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Abstract

The Global Horizontal Solar Irradiance prediction (GHI) allows estimating in advance the future

energy production of photovoltaic systems, thus ensuring their full integration into the electricity

grids. This paper investigates the effectiveness of using exogenous inputs in performing short-term

GHI forecasting. Thus, we identified a subset of relevant input variables for predicting GHI by

applying different feature selection techniques. The results revealed that the most significant input

variables for predicting GHI are ultraviolet index, cloud cover, air temperature, relative humidity,

dew point, wind bearing, sunshine duration and hour-of-the-day. The predictive performance of the

selected features was evaluated by feeding them into five different machine learning models based

on Feedforward, Echo State, 1D-Convolutional, Long Short-Term Memory neural networks and

Random Forest, respectively. Our Long Short-Term Memory solution presents the best prediction

performance among the five models, predicting GHI up to 4 h ahead with a Mean Absolute Deviation

(MAD) of 24.51%. Then, to demonstrate the effectiveness of using exogenous inputs for short-term

GHI forecasting, we compare the multivariate models against their univariate counterparts. The

results show that exogenous inputs significantly improve the forecasting performance for prediction

horizons greater than 15 min, reducing errors by more than 22% in 4 h ahead predictions, while for

very short prediction horizons (i.e. 15 min) the improvements are negligible.
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1. Introduction

The critical depletion of fossil fuels and the global climate change stimulated many countries

to employ ever larger volumes of renewable energy sources to gradually substitute the conventional

carbon based technologies. The International Energy Agency (IEA) in its Renewables 2019 re-

port (IEA, 2019) estimates that in the next 5 years solar photovoltaic (PV) systems will show the5

fastest growth among other renewables in the electricity sector, driven by supportive government

policies and favourable market conditions. Indeed, solar PV is a very popular renewable energy

source and it constitutes a viable method to directly convert solar energy into electricity (Palage

et al., 2019). The modularity of the PV technology permits a wide range of applications, from

large utility-scale power generation facilities to smaller off-grid residential systems. Solar energy10

contributes also to stabilise the cost of electricity generation, thanks to its independence from the

price volatility of fossil fuels. Furthermore, in the following years the manufacturing cost of modules

is expected to continue its downtrend, thanks to the economies of scale. In light of these consider-

ations, it is reasonable to expect that solar PV systems will have an increasingly important role in

the future energy mix.15

The solar power belongs to the class of variable renewable energy (VRE) sources. Indeed, the

power output of PV systems presents a certain variability during the day and strictly depends on

the actual exposition of solar panels to the sunlight, which can be partially absorbed by atmospheric

components like clouds and aerosols (Vindel & Polo, 2014). The intermittent nature of solar power

represents the major challenge for the full integration of solar PV systems into the power grid (Al-20

badi, 2016). In the 21st century, the increasing employment of renewable energy sources led several

countries to develop a more sophisticated kind of power grids called smart grids. In particular,

smart grids can leverage information from the network to provide a better network management

and stability (Berger & Iniewski, 2012). However, with the larger penetration of VREs into the

energy mix, smart grids require further adaptations to face the challenges posed by these kind of25

energy sources. In fact, the uncertainty of power supply negatively affects the stability of power

grids and makes difficult the participation in the energy market by solar power producers (Mills

et al., 2009). Recent findings suggest that the problem of fluctuating power outputs can be solved
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by adopting smart system operating procedures such as demand-response (Siano, 2014) and real-

time forecasting (Sugihara et al., 2017). In detail, the prediction of future energy production can30

significantly improve the energy management by power grid operators, allowing to take actions

in advance upon power supply variations. In order to estimate the power output of PV systems,

researchers take advantage of sophisticated PV energy simulators that are able to compute the

expected power generation given a certain amount of solar radiation as input (Bottaccioli et al.,

2017). For this purpose, a measure of primary interest is the Global Horizontal Irradiance (GHI),35

which is defined as the total irradiance received from the sun measured on a horizontal surface on

the Earth. The dynamics of GHI depends upon several factors. The contribution of deterministic

factors like the solar position during the day and the extraterrestrial radiation outside the Earth’s

atmosphere has been already successfully described by several clear sky GHI models with different

degrees of complexity (Reno et al., 2014). On the other hand, the effects of stochastic factors like40

weather conditions are more difficult to forecast and require the adoption of complex physical and

statistical models. Indeed, more efforts are needed in this way in order to obtain accurate solar

radiation predictions that can be used effectively in the energy sector.

In this work, we propose an innovative methodology for short-term solar radiation forecasts

(i.e. from 15 min to 6 h ahead) based on machine learning approaches. In detail, we investigate45

the effectiveness of using exogenous inputs for GHI prediction by identifying a subset of relevant

input variables correlated to the solar radiation phenomena, by applying and comparing different

feature selection techniques. For this purpose, we collected a total of 6 years of GHI observations,

together with various potentially useful meteorological indicators. Then, to find the most signifi-

cant input variables for predicting solar radiation, we perform a novel approach based on multiple50

feature selection methods. Therefore, to evaluate the prediction performance we design and opti-

mize five different machine learning models based on Feedforward Neural Network (FNN), Echo

State Network (ESN), 1D Convolutional Neural Network (1D-CNN), Long Short-Term Memory

(LSTM) neural network and Random Forest (RF), respectively. Finally, the performances of mul-

tivariate models are compared with their univariate implementations, in order to demonstrate the55

effectiveness of using exogenous inputs for short-term solar radiation forecasts.

The remaining sections of this work are organized as follows: Section 2 reviews the most signifi-

cant machine learning methods in literature for GHI forecasts and presents the main contributions

of our work. Section 3 gives a thorough description of the dataset used. Section 4 details the main
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steps of our innovative methodology. Then, Section 5 discusses the prediction results by exploiting60

different analytical indexes. Finally, Section 6 presents the relevant findings of this work, providing

some indications for future works.

2. Related works

Statistical models have been widely applied for solar radiation forecasting. Indeed, they proved

to be very effective on predicting short-term solar radiation, from 5 min up to 6 h ahead (Diagne65

et al., 2013). Early applications mostly exploited conventional time series analysis tools such as

Autoregressive Integrated Moving Average (ARIMA) models (Reikard, 2009). However, nowadays

these models have been clearly outperformed by more sophisticated techniques belonging to the field

of machine learning and artificial intelligence in many forecasting domains (Bontempi et al., 2012).

Indeed, researchers have witnessed that solar radiation time series can be better characterized by70

performing a non-linear mapping between past and future solar radiation values (Lauret et al.,

2015a). In this scenario, the Artificial Neural Network (ANN) is certainly the most extensively

applied machine learning model in the field of solar radiation forecasting (Voyant et al., 2017).

In (Aliberti et al., 2018a,b), authors perform short-term solar radiation forecasting, demonstrating

that ANNs can be successfully applied for predicting solar radiation. Other studies devised various75

ways to improve the prediction performance of ANNs. In (McCandless et al., 2016), the authors

showed that the prediction errors can be significantly reduced by detrending the solar radiation

time series through the clear sky index transformation. Pedro and Coimbra (Pedro & Coimbra,

2012) proved that substantial improvements can be obtained by optimizing the neural network

hyperparameters by using genetic algorithms. McCandless, in his research work (Paoli et al.,80

2010), demonstrated that the prediction performance can be further enhanced by training a single

neural network for each specific cloud regime pattern.

