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Arches represent a structural system adopted in construction practice for thousand

years, and they are still widely adopted if large spans have to be covered. The structural

efficiency of arches principally depends on the minimization of the eccentricity of the

pressure curve, which allow us to reduce their structural weight. Despite the millenarian

use and a very abundant literature, there is still scope for design optimization of arches.

This study is framed within this context and is focused on plane circular arches under

uniformly distributed vertical load and self-weight. The arches are elastically clamped at

both end sections. A semianalytical approach is developed to minimize the volume, with

the aim of determining the fundamental mechanical parameters governing the optimal

design. Finally, the results are charted to allow their use in a design process.

Keywords: arch, bending springs, force method, volume minimization, optimal design

INTRODUCTION

Arches are inherently efficient structures; they are capable to transfer loads from the superstructure
to the foundations (Wilson, 2005) with low structural weight. If properly shaped, they become
the optimal solution to cross large spans and transfer high loads. Structural efficiency depends
on the predominance of axial internal forces with low eccentricity (Allen and Zalewski, 2009;
Marano et al., 2014; Wang and Wang, 2015): in this circumstance, smaller cross-sections can be
used with respect to beams. Contrarily, large eccentricities of axial internal forces or large shear
stresses lead to uneconomical design, subexploitation of building materials, and unnecessary self-
weight (Billington, 1982; Gohnert et al., 2013). Further design economy can be achieved via a more
demanding overall shape optimization, aimed at satisfying specific objectives, and constraints. In
many cases, structural volume is minimized (Fiore et al., 2016; Greco et al., 2016).

From the data of 55 arch bridges built during the twentieth century reported in Salonga and
Gauvreau (2014), several empirical lessons may be learned. The first one is that (longer span)
concrete arches require, per unit length, higher material quantities as compared to (shorter span)
post tensioned concrete girder bridges. This is an expected result, at least since arches are curved,
whereas beams are not and, moreover, post tensioned concrete girders are not usable on large spans.
The second lesson is that, for long span arch bridges, arch self-weight is about half of the total
vertical load. Both lessons motivate the search for optimal (less material consuming) solutions.

Traditionally, it is since the seventeenth century that Galileo and next Hooke first approached
the hanged chain problem, but more accurate solutions, published on Acta Eruditorum, are due
to Bernoulli, Leibniz, and Huygens. Since then, the catenary curve has been addressed as optimal
solution for compressive arch ribs under directly applied loads or for suspended cables in tension.
Catenary arches show properties of pure compression, without bending moment or shear stress. A
chain suspended between two points will form this curve, which is routinely used for arches and
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sometimes for shells (although this is not fully correct due to
bidimensional stiffness). It is worth to remember that Hooke, as
reported by Heyman, was the first experimentalist; he introduced
the concept of inverted catenary as optimal arch form. Significant
support was also given by Gaudí, Otto, and Isler during the
nineteenth and twentieth century. These traditional studies
focused on the hanged chain problem mainly regarding masonry
arches in which opening of joints between vassoirs and sliding at
interfaces must be avoided.

Another more recent approach is focused on the search of
the optimal shape of arches modeled as elastic structures. In
this context, a very interesting study on moment-less arches
was proposed by Lewis (2016). In his mathematical model, a
prediction on a simply supported arch rib shape is presented.
Both arch self-weight and a uniformly distributed load are
included in the analysis in order to show which geometry, among
parabolic or catenary arch, is the most suitable one. Results show
that the catenary arch shape produces lower stresses.

Another very recent analytical study about arch configuration
is due to Osserman (2010); he clarifies in a precise and
mathematical fashion the motivations of the Gateway Arch shape
in St. Louis.

A challenging view on these results can also be found in Tyas
et al. (2011), where it is proved, by numerical evidence, that a
parabolic funicular is not necessarily the optimal structural form
to carry a uniform load between fixed supports; thus, an explicit
analytical expression for geometry and stress is proposed in order
to design suitable truss systems emerging from the supports and
thus obtain a global optimization.

