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1 Introduction

Since its inception, the anti-de Sitter (AdS)/Conformal Field Theory (CFT) holographic
correspondence [1–3] has provided an important tool to investigate the strong coupling
regime of field theories on a fixed background using classical supergravity on asymptotically
anti-de Sitter (AAdS) spacetimes in one dimension higher. This is a powerful framework
since, being an intrinsically non-perturbative strong/weak coupling duality, it opens a
window on aspects of the gauge theory which are otherwise not accessible.

In its original formulation, the duality was conjectured as a correspondence between
the full type IIB superstring theory on its AdS5× S5 solution and N = 4 four-dimensional
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Super Yang-Mills theory on the boundary of the AdS5 spacetime. In the limit in which the
classical effective low-energy description of the (super)gravity side can be trusted, the cor-
responding regime of the dual theory is strongly coupled. The holographic correspondence
has been extended to more general backgrounds of the form AdSD ×Mint, possibly with
less supersymmetry, which can be embedded in other string theories or M-theory, such as
the maximally supersymmetric AdS4× S7 and AdS7× S4 solutions of D = 11 supergravity
and variants thereof. A valuable approach to the study of holography on a background of
the form AdSD ×Mint is to restrict to an effective D-dimensional low-energy supergravity
originating from superstring/M-theory compactified on the internal manifold Mint. This
supergravity admits the AdSD part of the higher dimensional background as a vacuum and
typically is of gauged type. The geometry ofMint determines the amount of supersymme-
try preserved by this AdSD vacuum and the general features of the effective theory. In this
setting, the AdS/CFT conjecture can be restated as a holographic relation between the
AdSD supergravity and a d = (D− 1)-dimensional superconformal field theory (SCFT) at
the boundary of the AdS geometry.1 Most interestingly, the duality has been extended, on
the gravity side, from global AdS to backgrounds which have an AAdS geometry, reproduc-
ing the renormalization group flow of the dual theory to an infrared (IR) conformal fixed
point, the energy scale being fixed by the radial coordinate on the D-dimensional space-
time. Indeed, the essential ingredient for this correspondence is the conformal structure of
the boundary of AAdS spaces. These are spacetimes with negative curvature and whose
metric has a pole of order two in the asymptotic region or, more precisely, conformally
compact manifolds [4, 5]. Supergravity solutions that are asymptotically (locally) AdS can
be interpreted holographically generically either as explicit deformations of SCFTs or as
models in which the superconformal symmetry is spontaneously broken.

Several important results have been obtained in the holographic study of strongly cou-
pled quantum field theories, within the so-called bottom-up approach. This latter consists
in crafting an appropriate D-dimensional AAdS gravity background of a suitably chosen
gravity theory, which can reproduce interesting non-perturbative phenomena of a boundary
field theory, with some given general properties. In this approach emphasis is not given
to the higher-dimensional ultraviolet (UV) completion of the (super)gravity theory, which
typically has a minimal amount of supersymmetry, if any. Moreover, only certain features
of the dual field theory are known, which are suitably fixed by the chosen background
through the holographic correspondence.

As opposed to the bottom-up one, the so-called top-down approach is restricted to
gravity theories whose higher-dimensional UV completions in superstring or M-theory are
known. This has the advantage that the dual CFT is often known. In most cases supergrav-
ity models considered in this setting feature, in particular, an extended amount of super-
symmetry (i.e. no less than eight supercharges), which makes them more constrained in field
content and interactions and, therefore, more predictive.2 Generally inspired by the latter
approach, the purpose of the present investigation is to generalize the holographic analysis

1The spectrum of the fields in the D-dimensional supergravity theory corresponds only to a sector of
the operators on the dual field theory side.

2For a discussion on bottom-up versus top-down approaches see, e.g., [5].
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of [6] to an extended supergravity, namely to a pure N = 2 model. Some aspects of the
minimal N = 2 gauged supergravity in the context of holography have been discussed in [7].

From a formal point of view, the AdSd+1/CFTd correspondence states that the CFTd
partition function is equal to the gravitational partition function in AAdS space in one
dimension higher [2, 3],

ZG[Φ̂→ Φ̂(0)] = ZCFT[J ≡ Φ̂(0)] . (1.1)

In the above formula, ZG[Φ̂(0)] is the quantum partition function of the gravity theory in
AAdS space, as a function of the boundary value Φ̂(0) of the bulk field Φ̂, while ZCFT[J ]
is the quantum partition function of the corresponding CFT, in which the source J of a
local operator O(x) dual to Φ̂ is identified with Φ̂(0).

Let us recall the definition of the quantum effective action W [J ] for a d-dimensional
CFT on ∂M in terms of the partition function ZCFT[J ]

ZCFT[J ] = eiW [J ] =
∫
Dφ eiI[φ]+i

∫
∂M ddxO(φ)·J , (1.2)

where the symbol φ(x) collectively denotes the fundamental fields of the CFT on which
the functional integration is performed. The action I[φ] should already be renormalized,
that is, finite in the UV region. Even though W is a (non-local) function of the external
source J (x), the physical information of the theory is contained in the n-point functions
of the operators O(φ(x)),

〈O(x1) · · ·O(xn)〉CFT = Z−1
CFT[0] δnZCFT[J ]

iδJ (x1) · · · iδJ (xn)

∣∣∣∣
J=0

. (1.3)

In particular, different correlators are related by Ward identities which express the sym-
metries in the CFT at the quantum level.

Let us expand on the identification (1.1) in the special case of a pure AdS gravity
theory in which the only bulk field is the metric ĝµ̂ν̂(x) defined on the AAdS spacetime, to
be denoted byMd+1. In this case the gravitational partition function has the form

ZG[g(0)] =
∫
Dĝ eiIren[ĝ] ' eiIon-shell[g(0)] . (1.4)

Up to a conformal transformation, g(0)µν is the value at the conformal boundary of the bulk
field ĝµ̂ν̂(x), on which Dirichlet boundary conditions are imposed: δg(0)µν

∣∣∣
∂M

= 0. The
gravitational action Iren[ĝ] has to be consistent with the boundary conditions and has to be
finite in the asymptotic (IR) region. In equation (1.4) the classical approximation, for weak
gravitational couplings, is performed, in which the partition function can be evaluated on
the classical solution, by a saddle point approximation, giving rise to the on-shell action
Ion-shell[g(0)]. The boundary metric g(0)µν becomes the source in the boundary CFT.

The AdS/CFT correspondence in the classical approximation of gravity identifies the
quantum effective action W as

W [g(0)] ' Ion-shell[g(0)] , (1.5)
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where the boundary metric becomes a background field in the CFT, so that the energy-
momentum tensor operator Tµν(φ, g(0)) also depends on it. The expectation value of the
latter can be calculated as the 1-point function from the effective theory,

〈Tµν〉CFT = 2√
|g(0)|

δIon-shell[g(0)]
i δg(0)µν

= τµν , (1.6)

and τµν is the holographic stress tensor in the gravity side.
The conformal Ward identities in the CFT have the form

∇(0)µτ
µν = 0 , τµµ = A , (1.7)

where A is the Weyl anomaly [8]. This quantum result can, therefore, be obtained in the
classical regime of AdS gravity.

For the above formalism to be well-defined, a field theory has to be finite at short
distances. However, a general feature of quantum field theory is that UV (and IR) diver-
gences can appear at quantum level in the correlation functions. In order to guarantee the
consistency of the theory, these unphysical effects are usually removed through the proce-
dure of renormalization. In the framework of the AdS/CFT correspondence, which is in
fact a UV/IR duality, i.e. the ultraviolet regime of the field theory is related to the infrared
one of the gravity side and vice versa, it is natural to think that the UV poles of CFT
n-point functions (1.3) could be cancelled holographically, by adding appropriate boundary
counterterms in the dual theory. Indeed, a first systematic method in this direction was
implemented at the beginning of the century [9, 10] and was then applied to various bosonic
theories, in particular to gravitational actions coupled to bosonic matter fields.3 Briefly,
the procedure consists in regulating the bulk on-shell supergravity action by introducing
a cut-off on the radial coordinate, adding appropriate boundary counterterms in order to
eliminate the divergences, and then removing the cut-off.4

In the subsequent years, the holographic renormalization scheme was implemented
also for actions including fermionic fields. In [6] the authors studied the case of N = 1
D = 4 supergravity including contributions from the gravitini, while in [7] the boundary
counterterms for the minimal N = 2 gauged supergravities in D = 4 and D = 5 have been
analysed, restricting to quadratic order in fermions in the action, by using a Hamiltonian
approach. Five-dimensional supersymmetric holographic renormalization has also been
considered in [13].

A different approach to the holographic renormalization was developed in [14], where it
was named topological regularization. It was proven to give the same results as the standard
procedure in pure gravity, having however the quality of giving a topological meaning to the
resummation of the holographic counterterms series expansion. A detailed comparison of
both counterterm series has been developed in pure AdS gravity in any dimension in [15]. In

3A very good review of the subject can be found in [4].
4For completeness, let us mention that Gibbons and Hawking had already proposed to add a boundary

contribution in 1977, namely the Gibbons-Hawking(-York) term, in order to have a well-defined variational
principle for gravity theories [11, 12].
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particular, the topological counterterm needed to regularize four-dimensional gravity turns
out to be the Gauss-Bonnet term and it is also able to restore the diffeomorphisms invari-
ance, broken by the presence of the boundary [16–18]. Moreover, the addition of this con-
tribution allows to express the renormalized action in the MacDowell-Mansouri form [19].

The above papers treat gravity in the second order formalism. However, an alternative
formulation to the latter is the first order formalism, where the spin connection is consid-
ered as an independent field from the vielbein [20–25]. In this approach, the powerful tool of
exterior calculus and the differential form language can be employed, yielding a geometrical
description of gravity. The same approach was used in [27] to extend the results of [16–18]
to supergravity and to find the counterterms needed to restore the local supersymmetry,
broken by the presence of a boundary, for the cases of pure N = 1 and N = 2 AdS4 super-
gravities. The boundary terms found in [27] to restore supersymmetry (that is diffeomor-
phisms in the fermionic directions of superspace) are in fact the supersymmetric extension
of the Gauss-Bonnet term, which was necessary to restore diffeomorphisms invariance in
the case of gravity. Correspondingly, those boundary terms were precisely the ones needed
to rewrite the total supergravity action in a supersymmetric MacDowell-Mansouri form.

However, while the topological regularization was shown to be able to renormalize the
bulk action for the pure gravity case, the same has not been proven yet for its super-
symmetric extension, in particular for the N = 2 AdS4 supergravity. The present paper
proceeds from the foregoing works to achieve this goal but, in contrast to [7], we consider
the full contribution from the gravitini and start from a rather general setup in view of
possible future developments. In order to do it, we show that the Ward identities of the
dual field theory are satisfied, as expected for a SCFT in three dimensions.

It still remains as an open problem the question of rendering the AdS supergravity
action finite in the presence of matter multiplets by adding topological bulk terms.

From a different, but complementary, point of view, we explore a relation between the
classical local symmetries of an AdS gravity defined on the bulk manifold MD and the
quantum symmetries in a field theory defined on ∂M. The latter match the asymptotic
symmetries, at radial infinity, of the gravitational background. In our approach, they
appear as residual symmetries left over after the gauge fixing of bulk local symmetries and
whose parameters take value on ∂M. This matching of symmetries is justified from the
group theoretical point of view. Namely (we restrict here, for simplicity, the discussion to
the bosonic sector, but its supersymmetric extension will be considered in the body of the
paper) the isometries of the AdS vacuum in D = (d+ 1)-dimensional asymptotically AdS
spaces are described by the SO(2, d) group whose generators are Jab, Ja. It is important
to emphasize that gravity with negative cosmological constant is not invariant under local
SO(2, d) transformations. Instead, general coordinate transformations, combined with a
field-dependent local Lorentz transformations, acquire a locally gauge-covariant form.

The d-dimensional boundary breaks the bulk local symmetries in the xd (radial) direc-
tion that naturally leads to the d+ 1 decomposition of the Lorentz indices into a = (i, d).
In that way, the bulk isometry group is isomorphic to the conformal group5 with gener-

5For explicit construction of this conformal algebra in the context of AdS/CFT in pure AdS gravity,
see [21].
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ators Jij , Pi = Ji + Jid, Ki = Ji − Jid, D = Jd. Therefore, choosing suitable boundary
conditions for the AdS gravity fields in D-dimensional bulk, which are ω̂ab (along Jab) and
1
` V

a (along Ja), we can identify its d-dimensional boundary field content that should be
the one of the CFT. Using the isomorphism, the boundary background fields, i.e. sources
J = {ωij , Ei, B,Si} associated with the conformal generators, have the form

Jij : ωij ∼ ω̂ij ,

Pi : Ei ∼ V i
+ = 1

2
(
`ω̂id + V i

)
,

D : B ∼ V d ,

Ki : Si ∼ V i
− = 1

2
(
`ω̂id − V i

)
,

where ‘∼’ means that the identifications are valid only up to a global rescaling on the
boundary, allowed in CFT. This near-boundary rescaling is the first step in removing the
long-distance divergences present in (super)gravity theory in asymptotically AdS spaces,
equivalent to renormalization of the holographic CFT. From this discussion, we draw the
following conclusions. First, a full linearly realized conformal group on the boundary can
be made manifest only in first order formalism, where the spin connection is an independent
field. Second, the conformal structure on the boundary naturally introduces two geometric
quantities in d dimensions, a dilatation gauge field B and the Schouten tensor Si. They will
play an important role in the analysis of symmetries of this holographic correspondence.

As far as the asymptotic symmetries and the gauge-fixing conditions defining them are
concerned, we shall keep our analysis as general as possible. More precisely, we shall be
taking a “cautious approach”, only imposing gauge-fixing conditions which appear to be
strictly necessary for the consistent definition of the asymptotic symmetries. The reason for
this relies on one of the motivations which have inspired the present analysis, namely the
application of the AdS4/CFT3 holographic approach to the study of the model, originally
constructed in [28] (to be referred to as the AVZ model), which features unconventional
supersymmetry. The latter has been eventually embedded, as a boundary theory, in pure
N = 2 AdS4 supergravity in [29], although a fully fledged holographic correspondence
has not been developed yet. The present work represents a preliminary investigation in
this direction. Having this in mind, we avoid imposing the constraint γµψµ = 0 on the
gravitino field at the boundary since, in the AVZ model, this condition has to be relaxed,
as the dynamical fermion of the theory is identified with the contraction γµψµ itself. This
fermion satisfies a Dirac equation and was shown to be well-suited for the description of
the electronic properties of graphene-like materials [28, 30]. Holographically embedding the
AVZ model in N = 2 AdS4 supergravity and eventually in N > 2 theories paves the way
for a top-down approach to the study of this condensed-matter system. In this direction,
in [31], a possible relationship between the construction in [30] and a generalization of
the d = 3 interface model of Gaiotto and Witten [32] was presented. This hints towards
the definition of the dual conformal class of theories, which will be the object of a future
investigation.
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The rest of this work is organized as follows: in section 2 we review the asymptotic
symmetries in Einstein AdS4 gravity for purpose of introducing the first order formalism
and in section 3 we summarize the geometric approach to pure N = 2 AdS4 supergravity,
in the presence of a boundary. Section 4 is devoted to the near-boundary analysis of super-
gravity fields and local parameters. Then, in section 5, we write out the superconformal
currents and Ward identities, proving that the latter are indeed satisfied off-shell on the
curved background when the bulk equations of motion are imposed. We conclude the pa-
per with some final remarks. Useful formulas and conventions are gathered in appendix A,
while details on calculations are collected in appendix B and appendix C.