In recent years, researchers started to employ even more sophisticated neural network techniques

characterized by using an higher number of layers, which are commonly referred to as deep learning.

In the context of solar radiation forecasting there are still very few applications of deep learning85

techniques, but these methods may easily outperform conventional methods in the future, as is

already the case in other application domains (Voyant et al., 2017). Qing et al. (Qing & Niu, 2018)

compared a Long Short-Term Memory (LSTM) neural network against a multilayered Feedforward

Neural Network (FNN) for hourly day-ahead solar radiation forecasting. The LSTM algorithm
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showed an impressive improvement of 42.3% in terms of Root-Mean-Square Error (RMSE) against90

its simpler counterpart, demonstrating the effectiveness of using deep learning techniques in solar

radiation prediction. Other machine learning models such as Support Vector Regressors (SVR)

and Random Forests have been rarely used in this field (Voyant et al., 2017). However, tree-based

ensemble algorithms already exhibited promising results when applied (Benali et al., 2019; Hassan

et al., 2017), representing a valuable alternative to neural network techniques.95

The correlation between solar radiation and weather conditions inspired many researchers to

adopt a multi-variable approach, taking into account also potential external factors influencing

the solar radiation dynamics. Commonly used exogenous inputs are represented by meteorological

variables measured on the site of interest, such as temperature, humidity, wind speed and cloud

cover. In case ground-based meteorological data are not available, an alternative source of exogenous100

variables are Numerical Weather Prediction models, which provide weather forecasts for several

worldwide locations with different scales and forecasting horizons. In (Voyant et al., 2011), the

authors compared an ANN using only endogenous inputs and an ANN using both endogenous

and exogenous inputs for forecasting daily solar radiation. The comparison between the univariate

and the multivariate methods showed that the usage of exogenous inputs produced a performance105

gain between 0.5% and 1% in terms of Normalized Root-Mean-Square Error (nRMSE), providing

a significant improvement specially during the winter season, when the solar radiation variations

are greater. Rana et al. in (Rana et al., 2016) evaluated the effectiveness of using exogenous

inputs in forecasting the electricity power generated by a PV system from 5 to 60 min ahead. The

prediction results showed that the adoption of exogenous inputs does not provide any performance110

improvement in the short-term power forecasting. According to the authors, a possible reason for

this is that PV power data already reflects the weather changes in the short period, without the

need of additional input variables. The authors believe that meteorological data are more likely to

be useful with longer forecasting horizons.

Even though in the literature there is some evidence of the usefulness of exogenous inputs in solar115

radiation forecasting, it is still unclear to what extent they provide an edge over the univariate case

for the different forecasting horizons. Furthermore, we noticed that despite some works collected

a large number of potentially useful input variables, they ended up using only a low number of

those variables after feature selection. We believe that the reason for this lies in the adoption of

too stringent feature selection methods, which overlook the majority of the collected features and120
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lead to an underutilization of the input variables. In detail, we think that the employment of the

Pearson’s correlation coefficient as a single feature selection criteria represents a serious limitation

for the application of machine learning models, since it is only able to identify linear relationships

between variables (Shannon, 1948). Some studies overcome this limitation by using the Mutual

Information criteria (Monjoly et al., 2017; Lauret et al., 2015b), which is known for recognizing125

both linear and non-linear dependencies in the data. Nevertheless, the mutual information still

presents the typical limitations of filter methods, which evaluate the usefulness of each variable

independently of the context of others (Guyon & Elisseeff, 2003).

In this work, we propose an innovative methodology to evaluate the effectiveness of using ex-

ogenous inputs for short-term GHI forecasting. The novelty of our approach consists on applying130

multiple feature selection techniques chosen to counterbalance the limitations of each other, with

the aim of achieving more robust results than those that could be achieved by using a single se-

lection method. The predictive performance of the selected features are evaluated by feeding them

into five different machine learning models: namely a Feedforward Neural Network (FNN), an Echo

State Network (ESN), a 1D Convolutional Neural Network (1D-CNN), a Long Short-Term Memory135

(LSTM) neural network and a Random Forest (RF). Our work provides also a fair comparison

between less conventional machine learning models, thus giving significant insights about their rel-

ative prediction performance. To conclude, we compare each multivariate model with its univariate

counterpart trained by using only endogenous inputs, in order to evaluate the effectiveness of using

exogenous inputs for short-term solar radiation forecasting.140

3. Dataset

In this work, we aim at forecasting the short-term GHI by using both endogenous and exogenous

inputs. For this purpose, we used a dataset of six years (i.e. observations from January 1st 2010

to December 31st 2015). It provides GHI values sampled every 15 min by the weather station in

our University Campus. Moreover, in addition to GHI values, the weather station provided also145

a set of meteorological variables measured on site, namely cloud cover, air temperature, relative

humidity, sea-level pressure and wind speed. To collect additional exogenous inputs, we exploit

the weather forecasting and visualization service Dark Sky (Grossman & Turner, 2019). The Dark

Sky API provides historical weather observations for worldwide locations by gathering information

from multiple sources. The API responses come up with the distance of the nearest station that150
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contributed to the results, together with the list of sources used for the aggregation. The nearest

station for our site of interest was located about at 1 km of distance. It is worth mentioning that

Dark Sky data do not represent a binding requirement for the proposed methodology, which can

easily generalize to other datasets given that the same input variables can be acquired from other

sources such as ordinary weather stations on the ground.155

During feature engineering, we added three additional variables containing time information:

i) day of the year, ii) hour of the day and iii) minute of the hour. Furthermore, we decided to

replace the variables sunrise time and sunset time derived from Dark Sky by using a more compact

representation called sunshine duration, which is defined as the amount of time elapsed between

the sunrise time and the sunset time.160

To ensure data quality, we carefully examined each variable collected and fixed any irregularity

present in the dataset. The GHI variable presented a single outlier during this period, consisting on

a negative observation probably due to a temporary malfunction of the pyranometer, while other

variables presented some missing values. Both the outlier and the missing values were replaced

by using a simple linear interpolation. The comparison between the observed GHI values and the165

clear sky GHI values computed by using the Ineichen and Perez model (Ineichen & Perez, 2002)

revealed that the measured GHI values exceeded several times the estimated GHI values in clear

sky conditions. The discrepancies were probably due to some uncertainty in the measurements of

the pyranometer. Therefore, since the clear sky GHI should be the maximum value that can be

assumed by the observed GHI, we decided to round the exceeding GHI values to the corresponding170

clear sky GHI values. This rounding step is crucial for the computation of the clear sky index

transformation that will be introduced in Section 4.

The final dataset obtained in this way was composed of 210333 records and 15 input variables.

Table 1 provides a brief description of each variable present in the dataset. Finally, to evaluate

the prediction performance of the proposed models, we divided the dataset into a training set and175

a test set. The training set consisted of the first 5 years of observations in the period 2010-2014,

while the test set consisted of the last year of data, i.e. 2015. It is important to notice that all

optimizations were performed by using only the training set in order to avoid any look-ahead bias.