A fresh look upon optimization approach is also presented in
the study byVanderplaats andHan (1990), where an optimization
technique based on an iterative force approximation method is
combined with a finite-element technique to obtain a minimum
arch volume, by assuming variable cross-section. Further studies
have been performed, for both buildings and bridges, in
D’Ambrosio et al. (2009), Fiore et al. (2016), Gilbert and Tyas
(2003), Greco et al. (2016) and Trentadue and Quaranta (2013).

Moreover, in the last years, analytical investigations on arches
have been mostly finalized to the prediction of buckling load (Liu
et al., 2017; Li and Zheng, 2019; Zhang et al., 2019).

Within this framework, this paper is focused on the optimal
design of an elastic plane circular arch having fixed span L,
uniform cross-section, and subjected to a uniform vertical load
and to its self-weight. It is assumed that the only non-null
deformation is the bending curvature. A novel semianalytical
approach is developed to minimize the volume. The obtained
results allow us to highlight the main mechanical parameters
governing this optimal design problem and provide useful
strategies for predesign purposes. Practical analytical results to
optimize arch predesign, like the ones achieved in this research,
are missing in the literature.

A further novelty of this study is in the constraint conditions
considered at the arch end sections, which are elastically clamped,
thus accounting for all possible real cases. In fact, previous
analytical studies on the same topic were strictly focused on
simply supported or clamped end arches, resulting it to be so

framed in a less general context (Marano et al., 2014, 2018;
Trentadue et al., 2018, 2019).

PROBLEM STATEMENT

Figure 1A shows the static scheme of the right half of a circular
arch of radius R, in which ϑ is the colatitude of a generic section
and β the colatitude of the end section.

As already stated, intermediate conditions between hinged
and clamped supports are herein considered, and bending
springs of stiffness K are applied at both end sections.

The arch has a uniform cross-section area A, is made up of
a homogeneous material with specific gravity weight γ , and is
subjected to its self-weight and to a uniformly distributed vertical
load for unit horizontal length q. Thus, the tangent load pτ and
normal load pn for unit length of arch are given by

{

pτ =
(

qcosϑ + γA
)

sinϑ

pn = −
(

qcosϑ + γA
)

cosϑ
(1)

where the unit vectors n and τ are shown in Figure 1A, while
qcosθ is the applied vertical load for unit length of arch. The
equilibrium equations can be written as







N′ (s) + T(s)
R = −

[

γA sin
(

s
R

)

+ 1
2q sin

(

2s
R

)]

T′ (s) − N(s)
R =

[

γAcos
(

s
R

)

+ qcos2
(

s
R

)]

M′ (s) + T (s) = 0

(2)

where s= θR, N is the axial internal force, T is the shear internal
force, andM is the bending moment.

Together with the above equations, the following boundary
conditions must be fulfilled







T (0) = 0
N (0) = −H
M (β) = −X

(3)

whereX andH are the horizontal thrust and the negative bending
moment at the end sections, which will be considered redundant
forces. The following dimensionless mechanical variables are
now introduced:

n =
N

qL
; t =

T

qL
; m =

M

qL2
;

µ =
γA

q
; h =

H

qL
; x =

X

qL2
(4)

together with the geometric relation

R

L
=

1

2 sin (β)
(5)
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FIGURE 1 | (A) Static scheme. (B) Primary structure in force method.