2 Asymptotic symmetries in Einstein AdS4 gravity

We start our discussion with a review of the results in pure AdS gravity and then reformu-
lating them in first order framework.

Asymptotically AdS spaces MD in D = d + 1 dimensions are conformally com-
pact Einstein spaces that can be described by local coordinates xµ̂ = (xµ, xd), where xµ

(µ = 0, . . . d− 1) are local coordinates on the boundary ∂M and z = xd is the radial coordi-
nate with the asymptotic AdS boundary located at z = 0. In a neighborhood of z = 0, they
admit a metric ĝµ̂ν̂ (with a mostly negative signature) in the Fefferman-Graham (FG) form,6

ds2 = ĝµ̂ν̂ dxµ̂dxν̂ = `2

z2

(
− dz2 + gµν(x, z) dxµdxν

)
, (2.1)

where ` is the AdS radius, gµν is regular on the boundary and it admits a power expansion
in the radial coordinate z,

gµν = g(0)µν(x) + z2

`2
g(2)µν(x) + · · · . (2.2)

Only even powers in z appear in the series, until the order zd−1. This is particular to pure
AdS gravity. In general, addition of matter fields, as is the case in supergravity, requires
more general powers in the z-expansion of the metric, depending on the value of the AdS
mass of the field. By solving order by order the Einstein equations, the corresponding co-
efficients in the expansion are determined as local functions of g(0)µν . For example, g(2)µν
depends linearly on the curvature in a combination that produces the boundary Schouten
tensor Sµν(g(0)),

g(2)µν = `2Sµν = `2
(
R̊µν −

1
2(d− 1) g(0)µν R̊

)
, (2.3)

where R̊µνλσ(g(0)) is the boundary Riemann curvature and R̊µν and R̊ are the corresponding
Ricci tensor and Ricci scalar, respectively. The conventions we adopt on curvatures can be
found in appendix A.1. On top of this, only in odd spacetime dimensions D, there is a term

6The most general asymptotically AdS metric contains also the subleading ĝzµ terms, in particular
ĝzµ = O(z) in three dimensions [33] and ĝzµ = O(z2) in four dimensions [34]. They can always be set to
zero by choosing FG coordinate frame on a patch near the boundary.
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zd log z. In contrast, the mode g(d)µν cannot be fully resolved from the equations of motion
(only its local part), as it is proportional to the holographic stress tensor of the theory [4, 9].

The FG form of the metric (2.1) is obtained by gauge fixing of spacetime coordinate
frame. The invariance of (2.1) under radial diffeomorphisms leads to the Penrose-Brown-
Henneaux (PBH) transformations [35]. The full set of residual symmetries includes, apart
from the PBH transformations, also the boundary (transversal) diffeomorphisms. They
have the form of asymptotic symmetries, that is, their parameters take value on ∂M. The
AdS gravity is invariant under the action of these transformations at asymptotic infinity.

In an explicit form, using the Lie derivative δĝµ̂ν̂ = £ξ̂ ĝµ̂ν̂ for diffeomorphisms gener-
ated by parameters ξ̂µ̂, the FG gauge fixing implies

δĝzz = 0 ⇒ ξ̂z = zσ(x) ,

δĝµz = 0 ⇒ ξ̂µ = ξµ(x) + z2

2` g
µν
(0)∂νσ +O(z4) , (2.4)

where ξµ(x) and σ(x) are arbitrary local parameters on the boundary. From δĝµν = `2

z2 δgµν ,
we obtain the transformation law of first terms in the asymptotic expansion of (2.2) as

δg(0)µν = £ξg(0)µν − 2σ g(0)µν ,

δg(2)µν = £ξg(2)µν − `∇
(0)
(µ ∇

(0)
ν) σ . (2.5)

From the first equation it is clear that radial diffeomorphisms induce Weyl transforma-
tions on the boundary described by the parameter σ(x). This purely kinematic treatment
allows to determine the local part of the coefficients in the series (2.2) without resorting
to the asymptotic resolution of the field equations. This is done by integrating the Weyl
parameter from the transformation law above. This PBH approach, although a powerful
tool to match symmetries in a holographic field theory, is not an alternative to holographic
renormalization.

The asymptotic symmetries produce conservation laws which are mapped into holo-
graphic Ward identities for the boundary CFT.

Holographic gauge fixing in first order formalism. In what concerns us here, we
work in first order formalism in D = 4 where the independent fields are 1-forms on M4.
Indeed, one has the vielbein V a = V a

µ̂(x) dxµ̂, stemmed from the metric ĝµ̂ν̂ = κab V
a
µ̂V

b
ν̂

(with the Minkowski metric κab), and the spin connection ω̂ab = ω̂abµ̂ (x) dxµ̂. World indices
on four-dimensional spacetime are denoted by hatted Greek letters µ̂, ν̂, . . . = 0, 1, 2, 3 and
the corresponding anholonomic tangent space indices are labeled by Latin letters a, b, . . . =
0, 1, 2, 3.

Apart from general coordinate transformations δxµ̂ = −ξ̂µ̂, which define local transla-
tions with parameters pa = ξ̂µ̂V a

µ̂, the theory is now endowed with local Lorentz invariance,
whose parameters are jab = −jba.
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The AdS gravity in first order formalism is invariant under the general transformations7

δV a = D̂pa − jabVb + ipT̂
a ,

δω̂ab = D̂jab + 2
`2
p[aV b] + ipR̂

ab, (2.6)

where D̂(ω̂) is the Lorentz-covariant derivative, R̂ab(ω̂) is the Lorentz curvature and
T̂ a = D̂V a is the torsion 2-form. We have also introduced the AdS curvature R̂ab =
R̂ab − 1

`2 V
aV b = 1

2R̂
ab
µ̂ν̂dxµ̂dxν̂ and the contraction operator ipR̂ab = pcV ν̂

cR̂
ab
ν̂µ̂dxµ̂ and

similarly for ipT̂ a. In the non-supersymmetric case we are discussing in this section, we
will assume that the gravitational field is torsionless, thus ipT̂ a = 0.

In order to extend the discussion for AAdS spacetimes from the metric formulation
described above to first order formalism, we have to specify the form of V a and ω̂ab. To
this end, we have 10 local parameters (pa, jab) at our disposal to gauge fix.

This holographic gauge fixing has to provide the radial expansion of gauge fields and
parameters. In addition, the residual transformations (which leave invariant that gauge fix-
ing) have to induce boundary Weyl dilatations. It also has to give rise to the transformation
of the boundary fields, which lead to the conservation laws.

In this framework, the radial evolution of gravity considers the radial components of
the gauge fields as Lagrange multipliers, similarly as the lapse and shift functions in the
Arnowitt-Deser-Misner (ADM) formulation of gravity [36]. The simplest choice V a

z = 0,
ω̂abz = 0 leads to a trivial theory on the boundary. In particular, it does not have an
invertible vielbein.

Radial expansion and holography in gravity in Riemann-Cartan space were developed
in [22] and applied, for example, in three [22–24], four [25], and five [22] bulk dimensions
in different setups. In arbitrary dimension it was discussed in [21].

A suitable gauge fixing for spacetime diffeomorphisms pa and Lorentz transformation
jab is

V a
z = `

z
δa3 , ω̂abz = 0 . (2.7)

These conditions, in principle, are sufficient to determine local symmetries. However, in
AdS space, the vielbein should be chosen so that it reproduces the FG metric (2.1). For
this reason, we assume an adapted frame where the boundary is orthogonal to the radial
coordinate,

V 3
µ = 0 . (2.8)

The last condition can be relaxed as long as the fall-off of the field V 3
µ(x) is consistent

with the behaviour of AAdS spaces. As shown in [21, 26], this field plays a role in the
explicit construction of the gauged conformal algebra for a dual CFT. By setting V 3

µ to
zero, the conformal symmetry of the boundary is still there, but its realization becomes
non-linear, as the associated gauge field turns into a composite field.

As mentioned before, the choice (2.7) is holographic if it produces a radial expansion of
the boundary fields. Let us denote the 3 + 1 decomposition of Lorentz indices as a = (i, 3)

7This transformation law is the local Lorentz transformation combined with the Lie derivative
£pA = D (ipA) + ipF valid for any gauge field A and its associated field strength F , where pµ̂ = ξ̂µ̂.
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(i = 0, 1, 2). We use the following convention for the Levi-Civita tensor on M4 projected
to the boundary ∂M,

εijk3 = −εijk , ε0123 = −ε0123 = −1 . (2.9)

Then, in AAdS spaces, the vielbein behaves as

V i
µ = `

z
Êiµ(x, z) , (2.10)

where Êiµ is finite at the boundary z = 0, so it can be expanded in a power series in its
vicinity,

Êiµ = Ei(0) µ + z2

`2
Ei(2) µ + z3

`3
Ei(3) µ +O(z4) . (2.11)

Because of physical implications it would have later, we rename the coefficients as
Ei(0) µ ≡ E

i
µ, Ei(2) µ ≡ S

i
µ and Ei(3) µ ≡ τ

i
µ. Then the expansion becomes

Êiµ = Eiµ + z2

`2
Siµ + z3

`3
τ iµ +O(z4) ,

Êµi = Eµi −
z2

`2
Sµi −

z3

`3
τ µ
i +O(z4) , (2.12)

where Eµi is the inverse of the vielbein8 Eiµ. These tensors project the indices between the
boundary spacetime and its tangent space and we also have

e = det[V a
µ̂] = `4

z4 ê3 , ê3 = det[Êiµ] , e3 ≡ det[Eiµ] . (2.13)

Notice that we assumed that the linear terms in z are absent in the induced viel-
bein Êiµ, in order to reproduce the result g(1)µν = 0 in pure gravity. Furthermore, it is
convenient to make use of the residual Lorentz transformations to get Sij = SiµE

µj and
τ ij = τ iµE

µj symmetric, namely to set S[ij] = 0 and τ [ij] = 0 [6]. If the Lorentz parameter
at the boundary is expanded as

jij = θij + z

`
jij(1) + z2

`2
jij(2) + z3

`3
jij(3) +O(z4) , (2.14)

from the Lorentz transformations (2.6) we find jij(1) = 0 and

δjE
i
µ = −θijEjµ , δjS

i
µ = −θijSjµ − jij(2)Ejµ ,

δjE
µi = −θijEµj , δjτ

i
µ = −θijτjµ − jij(3)Ejµ .

(2.15)

Here θij(x) is an asymptotic parameter which will become a holographic symmetry. The
antisymmetric parts are independent of θij ,

δjS
[ij] = −jij(2) , δjτ

[ij] = −jij(3) . (2.16)

8Strictly speaking, the inverse vielbein (E−1)µi ≡ E
µ
i has the property E

µ
i = gµν(0)ηijE

j
ν = Ei

µ following
from the invertibility and symmetry of the metric. It implies that one can overlook the order of the indices
in the vielbein and its inverse. The same argument holds for the bulk vielbein V iµ and its inverse V µi , but
not for the higher-order terms in the expansion that are not necessarily invertible.
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Therefore, the antisymmetric parts of Sij and τ ij are related only to the subleading Lorentz
transformations and therefore they can always be set to zero,

S[ij] = 0 , τ [ij] = 0 . (2.17)

However, we will not assume yet that jij(2) and jij(3) vanish because they might not be
independent parameters. We will come back to this issue later, after all independent
asymptotic symmetries have been identified (see eq. (2.51)).

In fact, the above procedure can be extended to make all coefficients in the expansion
of V i

µ symmetric. Without going into details, it can be shown that θij always decouples
from the transformation of E[ij]

(n) ≡ E
µ[jE

i]
(n)µ and we can always set E[ij]

(n) = 0 for n ≥ 0. As
a net result, all modes Ei(n)µ are symmetric tensors,

E
[ij]
(n) = 0 , n ≥ 0 . (2.18)

Thus, the expansion defined by the above considerations is consistent with the FG
frame (2.1) and

g(0)µν = EiνE
i
µ ,

g(2)µν = 2Sµν = `2Sµν ,
g(3)µν = 2τµν . (2.19)

Recalling the fact that in Einstein AdS gravity we know the solution of the coefficients
g(n)µν (n > 0) in terms of the source g(0)µν [9, 35], we identify Eiµ as the vielbein at the
conformal boundary, Siµ = `2

2 S
i
µ as proportional to the Schouten tensor, and τ iµ as the

holographic stress tensor.
On the other hand, without supersymmetry, the torsion constraint D̂V a = 0 determines

the spin-connection to be (see (A.1))

ω̂abµ̂ = V ν̂b
(
−∂µ̂V a

ν̂ + Γ̂λ̂ν̂µ̂V a
λ̂

)
. (2.20)

In our notation, Γ̂λ̂ν̂µ̂ is the affine connection in the bulk. In particular, the one appear-
ing in (2.20) is the Levi-Civita connection, that is, symmetric in (µ̂ν̂) and torsionless.
The radial components of the spin-connection are consistent with the gauge fixing (2.7),
assuming (2.18) is satisfied. The boundary components of the spin connection become

ω̂ijµ = Êνj
(
−∂µÊiν + Γ̊λνµ(g)Êiλ

)
= ω̊ijµ (x, z) ,

ω̂i3µ = 1
z
Êiµ −

1
2 kµνÊ

νi , (2.21)

where ω̊ijµ (x, 0) = ω̊ijµ (E) is the torsionless spin connection on the boundary, Γ̊λνµ(g) is
the affine Levi-Civita connection at the boundary that depends on z (in contrast to
Γ̊λνµ = Γ̊λνµ(g)|z=0) and we define the auxiliary tensor

kµν ≡ ∂zgµν = O(z) , ∂zg
µν = −kµν . (2.22)
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Both Γ̊λνµ(g) and kµν are regular quantities at z = 0. In a more explicit form,

ω̂ijµ = ω̊ijµ (x, z) = ω̊ijµ (x) + z2

`2
ωij(2)µ(S,E) + z3

`3
ωij(3)µ(τ, E) +O(z4) ,

ω̂i3µ = 1
z
Eiµ −

z

`2
S̃iµ −

2z2

`3
τ̃ iµ +O(z3) , (2.23)

where
S̃iµ ≡ S i

µ = Siµ , τ̃ iµ ≡
1
4
(
τ iµ + 3τ i

µ

)
= τ iµ , (2.24)

and the last step is only valid upon imposing the partial Lorentz gauge fixing (2.18).
Thus, in pure AdS gravity, the tensors S̃iµ and τ̃ iµ can be chosen symmetric and equal
to Siµ and τ iµ. We will see later (in eq. (4.15)) that the group theory definition of the
boundary Schouten tensor is Siµ = 1

`2 (Siµ + S̃iµ) and it reduces to 2
`2 S

i
µ only after using

the above equality.
When the bulk torsion vanishes, we obtain at the first two orders (z and z2) near the

boundary that the 1-forms ωij(2) = ωij(2)µ dxµ and similarly for ωij(3), are not arbitrary, but
they can be expressed in terms of Si = Siµ dxµ and τ i = τ iµ dxµ as

Ej ∧ ωij(2) = D̊Si , Ej ∧ ωij(3) = D̊τ i , (2.25)

where D̊ denotes the covariant derivative with respect to the connection ω̊ijµ (E). These
equations can be explicitly solved in ωij(2), ω

ij
(3), as indicated by (2.23).