For this purpose, we used the last year (2014) of the training set as validation set.
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Table 1: List of input variables

Variable Unit Typology Source

Global Horizontal Irradiance (GHI) W/m2 endogenous weather station

Ultraviolet (UV) index - exogenous Dark Sky

Air temperature ◦C exogenous weather station

Relative humidity % exogenous weather station

Sea-level air pressure hPa exogenous weather station

Cloud cover, i.e. the percentage of sky occluded by clouds % exogenous weather station

Hourly precipitation intensity mm/h exogenous Dark Sky

Hourly precipitation probability % exogenous Dark Sky

Wind speed m/s exogenous Dark Sky

Wind bearing, measured in degrees progressing clockwise from the true north degrees exogenous Dark Sky

Dew point ◦C exogenous Dark Sky

Sunshine duration s exogenous Dark Sky

Day of the year - exogenous feature engineering

Hour of the day - exogenous feature engineering

Minute of the hour - exogenous feature engineering

4. Methodology180

Figure 1 shows the main phases of our methodology. Firstly, the training data are preprocessed

by applying some normalization techniques. Then, the most significant input variables for predicting

solar radiation are selected, while the remaining variables are discarded from the training set. Once

the training data are prepared, the machine learning models can be trained to predict GHI values

by using the previously selected input variables. During the test phase, the same preprocessing185

and feature selection steps used during the training phase are applied to the test set. Finally, the

trained models are evaluated and compared based on their prediction performance on test data.

4.1. Preprocessing

To facilitate the analysis by statistical models, we deal with stationary time series. This

means that a certain probabilistic regularity should exist over time in the behavior of the time190

series (Shumway & Stoffer, 2017). Therefore, we normalized the GHI values by using the clear sky

index transformation, which is widely used in literature to introduce stationarity in solar radiation

time series by removing the seasonal and daily trends. The formula of the clear sky index is the
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model
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Figure 1: Pipeline with the main steps of our methodology

following:

Kcs =
GHImeasured

GHIclear sky
(1)

where the observed GHI values are divided by the clear sky GHI values computed by the Ineichen195

and Perez model (Ineichen & Perez, 2002). The clear sky index assumes values in the range between

0 and 1 and measures the ratio between the measured GHI values and the clear sky GHI values. The

clear sky index computation is not possible during the nights, because the denominator assumes

zero values. However, to keep night values in our analysis, we decided to set the clear sky index to

1 during the nights.200

Feature scaling is necessary in order to give the same order of magnitude to each feature and

to speed up the training process of machine learning models. Therefore, we decided to scale each

input variable in the range between 0 and 1 by applying the min max normalization:

xscaled =
x−min(x)

max(x)−min(x)
(2)

where x is the vector of values to be scaled, max(x) and min(x) are the maximum and minimum

values of that vector, respectively.205
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4.2. Feature selection

The selection of the most relevant features is aimed at removing unimportant inputs from

machine learning models, thus reducing both model complexity and computational costs (Li et al.,

2017). Guyon et al. in (Guyon & Elisseeff, 2003) classified the feature selection methods into three

major categories: i) filter methods, ii) wrapper methods and iii) embedded methods. Filters rank210

features based on some correlation criteria. Wrappers aim to find the best subset of features based

on their empirical prediction performance. Lastly, embedded methods employ learning machines

that perform feature selection as part of their training process. In this work, we selected a couple

of the most commonly used methods for each aforementioned category, employing a total of six

feature selection techniques. In the following, we provide a brief description of the six feature215

selection methods adopted by our methodology, concluding with the final results of the feature

selection process.

4.2.1. Correlation criteria

The Pearson’s correlation coefficient measures the linear relationship between two variables. It

takes values between -1 and 1, where 1 is positive linear correlation, 0 is lack of linear correlation220

and -1 is negative linear correlation. The Pearson’s correlation estimate between two variables x

and y is given by the following formula, where the bar notation stands for the sample mean:

R =

∑n
i=1(xi − x)(yi − y)√∑n
i=1(xi − x)2(yi − y)2

(3)

Since the Pearson’s correlation can assume both positive and negative values, we decided to adopt

a different measure to compare the input variables. For this purpose, we used the coefficient of

determination R2, which is defined as the square of the correlation coefficient R and represents the225

fraction of variance in the target variable that is explained by individual variables. The coefficient

of determination between the input variables and solar radiation constituted our ranking criteria

for this method.

4.2.2. Information criteria

In information theory, the Mutual Information (MI) is a measure of the mutual dependence230

between two random variables (Shannon, 1948). More precisely, it is a measure of the statistical

dependence between the density of a variable x and the density of a variable y. The mutual
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information is given by the following formula:

MI =

∫
x

∫
y

p(x, y) log

(
p(x, y)

p(x)p(y)

)
dxdy (4)

where p(x) and p(y) are the probability densities of x and y, and p(x, y) is their joint probability

density. In case of continuous variables, the densities p(x), p(y) and p(x, y) are estimated by235

discretizing the variables or by approximating their densities with Parzen windows. For this method,

the input variables were ranked based on their mutual information with solar radiation.

4.2.3. Sequential forward selection

The Sequential Forward Selection (SFS) algorithm (Pudil et al., 1994) is a feature selection

method that heuristically searches for the best subset of variables to minimize the prediction error.240

The overall procedure is described in Algorithm 1. The SFS starts with an empty set of features

(line 1) and at each iteration extends the previous set with the feature whose insertion gives the

lowest prediction error (lines 3 and 4). The model used for evaluating the subsets was a simple

linear regression model, trained on data from 2010 to 2013 and tested on the following year (2014).

In order to evaluate the relevance of all features, we iterated the procedure until all input variables245

have been inserted. The order of insertion constitutes our ranking criterion, in which those variables

inserted first are more important than those inserted last.

Algorithm 1 Sequential Forward Selection (SFS)

1: Y ← {}; F ← features

2: while size(F ) > 0 do

3: f = argminf∈F [J(Y + f)]

4: Y ← Y + f

5: F ← F − f

4.2.4. Sequential backward selection

The Sequential Backward Selection (SBS) algorithm (Pudil et al., 1994) is very similar to the

SFS method. The procedure is described in Algorithm 2. The SBS starts with the complete set250

of features (line 1) and at each iteration remove from the previous set the feature whose removal

gives the lowest prediction error (lines 3 and 4). As before, we used a simple linear regression

model trained on data from 2010 to 2013 and tested on 2014. In order to evaluate the relevance of
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all features, we iterated the procedure until all input variables have been removed. The order of

removal constitutes our ranking criterion, in which those variables removed last are more important255

than those removed first.

Algorithm 2 Sequential Backward Selection (SBS)

1: Y ← features; F ← features

2: while size(F ) > 1 do

3: f = argminf∈F [J(Y − f)]

4: Y ← Y − f

5: F ← F − f

4.2.5. LASSO regression

Least Absolute Shrinkage and Selection Operator Regression (LASSO Regression) is a Linear

Regression model that uses l1 regularization (Tibshirani, 1996). In particular, a penalty term is

added to the cost function by using the l1 norm of the model parameters. The regularized version260

of the cost function is defined as:

J(θ) =
1

m

m∑
i=1

(θTxi − yi)2 + α

n∑
i=1

|θi| (5)

where m is the number of training instances, n is the number of input variables, xi is the input

vector, yi is the target, θ is the parameter vector of the model and α is the regularization hy-

perparameter. The peculiarity of l1 regularization is that it favors sparsity in model’s weights by

reducing the contribution of less important features. The regularization hyperparameter α controls265

the amount of penalization applied during the training. It is important to use the right value for α

in order to avoid either too heavily sparse vectors or flat distributions of weights. To find the best

value for α we trained the model on data from 2010 to 2013 by using the complete set of features,

keeping the model coefficients presenting the lowest prediction error on the validation set (2014).

