min
�1, gS = 1.2 × 10−2min−1, gR = 2.4 × 10−2

min−1, g = 1.2 × 102 nM−1min−1, α = 0.5, kP = 6.0 min−1, gP = 2.4 × 10−2min−1 for (A1) and

kP = 6.0 × 10−1min−1, gP = 2.4 × 10−3min−1 for (A2). In (B) the parameters are kR = 3.0 × 10−3

nMmin−1, �kS ¼ 1:2� 10
�3

nM min
�1, s2

S ¼ 2:4� 10
�4

nM min
�1, gS = 1.2 × 10−2min−1,

gR = 2.4 × 10−2min−1, g = 1.2 × 102 nM−1min−1, α = 0.5, kP = 6.0 min−1, gP = 2.4 × 10−2min−1

for (B1) and kP = 6.0 × 10−1min−1, gP = 2.4 × 10−3min−1 for (B2). In (C) the parameters are

kR = 3.1 × 10−3 nMmin−1, �kS ¼ 1:4� 10
�3

nM min
�1, s2

S ¼ 1:7� 10
�4

nM min
�1, gS =

1.2 × 10−2min−1, gR = 2.4 × 10−2min−1, g = 1.2 × 102 nM−1min−1, α = 0.5, kP = 6.0 min−1, gP =

2.4 × 10−2min−1 for (C1), kP = 3.0min−1, gP = 1.2 × 10−2min−1 for (C2) and kP = 1.2min−1, gP =

4.8 × 10−3min−1 for (C3). In (D) the parameters are kR = 3.1 × 10−3 nMmin−1, gS = 1.2 × 10−2

min−1, gR = 2.4 × 10−2min−1, g = 1.2 × 102 nM−1min−1, α = 0.5, kS ranges from 0 to 2.6 × 10−3

nMmin−1.

(PDF)

S2 Fig. Comparison between the bimodal mRNA noisy distribution and the weighted super-

position of distributions obtained without noise for different miRNA transcription rates.

The parameters are the following: kR = 3.1 × 10−3 nMmin−1, gS = 1.2 × 10−2min−1, gR =

2.4 × 10−2min−1, g = 1.2 × 102 nM−1min−1, kP = 6.0 min−1, gP = 1.2 × 10−2min−1 and α = 0.5.

In the main plot the different mRNA distributions correspond, from left to right, to kS =

1.7 × 10−3, 1.4 × 10−3, 1.2 × 10−3, 9.5 × 10−4, 7.1 × 10−4 nMmin−1. In the inset, the mRNA histo-

gram is the result of miRNA transcription rates picked from a gaussian distribution with mean
�kS ¼ 1:2� 10

�3
nM min

�1 and standard deviation σ = 2.4 × 10−4 nMmin−1. The black line is

the result of the weighted superposition of the distributions represented in the main plot.

(PDF)

S3 Fig. Analytical prediction for the coefficient of variation. Analytical predictions for

the target coefficient of variation in case of one (A) or two (B) targets. In (A) the parameters

are �kS ¼ 1:2� 10
�3

nM min
�1, σ = 4.8 × 10−4 nM min−1, gS = 1.2 × 10−2 min−1, gR =

2.4 × 10−2 min−1, g = 1.2 × 102 nM−1 min−1, kP = 6.0 min−1, gP = 1.2 × 10−2 min−1, α = 0.5.

kR ranges from 2.4 × 10−4 nMmin−1 to 5.2 × 10−3 nMmin−1. In (B) the parameters

are �kS ¼ 1:2� 10
�3

nM min
�1, σ = 4.8 × 10−4 nM min−1, gS = 1.2 × 10−2 min−1,
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gR1 = gR2 = 2.4 × 10−2 min−1, g1 = 1.2 × 102 nM−1 min−1, g2 = 30 nM−1 min−1, kP1 = kP2 = 6.0

min−1, gP1 = gP2 = 1.2 × 10−2 min−1, α = 0.5, kR2 = 9.5 × 10−4 nMmin−1. kR1 ranges from

2.4 × 10−4 nM min−1 to 5.2 × 10−3 nM min−1.

(PDF)

S4 Fig. Bimodality phase diagram. The plot shows the bimodality phase diagram for the

mRNA 1 in a system with two targets competing for the same miRNA. The parameters here

used are the following: �kS ¼ 1:2� 10
�3 nMmin−1, σS = 2.4 × 10−4 nMmin−1, g1 = 1.2 × 102

nM−1min−1, kR1 and kR2 range from 0 nMmin−1 to 5.1 × 10−3 nMmin−1, gS = 1.2 × 10−2

min−1, gR1 = gR2 = 2.4 × 10−2min−1, kP1 = kP2 = 6.0 min−1, gP1 = gP2 = 2.4 × 10−2min−1, α = 0.5.

(PDF)

S5 Fig. Bimodality amplitude phase diagram. Phase diagram of the bimodality amplitude of

the mRNA distribution as a function of the mRNA transcription rate kR and of the extrinsic

noise level. The parameters here used are the following: gS = 1.2 × 10−2min−1, gR = 2.4 × 10−2

min−1, g = 3.0 × 102 nM−1min−1, kP = 6.0 min−1, gP = 1.2 × 10−2min−1, α = 0.5. Target mRNA

transcription rate is one of the control parameters and ranges from kR = 2.6 × 10−3 nMmin−1

to kR = 5.1 × 10−3 nMmin−1. Extrinsic noise is tuned by varying the standard deviation of the

distribution with mean �kS ¼ 1:2� 10
�3

nM min
�1 from which miRNA transcription rates

are picked. The standard deviation ranges from σ = 0 nMmin−1 (no extrinsic noise) to σ =

3.6 × 10−4 nMmin−1. This phase diagram was obtained by interpolating the single distribu-

tions obtained from numerical simulations as described in Sec. V. The green line represents

the separation between bimodal and unimodal regions as shown in the Main Text.

(PDF)

S6 Fig. The role of the offset. (A) Example of two average mRNA profiles, for a regulated

(orange) and an unregulated (blue) mRNA. (B) Same profile as panel A but with the curves

shifted upwards by an arbitrary offset of 10 mRNAmolecules. (C) Fold repression (ratio of

blue to orange curve from panel A) without the offset. (D) Fold repression (ratio of blue to

orange curve from panel B) with the offset. (E) Comparison of the plots of fold repression with

offset (from panel D) and without offset (from panel C). The parameters here used are the fol-

lowing: gS = 1.2 × 10−2min−1, gR = 2.4 × 10−2min−1, g = 3.0 × 101 nM−1min−1, kS = 7.1 × 10−4

nMmin−1, α = 0.5. kR ranges from 0 nMmin−1 to 4.8 × 10−3 nMmin−1.

(PDF)
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