Let us finally analyse the fall-off of the curvature. Asymptotically AdS spaces re-
quire the curvature to be asymptotically constant. Direct checkup confirms that the near-
boundary form of the AdS curvature is

R̂i3µν = −z Ciµν +O(z2) , R̂i3µz = 3z
`3
τ iµ +O(z2) ,

R̂ijµν = W ij
µν −

12z
`3

E
[i
[µτ

j]
ν] +O(z2) , R̂ijµz = −2z

`2
ωij(2)µ −

3z2

`3
ωij(3)µ +O(z3) ,

(2.26)

where Ci = 1
2 C

i
µν dxµ∧dxν = D̊Si is three-dimensional Cotton tensor. In the above deriva-

tion of R̂i3 = − z
`2

(
D̊S̃i + Ej ∧ ωij(2)

)
+ · · · , the Cotton tensor appears after using (2.25) to

eliminate ωij(2). This is because S̃i = Si cannot be assumed directly under the derivative
due to the relations (2.24) which involve the derivatives of the vielbein. Similarly, R̂ij

depends on the tensor τ i + 2τ̃ i, but it reduces to the above result upon setting τ i = τ̃ i.
The Weyl tensor vanishes in three dimensions,

W ij = R̊ij − 2E[i ∧ S̊j] = 0 , (2.27)

so that the three-dimensional Bianchi identity can equivalently be written as

E[i ∧ Cj] = 0 , (2.28)
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yielding that the Cotton tensor is traceless, Ciij = 0. It is also known that, in three dimen-
sions, it is covariantly constant.9 For more properties of the Cotton tensor in Riemannian
geometries, see [38].

An important consequence of W ij
µν = 0 in three dimensions is that, from (2.26), we get

R̂ab
∣∣∣
z=0

= 0. Since the AdS boundary ∂M is located at constant radius dz = 0, z = 0, in

supergravity the last condition can be relaxed to R̂ab
∣∣∣
dz=0,z=0

= 0.
The fact that the curvature is constant at the conformal boundary does not guarantee

— only by itself — the regularity of the variation of the action and, therefore, a correct
holographic description of the theory.

Residual symmetries. The gauge fixing adopted above leads to the asymptotic form
of the boundary fields (2.10), (2.12) and (2.23). We seek for transformations which do not
change the frame choice (2.7). From (2.6), it follows

0 = δV 3
z = ∂zp

3 , (2.29)

0 = δV i
z = ∂zp

i + `

z
ji3 , (2.30)

0 = δV 3
µ = ∂µp

3 − ω̂i3µ pi + ji3Viµ , (2.31)

0 = δω̂i3z = 1
`z
pi + ∂zj

i3 + ipR̂
i3
z , (2.32)

0 = δω̂ijz = ∂zj
ij + ipR̂

ij
z . (2.33)

In order to solve the above equations, we need the asymptotic expansion of the con-
traction of the AdS curvature (2.26)

ipR̂
i3
z = pj

(
3z2

`4
τ ij +O(z3)

)
,

ipR̂
i3
µ = −p3

(
3z2

`4
τ iµ +O(z3)

)
+ pj

(
z2

`
EνjCiµν +O(z3)

)
,

ipR̂
ij
z = pk

(
−2z2

`3
Eµkω

ij
(2)µ −

3z3

`4
Eµkω

ij
(3)µ +O(z4)

)
. (2.34)

Then eqs. (2.29)–(2.33) acquire the form

0 = ∂zp
3 , (2.35)

0 = ∂zj
i3 + 1

`z
pi + 3z2

`4
pj
(
τ ij +O(z)

)
, (2.36)

0 = ∂zp
i + `

z
ji3 , (2.37)

0 = ∂µp
3 − ω̂i3µ pi + ji3Viµ , (2.38)

0 = ∂zj
ij + pk

(
−2z2

`3
Eµkω

ij
(2)µ −

3z3

`4
Eµkω

ij
(3)µ +O(z4)

)
. (2.39)

9The dual of the Cotton tensor appears naturally — at the holographic order — in the parity-odd
sector of the theory. This feature gives rise to a holographic stress tensor/Cotton tensor duality at the
boundary [37] which, in turn, is a consequence of an asymptotic (anti-)self duality condition for the Weyl
tensor [14].
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The first equation (2.35) can be readily solved as

p3 = −`σ(x) , (2.40)

with the boundary parameter σ(x) introduced as an integration constant. The next two
ones, (2.36) and (2.37), can be decoupled by eliminating ji3 and finding the differential
equation in pi

0 = ∂2
zp
i + 1

z
∂zp

i − 1
z2 p

i − 3z
`3
pj
(
τ ij +O(z)

)
. (2.41)

The solution for both parameters reads

pi = `

z
ξi + z

`
bi + z2

`2
ξjτ ij +O(z3) ,

ji3 = 1
z
ξi − z

`2
bi − 2z2

`3
ξjτ ij +O(z3) , (2.42)

where ξi(x) and bi(x) are new integration constants. Eq. (2.39) then leads to the solution
for the Lorentz parameter

jij = θij + z2

`2
ξµωij(2)µ + z3

`3
ξµωij(3)µ +O(z4) , (2.43)

with θij(x) another arbitrary functions on the boundary, identified with the Lorentz
parameter.

The last equation to be solved is the asymptotic condition (2.38) which — with all
solutions plugged in — becomes

0 = δV 3
µ = −`∂µσ + 2

`
ξiS

i
µ −

2
`
biEiµ +O(z2) , (2.44)

where the linear terms cancel out. At the leading order, (2.44) implies that the parameter
bi is not independent, i.e.

bi = −`
2

2 Eµi∂µσ + Sjiξj . (2.45)

Overall, the radial expansion of gauge parameters in absence of fermions has the form

p3 = −`σ(x) ,

pi = `

z
ξi(x) + z

`
bi + z2

`2
ξjτ ij +O(z3) ,

ji3 = 1
z
ξi(x)− z

`2
bi − 2z2

`3
ξjτ ij +O(z3) ,

jij = θij(x) + z2

`2
ξµωij(2)µ + z3

`3
ξµωij(3)µ +O(z4) , (2.46)

where bi(σ, ξ) is given by (2.45). It is worth emphasizing that ωij(2) and ω
ij
(3) satisfy eq. (2.25).

In particular, from Ci = 2
`2 Ej ∧ω

ij
(2), we find that the component ωij(2) is directly related to

the Cotton tensor, and similarly for τ iµ, so that the higher-order spin connection compo-
nents fulfill

Ciµν = 4
`2
ωi(2) [µν] , D̊[µτ

i
ν] = Ej[µ ω

ij
(3) ν] . (2.47)

– 14 –



J
H
E
P
0
2
(
2
0
2
1
)
1
4
1

The independent boundary parameters

σ(x), ξi(x), θij(x)

are associated with dilatations, diffeomorphisms, and Lorentz transformations, respectively.
This can be seen from the change of the boundary fields found from the expansion of δV i

µ,

δEiµ = D̊µξi + σEiµ − θijEjµ ,

δSiµ = D̊µbi − σSiµ − θijSjµ + `2

2 ξν Ciνµ ,

δτ iµ = D̊µ
(
ξjτ ij

)
− 2στ iµ − θijτjµ + 2ξνD̊[ντ

i
µ] . (2.48)

In a similar fashion, the spin connection transforms as

δω̊ijµ = D̊µθij − 2Eν[iEj]µ∂νσ + 4
`2

(
−ξkE[i

µS
j]k + ξ[iSj]µ

)
. (2.49)

This law is consistent with the torsionless boundary, which can be shown using (2.48) and
the fact that the Weyl tensor (2.27) vanishes identically in three dimensions.

In addition, it is straightforward to check that the obtained residual symmetries match
the usual PBH transformations (2.5) in the metric formalism, where the coefficient g(d)µν =
g(3)µν now transforms homogeneously,

δg(3)µν = £ξg(3)µν − σg(3)µν , (2.50)

because it is proportional to the holographic stress tensor. In the proof, one has to use
D̊[µE

i
ν] = 0.

Having the full set of asymptotic parameters (2.45)–(2.46) and the transformation law
of the boundary fields (2.48), we are ready to return to the conditions (2.17) and discuss
their consistency with respect to the residual transformations.

As we can see from the expansion (2.43), if we restrict to Lorentz transformations only
(namely we set pi = 0), then (2.17) implies jij(2) = jij(3) = 0 so that, according to eq. (2.43),
our choices S[ij] = 0, τ [ij] = 0 are naturally preserved by the Lorentz part of the residual
symmetry group. We need, however, to check the consistency of these conditions against a
generic residual symmetry, including the diffeomorphisms on the boundary, parametrized
by ξi = Eiµ ξ

µ. For example, the condition S[ij] = 0 changes under these asymptotic
symmetries as

δS[ij]
∣∣∣
S[ij]=0

=
(
− θik S[kj] + θjk S

[ki] − 2σS[ij] + Eiµ S[jk]D̊µξk

−Ejµ S[ik]D̊µξk + ω(2)
[i
k
j] ξk − jij(2) + `2

4 C
kji ξk

)∣∣∣∣∣
S[ij]=0

= −3ω[ij|k]
(2) ξk = −3`2

4 C
[i|jk] ξk = 0 , (2.51)

where we have used the general transformation property of Sij , see the second of eqs. (2.48),
and the identification Sij = 2Sij/`2 that holds for S[ij] = 0, in light of which the compo-
nents Ci|jk of the Cotton tensor are expressed in terms of ω(2), as given by eq. (2.47). In
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deriving (2.51), we have also used the expression of jij(2) as ω
ij
(2)k ξ

k, which follows from the
expansion (2.43). Finally, the last equality in eq. (2.51) follows from the property of the
torsion-free Cotton tensor, C[i|jk] = 0. As a result, we see that the condition S[ij] = 0 is
consistent with having a generic Cotton tensor because its transformation law is propor-
tional to C[i|jk] which vanishes. A similar analysis can be made for the condition τ [ij] = 0
and its consistency with the asymptotic symmetries.

In this way we have proven that having symmetric Schouten tensor and identification
S̃ij = Sij = `2

2 Sij could be consistently imposed together with having a generic, non-
vanishing Cotton tensor. This is not the case in N = 1 supergravity discussed in [6] where,
for the sake of simplicity, it was imposed jij(2) = 0 to ensure symmetric Schouten tensor,
which can be consistently implemented only in asymptotically conformally flat spaces.

Conservation law for conformal symmetry. In Riemann-Cartan AdS gravity, the
leading orders of the bulk fields Eiµ, ωijµ remain arbitrary functions on the three-dimensional
boundary: they act as sources in the dual field theory. From (1.5), we can generalize the
quantum effective action to first order formalism,

W [E,ω] = −i lnZ[E,ω] , (2.52)

in such a way that the (external) gravitational sources Eiµ and ωijµ are coupled to the ex-
ternal currents, namely the energy-momentum tensor Jµi and the spin current Jµij , written
in differential form formalism on ∂M as

δW =
∫ (

δEi ∧ Ji + 1
2 δω

ij ∧ Jij
)
. (2.53)

Here we have introduced the 2-form currents J = 1
2 Jµν dxµ ∧ dxν and the usual Noether

currents 1-form ∗J = Jµ dxµ are their Hodge star duals

Jµ = 1
2e3

εµνλJνλ . (2.54)

Both in the non-supersymmetric case discussed here and in the supersymmetric case dis-
cussed in the next sections, the spin connection is not an independent source and, therefore,
Jij = 0. Here we assume that taking a variation commutes with setting D̊Ei = 0, since
in [21] it was proven that δω̊ij contributes to the stress tensor so that it becomes the sym-
metric Belinfante-Rosenfeld tensor. In our approach it will be a consequence of Lorentz
symmetry.

Invariance of the action under the transformations (2.48), written in the differential
form language on ∂M, reads

δEi = D̊ξi + σEi − θijEj . (2.55)

After partial integration where the boundary terms are neglected, we get

0 = δW =
∫ [
−ξiD̊Ji +

(
σEi − θijEj

)
∧ Ji

]
. (2.56)
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This implies the following classical conservation laws of conformal symmetry in d = 3

ξi : 0 = D̊Ji , (conserved Jµν)
σ : 0 = Ei ∧ Ji , (traceless Jµν)
θij : 0 = Ei ∧ Jj − Ej ∧ Ji . (symmetric Jµν)

(2.57)

Note that we have the full Weyl symmetry on the boundary expressed in terms of the
Belinfante-Rosenfeld tensor Jµi, which is traceless. The field equations lead to Jµν =
−(3/`) τµν . The second relation is not modified at the quantum level because there is no
conformal anomaly in three dimensions.

Finally, let us comment that the boundary 1-forms Ei and Si transform under the
d = 3 diffeomorphisms as Lie derivatives £ξE

i and £ξS
i, respectively. They are also

Lorentz vectors. Using the identity from footnote 7 and reabsorbing a part iξω̊ij of the
Lie derivative into the local Lorentz transformation θij , the transversal diffeomorphisms
in £ξE

i acquire the form of local AdS translations D̊ξi, with ξi = iξE
i, plus the term

iξT
i = 0 that vanishes on-shell. As a result, we obtain (£ξ + δθ)Ei = D̊

(
iξE

i
)
− θijEj ,

that is exactly the first line in (2.48) restricted to a subgroup with σ = 0. Similarly, in
the second equation in (2.6) we recognize the Lie derivative combined with a local Lorentz
transformation, (£ξ + δθ)Si = D̊bi − θijSj + `2

2 iξC
i, where now the Cotton tensor Ci

naturally appears as a term analogous to the contraction of the torsion for the bulk fields
and bi = iξS

i. Thus, the transformation law of the Schouten tensor in (2.48) is expected
to have the Cotton tensor contribution. Another way to see it is by using the group theory
argument presented in the Introduction, where the d = 3 Schouten tensor as a gauge field
comes from V i

−µ = 1
2(`ω̂i3µ − V i

µ) in the asymptotic sector, thus it involves both δω̂i3µ and
δV i

µ. Performing the expansion explicitly again gives rise to iξCi.
It is also interesting to observe that there is the full non-linearly realized conformal

group on the boundary, where ωij and Si = `2

2 S
i are composite fields and the dilatation

gauge field B = 1
` V

3
µdxµ is vanishing (and it transforms as (2.44)). We can go back to

its linear realization by treating those three fields as independent. Then we have to add
the special conformal current J(K)i and the dilatation current J(D) in the variation of the
action (2.53) via the respective couplings δSi ∧ J(K)i and δB ∧ J(D) and also treat bi as an
independent parameter.

As a result, we will obtain the generalized transformation laws (2.57) in the form

ξi : DJi = B ∧ Ji + Sj ∧ Jij + `Si ∧ J(D) ,

σ : `dJ(D) = −Ei ∧ Ji + Si ∧ J(K)i ,

θij : DJij = 2E[i ∧ Jj] + 2S[i ∧ J(K)j] , (2.58)
bi : DJ(K)i = Ej ∧ Jij − `Ei ∧ J(D) −B ∧ J(K)i ,

where D is the covariant derivative with respect to the Lorentz connection ωij = ω̊ij −
2B[i∧Ej]. The torsion constraint in a local Weyl theory involves the dilatation field and it
has the form D[µE

i
ν] = Ei[µBν]. The expressions (2.58) reduce to the previous conservation

laws (2.57) after setting Jij = 0, J(K)i = 0 and J(D) = 0, because these currents correspond
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to ωij , Si and B which are not independent sources any longer, but composite fields. Thus,
the full conformal symmetry is encoded in the previous conservation law (2.57), as also
observed in [21]. An extension of the FG formalism and enhancement of the boundary
theory to include the Weyl current has been analysed in [26]. The superconformal group
approach to the holographic currents problem in d = 3 is discussed in subsection 5.1.