The best value for α was found to be equal to 0.001. The magnitude of model coefficients represents270

the importance assigned to each input variable by the model itself.

4.2.6. Random forest

A Random Forest is an ensemble of decision trees, each one trained on a different random subset

of the training set (Breiman, 2001). The training algorithm of decision trees is designed such that
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the most important features are located closer to the root of the tree, while less important features275

are located closer to the leaves. In other words, the height of the tree at which a specific feature

is evaluated determines its discriminative power for predicting the target variable. In this work we

trained an ensemble of 100 decision trees on the whole training set from 2010 to 2014. No validation

set is required for this method. Finally, the input variables are ranked based on the impurity-based

feature importance estimated by the training algorithm of random forest.280

4.2.7. Feature selection results and remarks

Table 2 shows the final results of the feature selection process. In detail, we reported the ranking

position assigned to each variable for the six feature selection methods employed. The final ranking

(reported in the rightmost column) was obtained by computing the mean position of each variable

across the different feature selection methods. The threshold between the selected features and the285

discarded features was found empirically during the model optimization phase. In particular, we

trained and tested our models on incremental subsets of features generated by iteratively adding

the next most important feature from our final ranking. Again, notice that the entire procedure

used solely data from the training set, thus completely ignoring the final test set. Figure 2 shows

the mean validation error computed across all our models after each incremental variable insertion.290

As depicted in Figure 2, we noticed a performance improvement until the insertion of humidity

variable, where the prediction error reached its global minimum. On the other hand, the variables

day of the year, pressure, wind speed, precipitation probability, precipitation intensity and minute

penalized prediction performance once inserted. In conclusion, we found that the most relevant

features for solar radiation forecasting are ultraviolet index, temperature, sunshine duration, cloud295

cover, hour, wind bearing, dew point and humidity

13



Table 2: Ranking of variables based on feature selection results

Features
Methods

Ranking
R2 MI SFS SBS LASSO RF

S
el

ec
te

d

ultraviolet index 1 1 1 1 1 1 1

temperature 3 4 6 2 2 6 3

sunshine duration 4 7 5 4 4 5 4

cloud cover 9 8 3 6 6 2 5

hour 12 2 7 5 8 4 6

wind bearing 5 3 4 8 9 9 6

dew point 7 10 9 3 3 7 6

humidity 2 6 2 13 14 3 6

D
is

ca
rd

ed

day 11 5 8 7 10 11 8

pressure 13 11 10 9 5 8 9

wind speed 6 9 14 14 12 10 10

precipitation probability 8 13 11 10 11 13 11

precipitation intensity 10 12 12 11 7 14 11

minute 14 14 13 12 13 12 13

14



Figure 2: Validation errors obtained by incrementally expanding the set of inputs with the next most important

feature from the final ranking

4.3. Machine learning models

In the following, we present the machine learning models that we exploited to predict short-

term solar radiation. We design and optimize five different state-of-art machine learning models,

namely a Feedforward Neural Network (FNN), an Echo State Network (ESN), a 1D Convolutional300

Neural Network (1D-CNN), a Long Short-Term Memory (LSTM) neural network and a Random

Forest (RF). In order to evaluate how far ahead our models can still achieve acceptable forecasting

errors, we adopted a Multiple-Input Multiple-Output (MIMO) approach (Ben Taieb et al., 2010),

where a single model with multiple outputs allows to predict multiple values at once. For this

purpose, we performed multi-step ahead predictions with a time step of 15 min up to 6 h ahead,305

corresponding to 24 outputs. The maximum prediction horizon was chosen arbitrarily, considering

also the difficulty in predicting many time steps ahead with an acceptable forecasting error. The

best architectures for the proposed models were found by using a simple grid search algorithm as an

alternative to more complex methodologies (Esfe et al., 2017), evaluating as many configurations

as possible. At each iteration of the grid search, models were trained by using the first four years310

of observations (2010-2013), while the following year (2014) was used for validation. In case of
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comparable performance between two different configurations, the simpler one was chosen. Finally,

the configuration with the lowest error on validation data was selected.

4.3.1. Feedforward Neural Network

The Feedforward Neural Network, also known as Multilayer Perceptron, is a neural network315

architecture where the signal can only flow in one direction (i.e. from input neurons to output

neurons). The FNN is composed of one input layer, one or more hidden layers and one output

layer. Each layer (except the output layer) is fully connected to the next layer by a set of weighted

connections. The neurons in the input layer simply replicate on their output whatever they received

in input, while the neurons in the next layers apply a non linear function to the weighted sum of320

their inputs. An additional bias term b is usually added to the weighted sum of inputs to further

increase the model flexibility. The output of a single neuron is described by the following formula:

ŷ = f(

n∑
i=1

wixi + b) (6)

where xi are the inputs, wi are the input weights, b is the bias term and f is a non linear function

that is commonly called activation function. The set of all weights and bias terms constitutes the

network parameters to be optimized during the training process. The optimal weights are found325

through the backpropagation training algorithm, which iteratively updates the network parameters

by using some optimization technique that minimizes the prediction error. In this work, all neural

networks were trained by using the Adaptive Moment Estimation (Adam) algorithm with a learning

rate of 0.001, which usually guarantees a good convergence. The loss function to be minimized

during the training process was the Mean Square Error (MSE), which is defined as:330

lossMSE =
1

n

n∑
i=1

(yi − ŷi)2 (7)

where yi are the observed values, ŷi are the predicted values and n is the number of samples.

The number of epochs was set to 500, while the batch size was set to 200 samples. In order

to prevent overfitting and reduce the training time, we adopted the early stopping criteria with a

patience of 10 epochs and a validation split equal to 0.1 (10% of the training set). Thus, if the

model does not show any improvement on the validation set for 10 epochs, the training is stopped.335

The training hyperparameters are summarized in Table 3 and are the same for all the following

neural networks presented in this work.
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Table 3: Training hyperparameters

hyperparameter Value

Optimizer Adam

Loss Mean sqaured error

Learning rate 0.001

Epochs 500

Batch size 200

Validation split 0.1

Stopping criteria early stopping with patience equal to 10

The FNN was implemented in Python by using the Keras library with Tensorflow backend (Chol-

let et al., 2015). Firstly, we investigated the number of past observations to be used as input by

evaluating the model performance with different number of regressors. The FNN obtained the best340

prediction performance by using the past 3 observations for each input variable. The final architec-

ture of the FNN was composed of two hidden layers of respectively 100 units and 50 units, and a

final output layer of 24 units, corresponding to the number of prediction horizons of interest. The

hidden layers used a hyperbolic tangent (tanh) activation function, while the output layer used a

linear activation function. The FNN hyperparameters are described in Table 4.345

Table 4: FNN hyperparameters

Layer type Units Activation

Dense 100 tanh

Dense 50 tanh

Dense 24 linear

4.3.2. Echo State Network

The Echo State Network is a Recurrent Neural Network (RNN) that belongs to the class of

reservoir computing. The reservoir simply consists of a large set of randomly connected neurons

that constitute the hidden layer of the network. Figure 3 provides a schematic representation of a
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general ESN architecture.350

ut yt

Input layer Reservoir layer Ouput layer

Figure 3: ESN architecture

The state update of a standard discrete-time ESN with N reservoir units, K inputs and L outputs

is governed by the following equation:

xt+1 = f(Wxt +W bfyt +W inut) (8)

where f is the state update activation function, W ∈ RN×N is the reservoir weight matrix, xt is

the reservoir state, W bf ∈ RN×L is the feedback weight matrix, yt is the output, W in ∈ RN×K is

the input weight matrix and ut is the input. The output of an Echo State Network is given by the355

following formula:

yt = g(W out[xt, ut]) (9)

where g is the output activation function, W out ∈ RL×(N+K) is the output weight matrix and

