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ABSTRACT

In order to cope with the fast increase in data traffic demand, optical networks are fast evolving towards the
disaggregation and progressive implementation of the openness paradigm. Such an evolution is enabling the
application of the software-defined networking below the IP layer, down to the optical transmission (SD-OTN).
SD-OTN is enabled by the capability of the network controller to automatized management of photonic switching
systems, and allowing their full virtualization and softwarisation. To this purpose, one of the major matter of
contention is an efficient utilization of routing strategies, which can be seamlessly incorporated into the control
plane. In this work, we rely on data-driven science (DDS) to develop the machine learning (ML) model which
is able to predict the routing strategies of generic N×N photonic switching system without any knowledge
required of the topology. The dataset used for training and testing the ML model is generated “synthetically”.
In particular, the training and testing of the proposed ML module is done in a completely topological and
technological agnostic way and is able to perform its application in real-time. Furthermore, the scalability and
accuracy of the proposed approach is verified by considering two different switching topologies: the Honey-Comb
Rearrangeable Optical Switch and the Beneš network. Promising results are achieved in terms of predicting the
control signals matrix for both of the considered topologies.

Keywords: Software-defined networking, Machine learning, Photonic integrated circuit, Optical switches, Mi-
croring resonators

1. INTRODUCTION

A dramatic increase in the global internet traffic, urged by the introduction of latest 5G technology along with
the evolving concepts of connectivity such as Internet of things (IOT) are demanding for flexible and dynamic
Network elements (NE) that can better optimize the complexities, power consumption and costs of optical net-
works. These attributes, set a pathway to the emerging technologies: Elastic optical networks (EONs) and
Software-defined networking (SDN) in the optical networks. The EONs provide flexibility to the network con-
troller to scale up or down resources according to the traffic requests in order to efficiently utilize the available
spectrum.1 In addition to this, the SDN implementation enables the management of each NE within a vir-
tualized environment, so permitting a disaggregated approach to the network exploitation, enabling openness
and virtual network slicing. Nowadays, NE are progressively exploiting photonic integrated circuits (PICs) to
perform complex functions at the photonic level avoiding the bottleneck of opto-electronic conversion. This trend
raises the management of such devices much more complicated. In this scenario, SDN becomes an important
paradigm for the management of PICs. The PICs are a promising technology for next generation of photonic
switches systems due to their low energy consumption, lower latency and small foot-print. These characteristic
attributes of photonic switching systems will be widely adopted particularly in core optical networks and also
enable emergent datacenter designs such as disaggregated hardware, dynamically reconfigurable networks, and
application-dependent bandwidth allocation.
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Figure 1: Software-defined Open Optical Networks

Typically, the basic building unit of PIC based optical switches are Mach-Zehnder (MZ) interferometers2 or
optical micro ring resonators(MRRs) .3 The flow of light inside these building units can be routed to different
paths by electrical control signals. Before augmenting PICs based solutions, a couple of different switching
technologies have been proposed, such as three-dimensional micro-electro-mechanical systems (MEMS)4 and
beam-steering technique.5 Both of these technologies are quite stable and mature for development of photonic
switching system and also offer a reasonable degree of scalability. The major concern is about their precise
calibration and installation of discrete components which make them much more expensive and massive. The
current research on routing strategies of the optical switches has been readily reported. Unlike the electronic
switching system, the optical switches have path dependent performance. The different variation in performance
along different paths are due to fabrication and designed imperfection’s, which eventually effects the routing
strategies of the photonic switching system. Up-to the best of our knowledge, several deterministic routing algo-
rithms were proposed in the literature which can efficiently determines the control/routing state of the internal
switching element but most of them are topology dependent and are specifically designed for the particular
internal topology and no generic algorithm exists.6,7

In contrast with topology-dependent algorithm, we propose a unique data-driven approach based on Machine
Learning (ML) to obtain the control states of the internal switching element to obtain the requested wavelength
permutation. The proposed approach is adopted in the Software-Defined Networking (SDN) domain which
provides a flexible and softwarized control of any PIC based photonics switching system shown in Figure 1.
The presented ML based approach works in a complete black-box scenario, as it requires a reasonable large
amount of training dataset to build an appropriate model. The proposed generic approach does not require the
insights knowledge of the internal topology. To generate the sufficient large instances of ML training and testing
dataset, we mainly considered two switching devices: an Honey Comb Rearrangeable Optical Switch (HCROS)
and a N×N Beneš network.8–11 Regarding the opted HCROS we consider a typical configuration with 12 input
and output ports (N) which are well controlled by 36 controlling ports/control signal (M). To further validate
the scalability of the proposed technique, we also exploit three different sizes of Beneš switch having N = 8,
10, and 15, corresponding to specific configurations with M=20, 26, and 49 respectively. After extracting the
dataset, the other fundamental part is to differentiate features and label. The present ML models exploits
different combination of wavelengths (λ1, λ2, λ3....λn) as features at the output ports whereas it maneuvers the
M control signals as labels. In parallel to the proposed ML approach, we added an extra subsequent module
which is based on a simple heuristic that is induced from observing error patterns on wrongly predicted M
configurations. This specific heuristic based module provides assistance to the ML model by improving the
prediction performance.