In the following sections, we will extend the above analysis to the supersymmetric case.

3 Pure N = 2 AdS4 supergravity

Pure N = 2 supergravity in four-dimensional spacetime has a field content that, when
expressed in terms of spacetime quantities, is given by the vielbein V a

µ̂, the gravitino Ψµ̂A

(we generally omit the spinor indices), the SO(1, 3) spin connection ω̂abµ̂ and the graviphoton
Âµ̂. The Latin (a, b, . . .) and Greek (µ̂, ν̂, . . .) indices are the same as before and A, . . . = 1, 2
refers to indices in the fundamental representation of the R-symmetry group. Let us recall
that the R-symmetry group is U(2) for the ungauged theory, but the Fayet-Iliopoulos term,
which depends on the AdS radius ` as P ∝ 1/` in the SU(2) sector, explicitly breaks the R-
symmetry to SO(2) for AdS4 supergravity. The graviphoton is an Abelian gauge field and
gravitini are Majorana spinors. The conventions on fermions can be found in appendix A.2.

A geometric formulation of the theory in N = 2 superspace, in the presence of a
negative cosmological constant and allowing for non-trivial boundary conditions, was given
in [27].10 In that setting, the field content is expressed in terms of 1-forms in superspace
M4|2, that is, by the supervielbein 1-form (V a,ΨA), defining an orthonormal basis of
N = 2 superspace, the Lorentz spin connection 1-form ω̂ab and the 1-form graviphoton
gauge connection Â.

Let us remark that the whole analysis in the present paper is presented within a
spacetime approach to supergravity and not in superspace. However, to make contact with
the results of [27], to which we generally refer for the description of the bulk setting, in
this section we will first present the results in the geometric superspace approach and then
translate them into the spacetime approach.

In the geometric approach [39, 40], the action is written as an integral of the Lagrangian
4-form over a bosonic subspaceM4 ⊂M4|2, that is

I =
∫

M4⊂M4|2

L . (3.1)

This is because, in the geometric framework of [39, 40], the Lagrangian 4-form is invariant
under general coordinate transformations in superspace and supersymmetry transforma-

10We shall adopt the notation of [27] where, in particular, the metric is mostly minus. With respect to that
paper, however, here we made some changes which make the formulas more transparent and better adapted
to match the notation in three dimensions. More precisely, the four-dimensional Lorentz spin connection
and curvature are defined with different symbols and extra minus signs: ωab → −ω̂ab, Rab → −R̂ab and
the graviphoton gauge connection with a prefactor, A → − 1√

2 Â. We will use Majorana spinors both in
four as well in three dimensions and redefine the constants appearing in the quoted paper as L = 1√

2 and
1
`

= 2e = P√
2 =

√
−Λ

3 , where Λ is the cosmological constant and ` is the AdS4 radius.
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tions on spacetime, which are associated, as we are going to discuss below, with diffeo-
morphisms in the fermionic directions of superspace; one can thus exploit “general super-
coordinate transformations” to freely choose, as the bosonic submanifold of integration
in superspace, any M4 ⊂ M4|2 (see also [41] for details on this point and [42, 43] for a
geometric formulation of supergravity based on integral forms which allows to write the
superspace action as an integral on a supermanifold).

The bulk Lagrangian 4-form for the pure N = 2 theory is given by11 [27, 44]

Lbulk = 1
4R̂

abV cV dεabcd + ΨAΓaΓ5ρ̂AV
a + i

2

(
F̂ + 1

2 ΨAΨBεAB

)
ΨCΓ5ΨDεCD

− i
2` ΨAΓabΓ5ΨAV

aV b − 1
8`2 V

aV bV cV dεabcd

+ 1
4

(
F̃ cdV aV bF̂ − 1

12 F̃lmF̃
lmV aV bV cV d

)
εabcd ,

(3.2)

where we will generally omit writing of the wedge product in long expressions to lighten
the notation. This Lagrangian is written in a first order approach for the gauge field Â.

A consistent definition of the action in the presence of non-trivial boundary conditions
requires the full Lagrangian to include a boundary contribution [11, 45], that is

L = Lbulk + Lboundary . (3.3)

The boundary term has to ensure both a well-defined action principle (for suitable
AAdS boundary conditions) and the regularity of the full action in the asymptotic region.
Holographic techniques renormalize a gravity theory in a covariant way by cutting of the
spacetime at the finite radius z. The variation of the action is expressible in terms of the
variation of the sources at the conformal boundary. Due to the asymptotic behaviour of the
fields, the variational problem on the boundary sources induces infinities which have to be
cancelled by the introduction of counterterms. Asymptotic regularity, then, is dictated by a
well-posed variational principle [46]. Holographic renormalization was first introduced in [8]
and further developed in [4, 9, 10], while the counterterms for Einstein-Hilbert AdS gravity
were obtained in [47–50].12 The prescription has been applied to supergravity theories, as
well, in particular for computation of the superconformal anomaly [7] (for computations in
the field theory side see, e.g., [51, 52]).

In our context, it is more convenient to adopt a geometric approach to the renormal-
ization problem, originally formulated in [16–18], which considers the addition of the topo-
logical Euler-Gauss-Bonnet term to the bulk gravity action. The corresponding coupling
is fixed by demanding the vanishing of the AdS curvature on the boundary. In [14, 15]
it was shown that adding this topological term in four dimensions is equivalent to the
holographic renormalization program.13 Since the method is deeply rooted in first order

11The precise definition of the hatted and tilded quantities in (3.2) can be found in equations (3.7)
and (3.14).

12However, the counterterm prescription given in these references does not deal with the logarithmic
divergence coming from the bulk action.

13This renormalization procedure also allows to make contact with the concept of Renormalized Volume
for asymptotically hyperbolic spaces in a more mathematical framework [53].
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formulation, clearly it is particularly suitable for embedding holographic renormalization
in supergravity and specially within the geometrical approach in superspace.

A generalization of the approach to the supersymmetric case was given in [27] and
analogous results for the N = 1 case were previously obtained in [6]. The supersymmetric
extension of the Euler-Gauss-Bonnet term is unique for a given theory with N supersym-
metries, and it is a total derivative, corresponding to a boundary term taking values in the
fermionic directions of superspace. It is still an open question whether there is a topologi-
cal index in the superspace associated to this invariant. A useful tool to face this problem
could be the integral form approach in superspace developed in [42, 43].

For the case at hand, the boundary Lagrangian is given by the supersymmetric gener-
alization of the Euler-Gauss-Bonnet term,

Lboundary = −`
2

8

(
R̂abR̂cdεabcd + 8i

`
ρ̂
AΓ5ρ̂A −

2i
`
R̂abΨAΓabΓ5ΨA + 4i

`2
dÂΨAΓ5ΨBεAB

)
.

(3.4)
The supercurvatures appearing in (3.2) and (3.4) are defined by

R̂ab = dω̂ab + ω̂ac ∧ ω̂cb , (3.5)

ρ̂A = D̂ΨA −
1
2` ÂεAB ∧ΨB = dΨA + 1

4 Γab ω̂ab ∧ΨA −
1
2` ÂεAB ∧ΨB , (3.6)

F = dÂ− ΨA ∧ΨBεAB . (3.7)

Most notably, the same full Lagrangian can be equivalently rewritten in terms of the
OSp(2|4) curvatures, which are defined as

R̂ab = R̂ab − 1
`2
V aV b − 1

2` δ
ABΨAΓabΨB ,

R̂a = D̂V a − i
2 ΨAΓaΨA , (3.8)

ρ̂A = ρ̂A −
i

2` δABΓaΨBV a ,

F̂ = F .

When expressed in terms of the supercurvatures (3.8), apart from subtleties related
to the extension of the action integral to superspace (see [42, 43]), the full Lagrangian
acquires the following form à la MacDowell-Mansouri [19], that is quadratic in the super
AdS curvatures FΛ =

(
R̂a, R̂ab, ρ̂A, F̂

)
,

L = −`
2

8 R̂
ab ∧ R̂cdεabcd − i`ρ̂AΓ5 ∧ ρ̂A + 1

4 F̂ ∧
∗F̂

= 1
2F

Λ ∧ ηΛΣF
Σ . (3.9)

The quantity ∗F̂ denotes the Hodge-dual on spacetime of the field strength F̂ , namely

∗F̂ = 1
2
∗F̂µ̂ν̂ dxµ̂ ∧ dxν̂ = e

4 εµ̂ν̂ρ̂σ̂ F̂ρ̂σ̂ dxµ̂ ∧ dxν̂ , (3.10)
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and the 4-form Lagrangian (3.9) depends on the fields Φ̂Λ = (V a, ω̂ab,ΨA, Â) only through
their field strengths FΛ. The matrix ηΛΣ, in the last line of (3.9), can be schematically
written as ηΛΣ = diag(0,− `2

4 εabcd − 2i`CΓ5,
∗ ) and it is a Lorentz invariant (but not

OSp(2|4) invariant) tensor.
It is worthwhile emphasizing that, because of this (as observed in [19] for the case of

AdS4 gravity), the action (3.9) is not invariant under local OSp(2|4) transformations, even
though the super AdS curvatures (3.8) are covariant with respect to that supergroup. This
is in fact the supersymmetric extension of what was found for AdS4 gravity in [14], where
the topologically renormalized action including the Euler-Gauss-Bonnet term was cast in
the MacDowell-Mansouri form [19].

The super AdS curvatures (3.8) satisfy on-shell the Bianchi “identities”

D̂R̂ab = 2
`2
V [aR̂b] + 1

`
ΨAΓabρ̂A ,

D̂R̂a = R̂a
bV

b + iΨAΓaρ̂A ,

D̂ρ̂A = 1
2`Âε

ABρ̂B −
i

2`ΓaV aρ̂A + 1
4R̂abΓabΨA −

1
2` F̂ ε

ABΨB + i
2`ΓaΨAR̂a ,

dF = 2εABΨAρ̂B .

(3.11)

Let us recall, here, some basic facts about the geometric approach to supergravity intro-
duced in [39, 40], also known as “rheonomic approach” to supergravity. First of all, it
is a superspace approach, which means that the fundamental forms are given in terms of
superfields that are functions of all the coordinates of superspace M4|2(xµ̂, θαA), where
xµ̂ are commuting bosonic coordinates while θαA are fermionic Grassmann coordinates
(α = 1, . . . , 4 denoting spinor indices), namely

V a(x, θ) = V a
µ̂(x, θ)dxµ̂ + V a

αA(x, θ)dθαA ,
ω̂ab(x, θ) = ω̂abµ̂ (x, θ)dxµ̂ + ω̂abαA(x, θ)dθαA ,
ΨA
α (x, θ) = ΨA

αµ̂(x, θ)dxµ̂ + ΨA
α|βB(x, θ)dθβB ,

Â(x, θ) = Âµ̂(x, θ)dxµ̂ + ÂαA(x, θ)dθαA .

(3.12)

They are related to the corresponding spacetime quantities

V a(x) = V a
µ̂(x)dxµ̂ , ω̂ab(x) = ω̂abµ̂ (x)dxµ̂ , ΨA(x) = ΨA

µ̂ (x)dxµ̂ , Â(x) = Âµ̂(x)dxµ̂ ,

by the restrictions

V a(x) = V a(x, θ)|θ=dθ=0 = V a
µ̂(x, 0)dxµ̂ ,

ω̂ab(x) = ω̂ab(x, θ)|θ=dθ=0 = ω̂abµ̂ (x, 0)dxµ̂ ,
ΨA(x) = ΨA(x, θ)|θ=dθ=0 = ΨA

µ̂ (x, 0)dxµ̂ ,
Â(x) = Â(x, θ)|θ=dθ=0 = Âµ̂(x, 0)dxµ̂ .

(3.13)

Given the above setting, the theory on superspace can in principle contain extra dynamic
information with respect to its projection on spacetime.
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For the theory extended to superspace to have the same physical content as the theory
on spacetime, some constraints have to be imposed on the superspace supercurvatures.
This is what in [39, 40] was named a set of rheonomic constraints to be imposed on the
parametrization of the supercurvatures.

To clarify this point, let us first emphasize that, since the supersymmetry algebra
closes only on-shell on the supergravity multiplet (we are not including auxiliary fields in
the supermultiplet), then the Bianchi identities (3.11) are not, in fact, identities, but have
instead to be understood as relations among the superfields and their curvatures, which are
satisfied on-shell. This is realized by requiring that the supercurvatures, which are defined
off-shell by (3.8), have to be identified on-shell as particular 2-forms on superspace, i.e. they
get a parametrization on a basis of 2-forms in superspace, whose expression is uniquely
determined by requiring that the relations (3.11) are satisfied. In the expansion of the
curvature 2-forms in superspace along the supervielbein basis, the rheonomic prescription
requires that the outer components of the supercurvatures must be expressed, on-shell, as
linear tensor combinations of the inner components (the “outer” components are defined
as those having at least one index along the ΨA direction of superspace while, when the
only non-vanishing components are along the bosonic vielbein, they are called “inner”).
From the physical point of view, this means that the outer components do not contain
extra degrees of freedom besides those already present in the spacetime description. The
constraints discussed above turn out to be physically equivalent to the on-shell constraints,
that is to say, to the equations of motion. This is the way in which the on-shell closure
of the supersymmetry algebra is implemented within this approach through the Bianchi
identities.

Let us emphasize that in this approach, which is the one adopted in [27], it turns
out, as shown in [39, 40], that the supersymmetry transformations on spacetime of the
fields correspond to diffeomorphisms in the fermionic directions of superspace, which can
be expressed through Lie derivatives in those directions (a very nice recent review of the
geometric approach to supergravity can be found in [41]). In the explicit evaluation, one
should keep in mind that the expressions for the curvatures which hold on-shell, where su-
persymmetry is realized as a symmetry of the theory, are the (rheonomic) parametrizations.
A short account of the prescriptions on the supercurvatures in the geometric approach can
also be found in appendix A of [27].

In the case at hand, the on-shell (rheonomic) parametrization of the supercurva-
tures (3.8) results to be given by the following expressions,

R̂a = 0 ,
F̂ = F̃abV

aV b ,

ρ̂A = ρ̃AabV
aV b − i

2 ΓaΨBV bF̃abε
AB − 1

2Γ5ΓaΨBV b ∗F̃abε
AB , (3.14)

R̂ab = R̃abcdV
cV d −Θab

A|cΨAV
c − 1

2 ΨAΨBεABF̃
ab − i

2ΨAΓ5ΨBεAB
∗F̃ ab ,

where the spinor-tensor Θab|c
A is given by eq. (C.5).
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Note that the quantities R̃abcd, ρ̃Aab and F̃ab, appearing in the parametrizations (3.14),
are the so-called supercovariant field strengths and they differ in general from the spacetime
projections of the supercurvatures, that is R̂ab

µ̂ν̂ 6= 2R̃abcd V c
µ̂V

c
ν̂ , ρ̂Aµ̂ν̂ 6= 2ρ̃Aab V a

µ̂V
b
ν̂ . However,

since in the present case the parametrization of F̂ takes contribution only from the 2-bosonic
vielbein sector, we have F̂µ̂ν̂ = 2F̃ab V a

µ̂V
b
ν̂ .