[xt, ut] is the concatenation of the reservoir and the input states. The forward connections W out

from the reservoir nodes to the output units are the only parameters that are learned during the

training process, while the other weights are randomly initialized at the creation of the network360

and remain fixed. In order for the ESN to work properly, the reservoir must respect the Echo State

Property (ESP), which states that the effect of initial conditions x0 should progressively vanish as

the length of the input sequence goes to infinity. The necessary condition for the ESP to hold is

that the spectral radius λ, which is defined as the largest absolute eigenvalue of the matrix W,

must be less than 1. Pratically, it has been shown that the ESN can work properly also for spectral365

radius λ greater but close to 1.

In this work, the Echo State Network was implemented in Python by using the open source

library easyesn (Zimmermann, 2017). As before, the best hyperparameters for the ESN were found
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though a trail-and-error approach. Thus, we found that the best prediction performance for the

ESN were obtained by using only 1 regressor for each input variable. The final ESN configuration370

used a reservoir of 100 units with a reservoir density of 0.1. The spectral radius was set to 0.9, while

the leaking rate was set to 0.2. The set of all ESN hyperparameters with their values is described

in Table 5.

Table 5: ESN hyperparameters

hyperparameter Value

Number of reservoir units 100

Leaking rate 0.2

Spectral radius 0.9

Reservoir density 0.1

Transient time 100

4.3.3. 1D Convolutional Neural Network

The 1D Convolutional Neural Network is a special kind of CNN which was specifically designed375

for modelling 1-dimensional inputs. The 1D-CNN already achieved top performance in several

signal processing applications (Kiranyaz et al., 2019), thanks to its great capability in extracting

meaningful features from sequential data. The block responsible for the feature selection process

is the filter, which is basically a feature detector that learns to recognize a specific pattern in the

input data. The filter slides across the input sequence and activates the corresponding neuron in the380

feature map whenever a match for that pattern is found. The process of sliding a filter across the

input data is called convolution and consists of a series of multiplications between the filter and the

input values. Generally, convolutional layers are composed of several filters working over multiple

input channels, enabling the network to recognize multiple patterns in the input data. Moreover,

convolutional layers can be stacked together to form a deep architecture, where each layer builds385

upon the features detected by the previous layer in a hierarchical way. Convolutional layers may be

followed by a pooling layer, which is responsible for reducing the amount of information received

from the previous layer. Finally, one or more fully connected layers are added at the end of the

network to interpret the features extracted.
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We design and implement our 1D-CNN by exploiting the Keras library with Tensorflow back-390

end (Chollet et al., 2015). The best configuration for the 1D-CNN was achieved by using the past 5

observations of each input variable. The convolutional part of our network used two 1-dimensional

convolutional layers with 32 filters and a kernel size equal to 2. The activation function used for each

convolutional layer was the hyperbolic tangent function. No pooling layer was inserted after the

convolutional layers, because the number of features was quite small and did not show a limitation395

in terms of computational costs. Finally, a fully connected layer with 100 units was added at the

end of the network, using a hyperbolic tangent activation function. Like in the FNN, the output

layer was constituted of 24 output units with a linear activation function. The full description of

the 1D-CNN hyperparameters is provided in Table 6. The hyperparameters for the training process

were the same used for the FNN and are summarized in Table 3.400

Table 6: 1D-CNN hyperparameters

Layer type Units Filters Kernel size Stride Padding Activation

Convolution 1d - 32 2 1 valid tanh

Convolution 1d - 32 2 1 valid tanh

Dense 100 - - - - tanh

Dense 24 - - - - linear

4.3.4. Long Short-Term Memory

The Long Short-Term Memory neural network is a Recurrent Neural Network that demonstrated

particularly good performance in modelling sequential data. A Recurrent Neural Network differs

from a Feedforward Neural Network because it contains also backward connections. Indeed, at each

time step t a recurrent neuron receives the current input xt plus its own output from the previous405

time step yt−1, as shown in Figure 4.
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Figure 4: A recurrent neuron unrolled through time

Recurrent Neural Networks can be easily extended by adding more neurons in the hidden layer,

forming what is called a recurrent layer. Furthermore, recurrent neural networks can be composed

of multiple recurrent layers stacked together to form deeper architectures. A single recurrent neuron

or a layer of recurrent neurons implement a basic form of memory cell, thanks to their capability410

of preserving some states across different time steps. However, basic memory cells present some

limitations for longer input sequences and suffer from the vanishing gradient problem. Indeed,

the training process may become very slow for longer input sequences and recurrent neurons tend

to forget past states contributions as the number of time steps increases. Thus, the LSTM cells

were introduced by Hochreiter and Schmidhuber in (Hochreiter & Schmidhuber, 1997) to overcome415

the vanishing gradient problem. In particular, LSTM cells provide faster convergence during the

training process and are able to detect long-term dependencies in the input data.

Figure 5: LSTM cell
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Figure 5 shows the architecture of a basic LSTM cell. The LSTM state is split in two main

components: the short-term state ht and the long-term state ct. The short-term state ht replicates

the output of the previous memory cell, while the long-term state ct is responsible for transporting420

past states contributions. During the training, LSTM cells learn what information must be stored

in the long-term, what information must be throw away and what information are needed in the

current time step. The forget gate controls which information should be removed from the long-

term state. The input gate controls which information should be added to the long-term state.

Finally, the output gate controls which information should be read and output at the current time425

step. The following set of equations in vectorial form describes how the LSTM cell computes its

short-term state ht, its long-term state ct and its output yt at each time step t:

it = σ(W xixt +Whiht−1 + bi)

ft = σ(W xfxt +Whfht−1 + bf )

ot = σ(W xoxt +Whoht−1 + bo)

gt = tanh(W xgxt +Whght−1 + bg)

ct = ft ⊗ ct−1 + it ⊗ gt

yt = ht = ot ⊗ tanh(ct)

(10)

where W xi, W xf , W xo and W xg are the weight matrices of the connections to the input vector xt,

Whi, Whf , Who and Whg are the weight matrices of the connections to the previous short-term

state vector ht−1 and bi, bf , bo and bg are the bias terms.430

In this work, the LSTM neural network was implemented in Python by using the Keras library

with Tensorflow backend (Chollet et al., 2015). The best performance for the LSTM were obtained

by using the past 3 observations for each input variable. The final LSTM architecture was composed

of two recurrent layers with 50 units using a tangent hyperbolic activation function. Like in the

previous networks, the output layer used 24 output units with a linear activation function. The full435

description of the LSTM hyperparametes is provided in Table 7, while the training hyperparameters

are the same described in Table 3.
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Table 7: LSTM hyperparameters