Equations (1–5) allow to derive the dimensionless internal forces
n, t, and the dimensionless bending momentm as follows

n
(

ϑ ,β , h
)

=
1

2

{

−2hcos (θ) − csc (β) sin (θ) [θµ + sin (θ)]
}

;

(6a)

t
(

ϑ ,β , h
)

=
1

2

{

−2hsin (θ) + csc (β) cos (θ) [θµ + sin (θ)]
}

;

(6b)

m
(

ϑ ,β , h, x
)

=
1

8
{−8x− cot(β)2 + 2

[

βµ − 2hcos (θ)
]

csc(β)

+2cot(β)
[

2h+ µ csc (β)
]

+ csc(β)2 [−2µ cos (θ)

+cos(θ)2 − 2θµsin (θ)
]

} (6c)

Next, to determine the dimensionless redundant forces x and h,
the force method is applied. As already stated, it is assumed that
the bending curvature κ is the only non-null deformation in the
arch, determined as

κ = M/EJ (7)

The primary structure is shown in Figure 1B, where the
compatibility conditions ux(B) = 0 and α(B) + X/k = 0
are associated to it. Here, ux(B) and α(B) are the horizontal
displacement and the rotation at the end section B.

Then, by means of virtual force theorem, the two
above compatibility conditions lead to the system of two
simultaneous equations:



















L
2sinβ

β
∫

0

mh m
EJ dθ = L

2sinβ

β
∫

0

m(ϑ ,β ,1,0) m(ϑ ,β ,h,x)
EJ dθ = 0

L
2sinβ

β
∫

0

mx m
EJ dθ = L

2sinβ

β
∫

0

m(ϑ ,β ,0,1) m(ϑ ,β ,h,x)
EJ dθ = − x

k

(8)

where k= KL/EJ is the dimensionless stiffness of the springs;m is
given by Equation (6c);mh is the dimensionless bending moment

due to a unit thrust and mx = –1. The dimensionless redundant
forces x and h are thus determined by solving Equation (8):

x = −{kcsc(β)2[27− 36
(

1+ 4β2
)

µ cos (β) + 8
(

−4+ 3β2
)

cos (2β)

+36µcos (3β) + 5 cos (4β) + 252βµ sin (β) − 96β3µ sin (β)

−28βsin (2β) + 12βµsin (3β) + 2βsin (4β)]}/{192[−2k

−2kβ23 cos (β) + 2kcos (2β) + 3 cos (3β) + 6β sin (β)

+kβ sin (2β) + 2βsin (3β)]} (9a)

h = {csc (β)
{

9+ 48kµ − 24kβ2µ − 3
[

k+ 2
(

−9+ 4β2
)

µ
]

cos (β)

+4
[

−4+ 3k
(

−4+ β2
)

µ
]

cos (2β) + 3kcos (3β) − 54µ cos (3β)

+24β2µ cos (3β) + 7 cos (4β) + 6kβ sin (β) − 36βµ sin (β)

−42kβµ sin (2β) + 2kβ sin (3β) − 60βµ sin (3β)
}

+6βSin (4β)}/{24[−2k+ 2kβ2 − 3 cos (β) + 2kcos (2β)

+3 cos (3β) + 6β sin (β)]+ kβsin(2β)+ 2βsin(3β)} (9b)

OPTIMAL SOLUTION

The optimal shape that minimizes the arch volume is herein
searched. In each section, the stress under axial-bending
condition must satisfy the constraint

σmax =

∣

∣

∣

∣

M

W
+

N

A

∣

∣

∣

∣

=
qL

A

(

LA

W
|m| − n

)

≤ fd (10)

where W is the section modulus and fd is the design strength
of the material, while the dimensionless axial force n and the
dimensionless bending momentm are given by Equations (6a,c).
It has been considered that n is always negative.

For the structural scheme under examination, it is not possible
to determine a priori in which section the stress σmax reaches
its maximum. To highlight this circumstance, in Figure 2, the
dimensionless moment m, obtained by Equations (6c, 9a,b),
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FIGURE 2 | Dimensionless moment m versus colatitude θ for β = π/4 and µ = 1: (A) k = 5; (B) k = 500.

is drawn versus the colatitude θ of sections (see Figure 1). It
emerges that for small values of k (in the range 1–10), the
maximum bending moment is attained in a generic internal
section (Figure 2A), while only for high values of k (>10), it is
attained at the end sections (Figure 2B).