Taking the above discussion into account, the transformation laws of the bulk fields
with respect to the symmetries of the action, which are diffeomorphisms, local Lorentz
transformations, supersymmetry and U(1) gauge transformations, whose corresponding
parameters are pa, jab, εA and λ respectively, read

δV a = D̂pa − jabVb + i εAΓaΨA ,

δω̂ab = D̂jab + 2
`2
p[aV b] + 2 R̃abcdpcV d + Θab

A|cΨApc + 1
`
εAΓabΨA

−Θab
A|cε

AV c + εABF̃ abΨAεB + i εAB ∗F̃ abΨAΓ5εB ,

δΨA = −1
4 j

abΓabΨA − i
2` ΓaΨApa + 2 ρ̃AabpaV b + i

2 ΓaΨBp
bF̃abε

AB

+ 1
2 Γ5ΓaΨB

∗F̃ab p
bεAB + λ̂

2` ε
ABΨB + D̂εA − 1

2` Âε
ABεB

+ i
2` ΓaεAV a − i

2 ε
ABF̃abV

bΓaεB −
1
2 ε

AB ∗F̃ab Γ5ΓaεBV b ,

δÂ = dλ̂+ 2 εAΨBεAB + 2 F̃abpaV b . (3.15)

The latter generalizes to the supersymmetric case the transformation laws (2.6).
In this framework, the supersymmetry invariance of the Lagrangian is expressed by

the vanishing of the Lie derivative of the Lagrangian for infinitesimal diffeomorphisms in
the fermionic directions, that is, δεL = £εL = ıεdL + d(ıεL) = 0. When the spacetime
geometry has a non-trivial boundary ∂M where the superfields do not vanish, then the
condition ıεL|∂M = 0 is non-trivial and determines the precise expression of the boundary
contributions to the Lagrangian necessary to preserve supersymmetry invariance.

Let us finally write out the equations of motion of the theory. They can be derived
equivalently from the bulk Lagrangian (3.2) or from the full one (3.9), the two expressions
differing by the Bianchi relations (3.11) which are satisfied on-shell.

Using the bulk Lagrangian (3.2) for the variations, one finds

δω̂ab : V cR̂dεabcd = 0 ⇒ R̂a = 0 ,

δV a : 1
2 V

bR̂cdεabcd −ΨAΓaΓ5ρ̂A + ∗F̃ab V
bF̂ − 1

12 F̃
ef F̃efV

bV cV dεabcd = 0 ,

δΨA : 2ΓaV aΓ5ρ̂A − εABΨB∗F̂ + iεABF̂Γ5ΨB = 0 , (3.16)
δÂ : d∗F̂ − 2iεABΨAΓ5ρ̂B = 0 .

Considering instead the variation of the Lagrangian (3.9), which includes the boundary
contributions, the Euler-Lagrange equations formally read

δL
δΦ̂Λ

δΦ̂Λ = ∂L
∂FΣ ·

∂FΣ

∂Φ̂Λ
δΦ̂Λ = D̂(FΣηΛΣ)δΦ̂Λ + d

(
∂L
∂FΣ δΦ̂

Σ
)
, (3.17)
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where D̂ denotes the OSp(2|4)-covariant derivative (not only Lorentz and gauge one),
that is

δI =
∫
M4

D̂(FΣηΛΣ) δΦ̂Λ +
∫
∂M

∂L
∂FΣ δΦ̂Σ = 0 . (3.18)

Invariance of the action implies, in all the bulk superspace, the field equations

D̂
(
∂L
∂FΛ

)
= D̂(FΣηΛΣ) = 0 , (3.19)

together with the boundary conditions

∂L
∂FΣ δΦ̂Σ|∂M = FΛ ηΛΣ δΦ̂Σ|∂M = 0 . (3.20)

Explicitly, as far as the bulk field equations (3.19) are concerned, we find that the equations
of motion for the vielbein and the gauge field have the same expressions given in (3.16)
as before, while the ones for the spin connection and for the gravitino get replaced by the
(equivalent) expressions

δω̂ab : − 1
2 D̂R̂

cdεabcd+iΨAΓabΓ5ρ̂A = 0 , (3.21)

δΨA : `

4 ΓabΨAR̂
cdεabcd−2i`Γ5D̂ρ̂A+iΓ5ÂεABρ̂

B+ΓaV aΓ5ρ̂A−εABΨB∗F̂ = 0 . (3.22)

In our case, on the boundary we have in general δΦ̂Σ|∂M 6= 0 and the boundary conditions
resulting from (3.20), when expressed in terms of four-dimensional superfields and their
derivatives, look like Neumann boundary conditions on the supercurvatures (3.8),

R̂ab|∂M = 0 , ρ̂A|∂M = 0 , F̂|∂M = 0 , R̂a|∂M = 0 . (3.23)

However, let us recall that we have Dirichlet boundary conditions for the holographic fields
which, because of spacetime being asymptotically AdS and given the fall-off of other bulk
quantities, also implies the vanishing of the supercurvatures.

Thus, to preserve supersymmetry, the OSp(2|4) supercurvatures (3.8) are constrained
on ∂M to their vacuum values (3.23), which are indeed the Maurer-Cartan equations
of a rigid OSp(2|4) background. Note that OSp(2|4) is also the supergroup of global
superconformal transformations on N = 2 three-dimensional superspace, so that the above
relations can be understood from the boundary point of view, in light of the AdS/CFT
duality, as the conditions for superconformal invariance of the theory at the asymptotic
boundary.

Let us finally mention that, in the geometric approach, in order to obtain the space-
time Lagrangian, one has to project the 4-form Lagrangian from superspace to spacetime
(defined by the θ = 0, dθ = 0 hypersurfaceM4), namely, to restrict all the superfields, in-
cluding the bosonic vielbein V a and the gravitino ΨαA, to their lowest (θαA = 0, dθαA = 0)
components.

In the rest of this paper, we will restrict our analysis to spacetime.
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4 Near-boundary analysis of the supergravity fields and local parameters

In the present section, we are going to apply the holographic techniques combined with
the topological terms, outlined in section 2, to the 4D supergravity theory presented in
section 3.

Given the pure, N = 2 supergravity theory, we can deduce the symmetries of its holo-
graphically dual QFT in a similar fashion as described in section 2 for AdS4 gravity. The
laws (3.15) now depend on the local parameters pa, jab, λ̂ and εA and we will use this
freedom to fix the Lagrange multipliers associated with the radial components of the fields.
For the Maxwell field, Az is not a multiplier, but a non-dynamic variable. Keeping in mind
that the N = 2 pure supergravity should, in principle, be able to describe holographically
both the standard SCFT and the holographene-like unconventional supersymmetric sys-
tems [28–30], we will fix the multipliers as generally as possible, focusing on our particular
case only starting from subsection 4.2.

We have to choose a suitable gauge that generalizes (2.7). The asymptotic behaviour
of the vielbein in the supergravity extensions remains the same as for gravity because it is
determined solely by the metric (2.1). Since the gravitini source the torsion field, we can
evaluate the asymptotic behaviour of the spin connection in supergravity from the vanishing
supertorsion condition in (3.16), as explicitly worked out in appendix B.1. Similarly, the
gravitini also act as a source for the electromagnetic field, which determines the fall-off of
the graviphoton connection, that was discussed in appendix B.3.

It remains, thus, to analyse the asymptotic behaviour of the gravitini. To this end, it
is convenient to express them in terms of chiral components with respect to the matrix Γ3:
Ψ = Ψ+ + Ψ−, where the eigenstates Ψ± of the matrix Γ3 are defined by eq. (A.17). The
conventions of gamma matrices are given in appendix A.2.

The asymptotic behaviour of the gravitini is determined by the supertorsion con-
straints, associated with supersymmetry both in four- and three-dimensional spacetimes.
As a consequence, we are interested in gravitini whose fall-off is Ψµ± = O(z∓1/2) and
Ψz± = O(z±1/2), as introduced in [29]. From a group theoretical point of view, the same
result is obtained from to the request of covariance with respect to the OSp(2|4) group
(which describes superisometries of the bulk supergravity and superconformal transforma-
tions on the boundary), which in particular implies, as we will discuss in general terms
in subsection 5.1, a definite scaling (±1/2) under the subgroup SO(1, 1) ⊂ OSp(2|4) that
parametrizes radial rescalings in the bulk and dilations on the boundary. This is better
written as

ΨAµ± =
(
z

`

)∓ 1
2
ϕAµ±(x, z) , ΨAz± =

(
z

`

)± 1
2
ϕA±z(x, z) , (4.1)

where the Majorana fermions ϕAµ± and ϕAz± are regular functions at the boundary and
can be expanded as power series in z. The second relation in (4.1) is consistent with the
condition that singles out the spin 3/2 components in the gravitini,

ΓaΨAµ̂ V
µ̂
a = 0 , (4.2)
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that in the FG frame (2.1) reads(
ΓiΨAµ

)
±
V µ

i +
(
Γ3ΨAz

)
±
V z

3 = 0 . (4.3)

We do not use the above equation in our calculations. If we relax it, though, then more
general asymptotics for the gravitini components ΨAz± can in principle be considered. An
exploration in this direction could be relevant in view of our interest in unconventional
supersymmetry in a holographic SCFT.

Since ΨAµ± and the transformed field ΨAµ± + δεΨAµ±, given by (3.15), have to be of
the same order in z, we have that δεΨAµ± ∼ D̂µεA± ∼ εA± are of the same order,

εA± =
(
z

`

)∓ 1
2
HA±(x, z) , (4.4)

where again the Majorana spinor HA±(x, z) is regular on the boundary.
Regarding the bosonic fields, ω̂ij and Â have scaling zero with respect to SO(1, 1) ⊂

OSp(2|4), while V i, ω̂i3 do not have a definite scaling. To make this manifest in the super-
symmetric theory, it is convenient to define also bosonic quantities with definite SO(1, 1)
scaling near the boundary. They are

V i
±µ̂ = 1

2
(
`ω̂i3µ̂ ± V i

µ̂

)
, (4.5)

where V i
+ has scaling +1 and V i

− scaling −1. They behave asymptotically as

V i
±µ =

(
z

`

)∓1
Ei±µ(x, z) , (4.6)

where the regular functions Ei± have the following power expansion in z,

Ei+µ = Eiµ + z2

`2
Siµ − S̃iµ

2 + z3

`3
τ iµ − 2τ̃ iµ

2 +O(z4) ,

Ei−µ = −`
2

2 S
i
µ −

z

`

τ iµ + 2τ̃ iµ
2 +O(z2) . (4.7)

Unless stated differently, all regular functions on the boundary that appear here,
f = {wi, wij , ϕAµ±, ϕAz±, HA±, . . .}, are generically expanded in a power series

f(x, z) =
∞∑
n=0

(
z

`

)n
f(n)(x) = f(0)(x) + z

`
f(1)(x) + z2

`2
f(2)(x) + · · · . (4.8)

Using these conventions, the asymptotic expansion of the spin connection is computed
in appendix B.1. It is found (see eqs. (B.7)) that a suitable gauge fixing which includes
gravitini has ω̂abz 6= 0, but it is still subleading on the boundary. We choose arbitrary
functions ω̂i3z = wi(x, z) and ω̂ijz = z

` w
ij(x, z) in such a way that they are consistent with

the vanishing supertorsion condition, but we treat them off-shell as independent variables
in first order formulation of supergravity.

In order to ensure that the gauge fixing of Âz is consistent with the supergravity
dynamics imposed later, it has to satisfy the radial component of the graviphoton equation
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in (3.16), which is shown in appendix B.3. It turns out that having two independent
components ΨAz± is too restrictive in the context of holography because it would not allow
the components of the gravitini on ∂M, ϕA±µ, to be the only source of the electromagnetic
field, F = dA on ∂M, which would be a behaviour similar to the one in Einstein-Maxwell
gravity,

F̂µν = 0 ⇒ Fµν = 4εAB ϕA+[µϕ
B
−ν] , (4.9)

and have the U(1) gauge parameter finite on ∂M, namely λ̂ = O(1). Then, as explained
in appendix B.3, the leading order of the component Âz, denoted by `

z A(−1)z, is related
to the leading order of the component Ψ−Az, that is the function ϕ−Az(0). The general
solution given by eq. (B.49) requires that either both functions vanish, or A(−1)z to be
constant and ϕ(0)−Az determined in terms of it.

If we are interested in a theory consistent with supersymmetry on the boundary, we
have two options. The first one is to relax the gauge fixing of ΨAz− by imposing the
stronger condition

ΨAz− = 0 . (4.10)

The second one is to change the asymptotic structure of the U(1) sector, allowing for a
divergent leading contribution in Âz.

In sum, the results of appendix B.1 and B.3 show that the holographic gauge-fixing
conditions on the local parameters pa, jab, λ, εA in AdS space have the form

V 3
z = `

z
, ω̂i3z = wi(x, z) , Ψ±Az =

(
z

`

)± 1
2
ϕ±Az(x, z) ,

V i
z = 0 , ω̂ijz = z

`
wij(x, z) , Âz = `

z
A(−1)z(x) + z

`
A(1)z(x) +O(z3) ,

(4.11)

where we can distinguish particular cases

Ψz± 6= 0 ⇒ Âz = O(1/z) , wi = O(1) , wij = O(1) ,
Ψz− = 0 ⇒ Âz = O(z) , wi = O(z2) , wij = O(1) ,
Ψz± = 0 ⇒ Âz = O(z) , wi = 0 , wij = O(1) .

(4.12)

Because now the gauge-fixing functions also depend on the radial and boundary coordi-
nates, they can be power-expanded using eq. (4.8), and for the fermions we use the notation

ΨA
+z =

√
z

`
ϕA+z(x, z) =

√
z

`

[(
ψA+z

0

)
+ z

`

(
ζA+z
0

)
+O(z2)

]
,

ΨA
−z =

√
`

z
ϕA−z(x, z) =

√
`

z

[(
0
ψA−z

)
+ z

`

(
0
ζA−z

)
+O(z2)

]
. (4.13)

It is important to emphasize that we assume that the gauge-fixing functions ΨA
z (x) and

Âz(x) do not transform under local transformations. This is equivalent to the statement
that their transformation law can always be reabsorbed in higher-order terms of the asymp-
totic transformations. In contrast, the quantities wi(x) and wij(x) introduced in (4.11) do
transform, because on-shell they have to allow for the vanishing supertorsion condition.
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However, in first order formalism we treat them off-shell, thus they enter at the same foot-
ing as other gauge-fixing functions, with the only difference that we do not require them
to be invariant under residual transformations. Indeed, using explicit expressions given by
eqs. (B.6) and (B.7) of appendix B, it is straightforward to check by varying the supertor-
sion that δwi, δwij 6= 0 and that we can always set wi = 0 consistently (with δwi = 0), but
if wi 6= 0, then δwi 6= 0 as well, otherwise imposing it would break all asymptotic symme-
tries. The same is true for wij . Nonetheless, δwi and δwij always appear at higher-order
and they do not influence the near-boundary expressions.