Layer type Units Activation

LSTM 50 tanh

LSTM 50 tanh

Dense 24 linear

4.3.5. Random Forest

A Random Forest is an ensemble of Decision Trees where each predictor is trained by using

a different random subset of the training set, sampled via the bagging or the pasting methods.440

Generally, when Decision Trees perform regression tasks they are called Regression Trees, while the

corresponding ensemble model is called Random Forest regressor. The prediction of a Regression

Tree is simply given by the mean target value of the training data reaching the leaf node. The

Regression Tree algorithm tries to iteratively split the training data at each node such that the

MSE between the target values and mean of target values is as low as possible. The cost function445

that the training algorithm tries to minimize at each node is described by the following equation:

J(k, tk) =
mleft

m

∑
i∈left

(ȳleft − yi)2 +
mright

m

∑
i∈right

(ȳright − yi)2 (11)

where k is the feature chosen for the splitting, tk is the splitting threshold value, m is the cardinality

of the training subset reaching that node, mleft and mright are the cardinalities of the next training

subsets, yi are the training subset target values and ȳ is the mean target value. The prediction of

a Random Forest regressor is obtained by averaging the predictions of individual trees.450

The Random Forest regressor was implemented in Python by using the sklearn open source

library (Pedregosa et al., 2011). The model showed the best prediction performance when using 10

regressors for each variable. The ensemble model was limited to 100 Decision Trees, since a greater

number of estimators did not show substantial improvements. In oder to prevent overfitting, the

minimum number of samples reaching a node was used as stopping criteria. By using a trial-and-455

error approach, we decided to stop the tree growth when the number of samples reaching a node

goes below 100 instances. The Random Forest hyperparameters are summarized in Table 8

23



Table 8: Random Forest hyperparameters

hyperparameter Value

Estimators 50

Minimum samples split 100

5. Results and discussion

In this section, we present the prediction results obtained by using the proposed methodology.

For a deep analysis of our models, we exploit a set of statistical indicators widely used in the460

literature for time series analysis. In order to demonstrate the effectiveness of using exogenous

inputs for short-term solar radiation forecasting, we compared the prediction performance of the

five machine learning models (FNN, ESN, LSTM, 1D-CNN, RF) in two different scenarios: i)

models are trained by using both endogenous and exogenous inputs and ii) models are trained

by using only endogenous inputs. For the sake of clarity, we recall that endogenous inputs are465

represented by past solar radiation values (GHI), while exogenous inputs are represented by the

most significant features elected by our feature selection methodology (UV index, temperature,

sunshine duration, cloud cover, hour, wind bearing, dew point, humidity). For a fair comparison,

the univariate and multivariate models are trained and tested by using the same dataset partition.

The hyperparameters and the number of regressors of each model are kept the same between the470

multivariate and the univariate scenarios without applying further optimizations.

5.1. Performance metrics

To evaluate the prediction accuracy of models, we exploited a number of metrics that are widely

used in descriptive statistics and in regression analysis to quantify the similarities between predicted

and observed time series (Gueymard, 2014): i) the Mean Absolute Difference (MAD), ii) the Root475

Mean Square Difference (RMSD) and iii) the Coefficient of determination (R2). MAD measures the

absolute difference between the predicted and the observed values. RMSD measures the standard

deviation of the difference between the predicted and the observed values. R2 measures the fraction

of variance in the observed values that is explained by the predicted values. The three statistical
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indicators are described by the following equations:480

MAD =
100

ȳtest

∑n
i=1 |ypred,i − ytest,i|

n
(12)

RMSD =
100

ȳtest

√∑n
i=1(ypred,i − ytest,i)2

n
(13)

R2 = 1−
∑n

i=1(ytest,i − ypred,i)2∑n
i=1(ytest,i − ȳtest)2

(14)

where ypred are the predicted values, ytest are the observed values, n is the number of predictions

and the bar notation stands for the mean value. It is worth noticing that the models are trained

to forecast the clear sky index values instead of directly predicting the solar radiation values.485

Therefore, the statistical indicators are computed by using the solar radiation values reconstructed

by inverting the clear sky index transformation.

5.2. Model evaluation

In the following, we compare the five proposed machine learning models in the multivariate

scenario, i.e. by using both endogenous and exogenous inputs. The models are compared based490

on their prediction performance on the test set. Figure 6 provides a visual comparison of the

forecasting errors in terms of MAD, RMSD and R2, respectively. The differences between the five

models are more evident in the MAD, where the forecasting errors of different models are more

distinguishable. The dissimilarities between models are less pronounced in the RMSD and R2,

but still appreciable. Overall, the plots show a general uptrend in the forecasting errors of all495

models. Indeed, the forecasting errors increase as the prediction horizon gets larger. In accordance

with the results obtained in (Aliberti et al., 2018a), we fixed a threshold of 25% in terms of MAD

to indicate the upper bound above which we consider an excessive degradation in the prediction

performance. Based on these assumptions, we can state that the proposed methodology produced

acceptable forecasting errors up to 4 h ahead, with a maximum error of 24.51% (MAD) achieved by500

our LSTM model. The red area in Figure 6 indicates the forecasting window where the prediction

performance of all models started collapsing. Hence, we decided to focus our discussion only on

the temporal window with acceptable forecasting errors, i.e. from 15 min up to 4 h ahead. The

numerical results of the forecasting errors plotted in Figure 6 are clearly reported in Tables 7, 8
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and 9 under the column name ”Endogenous + Exogenous”, to indicate that these results are505

solely referred to the multivariate models. Overall, the LSTM demonstrated the best prediction

performance among the five models, outperforming other models in almost every prediction horizon.

In particular, Tables 9 and 10 show that the LSTM presented better performance for prediction

horizons greater than 1 h, ranging from 18.36% to 24.51% in terms of MAD and from 43.31% to

55.19% in terms of RMSD. Apparently, the 1D-CNN slightly surpassed the LSTM performance in510

some sporadic cases. For example, the 1D-CNN outperformed the LSTM in terms of MAD for

prediction horizons between 30 min and 75 min ahead and between 30 min and 60 min ahead in

terms of RMSD, as shown in Tables 9 and 10. However, we must consider that the LSTM provided a

small advantage over the 1D-CNN at cost of higher computational resources, which definitely makes

the 1D-CNN a valid competitor for the LSTM. The FNN demonstrated also very good prediction515

performance, but it remained steadily behind the LSTM and the 1D-CNN for every prediction

horizon that we considered. Interestingly, the ESN presented the best results for very short-term

predictions, achieving the top performance for 15 min ahead predictions. On the other hand, the

ESN presented the worst performance for longer prediction horizons (> 15 min), revealing a general

poor capability in modelling multivariate time series. The RF performed slightly better than the520

ESN, but presented lower prediction performance with respect to other neural network techniques.
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(a) MAD (b) RMSD

(c) R2

Figure 6: Comparison of multivariate models based on MAD, RMSD and R2

5.3. Improvement of exogenous inputs

To demonstrate the effectiveness of using exogenous inputs for short-term solar radiation fore-

casting, we compared the five multivariate models with their univariate counterparts trained by

using only endogenous inputs. Figures 7, 8 and 9 provide a visual comparison between the uni-525

variate and multivariate models in terms of MAD, RMSD and R2, respectively. According to the

results, the models using both endogenous and exogenous inputs demonstrated better prediction

performance with respect to the models using only endogenous inputs. In particular, the perfor-

mance improvements due to exogenous inputs are more pronounced for longer prediction horizons,

while for shorter prediction horizons the performance of the two approaches are very similar. Tables530

