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Abstract: Biofuels from micro-organisms represents a possible response to the carbon dioxide mitiga-
tion. One open problem is to improve their productivity, in terms of biofuels production. To do so, an
improvement of the present model of growth and production is required. However, this implies an
understanding of the growth spontaneous conditions of the bacteria. In this paper, a thermodynamic
approach is developed in order to highlight the fundamental role of the electrochemical potential
in bacteria proliferation. Temperature effect on the biosystem behaviour has been pointed out. The
results link together the electrochemical potential, the membrane electric potential, the pH gradient
through the membrane, and the temperature, with the result of improving the thermodynamic
approaches, usually introduced in this topic of research.

Keywords: biofuels; biomethane; nonequilibrium thermodynamics; bacteria; energy engineering; biodiesel

1. Introduction

In 2017, UN IPCC Conference in Marrakesh suggested containing the increase in
temperature up to 2 ◦C, in order to prevent the overcoming of the thermal threshold for
a possible disastrous climate change [1] due to the use of fossil fuels as main source of
energy [2]. In the last decade a growing interest in biofuels from bacteria has emerged, due
to their sustainable characteristics [3–17].

However, at present, the third generation of biofuels is not yet competitive, in compar-
ison to fossil fuels, because they present high costs of production and extraction, in relation
to the amount of fuel obtainable per unite volume of culture [18].

In order to improve their competitiveness, the control of bacteria growth is required.
This topic has been studied in the second half of the XX century, starting with Monod [19,20],
who developed a whole theory on bacteria growth, by introducing a hyperbolic relation-
ship, which links the amount of limiting resources in the environment to the growth rates
of microorganisms. This first result has been improved by coupling it to other models able
to fit the experimental data [21–24]. In 1956, the concept of continuous culture has been
introduced with the aim to obtain biological cultures able to operates continuously for a
long time [24,25]. This approach showed, in 1958, that one of the fundamental requirement
of life is the maintenance of concentration or osmotic gradients [26]. Then, the Black cox
model was introduced in order to obtain the relationships among energy, biomass and
yield [24], by pointing out that the growth of bacteria, on a single carbon compound as sole
energy source, uses a constant amount of energy, per electron, to produce dry weight [27].
Mayberry et al. pointed out the role of the electrons (as electric charge) in the bacteria
growth, in relation to the Oxygen fluxes [28].This thermochemical approach led to confirm
the Thornton’s rule [29]. However, the thermodynamic approach has been highlighted
to be too dependent by the approximation of enthalpy and Gibbs free energy, with the
consequence to require a new development.
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In this context, biofuel production by microorganisms must be analysed in order to
optimise their production process [30–32], and it can be carried out from an improvement
of the thermodynamic approach to biophysical processes. We have recently developed
a thermodynamic approach to mutualism [4,33], in order to improve the biodiesel pro-
duction from bacteria and algae [34–40], in the context of a new general approach to
sustainability [41]. So, we suggest an explanation to the behaviour of the bacteria in rela-
tion to a new nonequilibrium thermodynamic approach to bacteria membrane. Indeed,
bacterial electrical signalling has experimentally been proven to be able to regulate a great
variety of physiological processes, mediated by membrane electric potential [42–45], such
as proliferation [46].

In accordance with the previous biological and biochemical results, the inflow of nutri-
ents and outflow of waste products occur through the membrane, with a related restoration
of ionic gradients, changed by the transport systems. There is a great number of theoretical
and computational studies on the membrane mechanics, but these models cannot obtain
a full description of the membrane dynamical and chemical behaviour [47]. There is a
continuous interaction between bacteria and their environment; indeed, all bacteria are
able to modify their environment by secretion of enzymes, toxins, or pheromones and by
macromolecules on their external membrane surfaces. This interaction is the key-point of
our scientific interest: we wish to point out the conditions of bacteria environment control,
useful to improve the production of biofuels by micro-organisms.

In this paper, we develop the analysis of the role of the membrane potential in the
behaviour of the bacteria, in relation to their ability to produce biofuels, in order to suggest
an approach to improve their productivity, starting from a natural behaviour of these living
biosystems. Last, we suggest a possible improvement of this behaviour, by introducing the
cooperative interaction between different species (mutualism).

2. Materials and Methods

The aim of this paper is to introduce, into the thermodynamic analysis of the biofuels
production by bacteria, a nonequilibrium thermodynamic approach to membrane heat and
mass transport, recently developed in relation to life [48] and applied to cancer [49–52] and
glaucoma [53], with results in accordance with the experimental results in literature, both
in relation to cancer [54–80] and to glaucoma [81–89].