The conditions (4.11) produce the following generic asymptotic behaviour of the bound-
ary fields,

V i
µ = `

z
Eiµ + z

`
Siµ + z2

`2
τ iµ +O(z3) ,

ω̂i3µ = 1
z
Eiµ −

z

`2
S̃iµ −

2z2

`3
τ̃ iµ +O(z3) ,

ω̂ijµ = ωijµ (x, z) = ωijµ + z

`
ωij(1)µ + z2

`2
ωij(2)µ +O(z3) ,

Âµ = Aµ(x, z) = Aµ + z

`
A(1)µ + z2

`2
A(2)µ +O(z3) , (4.14)

ΨA
µ+ =

√
`

z
ϕAµ+(x, z) =

√
`

z

[(
ψAµ+

0

)
+ z

`

(
ζAµ+
0

)
+ z2

`2

(
ΠA
µ+
0

)
+O(z3)

]
,

ΨA
µ− =

√
z

`
ϕAµ−(x, z) =

√
z

`

[(
0
ψAµ−

)
+ z

`

(
0
ζAµ−

)
+O(z2)

]
,

where all functions defined on ∂M are finite at z = 0. The fermions acquire a half-
integer power expansion in z because their bilinears, which arise from the supersymmetry
transformation of the bosons, have integer power expansion in z. We also allow for the
linear terms in z, absent in pure AdS gravity, because in principle they could be switched
on by the supersymmetric partners.

Even though the supertorsion is zero, the torsion T̂ a does not vanish, so that ω̂abµ cannot
be entirely determined by the bosonic vielbein. In particular, the relation ω̂i3µ ∼ 1

` V
i
µ at the

leading order (see appendix B.1) is inherited from the Riemannian geometry (Kµν ∼ 1
` ĝµν).

The subleading terms in the expansion S̃iµ and τ̃ iµ are different from the Riemannian
counterparts Siµ and τ iµ in the supersymmetric case. The boundary Schouten tensor is
now defined as

Siµ = 1
`2

(Siµ + S̃iµ) , (4.15)

which is the gauge field associated with special conformal transformations, as we will
identify at the end of this section. Similarly, we will later see that −(τ iµ+ 2τ̃ iµ)/` becomes
the holographic stress tensor, up to the fermionic terms.

Notice that now there is an obstruction to symmetrize Siµ and the holographic stress
tensor because the terms S̃iµ and τ̃ iµ are not a priori symmetric in the presence of the
gravitini.

– 28 –



J
H
E
P
0
2
(
2
0
2
1
)
1
4
1

4.1 The Schouten tensor in d = 3 and its superconformal extension

We already saw in previous sections that the Schouten tensor plays an important role in
pure AdS gravity, as it describes the first near-boundary correction of the metric given by
eq. (2.3). From the CFT side, it arises as a component of the superconformal connection,
as shown at the beginning of section 5. In this paragraph, we will focus on its geometric
properties derived in the context of conformal gravity (for a review, see [54]).

Consider a d-dimensional manifold characterized by a metric gµν and a torsionful affine
connection Γλµν = Γ̊λµν −Kλ

µν , where Γ̊λµν is the Levi-Civita connection and Kλ
µν is the

contorsion tensor Kλ
µν = gρλ (Tρµν + Tρνµ − Tµνρ). Here, Tµνλ ≡ Γλ[µν] is the torsion

tensor. Then the Schouten tensor obtained from the conformal constraint equation on the
conformal curvature components is defined by [54]

Sµν = Rµν −
1

2(d− 1) gµν R , (4.16)

where Rµν and R are, respectively, the Ricci curvature tensor and the Ricci scalar con-
structed from the torsionful affine connection Γλµν . This formula coincides with (2.3) in
pure AdS gravity: in that case the Ricci tensor is symmetric and this implies that Sµν
is also symmetric. In presence of torsion, the Schouten tensor has both symmetric and
antisymmetric parts,

S(µν) = R(µν) −
1

2(d− 1) gµνR ,

S[µν] = R[µν] . (4.17)

In particular, in d = 3, we can explicitly evaluate its symmetric and antisymmetric parts as

S(µν) = R̊µν −
1
4 gµνR̊ −

1
2 gµνTλT

λ + TµTν + T̃λρν
(
T̃ λρµ − T̃

λρ
µ

)
− T̃λρµT̃ λρ

ν

− 1
2 gµν T̃λρσ

(1
2 T̃

λρσ + T̃ λσρ
)
−∇(µTν) + 2∇λT̃

λ
(µ ν) ,

S[µν] = T λ
(
T̃µλν + T̃µνλ − T̃νλµ

)
+ 2T̃λρ[ν T̃

λρ
µ] +∇λT̃ λ

µν +∇[µTν] , (4.18)

where we have also exploited the trace decomposition of the torsion tensor Tλµν = δ[µ
νTλ]+

T̃ ν
λµ , with Tλ and T̃ ν

λµ its trace and traceless parts, respectively. Here, ∇ = ∇(̊Γ) denotes
the derivative with respect to the Levi-Civita affine connection and R̊µν and R̊ are the
Ricci tensor and curvature scalar of the Levi-Civita connection, respectively.

When the torsion is non-vanishing, such as in presence of fermions, in general we have
S[µν] 6= 0 and the symmetric part S(µν) acquires the torsionful term.14 Thus, we expect
that, in the context of supergravity, the “super-Schouten tensor” (4.15) is not symmetric
and that it is a superconformal extension of the expression (4.17).

The equations written above are general, valid for any Riemann-Cartan manifold.
In our particular case, we have the following quantities that arise from the asymptotic

14The antisymmetric contribution is still vanishing in the special case where the torsion contains only
one component, the trace Tλ, which should be also covariantly constant.
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expansion,

Sµν = EiµS
i
ν , τµν = Eiµτ

i
ν ,

S̃µν = EiµS̃
i
ν , τ̃µν = Eiµτ̃

i
ν , (4.19)

Sµν = EiµSiν .

It can be shown from eq. (B.6) in appendix B.1 that, when ϕA−z = 0, the tensors S̃µν and
τ̃µν acquire the form

S̃µν = Sνµ − ` ϕ(0)A+[µϕ
A
(0)−ν] + i` ϕ(0)A+(νΓµ)ϕ

A
(0)+z ,

τ̃µν = τµν + 3τνµ
4 + `

2
(
−ϕA+[µϕ

A
−ν] + iϕA+(µΓν)ϕA+z

)
(1)

, (4.20)

where the last line is relevant for the holographic stress tensor, whose direct relation to
τµν + 2τ̃µν will be shown in section 5.

It means that, even if we symmetrize Sµν and τµν by suitable gauge fixing of the
residual Lorentz transformations, the fermions ψA±µ become an obstruction to make the
tensors S̃µν and τ̃µν symmetric for arbitrary ψA+z because of the following form of their
antisymmetric parts,

S̃[µν] = S[νµ] − ` ϕ(0)A+[µϕ
A
(0)−ν] ,

τ̃[µν] = 1
2 τ[νµ] −

`

2
(
ϕ(0)A+[µϕ

A
(1)−ν] + ϕ(1)A+[µϕ

A
(0)−ν]

)
. (4.21)

Focusing on the Schouten tensor (4.15), we find, for its generalization to the supercon-
formal case, what we will refer to in the following as “super-Schouten”,

Sµν = 2
`2
S(µν) −

1
`
ϕ(0)A+[µϕ

A
(0)−ν] + i

`
ϕ(0)A+(νΓµ)ϕ

A
(0)+z , (4.22)

which implies

S(µν) = 2
`2
S(µν) + i

`
ϕ(0)A+(µΓν)ϕ

A
(0)+z ,

S[µν] = −1
`
ϕ(0)A+[µϕ

A
(0)−ν] . (4.23)

This result matches eq. (4.18), showing that the symmetric part of the super-Schouten
tensor contains not only the metric term, S(µν), but also the fermionic terms. In addition,
the antisymmetric part does not vanish for arbitrary fermions ψ±µ. Therefore, we are not
able to symmetrize the super-Schouten tensor, as this procedure would lead to conditions
on the leading terms of the boundary gravitini, which have to remain unconstrained.

Similarly, the term relevant for the holographic stress tensor,

τµν + 2τ̃µν = 3τ(µν) + `
(
−ϕ(0)A+[µϕ

A
(1)−ν] − ϕ(1)A+[µϕ

A
(0)−ν]

+ iϕA(0)+(µE
i
ν)Γiϕ(1)A+z + iϕA(0)+(µE

i
ν)Γiϕ(1)A+z

)
, (4.24)

is not symmetric in general,

τ[µν] + 2τ̃[µν] = −`
(
ϕ(0)A+[µϕ

A
(1)−ν] + ϕ(1)A+[µϕ

A
(0)−ν]

)
. (4.25)

We will discuss more about symmetry of the holographic stress tensor in section 5.
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4.2 Field transformations and asymptotic symmetries

So far, we have chosen Lagrange multipliers and other non-dynamic variables (4.11) that
generate the asymptotic expansion of the fields (4.14). In this and in the following section,
we will focus on the case with ΨAz− = 0. A stronger condition ΨAz± = 0, referred to as
‘FG gauge’, was considered in [6] in the context of N = 1 AdS4 supergravity. An advantage
of having ΨAz+ 6= 0 is to provide more freedom that could be used to simplify complicated
fermionic expressions. We will see, though, that the presence of this particular field would
not modify the asymptotic behaviour of the theory.

Boundary conditions on the curvatures. The OSp(2|4) supercurvatures vanish at the
boundary in asymptotically AdS space, as expressed by the conditions (3.23). In particular,
the supertorsion vanishes exactly and its consequences are discussed in appendix B.1. The
other supercurvature conditions at the boundary, whose explicit expressions are given by
eq. (5.3) in subsection 5.1, boil down to the following constraints on ∂M,

DEi − i
2 ψ

A
+ ∧ γiψA+ = 0 ,

Rij − 2E[i ∧ Sj] − 1
`
ψA+ ∧ γijψA− = 0 ,

∇ψA+ + i
`
Ei ∧ γiψA− = 0 , (4.26)

where Rij is the Riemann curvature tensor 2-form at the boundary and Si is the boundary
super-Schouten 1-form defined in (4.15).

The first equation ensures the vanishing boundary supertorsion, by fixing the boundary
torsion T i = DEi in terms of the gravitini. The second equation involves the boundary
Weyl tensor W ij = Rij − 2E[i ∧ Sj] and it can be interpreted as the super Weyl tensor
that vanishes on the boundary.

All three equations can be explicitly solved in the boundary fields ωij , Si and ψA−.
While the spin connection has been solved in appendix B.1, here we focus on the other
two composite fields. Using the gamma matrix relation γµν = γµγν − gµν , from the third
of (4.26) we get the conformino,

ψ−Aµ = − `

2e3
ελνργλγµ∇νψ+Aρ , (4.27)

while from the second one we solve the super-Schouten tensor,

Sµν =Rµν−
1
4 gµνR−

1
`

(
ψ+Aργ

ρ
µψ−Aν−ψ+Aνγ

ρ
µψ−Aρ−

1
2 gµνψ+Aργ

ρλψ−Aλ

)
. (4.28)

We see that the above tensor is indeed a superconformal extension of the expression (4.17).
This result implies that the super-Schouten tensor Siµ and its superpartner, the con-

formino ψ−Aµ, are not independent sources on ∂M, since they can be expressed in terms
of the supervielbein (Eiµ, ψ+Aµ) and their curvatures.

At the end, let us comment that, at first sight, it looks like we are dealing with
several different expressions for the Schouten tensor. Its definition (4.15) has a geometric
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origin, as explained in subsection 5.1, and it is a component of the d = 3 superconformal
field associated with the conformal boosts. From the point of view of the D = 4 bulk
fields, it comes from the vielbein and the spin-connection combined in the negative grading
quantity with respect to O(1, 1) ⊂ SO(2, 4) dilations. The vanishing supertorsion condition
leads to the R-independent kinematic relation between the super-Schouten tensor (4.22)
and S(µν) in the superconformal case. In contrast, the asymptotically AdS condition and
the vanishing supercuvatures on the boundary (4.26) lead to the R-dependent Schouten
tensor (4.28). Matching these two formulas expresses S(µν) in terms of the boundary
curvature Rµν plus the fermion bilinears, that has to be fulfilled on-shell. In pure AdS
gravity, for instance, it comes down to the known relation Sµν = 2

`2 Sµν = Rµν − 1
4 gµνR

obtained by solving the Einstein equations near the boundary. Thus, two equations have
different origin, but they have to be consistent on-shell.

On the other hand, the definition of the Schouten tensor (4.16) is the one usually found
in the literature [54], obtained from the conformal constraint equation. The superconformal
version of this constraint leads to the super-Schouten tensor (4.28) found in our case,
together with its superpartner (4.27).

Rheonomic parametrizations. The transformation laws (3.15) depend explicitly on
the contractions of the supercurvature. A proper way to account for all contributions
requires to know the near-boundary behaviour of the rheonomic parametrizations that
appear in eqs. (3.15).

The simplest way to proceed is to project the expressions (3.14) for the rheonomic para-
metrization of the supercurvatures on the spacetime manifold and identify their asymptotic
behaviour with the one of the spacetime projections of the supercurvatures (3.7). One can
start from the U(1) field strength, whose parametrization in (3.14) in the case at hand takes
value on the 2-vielbein component only. One then proceeds to find ρ̃Aab from the curvature
of the gravitino, which can be further used to compute Θab

A|c and R̃
ab
cd in the last of (3.14).

Following this procedure, we determine the asymptotic behaviour of all the superco-
variant field strengths, whose derivation is fully carried out in appendix C. The asymptotic
expansion of F̃ab and ρ̃Aab leads to

F̃ij = O(z3) , F̃i3 = − 1
2`

(
z

`

)2
A(1)µE

µ
i +O(z3) ,

ρ̃Aij+ = O(z5/2) , ρ̃Ai3+ = − 1
2`

(
z

`

) 3
2
Eµi ζ

A
µ+ +O(z5/2) ,

ρ̃Aij− = O(z5/2) , ρ̃Ai3− = O(z5/2) .

(4.29)

In order to find a radial power expansion of R̃abcd, one needs the Θab
A|c coefficients, which are

found by inserting (4.29) into the definition (C.5), as shown in appendix C. After lengthy
but straightforward calculation, one obtains

R̃i3jk = i
2`

(
z

`

)2
Eµ[jE

ν
k]ψ

A
µ+

(
γiζAν+ + γlζAρ+ElνE

iρ
)

+O(z3) ,

R̃ijk3 = − 1
2`

(
z

`

)2
Eµk

(
ωij(1)µ − iψAµ+γ

[iEj]νζAν+

)
+O(z3) ,

R̃i3j3 = O(z3) , R̃ijkl = O(z3) . (4.30)
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It is worthwhile noticing that all expansions (4.29) and (4.30) are subleading in z and,
when they are slower than O(z3), this is due to the presence of ωij(1)µ and ζAµ+. We will
show below that the higher-order residual symmetries can be used to cancel out such linear
terms, similarly as in pure AdS gravity.

Residual symmetries. We look for the residual symmetries of the form (3.15) that leave
the gauge fixing unaltered on the boundary,

δV a
z = 0 , δω̂ijz = O(z) , δω̂i3z = O(z2) , δÂz = 0 , δΨ±Az = 0 . (4.31)

The non-dynamic fields in (4.11) are functions of the boundary coordinates through wi,
wij , ϕ+Az and Âz. In (4.31), we assume that Âz(x) and Ψ±Az(x) do not change under
general coordinate transformations, even though they depend on xµ. We will show that
this assumption will not break the boundary symmetries, but only modify subleading pa-
rameters. On the other hand, the functions wi(x) and wij(x) change under the coordinate
transformations because, on-shell, they have to satisfy the supertorsion constraint. In
fact, it would have been more natural to allow all xµ-dependent quantities to transform
non-trivially under boundary coordinate transformations, but we do not account it for
simplicity. Allowing the fields Âz and Ψ+Az to transform might be related to the uncon-
ventional supersymmetry on the boundary discussed in [28, 29], where a spinor χ(xµ) arises
from the gauge fixing of the gravitini [31].