9, 10 and 11 compare the models using exogenous inputs with the models using only endogenous
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inputs in terms of MAD, RMSD and R2, respectively. The underlined values indicate the model

with the lowest error for that specific prediction horizon. In case of similar errors the model with

less parameters was selected. In the third column we reported the percentage improvement of each

multivariate model with respect to its univariate implementation, where a positive value indicates a535

beneficial impact of exogenous inputs in prediction performance. The results clearly show that the

multivariate approach outperforms the univariate approach for almost every prediction horizon. In-

deed, all statistical metrics present a certain improvement in the multivariate scenario from 30 min

to 240 min ahead, showing higher improvements for longer forecasting horizons. For example, the

LSTM trained by using both endogenous and exogenous inputs achieved an impressive performance540

improvement of 22.14% in terms of MAD for 4 h ahead predictions. The RSMD and the R2 indices

also show an outstanding performance improvement of 18.99% and 8.64% for 4 h ahead forecasts,

respectively. On the other hand, the univariate approach surpassed the multivariate solution only

for 15 min ahead forecasts, where the 1D-CNN reported the best results in terms of MAD with

9.61%. As a matter of fact, the MAD index shows that there are no advantages in the multivariate545

approach for 15 min ahead predictions, reporting only negative performance improvements for all

models in that prediction horizon. To conclude, the results show that the adoption of exogenous

inputs can significantly improve the forecasting performance for prediction horizons greater than

15 min, while for very short prediction horizons the performance improvement due to exogenous

inputs can be considered as negligible. On these bases, we suggest to adopt a multivariate approach550

only for longer forecasting horizons, where the benefits provided by exogenous inputs give reasons

for the higher computational costs required by more complex models. On the contrary, we believe

that endogenous inputs can suffice for very short-term solar radiation predictions, since there is no

evidence that exogenous inputs can provide performance improvements for very short prediction

horizons.555
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(a) ESN (b) RF

(c) FNN (d) 1D-CNN

(e) LSTM

Figure 7: Improvement of exogenous inputs in terms of MAD
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(a) ESN (b) RF

(c) FNN (d) 1D-CNN

(e) LSTM

Figure 8: Improvement of exogenous inputs in terms of RMSD
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(a) ESN (b) RF

(c) FNN (d) 1D-CNN

(e) LSTM

Figure 9: Improvement of exogenous inputs in terms of R2
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Table 9: Improvement of exogenous inputs in terms of MAD

Endogenous + Exogenous Endogenous Improvements

Pred. horizon RF FNN ESN LSTM CNN RF FNN ESN LSTM CNN RF FNN ESN LSTM CNN

15 min 11.40 11.15 10.39 10.74 11.00 9.82 9.73 10.19 10.01 9.61 -16.09% -14.59% -1.96% -7.29% -14.46%

30 min 14.94 14.61 14.79 14.11 13.90 14.22 14.22 14.74 14.28 14.04 -5.06% -2.74% -0.34% 1.19% 1.00%

45 min 16.90 16.04 17.36 15.96 15.71 16.77 16.69 17.47 16.83 16.72 -0.78% 3.89% 0.63% 5.17% 6.04%

60 min 18.37 17.47 19.32 17.25 17.22 18.78 18.54 19.52 18.80 18.87 2.18% 5.77% 1.02% 8.24% 8.74%

75 min 19.47 18.62 20.89 18.36 18.28 20.50 20.25 21.25 20.49 20.37 5.02% 8.05% 1.69% 10.40% 10.26%

90 min 20.43 19.54 22.21 19.16 19.40 21.98 22.07 22.73 22.02 21.68 7.05% 11.46% 2.29% 12.99% 10.52%

105 min 21.32 20.54 23.36 19.98 20.32 23.30 23.34 24.07 23.36 23.16 8.50% 12.00% 2.95% 14.47% 12.26%

120 min 22.12 21.20 24.32 20.80 20.78 24.67 24.74 25.33 24.68 24.64 10.34% 14.31% 3.99% 15.72% 15.67%

135 min 22.87 21.98 25.10 21.28 21.51 25.89 25.88 26.49 25.82 25.82 11.66% 15.07% 5.25% 17.58% 16.69%

150 min 23.57 22.74 25.76 22.03 22.44 26.95 27.09 27.44 26.89 27.07 12.54% 16.06% 6.12% 18.07% 17.10%

165 min 24.17 23.44 26.31 22.66 22.90 28.02 28.05 28.31 27.91 27.98 13.74% 16.43% 7.06% 18.81% 18.16%

180 min 24.77 23.65 26.74 22.95 23.58 28.89 28.91 29.01 28.78 28.83 14.26% 18.19% 7.82% 20.26% 18.21%

195 min 25.31 24.48 27.15 23.37 24.89 29.62 29.85 29.66 29.55 29.71 14.55% 17.99% 8.46% 20.91% 16.22%

210 min 25.82 24.84 27.57 23.83 25.07 30.33 30.56 30.25 30.28 30.47 14.87% 18.72% 8.86% 21.30% 17.72%

225 min 26.33 25.51 27.97 24.09 24.75 30.93 31.08 30.72 30.92 31.01 14.87% 17.92% 8.95% 22.09% 20.19%

240 min 26.84 26.24 28.34 24.51 25.02 31.46 31.60 31.21 31.48 31.64 14.69% 16.96% 9.20% 22.14% 20.92%

Table 10: Improvement of exogenous inputs in terms of RMSD

Endogenous + Exogenous Endogenous Improvements

Pred. horizon RF FNN ESN LSTM CNN RF FNN ESN LSTM CNN RF FNN ESN LSTM CNN

15 min 30.39 29.92 29.22 29.81 29.73 29.50 29.65 29.69 29.58 29.83 -3.02% -0.91% 1.58% -0.78% 0.34%

30 min 37.95 37.95 37.56 37.54 36.91 38.73 38.74 38.84 38.67 38.78 2.01% 2.04% 3.30% 2.92% 4.82%

45 min 41.63 41.16 41.71 41.10 40.79 43.34 43.64 43.59 43.27 43.49 3.95% 5.68% 4.31% 5.02% 6.21%

60 min 44.14 43.55 44.51 43.31 43.18 46.46 47.04 46.75 46.37 46.58 4.99% 7.42% 4.79% 6.60% 7.30%

75 min 45.87 45.35 46.68 44.96 45.26 49.04 49.60 49.29 48.99 49.23 6.46% 8.57% 5.30% 8.23% 8.06%

90 min 47.29 46.51 48.42 46.28 46.46 51.12 51.42 51.34 51.02 51.32 7.49% 9.55% 5.69% 9.29% 9.47%

105 min 48.65 47.83 49.96 47.45 47.51 53.04 53.69 53.27 53.02 53.03 8.28% 10.91% 6.21% 10.51% 10.41%

120 min 49.90 48.99 51.35 48.55 48.75 55.24 55.56 55.20 55.18 54.73 9.67% 11.83% 6.97% 12.02% 10.93%

135 min 51.08 49.90 52.54 49.51 49.75 57.29 57.75 56.94 57.23 56.78 10.84% 13.59% 7.73% 13.49% 12.38%