2. SWITCHING TOPOLOGIES

Typically, the switching system performance relies fundamentally on the choice of internal topology, switch
blocking characteristics, total number of switching elements and number of cascading stages.12 The switching
topologies under analysis belong to the Banyan and Clos networks classes. These topologies are multi-stage
architectures based on 2×2 Crossbar switching elements, and are able to route any possible permutation of the
N inputs to the N output ports. Generally, the 2×2 Crossbar Switch has different physical implementation
depending on the transmission characteristic of the device. For system where each input occupies a different
frequency channel it can be implemented through the use of MRRs, while for monochromatic inputs it’s typically
designed through MZ interferometers.13 Each unique permutation can be routed without conflict, as the non-
blocking property implies, but differently from strict-sense non-blocking networks, where new input-output links
can always be established without changing established links, in rearreangeable networks this is not guaranteed.
Furthermore, the 2×2 Crossbar Switch has two characteristic states depending on the applied control bit: with
the BAR state ([0, 1]→ [0, 1]) for M = 0 and the CROSS state ([0, 1]→ [1, 0]) for M = 1, as shown in Figure 2a.

In this study, we analyzed two instances of multistage cross-over switching networks with non-blocking
rearrange-ability: the Beneš network and the HCROS8 shown in Figure 2(b–e). The Beneš switch is strictly

(a) 2×2 Crossbar switch

(b) 8x8 Beneš (c) 10x10 Beneš (d) 15x15 Beneš (e) 12x12 HCROS

Figure 2: Schematic of switch architectures

defined only for a number of inputs N = 2x, x ∈ N, although a generalization to any N is possible. This gen-
eralization is typically referred as Arbitrary Sized Beneš networks, or AS-Beneš.14 While the Beneš is a highly
symmetric and recursive network, as it can be built through a recursive algorithm, the custom tailored HCROS is
an asymmetric and less regular structure. The HCROS8 presents indeed a different topology, while maintaining
equal number of elements to the equivalent sized Beneš switch. The original 6×6 HCROS, presented in,8 has
been expanded to a 12×12, due to the need of having a larger dataset, as well as the overall inadequacy of
the original one to provide any meaningful results. The selection of HCROS switch has been made due to its
similarity in properties but fundamental topological differences with respect to the Beneš.

3. SIMULATION MODEL & DATASET GENERATION

Typically, photonic switching systems are performing wavelengths routing from a definite optical line system
(OLS) to the output of definite OLS, according to the switching matrix. For network abstraction, they define
the spectral load at the input of each line system, so, their software abstraction must properly propagate signal
information, including previously accumulated metrics. In the SDN perspective, the abstraction and softwariza-
tion of optical switch, at the control plane level, the request for any particular configuration of output wavelengths
are received related to arbitrary switch with unknown topology. The ML-agent Application-program-interface
(API) receives the desired configuration of output signals that are forwarded by the control plane and it must
subsequently provides the M control signals, corresponding to the particular routing configuration requested.
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Figure 3: Representing N ! switch states for a N×N fabric (a), Description of the Machine Learning agent (b).

Table 1: Dataset Statistics
Network type
Size (N × N)

Beneš
8x8

Beneš
10x10

HCROS
12x12

Beneš
15x15

Permutations (N !) 40,320 3,628,800 479,001,600 1,307×109

Switches (M) 20 26 36 49

Combinations (2M ) 1,048,576 67,108,864 68×109 562×1012

Dataset 100,000 300,000 300,000 1,000,000
Training set 70,000 210,000 210,000 700,000

