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Watt-level 21-25 GHz Integrated Doherty Power
Amplifier in GaAs Technology

Chiara Ramella, Member, IEEE, Vittorio Camarchia, Senior Member, IEEE, Anna Piacibello, Member, IEEE,
Marco Pirola, Senior Member, IEEE, Roberto Quaglia, Member, IEEE

Abstract—This paper presents the design and characterization
of a Doherty power amplifier for K-band applications based
on the GaAs 150 nm pHEMT technology of Qorvo. For the
output power combiner, a wideband design approach, based on
embedding the output capacitance of the active devices in the
combiner, is applied. A state-of-the-art bandwidth of 4 GHz is
achieved: in the 21 GHz-25 GHz range, the output power is above
29.5 dBm, with an associated PAE higher than 30 %. At 6 dB
output back-off, the PAE is above 19 % while the corresponding
gain is higher than 10 dB.

Index Terms—Doherty power amplifiers, GaAs, MMIC, K-
band, microwave radios

I. INTRODUCTION

The Doherty power amplifier (DPA) is widely adopted
in wireless transmitters working in C-band and below to
improve efficiency in presence of signals with high peak-to-
average power ratio (PAPR) [1]–[5]. The widespread of K-
band applications, such as 5G, point-to-point radios and satel-
lite communications, asks for the development of Microwave
Monolithic Integrated Circuit (MMIC) DPAs. In particular,
GaAs technology, despite its lower output power density with
respect to GaN, is still perceived as a more reliable and less
expensive choice, especially for hardware to be deployed in
the near future [6]–[8]. However, achieving watt-level GaAs
MMIC DPAs without compromising bandwidth and efficiency
is rather challenging. Additionally, the intrinsically low gain
of the devices requires a higher complexity since drivers must
be inserted and optimized, also preventing the use of more
advanced Doherty features used at lower frequencies [1], [9].

In this work, a watt-level, 6 dB-back-off DPA for K-band
operation is presented, based on a 150 nm pHEMT MMIC
technology. Thanks to the output combining strategy adopted,
significant bandwidth improvements have been achieved with
respect to the work presented in [10]. In fact, the designed
DPA exhibits, in measurement, the largest bandwidth and high-
est maximum output power, compared to other GaAs-based
modules, while maintaining good PAE and gain. In the
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Fig. 1. DPA block diagram.

21 GHz-25 GHz band the saturated output power is between
29.5 dBm and 30.2 dBm, with a corresponding PAE higher
than 30%. At 6 dB OBO, the PAE and gain are higher than
19% and 10 dB, respectively.

II. DPA DESIGN

The adopted technology is the GaAs 0.15µm PWR pHEMT
MMIC process from Qorvo. The substrate thickness is 100µm,
and the process provides three metal layers and a library
of capacitors, inductors, and resistors. Targeting an output
power around 30 dBm in K-band, a single 12× 85µm device,
expected to achieve a maximum output power around 29 dBm,
is adopted for the final stage of both the main and auxiliary
PA. As shown in Fig. 1, a solution with separated drivers for
main and auxiliary has been preferred to that with a single
preamplifier, since, at high frequency, this choice ensures
higher PAE as discussed in [10]. Identical 8× 50µm drivers
are able to deliver the required input power to the final stage,
without entering deep compression and achieving a total gain
around 10 dB.

A. Output Power Combiner

Embedding the drain capacitance in the output combiner,
instead of resonating it out as in [10], allowed for wider
bandwidth and lower sensitivity to fabrication variations [11].

As shown in Fig. 2(a), the characteristic impedance of the
Doherty impedance inverter is set at ZII = (2πf0CO)

−1,
where f0 is the center frequency and CO is the equivalent
output capacitance of the transistor, that can thus be com-
pletely absorbed into the combiner when implemented in
semi-lumped form, as in Fig. 2(b). On the auxiliary side, the
same network is connected to the drain and cascaded with
another semi-lumped quarter-wavelength line that completes
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Fig. 2. DPA combiner architecture: (a) ideal transmission line equivalent; (b)
semi-lumped implementation exploiting output capacitance of active devices;
(c) final schematic with microstrip lines’ width and length.
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Fig. 3. Simulated intrinsic loads in the 20.8-24 GHz band: (a) main device;
(b) auxiliary device.

the needed transformation. The impedance at the common
node is ZC = Z2

II/(2Ropt), where Ropt is the device optimum
load for maximum power.

For the 12×85µm device, biased at VD = 6 V, the intrinsic
optimum load is Ropt = 20 Ω. The equivalent output capaci-
tance CO is estimated around 0.4 pF that, at the center design
frequency of 22.4 GHz, gives ZII = 17.8 Ω and ZC = 7.9 Ω. The
optimized values of the components for the DPA semi-lumped
combiner in Fig. 2(b) are: CT = 0.8 pF, ZS = ZA = 70 Ω,
θS = 12◦ and θA = 15◦ at 22.4 GHz. The final schematic is
shown in Fig. 2(c). Since in general ZC 6= 50 Ω, an additional
post-matching network is needed, which was implemented
using a semi-lumped stub-line-stub structure including the
drain bias stub and the DC decoupling capacitor. Fig. 3 shows
the simulated impedances at the intrinsic generator plane of
the main and auxiliary devices (Zmi, Zai) at 6 dB back-off and
at saturation.