The nonequilibrium thermodynamic approach has been obtained by introducing the
Onsager general phenomenological relations, previously related only to membrane electric
potential, and, here, generalised by introducing the electrochemical potential [48,49,90–93]:

Je = −L11
∇µe

T
− L12

∇T
T2

JQ = −L21
∇µe

T
− L22

∇T
T2

(1)

where Je is the net current density [A m−2], if the effect of some different species f ions
are considered or simply the effect of one species if only one ion species is considered,
JQ denotes the heat flux [W m−2], µe = µ + Zeφ [92–94] is the electrochemical potential
[J mol−1], with µ the chemical potential [J mol−1], ze the electric charge [A s mol−1],
and φ the membrane potential [V], T is the living cell temperature and Lij represent
the phenomenological coefficients, such that [94] L12(B) = L21(−B) (Onsager-Casimir
relation [95]), and L11 ≥ 0 and L22 ≥ 0, and [94] L11L22 − L12L21 > 0.

The result consists in modelling the life cycle of a living cell by introducing two related
processes [48,49]:

• A continuous energy generation (metabolism), due to the ion fluxes: the ions and
metabolites fluxes can be described by imposing Je 6= 0 and JQ = 0;

• A continuous heat fluxes from the cell to its environment: The heat exchange towards
the environment can be described by imposing Je = 0 and JQ 6= 0.
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In this way, we can split the life cycle into two thermodynamic processes, as usually
done in thermodynamics for any complex process [91,96].

If the ions and metabolites fluxes occur, Je 6= 0 and JQ = 0, so, by taking into account
the Equations (1), it is possible to obtain [48,90,91]

dµe

dT
= − L21

L11

1
T

(2)

with a related heat flux [90,91]:
du
dt

= −∇ · JQ (3)

where u is the internal energy density [J m−3].
Living bacteria exchange heat power towards their environment by convective trans-

mission and thermal infrared emission, so, as a consequence of the First Law of Thermody-
namics, it follows [51]

du
dt

dV = δQ̇ = −α (T − T0) dA− εirr σSB
(
T4 − T4

0
)

dA (4)

where εirr ≈ 0.97 is the emissivity factor [97–99], σSB = 5.67× 10−8 W m−2K−4 is the
Stefan–Boltzmann constant, α is the coefficient of convection, A area of the external surface
of the cell membrane, V is the cell volume, T is the mean temperature of the external
surface of the bacteria membrane, and T0 is the temperature of their environment.

So, considering the Equations (3) and (4), together with the Divergence Theorem [100],
the heat power exchanged:

Q̇ =
∫

A
JQ · n̂dA ≈ α (T − T0)A + εirr σSB

(
T4 − T4

0
)

A (5)

However, considering Equation (1), and that εirr σSB
(
T4 − T4

0
)
<< α (T − T0), and

the second hypothesis of our approach (Je = 0, JQ 6= 0), we can obtain [48]:

dµe

d`
=

T JQ(
L22

L11
L12
− L21

) = − α T(T − T0)(
L22

L11
L12
− L21

) (6)

where ` is the length of bacteria membrane and |∇µe| ≈ dµe/d`. This last relation repre-
sents a link between the bacteria membrane electric potential and the temperature of the
bacteria but to their heat exchange, too. Now, Equation (6) allow us to obtain:

α T (T − T0) = −
(

L22
L11

L12
− L21

)
∂µe

∂`
(7)

Considering that [93]: (
L22 − L21

L12

L11

)
= KJ T2 (8)

where KJ is the Thomson coefficient [93], it is possible to obtain that:

∂µe

∂`
=

∂µe

∂T
α

KJ

(
Tsur f − T0

)
(9)

which, considering that µe = µ + zeφ, allows us to obtain:

∂µ

∂`
= −ze

dφ

d`
+

∂µe

∂T
α

KJ

(
Tsur f − T0

)
(10)
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We can point out that the first fundamental quantity in the equation is the chemical
potential, which is defined as [91]:

µi =

(
∂G
∂ni

)
T,p,nk 6=i

≈ G
ni

= g (11)

where G is the Gibbs energy, g is the Gibbs molar specific energy, n is the number of moles,
and p is the pressure. Moreover, the Gibbs energy is related to the membrane electric
potential by the Nernst equation [101]:

∆g = F ∆φ− 2.3R T0 ∆pH (12)

where F = 96485 A s mol−1 is the Faraday constant and R = 8.314 J mol−1 K−1 is the
universal constant of ideal gas. Now, introducing the Equation (12) into the Equation (10),
we can obtain:

∂µe

∂T
=

KJ

α

F + ze
Tsur f − T0

dφ

d`
−

KJ

α

2.3R T0

Tsur f − T0

dpH
d`

(13)

As a consequence of the previous processes, a density entropy rate due to irreversibility
(dissipation function [90]) is generated [102]:

σ = − 1
T0

N

∑
i=1

Ji · ∇µi =
N

∑
i=1

Ji
zie
T0

dφ

d`
+ Ju

α

KJ

(
1−

Tsur f

T0

) N

∑
i=1

∂µe,i

∂T
(14)

where T0 is the environmental temperature, ∑N
i=1 µi Ji is the contribution of the inflows

and outflows, and µ is the chemical potential. Considering that σ ≥ 0, we can find the
condition of control for the previous relations:

N

∑
i=1

Ji
zie
T0

dφi
d`
≥ −Ju

α

KJ

(
1−

Tsur f

T0

) N

∑
i=1

∂µe,i

∂T
⇒

⇒
N

∑
i=1

Ji zie∇φi ≥ Ju
α

KJ
(Tsur f − T0)

N

∑
i=1

∂µe,i

∂T

(15)

3. Results

The fundamental result of this paper is Equation (10). Indeed, this equation repre-
sents a link among the chemical potential gradient and the electric potential through the
membrane and the thermophysical properties of the membrane and the environmental
fluid, related to the temperature of the micro-organisms membrane external surface. In-
deed, the electrochemical potential variation with temperature in Equation (13) shows a
dependence on the pH gradient. This result is in accordance with the behaviour of the
analysis of the lipid membranes, related to chemical stimuli; indeed, lipid membranes are
extremely responsive to chemical stimuli, with particular regards to pH gradients [47], as
experimentally proven by using synthetic membranes [47,103]. In this context, it is possible
to change the pH gradient by introducing the interaction between different species, as
verified experimentally, for example, for mutualism between Chlorella vulgaris and Spirulina
platensis [104].

Proteins play a fundamental role in ion transport. Proteins in the cytosolic can be
modified in their functions by phosphorylation or dephosphorylation. An ion actively
crosses the membrane against its electrochemical potential, whereby the necessary energy
is derived either from the hydrolysis of ATP, or from the movement of a cotransported, or
coupled ion along its electrochemical gradient. In this context, the role played by the H+-
ATPase is fundamental, because it moves positive charges into the cell, while it generates
membrane voltage and a pH gradient [105–107]. Protein phosphorylation is an important
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cellular regulatory mechanism, because many enzymes and receptors [51,108,109] are
activated or deactivated by phosphorylation [110–113].

Moreover, the second fundamental quantity in Equation (10) is the coefficient of
convection α [114], directly related to the characteristic length 〈R〉 = V/A. This is a
geometrical quantity, and it is related to the shape of the micro-organism. The geometrical
characteristic of a system plays a fundamental role in the heat exchange. Recently, it has
been shown its importance in the bacteria biological behaviour [115,116], pointing out also
a fundamental role in the biological behaviour of the bacteria.

The last fundamental quantity for the behaviour of the micro-organisms is related
to the control of the environmental temperature. It is possible to point out that hyperpo-
larisation is generated in relation to the temperature difference between micro-organisms
and their environment, showing the fundamental role of the environmental tempera-
ture, and in accordance with the experimental data [46,117–119]: the biomass concen-
trations results for ethanol 3.43± 0.08 g L−1 and acetate 0.93± 0.12 g L−1 Clostridium
carboxidivorans at 37 ◦C [120], higher than at 25 ◦C, (ethanol 1.58± 0.03 g L−1 and acetate
0.61± 0.15 g L−1 [120]).

In order to obtain biofuels from micro-organisms, all the above mentioned quantities
result fundamental and, one of the main issues is how to increase their production, by
modifying the micro-organisms behaviour. In relation to our result (Relation (15)), we can
point out that a possible way to improve the production of biofuels by micro-organisms
can be obtained by increasing the ion and metabolite fluxes, in relation to the heat flux.
Indeed, in nature, it is possible to observe that mutual interactions between different
species can improve or modify the micro-organisms metabolism and their metabolites
fluxes [121]. As a matter of fact, in nature, microbial consortia are widely diffuse, where
living organisms create a community [122–125]. Thus, the coexistence of more species
in the same environment can lead to a phenomenon called symbiosis [126,127]. The
interaction between different species can bring to different effects for the two symbionts,
that can be positive or negative [128]: mutualism, cooperation, commensalism, predation,
parasitism, amensalism, and competition. In this context, a possible improvement in
biofuels production from micro-organisms can be obtained by exploiting the capability of
different species to positively interact among them. The main communication/interaction
path, among the symbionts, is just the mutual exchange of metabolites [129–136].

In some biotechnological applications, the creation of artificial consortia among differ-
ent species of micro-organisms through cocultures, has been positively applied, obtaining
an improvement for their relative end-products production [137–141].

4. Discussion and Conclusions

Thermodynamics can improve the comprehension of the microorganisms growth
and, consequently, it can allow us to improve their productivity of chemical compounds
useful to biofuels production. The thermodynamic black box model has been proved
to be a good tool for the evaluation of the microbial growth. In particular, it is useful
to define the conditions of optimal growth, in relation to the interaction between the
microorganisms and their environment. However, this interaction is based on fluxes
through the microorgnasms membrane. Our results improve this approach, by analysing
both the thermal and the electric fluxes. Indeed, the comprehension of the effects of the
exogenous stimuli represents a fundamental improvement in the understanding of the
bacterial electrophysiology [46,142,143].