150 min 52.11 50.90 53.65 50.36 50.56 59.24 59.77 58.53 59.16 58.72 12.04% 14.84% 8.34% 14.87% 13.90%

165 min 53.07 52.01 54.58 51.35 51.21 61.16 61.83 59.94 61.04 60.62 13.23% 15.88% 8.94% 15.87% 15.52%

180 min 53.99 52.94 55.29 52.11 52.26 62.73 63.66 61.12 62.64 62.11 13.93% 16.84% 9.54% 16.81% 15.86%

195 min 54.82 53.82 56.01 52.82 53.71 64.20 64.74 62.18 64.09 63.39 14.61% 16.87% 9.92% 17.58% 15.27%

210 min 55.62 54.58 56.70 53.66 54.16 65.68 65.90 63.17 65.58 64.60 15.32% 17.18% 10.24% 18.18% 16.16%

225 min 56.37 55.32 57.39 54.44 54.60 67.01 67.25 63.96 66.83 65.93 15.88% 17.74% 10.27% 18.54% 17.18%

240 min 57.14 56.31 58.09 55.19 55.75 68.27 68.68 64.78 68.13 67.20 16.30% 18.01% 10.33% 18.99% 17.04%

32



Table 11: Improvement of exogenous inputs in terms of R2

Endogenous + Exogenous Endogenous Improvements

Pred. horizon RF FNN ESN LSTM CNN RF FNN ESN LSTM CNN RF FNN ESN LSTM CNN

15 min 0.96 0.96 0.97 0.96 0.96 0.97 0.96 0.96 0.96 0.96 -1.03% 0.00% 1.04% 0.00% 0.00%

30 min 0.94 0.94 0.94 0.94 0.95 0.94 0.94 0.94 0.94 0.94 0.00% 0.00% 0.00% 0.00% 1.06%

45 min 0.93 0.93 0.93 0.93 0.93 0.92 0.92 0.92 0.93 0.92 1.09% 1.09% 1.09% 0.00% 1.09%

60 min 0.92 0.92 0.92 0.92 0.93 0.91 0.91 0.91 0.91 0.91 1.10% 1.10% 1.10% 1.10% 2.20%

75 min 0.92 0.92 0.91 0.92 0.92 0.90 0.90 0.90 0.90 0.90 2.22% 2.22% 1.11% 2.22% 2.22%

90 min 0.91 0.91 0.91 0.91 0.91 0.90 0.89 0.89 0.90 0.89 1.11% 2.25% 2.25% 1.11% 2.25%

105 min 0.91 0.91 0.90 0.91 0.91 0.89 0.88 0.89 0.89 0.89 2.25% 3.41% 1.12% 2.25% 2.25%

120 min 0.90 0.90 0.89 0.91 0.90 0.88 0.88 0.88 0.88 0.88 2.27% 2.27% 1.14% 3.41% 2.27%

135 min 0.90 0.90 0.89 0.90 0.90 0.87 0.87 0.87 0.87 0.87 3.45% 3.45% 2.30% 3.45% 3.45%

150 min 0.89 0.90 0.88 0.90 0.90 0.86 0.86 0.86 0.86 0.86 3.49% 4.65% 2.33% 4.65% 4.65%

165 min 0.89 0.89 0.88 0.89 0.89 0.85 0.85 0.86 0.85 0.85 4.71% 4.71% 2.33% 4.71% 4.71%

180 min 0.88 0.89 0.88 0.89 0.89 0.84 0.84 0.85 0.84 0.85 4.76% 5.95% 3.53% 5.95% 4.71%

195 min 0.88 0.88 0.87 0.89 0.88 0.83 0.83 0.85 0.84 0.84 6.02% 6.02% 2.35% 5.95% 4.76%

210 min 0.88 0.88 0.87 0.88 0.88 0.83 0.83 0.84 0.83 0.83 6.02% 6.02% 3.57% 6.02% 6.02%

225 min 0.87 0.88 0.87 0.88 0.88 0.82 0.82 0.84 0.82 0.83 6.10% 7.32% 3.57% 7.32% 6.02%

240 min 0.87 0.87 0.86 0.88 0.88 0.81 0.81 0.83 0.81 0.82 7.41% 7.41% 3.61% 8.64% 7.32%

6. Conclusions

In this work, we evaluated the effectiveness of using exogenous inputs for short-term solar

radiation forecasting. To this aim, we identified a subset of relevant input variables for predicting

solar radiation by applying different feature selection techniques to a larger set of variables. The

results of feature selection revealed that the most significant input variables for predicting solar560

radiation are UV index, cloud cover, air temperature, relative humidity, dew point, wind bearing,

sunshine duration and hour of the day. On the other hand, features like precipitation intensity,

precipitation probability, wind speed, sea-level air pressure, day of the year and minute of the hour

were discarded. To assess the usefulness of the selected features, we evaluated and compared the

prediction performance of five different machine learning models, namely a Feedforward Neural565

Network (FNN), an Echo State Network (ESN), a 1D Convolutional Neural Network (1D-CNN),

a Long Short-Term Memory (LSTM) neural network and a Random Forest (RF). Overall, the

LSTM demonstrated the best prediction performance among the five models, producing acceptable

forecasting errors up to 4 h ahead. The 1D-CNN exhibited forecasting performance comparable to

those of the LSTM for prediction horizons shorter than 2 h. The FNN demonstrated also very good570
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prediction performance, but definitely lower than the ones achieved by the LSTM and the 1D-CNN.

The ESN presented the best performance for very short-term predictions (15 min), but presented

the highest forecasting errors for larger forecasting horizons, revealing poor prediction performance

in modelling multivariate time series. The RF performed slightly better than the ESN, showing

promising results. Finally, in order to demonstrate the effectiveness of using exogenous inputs for575

short-term solar radiation forecasting, we compared the multivariate models with their univariate

counterparts. The results showed that the adoption of exogenous inputs can significantly improve

the forecasting performance for prediction horizons greater than 15 min, while for shorter prediction

horizons the performance improvement due to exogenous inputs can be considered as negligible.

Overall, the results demonstrated the effectiveness of using exogenous inputs for short-term solar580

radiation forecasting.

In this study, we implemented different feature selection techniques able to identify the most

relevant input variables for short-term solar radiation forecasting. However, we considered a limited

number of variables, due to the lack of availability of high quality meteorological data with minutely

frequency. We believe that the model can be further improved by introducing additional features585

such as real-time weather forecast and other atmospheric components. Furthermore, we plan to

improve our methodology by exploiting also spatial information and considering meteorological

observations from neighboring locations.

List of acronyms

1D-CNN 1 Dimensional Convolutional Neural Network590

ANN Artificial Neural Network

ARIMA Autoregressive Integrated Moving Average
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IEA International Energy Agency
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LASSO Least Absolute Shrinkage and Selection Operator Regression

LSTM Long Short-Term Memory

MAD Mean Absolute Deviation600

MI Mutual Information

MIMO Multiple-Input Multiple-Output

MSE Mean Square Error

nRMSE Normalized Root Mean Square Error

PV Photovoltaic605

R2 Coefficient of Determination

RF Random Forest

RMSD Root Mean Square Deviation

RMSE Root Mean Square Error

RNN Recurrent Neural Network610

SBS Sequential Backward Selection

SFS Sequential Forward Selection

SVR Support Vector Machine

UV Ultraviolet

VRE Variable Renewable Energy615
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