The corresponding parameters can be expanded as in eq. (4.8), where we keep the
same notation for the leading orders of the bosonic parameters as in (2.46),

pi = `

z
ξi + z

`
pi(1) + z2

`2
pi(2) +O(z3),

p3 = −`σ + z

`
p3

(1) + z2

`2
p3

(2) + z3

`3
p3

(3) +O(z4),

jij = θij + z

`
jij(1) + z2

`2
jij(2) + z3

`3
jij(3) +O(z4) ,

ji3 = 1
z
ξi + z

`
ji3(1) + z2

`2
ji3(2) +O(z3) ,

λ̂ = λ+ z

`
λ(1) +O(z2) ,

εA+ =

√
`

z
H+(x, z) =

√
`

z

(
ηA+
0

)
+
√
z

`

(
ηA(1)+

0

)
+O(z3/2) ,

εA− =
√
z

`
H−(x, z) =

√
z

`

(
0
ηA−

)
+
(
z

`

) 3
2
(

0
ηA(1)−

)
+O(z5/2) . (4.32)

In the above expansion, the first subleading Lorentz parameter can be consistently set
to zero,

jij(1) = 0 . (4.33)

As a first step in finding the asymptotic symmetries, we will analyse the linear terms
in the transformation laws. The equation δω̂ijz = 0 from (4.31) leads to a simple expression

∂zj
ij − 1

`
ξµωij(1)µ −

i
`
ξµψ

A
µ+E

ν[iγj]ζAν+ + i
`
ηA+E

ν[iγj]ζAν+ +O(z) = 0 , (4.34)
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which, taken at the leading order, amounts to solving the algebraic equation

ξµωij(1)µ = i
(
ηA+ − ξµψ

A
µ+

)
Eν[iγj]ζAν+ . (4.35)

Since ξi and ηA+ are arbitrary and we also know that ωijµ is the composite field (explicitly
computed in appendix B.1) that does not contain the linear terms, ωij(1)µ = 0, we can choose
a particular solution for ζAµ+ that vanishes, with the result

ωij(1)µ = 0 , ζAµ+ = 0 . (4.36)

This choice has also been made in [6] in N = 1 supergravity. In our case, when N = 2, it
becomes the unique solution both when Ψ−z = 0 and Ψ−z 6= 0 if one imposes the stronger
gauge-fixing condition (B.46) (for more detailed discussion, see eq. (B.44) in appendix B.3).
It is crucial that these fields remain zero after a generic local transformation, namely
δωij(1)µ = 0 and δζAµ+ = 0, as we discuss in the next paragraph.

Another constraint on the parameters arises from the fact that the FG coordinate
frame (2.1) does not admit the finite terms in the expansions of V i

µ and ω̂i3µ . Local invari-
ance preserves this frame only if

0 = δV i
(0)µ = −1

`
Eiµ p

3
(1) ⇒ p3

(1) = 0 . (4.37)

Then, using the expansion of the rheonomic parametrizations given in appendix C, we find
that δω̂i3(0)µ = − 1

`2 E
i
µ p

3
(1) = 0 is satisfied as well.

On the other hand, the invariance of ΨA
±z under (4.31) yields at the leading order

0 = δΨA
+z

order
√

`
z=⇒ 0 = 1

`

(
ηA(1)+ − ξ

µζAµ+

)
, (4.38)

0 = δΨA
−z

order
√

z
`=⇒ 0 = 1

`

(
ηA(1)−−ξ

µζAµ−

)
+ i

4`ε
ABA(1)µγ

µ (ηB+ − ξνψBν+) ,

which can be solved using eq. (4.36) as

ηA(1)+ = 0 , ηA(1)− = ξµζAµ−−
i
4 ε

ABA(1)µγ
µ (ηB+ − ξνψBν+) . (4.39)

In addition, the transformation law of the radial component of the graviphoton implies

0 = δÂz = 1
`
λ(1) −

1
`
A(1)µE

µ
iξ
i +O(z) ⇒ λ(1) = A(1)µξ

µ . (4.40)

Finally, let us require δω̂i3z = 0 and δV i
z = 0 in eqs. (4.31). At the finite order, they

have the form

0 = δV i
(0)z = ` δω̂i3(0)z = ji3(1) + 1

`
pi(1) + wij(0) ξj + i η̄+Aγ

i ψA+z . (4.41)

There are two unknown parameters, namely pi(1) and ji3(1), and only one equation, that
leads to an arbitrary vector Ki(x) in the solution, associated with the special conformal
transformations on ∂M, as we will prove later. The solution for the first order parameters is

pi(1) = `mi + `2

2 Ki ≡ bi, (4.42)

`ji3(1) = `mi − `2

2 Ki ≡ −b̃i ,
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where mi(x) is a function that depends on the gauge fixing,

mi(x) = −1
2
(
wij(0)ξj + i ηA+γiψAz+

)
. (4.43)

At the linear order in z, we get

0 = δV i
(1)z = ji3(2) + 2

`
pi(2) + ni ,

0 = ` δω̂i3(1)z = 2ji3(2) + 1
`
pi(2) + si , (4.44)

where we denoted

ni(x) = wij(1)ξj + i η̄+Aγ
i ζA+z ,

si(x) = −1
`
ξµ(τ − 4τ̃)iµ + i η̄+Aγ

i ζA+z − ξµEνiψ̄+Aµζ
A
−ν − i ξµψ̄+Aµγ

iζA+z

− i
4ξ

µEνiεABψ
A
µ+γ

ρψBν+A(1)ρ + EµiηA+

( i
4εABγ

ρψB+µA(1)ρ + ζA−µ

)
. (4.45)

The function wij(1) can be determined from the vanishing supertorsion equation (B.14) in
appendix B.2,

wij(1) = − 2
`

(τ − τ̃)ij − iEµjψ+Aµγ
i ζA+z . (4.46)

The solution for the second order parameters pi(2) and ji3(2) is unique,

pi(2) = `

3
(
si − 2ni

)
,

`ji3(2) = `

3
(
ni − 2si

)
. (4.47)

In our computations, we will need only the following combination of the parameters,

`ji3(2) − p
i
(2) = `

(
ni − si

)
= −ξµ(τ + 2τ̃)iµ + `ξµEνiψ̄+Aµζ

A
−ν (4.48)

+ i`
4 ξ

µEνiεABψ
A
µ+γ

ρψBν+A(1)ρ − `EµiηA+
( i

4 εABγ
νψB+µA(1)ν + ζA−µ

)
.

After all the above considerations and writing only first few terms, the residual local
parameters can be written as

p3 = −`σ +O(z2) ,

pi = `

z
ξi + z

`
bi + z2

`2
pi(2) +O(z3) ,

ji3 = 1
z
ξi − z

`2
b̃i + z2

`2
ji3(2) +O(z3) ,

jij = θij +O(z2) , (4.49)

λ̂ = λ+ z

`
A(1)µξ

µ +O(z2) ,

εA+ =

√
`

z

(
ηA+
0

)
+O(z1/2) ,

εA− =
√
z

`

(
0
ηA−

)
+O(z3/2) ,
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where the pi(2) and ji3(2) contributions will play a role in cancellation of terms in the next
step, but they will not influence the transformation law of the holographic fields. We also
expect that the conservation laws do not depend on mi because it is a gauge-fixing function.
Without the gravitini, we have bi = b̃i = `2

2 K
i, wij = 0, and the result coincides with the

pure AdS case (2.46).
Therefore, the independent residual parameters in N = 2 AdS4 supergravity are

σ(x), ξi(x), θij(x) , λ(x) , ηA±(x)

and they are associated, respectively, with the dilatations, diffeomorphisms, Lorentz,
Abelian, and supersymmetry transformations in the holographically dual theory.

The parameters bi and b̃i have not been taken into account because bi − b̃i = 2`mi

is non-physical and bi + b̃i = `2Ki is not independent due to the last condition (2.8). Its
invariance implies

0 = δV 3
µ = −`∂µσ − `EiµKi + `ξiSiµ + ηA+ψ−Aµ − ηA−ψ+Aµ +O(z) . (4.50)

The finite part of the above equation can be solved in Ki = (bi + b̃i)/`2 as

Ki = 1
`
Eµi

(
−`∂µσ + `ξj Sjµ + ηA+ψ

A
−µ − ηA−ψA+µ

)
, (4.51)

confirming that it is not an independent local parameter. This analysis completes the
radial expansion of the asymptotic parameters up to the relevant order.

Transformation law of the holographic fields. It remains to determine the trans-
formation law of the boundary fields. This is fundamental for their identification with the
sources in the boundary CFT.

The bulk fields (4.14) can be cast in the form

V i
µ = `

z
Eiµ + z

`
Siµ + z2

`2
τ iµ +O(z3) ,

ω̂i3µ = 1
z
Eiµ −

z

`2
S̃iµ −

2z2

`3
τ̃ iµ +O(z3) ,

ω̂ijµ = ωijµ + z2

`2
ωij(2)µ +O(z3) ,

Âµ = Aµ + z

`
A(1)µ + z2

`2
A(2)µ +O(z3) , (4.52)

ΨA
µ+ =

√
`

z

[(
ψAµ+

0

)
+ z2

`2

(
ΠA
µ+
0

)
+O(z3)

]
,

ΨA
µ− =

√
z

`

[(
0
ψAµ−

)
+ z

`

(
0
ζAµ−

)
+O(z2)

]
.

Directly from (3.15) and writing the boundary 1-forms in the basis (4.52) on ∂M, we
find for the transformation law of the bosonic fields

δEi = Dξi + σEi − θijEj + i ηA+γiψ+A ,

δωij = Dθij + 2ξ[iSj] + 2K [iEj] + 1
`
ηA+γ

ijψ−A + 1
`
ηA−γ

ijψ+A ,

δA = dλ+ 2εAB ηA+ψB− + 2εAB ηA−ψB+ , (4.53)
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and for the gravitino

δψ+A = DηA+ + i
`
EiγiηA− −

i
`
ξiγiψ−A + 1

2 σψ+A

− 1
4 θ

ijγijϕA+ + 1
2` λεAB ψ

B
+ −

1
2` A εABη

B
+ . (4.54)

The super-Schouten tensor and its superpartner conformino are the composite fields that
appear at the subleading order of eqs. (3.15), and they transform as

δSi = DKi − σSi − θijSj + 2i
`2
ηA−Γiψ−A + E i ,

δψ−A = DηA− + i`
2 S

iγiηA+ −
i`
2 K

iγiψ+A −
1
2 σψ−A

− 1
4 θ

ijγijϕ−A + 1
2` λεABψ

B
− −

1
2` AεABη

B
− + ΣA . (4.55)

Eqs. (4.53)–(4.55), together with the transformation law of B ≡ V 3
µdxµ given by eq. (4.50),

define the full set of N = 2 superconformal transformations of the boundary 1-forms Ei,
B, Si, ωij , A, ψ±A. The ` factors ensure dimensional consistency of the equations with
[V i

µ] = L0, [Siµ] = L−2, [ψA±µ] = L−1/2, [ξµ] = [ξi] = L and [η] = L1/2.
Similarly as the Cotton tensor appear in the transformation law of the pure AdS gravity

arising from the Lie derivative, as discussed at the end of section 2, here we have the tensor
E i = E iµ dxµ that comes from the linear in z terms15 and the spinor ΣA = ΣA

µ dxµ appearing
at the order z1/2,

E iµ = 2
`
R̃i3(3)jkξ

kEjµ + 1
`

Θi3
(5/2)−A|j

(
ηA+E

j
µ − ψA+µξj

)
,

ΣA
µ = 2Eν[iE

λ
j]

(
∇νψAλ− + i`

2 S
k
νγkψ

A
λ+

)
ξiEjµ . (4.56)

To explicitly relate them to the Cotton tensor, we recall that in pure gravity, geometri-
cally, the linear term of R̂i3µν is related to the Cotton tensor through eq. (2.26). Thus, the
N = 2 supersymmetric extension of the Cotton tensor (Ciµν) and its superpartner, the Cot-
tino (ΩA

µν), are the first subleading terms in the corresponding supercurvature expansions,
defined by

R̂i3
µν = −z Ciµν +O(z2) ,

ρ̂A−µν =
√
z

`

(
0

ΩA
µν

)
+O(z3/2) , (4.57)

giving rise, by means of (3.8), to the expressions

Ciµν = 2D[µSiν] −
2i
`2
ψ
A
−[µγ

iψ−A|ν] , (4.58)

ΩA
µν = 2∇[µψ

A
−ν] − i` γiψA+[µS

i
ν] . (4.59)

15In our conventions, the z-expansion coefficients of the 4-spinor-tensor Θab|c
A are written as the bispinor-

tensors Θab|c
(n)±A. Similarly, the 4-spinors ρ̃abA have the bispinor coefficients ρ̃ab(n)±A.
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An easy way to connect the above quantities to the additional terms in the transformation
law of the super-Schouten tensor and the conformino is using the rheonomic parametriza-
tions of the supercurvatures R̂i3

µν and ρ̂A−µ ν given by the last two equations in (3.14), related
but not equal to R̃i3jkV j

µV
k
ν and ρ̃A−ijV i

µV
j
ν , as discussed in section 3. Taking all the terms

into account, the super-Cotton tensor and the Cottino are evaluated as

−` Ciµν = R̂i3
(1)µν = 2R̃i3(3)jkE

j
µE

k
ν − 2ψ+A[µE

j
ν]Θ

i3
(5/2)−A|j , (4.60)

ΩA
µν = ρ̂A(1/2)−µ ν = 2ρ̃A(5/2)−ijE

i
µE

j
ν = 4Θi3

(5/2)−A|jEi[µE
j
ν] .

The last step makes use of the explicit expressions of appendix C to decompose the spinor-
tensor coefficient Θi3|j

(5/2)−A into its symmetric part, −2iγ(iρ̃
j)3
(5/2)A+ and the antisymmetric

part 1
2 ΩAij . As a result, the additional terms in the transformation law (4.55) are rec-

ognized as the contractions of the super-Cotton tensor and Cottino with respect to the
boundary superdiffeomorphism parameters ξi and ηA+,

ΣA = iξΩA ,

E i = iξCi + 1
`

(
ηA+ − ψ+Aνξ

ν
)

Θi3
(5/2)−A|j E

j . (4.61)

Finally, we obtain an expected result for δSi and δψ−A. The contribution of the symmetric
part of the spinor-tensor Θi3|j

(5/2)−A is non-physical, as it depends on the gauge-fixing func-
tions ψ+zA and A(1)z. We can, in principle, further gauge fix the higher-order parameters
such that ρ̃i3(5/2)A+ vanishes as a consequence of ρ̂A(1/2)µz+ = 0. However, the result does not
have observable consequences near the boundary, thus we will not proceed in this direction.