Test set 30,000 90,000 90,000 300,000

After demonstrating the basic simulation environment, the most elegant part is the dataset generation which
is fundamental unit for any data-driven technique. To generate the datasets needed for training and testing of ML
model, the topologies have been implemented as a cascade of permutation matrices. This mathematical abstrac-
tion allows the evaluation of the network output by multiplying sequentially the stages matrices, without having
to implement a more complex and time consuming graph structure. Each state of the network can be defined
by its unique control vector, which is a binary array of length equal to number of switches, defining the CROSS
or BAR state of each 2×2 Crossbar element. The training dataset is then built from randomly chosen vectors,
with their respective output: the randomness ensures that the dataset is not biased toward preferential routing
or switches configuration, as would happen by evaluating sequential control signals. The generated dataset may
contain repetitions of the same output configuration, although with a different piloting vector: due to larger
number of switching states with respect to the unique output configurations, equivalent routing is present in

the network and, as an average, ( 2M

N ! ) alternative routing paths exist for each output permutation as shown in
Figure 3a.The size of the different switching architectures, as well as the generated dataset for the training and
testing are shown in Table 1. The size of the dataset is chosen to be a small fraction of the complete solution
of the network, for two main reason: due to the non-deterministic polynomial (NP) increase in complexity with
respect to the input size N , the generation of complete dataset may not be possible in a reasonable time, and
more importantly, if the full lookup table is computationally viable, the need for a routing algorithm is negated.

4. MACHINE LEARNING BLACK-BOX

The proposed ML based technique works in topological and technological agnostic way, requiring only a rea-
sonable large amount of training data to learn the model, without taking into consideration the PIC internal
topology. A Deep Neural Network (DNN) is selected as ML algorithm. The proposed model requires the def-
inition of the features and labels representing the system inputs and outputs, respectively. The manipulated
features include the various combinations of wavelengths at the output ports of the switch, and it exploits its M
control signals as labels shown in Figure. 3b . The proposed DNN is developed by using higher-level APIs of the
TensorFlow© platform .15 The considered DNN is configured by several parametric values that have been opti-
mized (such as the training steps, set to 1000), loaded with default Adaptive Gradient Algorithm (ADAGRAD)
keras optimizer, with default learning rate set to 10-2 and default L1 regularization set to 10-3.16 Moreover, Relu
has been selected to implement DNN as non-linear activation functions.17 Another important DNN parameter
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Figure 4: Errors in rings or control signals (a), prediction with ML and heuristic assisted ML (b).

is the number of hidden-layers. The model has been tuned testing several numbers of hidden-layers and neurons
to achieve the best trade-off between precision and computational time. After this trade-off analysis, we decided
upon a DNN with three hidden-layers with different number of cognitive neurons for each hidden layer.The
conventional rule of 70% training and 30% testing dataset are used to train and test the model. In order to
avoid over-fitting of the model, for each particular M we set the training steps as the stopping factor and the
Mean Square Error (MSE) as the loss function. Furthermore, to improve the prediction performance of the ML
module, we added an extra step based on a simple heuristic that we induced from observing wrong configurations
of test dataset. In most of the cases where the ML agent is not able to predict the correct control state, a single
switch is in an incorrect state. The heuristic we propose is to simply try the correction of these single-ring errors
by flipping one switch at a time and comparing the output sequence against the desired output combination of
wavelengths at the output ports.

5. RESULTS & CONCLUSION

In this section, we demonstrate the results obtained for the opted HCROS and different considered Beneš sizes
in terms of predicting control states. The results in Figure. 4a shows the percentage of cases with a given
number of errors in the control States, for HCROS and different considered Beneš sizes. The results in Fig. 4a
depict that for HCROS and each size of Beneš the prediction of ML contains only single-ring errors i.e. one
control signal is predicted wrong in all the test realization of incorrect routing. Finally, the statistics of correct
prediction percentage using ML is summarized for HCROS and different considered Beneš sizes by the light-grey
bars in Fig. 4b. We observe an excellent level of accuracy but with a decreasing trend of prediction ability
when increasing the switch size N : correct predictions reach 100% for HCROS and 100% 99.72% and 96.25%
for different considered Beneš sizes 8, 10 and 15, respectively. To further increase the predicting ability of the
ML approach, we employed an auxiliary module based on a simple heuristic that we induced from the data
shown in Fig. 4a. For HCROS and the considered Beneš network we labeled, all the instances of wrong routing
carrying a single switch improperly set. The proposed heuristic actually try the correction of single-ring errors
by simply flipping single switching-element at a time and start comparing the obtained sequence of wavelengths
against the desired sequence of output wavelengths. This technique requires only M iterations and this number
is reasonably small, so we can consider it also feasible for real-time implementations. For both HCROS and all
Beneš sizes 8×8, 10×10 and 15×15, using the ML assisted by heuristic the accuracy raises to 100%.

In conclusion, we explore DDS to develop the ML model which is capable to effectively predict the control
states for a generic N × N photonic switching system without considering its internal topology. The proposed
ML based solution is scalable to large N as we demonstrate excellent level of accuracy with limited size dataset.
Furthermore, the proposed simple heuristic assisted the ML model and subsequently increase the prediction
performance with a small computational cost.
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