B. Interstage and Input Matching Networks

The same interstage matching network, shown in Fig. 4, is
used on the main and auxiliary branches. To provide matching
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Fig. 4. Interstage matching network with microstrip lines’ width and length.
Equivalent input and output circuits of the final and driver device, extracted
from cold-FET simulations, are also reported.

Fig. 5. DPA microscope picture (2.81× 1.35mm2).

and maximize gain, the impedance to be presented to the
gate of the active devices of the final stage must be inductive
with low resistance. However, if this condition occurs also at
sub-harmonic frequencies, parametric oscillations may arise.
To prevent this, the gate stub used for bias feed has been
implemented cascading two short sections separated by a
1 pF shunt capacitor [12], in order to simultaneously ensure
inductive behavior at the fundamental and opposite behavior at
sub-harmonics. Also the input matching and stabilization net-
works, which are designed for gain equalization, are the same
for both branches. Although main and auxiliary are biased in
a different operating class, adopting the same input/interstage
matching networks preserves symmetry, especially close to
saturation where both devices work in similar conditions. As
such, it ensures higher robustness to process variations, an
indispensable feature for wideband behavior, even if it does
not maximize the narrowband performance.

Even power splitting is preferred since it gives the best result
across the design bandwidth [10]. A semi-lumped branch-line
is chosen as input splitter thanks to its compactness, and
its capability of providing isolation and embedding of the
necessary 90◦ phase delay, without compromising bandwidth.

III. DPA CHARACTERIZATION

The microscope picture of the DPA MMIC, whose size
is 2.81 × 1.35 mm2, is reported in Fig. 5. The characteri-
zation is carried out in the following conditions: VD= 6 V,
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current of both main devices set to 100 mA/mm, and auxiliary
driver and final devices biased in class-C and class-B, i.e.
at VGAD= -1.3 V, VGAF= -0.95 V, respectively. Fig. 6, reporting
the simulated and measured scattering parameters, shows that
the wideband design approach adopted allows to successfully
cover the full target bandwidth (shaded), despite a frequency
shift due to process variations.

Large-signal CW characterization is performed over the
21 GHz-25.4 GHz band. Results at 21 GHz, 22.4 GHz, 24 GHz,
25.2 GHz are reported in Fig. 7. The agreement between mea-
surements and simulations is acceptable in the whole band,
apart from a higher measured efficiency and the frequency
shift already observed in small signal. The DPA achieves
a maximum output power (at 2 dB compression) between
29.5 dBm and 30.2 dBm, with a corresponding PAE in the
range 30 %-37 %. At 6 dB back-off, the PAE is between 19 %
and 24 % and the corresponding gain is higher than 10 dB. The
results are summarized in Fig. 8 and compared to other GaAs
DPAs at similar frequencies in Table I. The DPA compares
well with the state of the art, with the largest bandwidth and
the highest maximum output power, while maintaining high
PAE and small-signal gain (GSS) on the whole band.

The DPA has been also characterized at system level
adopting a setup composed by a Keysight E8267D arbitrary
vector signal generator and a Keysight N9030A vector signal
analyzer. The applied signal has a 256-QAM modulation
with 28 MHz channel bandwidth and 7.5 dB PAPR. A digital
predistorter (DPD) is adopted, based on a memory polynomial
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Fig. 8. Measured CW performance versus frequency.

model with odd polynomial terms only [13], with order 11 and
2 memory taps. The measured output power spectra, with and
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Fig. 9. Measured output spectrum with modulated signal.

without DPD, are shown in Fig. 9 at 24 GHz and at an average
output power and PAE of 22.9 dBm and 20%, respectively.
They are compared with the spectrum emission mask indicated
by ETSI for a spectral efficiency class 6LA [14]. After
linearization, the designed DPA is compliant with the ETSI
mask and can therefore be exploited for point-to-point radio
applications for microwave mobile backhauling.

TABLE I
COMPARISON WITH PREVIOUSLY PUBLISHED GAAS MMIC DPAS.

Ref. Freq. PMAX PAESAT PAEOBO GSS

(GHz) (dBm) (%) (%) (dB)
[10] 22.8-25.2 29.9-30.9 25-38 14-20 11-12.5
[6] 29.25-30.25 27.0 35-38 28-32 10.5
[15] 26.4 25.3 38 27 10.3
[16] 26.6 27.0 42 32 10.5
[17] 28 28.5 37 27 14.4
[18] 29-31.8 26.3 32-38 21-30 12
T.W. 21-25 29.5-30.2 30-37 19-24 10

IV. CONCLUSION

This paper presented a K-band Doherty power ampli-
fier fabricated in GaAs MMIC technology. The DPA shows
state-of-the-art performance over a record 4-GHz bandwidth
between 21 GHz and 25 GHz. This state-of-the-art bandwidth
has been obtained thanks to a compact Doherty output com-
biner that embeds the devices’ output capacitances.
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