As a result, the cross-section area Amust be determined as

A = max
0≤ϑ≤β

qL

fd
(−n + λ |m|) (11)

where λ is a slenderness parameter, defined as λ = AL/W. For
instance, in case of rectangular section, it results λ = 6L/h, where
h is the height of the section.

Equation (11) cannot be directly solved since the
dimensionless axial force n and the bending moment m
depend on the cross-section area A through the parameter
µ, defined in Equation (4). To overcome this drawback, the
dimensionless internal forces are written as

n = nq + µnµ

m = mq + µmµ (12)

and the dimensionless span η = γ L/fd is introduced. This new
parameter has a clear mechanical interpretation: it is the ratio
between the arch span L and the height h̄ = fd/γ of a column
made by the samematerial of the arch, subjected to its self-weight,
in which, at the base section, the design strength fd is attained.
Since µ = γA/q, the following relation holds

µ = η
Afd

qL
(13)

and Equation (11) becomes

A (β , λ, η) =
qL

fd
max

0≤ϑ≤β

−nq + λ
∣

∣mq

∣

∣

1− η
(

−nµ + λ
∣

∣mµ

∣

∣

) (14)

where A(β , λ, η) is the minimum cross-section area such to
satisfy the constraint σmax ≤ fd in all sections of the arch. In
Equation (14), it has been considered that nq and nµ are always
negative. Figure 3 plots theminimumdimensionless feasible area
of a generic section

a = A
fd

qL
=

−nq + λ
∣

∣mq

∣

∣

1− η
(

−nµ + λ
∣

∣mµ

∣

∣

) (15)

versus the section colatitude θ , for different values of the
dimensionless stiffness constraints k, confirming that its
maximum can be attained in any section. Finally, in view of
Equation (5), the volume V can be obtained as

V (β , λ, η) = A (β , λ, η)
Lβ

sinβ

=
qL2

fd

β

sinβ
max

0≤ϑ≤β

(

−nq + λ
∣

∣mq

∣

∣

)

[

1− η
(

−nµ + λ
∣

∣mµ

∣

∣

)] (16)

Since it is not possible to obtain a closed-form solution for
Equation (16), it must be searched numerically. The obtained
result is shown in Figure 4, in which the dimensionless volume
fdV/qL

2 versus the rise/span ratio

f

L
=

1− cosβ

2 sinβ
(17)

is drawn. A fixed value λ = 600 of the slenderness parameter is
first considered, whereas the dimensionless span takes the values
η = {0.1, 0.2, 0.3, 0.4, 0.5} and the dimensionless spring stiffness
is set equal to k= {0, 10, 50, 500}.

It emerges that, for all curves, the values of f /L in the range
(0.1, 0.15) produce the best values of the dimensionless volume
fdV/qL

2. It is worth to remark that this range of optimal values of
f /L is independent from the applied load q and from the span L.

The graphs in Figure 4 show that the dimensionless span
η strongly influences the value of the optimal dimensionless
volume and, as expected, design solutions with low dimensionless
span η lead to lower values of the minimal dimensionless volume.

Therefore, η is a fundamental parameter governing the design.
In particular, in view of Equation (16), the dimensionless volume
tends to infinity when in a generic section it results

η →
1

(

−nµ + λmµ

) (18)

It can be easily shown that if Equation (18) holds, then the
condition σmax = fd is immediately attained, yet for a null value
of q, as effect of the self-weight only.

In Figure 5, the same graphs of Figure 4 are derived for λ =

200. It can be noted that design solutions with lower slenderness
lead to lower values of the minimal dimensionless volume.
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FIGURE 3 | Dimensionless area a versus the colatitude θ for β = π/4, η = 0.3 and λ = 600: (A), k = 5; (B), k = 500.