So, biofuel and bioplastic production can be related to the proliferation, which is
controlled just by membrane electric potential, driven by ATP synthesis [118,144–146]. The
fundamental role of the membrane electric potential has been experimentally pointed out,
by the analysis of the energy used by Escherichia coli to maintain its membrane electric
potential; indeed, it results in around half of its total energy consumption [147].
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Our results suggest explanation to some experimental evidence; indeed, an exogenous
electrical stimulus has been shown to shape the proliferative capacity of bacteria, by
inducing hyperpolarization in the cells [46].

Moreover, within the temperature range of life for the micro-organisms, higher tem-
perature shortens the lag period and stimulates cell growth, in accordance with the
microbial metabolism [148–152]. In our relation, the metabolism is taken into account
by the surface temperature, while the environmental conditioning is expressed by the
environmental temperature.

We highlight that a variation of the micro-organisms behaviour can be induced by
the symbiosis between two different species. Indeed, in order to improve the formation
of the useful high-value biomolecules, for biofuels production from micro-organisms,
an interesting approach is to exploit the natural positive mutual interactions between
different species. This could lead to a variation in their metabolites exchanges across their
membranes and to a related change of the pH gradient [104]. For example, the cocultivation
of two different species can bring to an enhancement of the lipid biomolecules inside the
cells [153], which are the useful molecules employed for the biodiesel production [154].
Several studies have investigated the cocultivation of different micro-organisms, with the
aim of improving their lipid concentration:

• In Ref. [155], the species Chlorella pyrenoidosa and Rhodospiridium toruloides have been
cocultivated, obtaining 4.60 glipid L−1 (compared respectively to 3.00 glipid L−1 and
3.40 glipid L−1, respectively for each single species);

• In Ref. [156], the species Spirulina platensis and Rhodotorula glutinis have been cocul-
tivated, obtaining 0.467 glipid L−1 (compared respectively to 0.013 glipid L−1 and
0.135 glipid L−1 for the single species);

• In Ref. [157], the species Chlorella sp. and Toluraspore have been cocultivated, obtaining
2.42 glipid L−1 (compared respectively to 0.052 glipid L−1 and 1.141 glipid L−1 for the
single species);

• In Ref. [158], the species Chlorella sp. and Monoraphidium sp. have been cocultivated,
obtaining an improved lipid productivity of 29.52± 1.13 mglipid L−1 d−1 (compared
respectively to 17.99± 3.39 mglipid L−1 d−1 and 17.70± 1.19 mglipid L−1 d−1 for the
single species).

These examples represent some application of the mutualism to produce biodiesel;
other promising consortia involve the production of biohydrogen [159], biomethane [160],
and bioethanol [161,162]. Thus, the establishment of consortia, such as the microalgae-
bacteria ones, can be a powerful tool to improve microalgal biomass production and to en-
hance the production of the high-value compounds useful to the biofuels production [163].
These processes involve a large amount of exchanged metabolites, molecular signals, and
transporters, which induce a variation in the fluxes exchanged by the micro-organisms
themselves, on their membrane potential and on the existing pH gradient.

Our results are in agreement with the recent open problems highlighted in the new
frontiers in microbiological researches for industrial use of bacteria [142]. Indeed, Bacillus
subtilis is an example of industrialised bacterium to hydrolyze polypeptides through
its secreted proteases and to convert amino acids into advanced biofuels and ammonia
fertilizer [164]. Just in relation to Bacillus subtilis, some experiments of stimulation of the
membrane have been developed by using an electric stimulus of 60 mV µm−1 AC 0.1 kHz
for 2.5 s [46]: a hyperpolarization response has been shown, concluding that electrical
stimulation causes the efflux of K+ cations. The authors pointed out that Bacillus subtilis
reacts to external stimuli by maintaining the resting-state membrane potential, but to do so
it consumes a constant amount of ATP in order to keep the intracellular K+ level. Moreover,
the opening of voltage-gated K+ channels, with the related hyperpolarization due to K+

efflux, has an effect on the proliferative capacity of the cell [46]. These experimental results
represent a further proof of our thermophysical results and considerations. Indeed, cell
membranes contain enzymes complexes which further the oxidative phosphorylation
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along which electrical potential of H+ ions, and chemical potential of reduced transporters
(i.e., NADH, etc.), play a fundamental role in ATP production. Last, we can highlight
that mutual interactions among different species can represent an interesting approach
to improving the production of biofuels and must be considered an important topic of
investigation for future development in optimisation of biofuels production.
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