FIGURE 4 | Dimensionless volume fdV/qL
2 versus f/L for λ = 600: (A) k = 0, (B) k = 10, (C) k = 50, and (D) k = 500.

In conclusion, we can find a range of feasible values of the
rise/span ratio f /L for each set of values of η, λ, and k. At the
boundaries of this range, the dimensionless volume tends to
infinity, regardless of the value of the external load q.

As it can be inferred from Figures 4, 5, the main parameter
determining this range is the dimensionless span η. We recall
that, by increasing the dimensionless span η, the range of feasible
values for the dimensionless rise f /L narrows and the optimal
dimensionless volume increases.

With regard to the influence of the dimensionless constraint
stiffness k, from Figures 4, 5, it emerges that the best value
of this parameter is about 10, so not corresponding neither to
clamped ends nor to simply supported ends, highlighting the
importance to consider a generic value of stiffness for bending
spring constraints.

Based on the above graphs, the following design procedure
can be proposed. First, the dimensionless span η is determined
by the material properties γ , fd, and the span L. Next, the optimal

values of the rise/span ratio f /L and of the dimensionless volume
fdV/qL

2 are evaluated by the graphs in Figures 4, 5, for assigned
values of λ and k. The evaluation of the optimal volume V allows
on the one side to estimate the cost of the structure and on
the other to calculate the corresponding optimal cross-section
dimensions. For example, in the case of rectangular cross-section,
the height h and the width b could be obtained, after fixing the
slenderness parameter λ, by the following relations:

h =
6L

λ
; b = Vλ

sinβ

6L2
(19)

where the colatitude β can be determined by the rise/span ratio
f /L, solving the equation

f

L
=

1− cosβ

2 sinβ
(20)

which leads to a second-degree equation in the unknown cosβ .
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FIGURE 5 | Dimensionless volume fdV/qL
2 versus the rise/span ratio f/L for λ = 200: (A) k = 0, (B) k = 10, (C) k = 50, and (D) k = 500.

FIGURE 6 | Optimal rise/span ratio f/L versus λ for different values of η and constraints stiffness: (A) k = 0 and (B) k = 100.

Finally, the graph in Figure 6 directly shows the

optimal dimensionless rise f̃ versus λ, for different values
of η, in case of simply supported ends (k = 0) and in
case of nearly clamped end sections (k = 100). We can
notice that the stiffness k slightly influences the optimal
dimensionless rise.

Moreover, this plot can be used for practical predesign
purposes: by fixing the section modulus W, the material
properties, γ and fd, and the span L, first, the parameters λ and η

can be calculated and then the optimal value of the dimensionless

rise can be determined as f̃opt = f̃ (λ, η) by the above graph.
By observing Figure 6, it emerges that the optimal values of

the dimensionless rise are rather low, leading to drop arches as
optimal solutions.

CONCLUSIONS

In the present study, a semianalytical solution for the optimal
shape of a plane arch with bending springs at ends has been
presented. Although the procedure is referred to the particular
case of circular arches with uniform cross-section, it allows
us to highlight the main mechanical parameters governing the
solution, in particular the dimensionless span and the rise/span
ratio. The obtained results show that values of the rise/span ratio
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in the range (0.1, 0.15), in all cases here examined, lead to a
minimal weight, independently from the applied load q, from the
span L, and from the other mechanical properties. Thus, it can
be inferred that optimal arches are always moderately shallow.
In this case, even if relevant axial internal forces are developed,
the eccentricity of the pressure curves results lower than those
occurring in arches with high rises, thus producing the most
convenient circumstances for design.

Finally, based on the above findings, useful graphs have been
provided for predesign purposes, allowing us to obtain the
optimal values of rise and volume as a function of the mechanical
and geometrical properties of arches. Then, the evaluation of
these optimal values allows us to derive the corresponding
optimal cross-section dimensions and to estimate the cost of the
structure. These steps are crucial within a predesign stage.
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