Notice that not all contractions of the OSp(2|4) supercurvatures have appeared in
the transformation laws (4.53)–(4.55) of the N = 2 superconformal algebra osp(2, 4), but
only the ones that have origin in the negative grading supercurvatures. This is because,
after imposing eqs. (3.23), all the OSp(2|4) supercurvatures vanish on ∂M, except two,
namely R̂i3

µν and ρ̂A−µ ν . Indeed, the conditions (3.23) lead to the weaker condition on two
supercurvatures,

εijk Ci[µνE
k
ρ] + 2ψ+A[µγjΩAνρ] = 0 , (4.62)

which implies in particular γ[µΩA
νρ] = 0 and, consequently, γνΩA

νρ = 0.
As a matter of fact, non-trivial Ci and ΩA on ∂M mean that a holographic SCFT is not

invariant under local OSp(2|4) transformations, for the same reason as SO(2, 3) is not a local
symmetry of the bulk gravity — namely, they are only general coordinate transformations
rewritten in a gauge-covariant form. This explains an origin of the contractions of the
supercurvatures in transformation laws and structure functions in the algebra, as also
pointed out in [21] in the bosonic case.

In the gauge V 3
µ = 0, the boundary supersymmetry reduces to super-Weyl transforma-

tions. In the spirit of the analysis in [55, 56], such transformations can be obtained from
gauging the N = 2 superconformal algebra osp(2|4) within N = 2 superspace in three
dimensions, whose supervielbein is given by (Ei, ψ+A).

Indeed, if we restrict the set of fields to Eiµ, ψ+Aµ, ωijµ , Aµ and the parameters to
ξi, η+A, θij , λ, we see that Eiµ transforms as a boundary vielbein, ωijµ as a boundary
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spin-connection, and ψ+Aµ as a boundary gravitino, charged with respect to the SO(2)
R-symmetry connection Aµ. Correspondingly, the parameters ξi, η+A, θij , and λ are asso-
ciated with boundary diffeomorphisms, supersymmetry, Lorentz, and SO(2) gauge trans-
formations, respectively.

On the other hand, the boundary function σ, with respect to which all the above fields
have definite weight (1 for Eiµ, 1/2 for ψ+Aµ, and 0 for ωijµ an Aµ), is identified with
the local parameter associated with Weyl dilatations because it produces rescaling of the
vielbein and therefore of the metric.

In the same fashion, the superconformal transformation is characterized by the local
parameter η−A, with the corresponding gauge field ψA−. The parameter Ki, although not
independent within the gauge choice V 3

µ = 0, corresponds to special conformal transfor-
mations, whose associated gauge connection is the super-Schouten tensor.

Consistency of the subleading gauge fixings. On top of the previous analysis of
the asymptotic parameters, it remains to look for potential inconsistencies in having some
linear terms vanishing, in particular V 3

(1)µ = ωij(1)µ = ζAµ+ = 0. Using the transformation
law of the gauge fields, it is straightforward to find

δV 3
(1)µ = 2

`
ξν(τ + 2τ̃)[νµ] + 2ξνψA+[νζµ]−A = 0 ,

δζAµ+ = − i
`
γiζ

A
−µξ

i − 1
2` ψ

A
µ+p

3
(1) + 2ρ̃A(5/2)+ijξ

iEjµ −
1
4` ξ

ρA(1)ρε
ABψBµ+ , (4.63)

+ i
4` γ

iψB+µεijkA(1)ρE
ρkξj +

λ(1)
2` εABψB+µ + i

`
γiη

A
(1)−E

i
µ −

1
2` A(1)µε

ABηB+

+ 1
4` A(1)µε

ABηB+ −
i

4` ε
ABεijkγ

iηB+E
j
µA(1)ρE

ρk = 0 ,

where the first condition holds by virtue of eq. (4.25) and the second one follows from
plugging in the expressions of ρ̃Aij , λ(1) and ηA(1)−, and by using p3

(1) = 0. Finally, a variation
of (B.12) enables to solve

δωij(1)µ = iEνiEλjEkµ δζ
A
+[νγ

kψAλ]+ − 2iEν[iδζ+A[µγ
j]ψAν]+ , (4.64)

finding that δζAµ+ = 0 implies also δωij(1)µ = 0.

5 Superconformal currents in the holographic quantum theory

In the previous section we showed that the asymptotic symmetries of pure N = 2 AdS4 su-
pergravity are given by the three-dimensional superconformal transformations. According
to the AdS/CFT correspondence, these are also asymptotic symmetries of an underlying
superconformal field theory (SCFT).

The superconformal group on a three-dimensional manifold contains Lorentz transfor-
mations (with the local parameter θij), coordinate transformations (ξi), dilatations (σ),
special conformal transformations (Ki), supersymmetry trasformations (ηA+), special su-
perconformal transformations (ηA−) and the R-symmetry (λ). Within a gauge theory, the
corresponding gauge fields are the spin connection ωijµ , the vielbein Eiµ, the dilatation
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Transformation Local parameter Source Current
Lorentz θij ωijµ Jµij = 0

Translation ξi Eiµ Jµi

Dilatation σ Bµ = 0 Jµ(D) = 0
Special conformal Ki Siµ Jµ(K)i = 0

Abelian R-symmetry λ Aµ Jµ

Supersymmetry ηA+ ψA+µ JµA+

Superconformal ηA− ψA−µ JµA− = 0

Table 1. Summary of the notation for local parameters, sources and conserved currents corre-
sponding to superconformal transformations.

gauge field Bµ, the super-Schouten tensor Siµ, the gravitino ψA+µ, the conformino ψA−µ and
the graviphoton Aµ.

It is useful to present this superconformal structure of the three-dimensional boundary
by listing all the transformations, associated local parameters and gauge fields (sources in
SCFT), and the conserved currents (quantum operators in SCFT) in table 1.

When all sources are independent, the currents are also independent. When one im-
poses the constraints over supercurvatures with a purpose to eliminate non-physical de-
grees of freedom, some parameters result to be realized non-linearly and the corresponding
sources become composite fields, with the associated currents vanishing.

In supergravity, the spin connection is a composite field determined by a constraint
on the translation curvature (supertorsion). The gauge field of special conformal trans-
formations (super-Schouten tensor) and its supersymmetric partner (conformino) are also
composite, obtained from the constraint on the conformal supercurvatures, equations (4.27)
and (4.28). Our particular gauge fixing Bµ = V 3

µ = 0 eliminates the dilatation gauge field
and the corresponding dilatation current. The inclusion of Bµ has been discussed in pure
AdS gravity in [21].

Before moving on to the explicit analysis of quantum symmetries in a three-dimensional
field theory holographically dual to N = 2 AdS4 supergravity, let us first understand more
precisely its superalgebra structure.

5.1 d = 3 superconformal algebra

The superisometry group OSp(2|4) of the vacuum of the bulk theory is encoded in the
definition of its curvatures R̂Λ = {R̂ab, R̂a, ρ̂A, F̂},

R̂Λ ≡ dµΛ + 1
2 CΣΓ

Λ µΣ ∧ µΓ , (5.1)

where CΣΓ
Λ are the osp(2|4) structure constants and µΛ = {ω̂ab, V a, ΨA, Â} the Cartan

1-forms. Asymptotic expansions of the supercurvatures R̂Λ are given in appendix B.2.
Moreover, osp(2|4) also describes the superconformal structure of the boundary. This
is made manifest by decomposing the Cartan 1-forms in irreducible representations with
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respect to the SO(1,1)×SO(2,1) subgroup of OSp(2|4), where SO(2,1) is the (connected
component of) the Lorentz group at the boundary and SO(1,1) is the isometry group
which acts as a rescaling on the coordinate z in the FG parametrization: z → eσz. This
decomposition requires splitting the index a into (i, 3), where i = 0, 1, 2. Moreover, V i and
ω̂i3 naturally combine into V i

± introduced in eq. (4.5), which have definite scalings with
respect to the SO(1, 1) group. Finally, since the spinorial representation of the generator
T0 of the SO(1, 1) group is

(T0)αβ = − i
2 (Γ3)αβ , (5.2)

the four-dimensional gravitini naturally split into Ψ±A with definite radial chirality. In
terms of the SO(1, 1)× SO(2, 1) irreducible forms ω̂ij , V i

+, V
i
−, V

3, A, ΨA
±, where we recall

the expressions (4.5), the bulk supercurvatures [30] given by eq. (3.8) become

R̂ij = R̂ij + 4
`2
V

[i
+ ∧ V

j]
− −

1
`

ΨA
+ ∧ ΓijΨA− ,

R̂i
± = D̂V i

± ∓
1
`
V i
± ∧ V 3 ∓ i

2 ΨA
± ∧ ΓiΨA± ,

R̂3 = dV 3 + 2
`
V i

+ ∧ V−i + ΨA
− ∧ΨA+ , (5.3)

F̂ = dÂ− 2εAB ΨA
+ ∧ΨB

− ,

ρ̂A = D̂ΨA
± ±

i
`
V i
± ∧ ΓiΨA

∓ ±
1
2` V

3 ∧ΨA
± −

1
2` εABÂ ∧ΨB

± .

The right-hand sides of the above equations encode the algebraic structure of the supercon-
formal algebra in d = 3, where V 3 is the 1-form associated with the Weyl transformations,
V i

+ the ones associated with the spacetime translations, V i
− with the conformal boosts, ΨA

+
with the supersymmetries, ΨA

− with the superconformal transformations [57, 58]. The con-
nection components ω̂ij correspond to the Lorentz algebra at the boundary. The precise
connection to the Cartan 1-forms of the superconformal algebra in d = 3 is that the leading
order 1-form in the z-expansion of the above bulk quantities are identified with the Cartan
1-forms dual to the corresponding superconformal generators. Let us summarize below the
correspondence between the D = 4 gauge field and d = 3 superconformal field:

ω̂ij → ωij Lorentz symmetry ,
V 3 → B Weyl symmetry ,
V i

+ → Ei spacetime translations ,
V i
− → Si conformal boosts ,

ΨA
+ → ψA+ supersymmetry ,

ΨA
− → ψA− superconformal symmetry ,
Â→ A SO(2) R-symmetry .

This can also be understood as the boundary conditions set imposed on the bulk fields in
an asymptotically AdS space.

Let us make this connection more precise. To this end, we perform the redefini-
tions (4.1) and (4.6) and define the gauge vector associated with the Weyl rescalings
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as follows,
B = 1

`

(
V 3 − `dz

z

)
= Bµ(x) dxµ . (5.4)

Note that, in order for B to be non-vanishing, we have to generalize the FG parametriza-
tion (2.1) to allow for a non-trivial component V 3

µ for the vielbein. After rescaling the
various fields by z/` factors according to their O(1, 1) grading, the dz/z term in V 3, within
the definitions of the curvature/field strengths, cancel. Next we recall the relation between
the d = 3 super-Schouten tensor and Ei− given by the second of eqs. (4.7),

Si = − 2
`2

Ei−

∣∣∣
z=0

. (5.5)

Rescaling the field strengths associated with Ψ± and V i
±, in eqs. (5.3), correspondingly, we

can evaluate the right-hand side at z = 0, dz = 0 and find the following supercurvatures
in the dual field theory (see appendix B.2),

Rij = Rij − 2E[i ∧ Sj] − 1
`
ψ
A
+ ∧ γijψA− ,

Ri
+ = DEi +B ∧ Ei − i

2 ψ
A
+ ∧ γiψA+ ,

Ci ≡ − 2
`2

Ri
− = DSi −B ∧ Si − i

`2
ψ
A
− ∧ γiψA− ,

R = dB − Ei ∧ Si + 1
`
ψ
A
− ∧ ψA+ ,

F = dA− 2εAB ψA+ ∧ ψB− , (5.6)

ρA+ = DψA+ + 1
2 B ∧ ψ

A
+ + i

`
Ei ∧ γiψA− −

1
2` εABA ∧ ψ

B
+ ,

ΩA ≡ ρA− = DψA− −
1
2 B ∧ ψ

A
− + i`

2 S
i ∧ γiψA+ −

1
2` εABA ∧ ψ

B
− ,

where D is the Lorentz-covariant derivative. Each D always appears in the combination
D + ∆B of the Weyl-covariant derivative, as naturally expected from a theory with local
Weyl symmetry. The Weyl weight ∆ of the corresponding field is equal to its scaling
dimension, namely ∆(Ei±) = ±1, ∆(ψA±) = ±1

2 , ∆(Si) = −1 and ∆(ωij) = ∆(A) =
∆(B) = 0. This feature can be used to reconstruct the B-terms in the transformations
laws (4.53)–(4.55), similarly as it was done in the pure AdS gravity case given by eqs. (2.58).

Note that, for B = 0, the third and the last of eqs. (5.6) yield the definitions of Ci and
ΩA in eqs. (4.58) and (4.59), respectively.

Finally, let us recall once again that, while the boundary theory possesses global
OSp(2|4) isometry, it is not also locally OSp(2|4) invariant, but the transformation law of
the gauge fields is put in an OSp(2|4)-covariant form thanks to the superdiffeomorphisms
written in a suitable way through a field-dependent gauge transformation.

5.2 Superconformal currents

To explore the quantum symmetries in a SCFT dual to supergravity with ΨA
z− = 0, we ap-

ply the AdS/CFT correspondence summarized in section 1 to the case when the boundary

– 42 –



J
H
E
P
0
2
(
2
0
2
1
)
1
4
1

fields are J Λ(x) = {Eiµ(x), ωijµ (x), ψ+Aµ(x), Aµ(x)}. They become sources for the cor-
responding operators in the dual SCFT. Generalizing eq. (2.52) to the supergravity case,
the bulk action in the classical supergravity approximation is identified with the effective
action of the dual boundary theory as

Ion-shell[Ei, ωij , ψA+, A] = W [Ei, ωij , ψA+, A] = −i ln(Z[Ei, ωij , ψA+, A]) . (5.7)

The sources J Λ couple to the operators in quantum field theory JµΛ = {Jµi, J
µ
ij , J

µ
A+, Jµ},

which are the energy-momentum tensor, spin current, supercurrent, and U(1)-current,
respectively. The latter are identified with the 1-point functions of the Noether currents in
the presence of arbitrary sources, associated with the residual symmetries of the boundary
action, see section 1 and the above table. However, we shall refrain from writing explicitly
the symbol 〈· · · 〉CFT. We will also express the currents in terms of their Hodge-dual 2-forms
in the boundary theory, to be denoted by the same symbol, as defined by eq. (2.54).

The explicit expression of these currents is inferred from the variation of the effective
action with respect to the sources (eq. (2.53) generalized to supergravity),

δW =
∫
∂M

δJ Λ ∧ JΛ =
∫
∂M

(
δEi ∧ Ji + 1

2 δω
ij ∧ Jij + JA+ ∧ δψA+ + J ∧ δA

)
. (5.8)

Invariance of the boundary effective action with respect to the residual symmetries of the
boundary theory implies conservation laws to be satisfied by the currents. As we shall
prove, they are satisfied by virtue of the “constraint” equations of motion in the bulk.
Namely, in the radial foliation of spacetime, the bulk equations of motion are divided into
the ones describing the radial “evolution” (that were used to determine radial expansions
of the bulk fields) and the “constraints”, which do not contain radial derivatives ∂z and
that should give rise to conservation laws in the holographic QFT.

In the following, we shall first derive the expressions of the currents and the corre-
sponding conservation laws. Eventually, using the bulk equations of motion, we shall show
that these conditions are indeed satisfied at the quantum level and they represent the Ward
identities in the SCFT.

SCFT currents. In this derivation it is somewhat convenient to retain, in the compu-
tation of δW , a four-dimensional notation, writing it in terms of the bulk fields and their
curvatures, keeping in mind that, in the boundary integral, they are meant to be func-
tions of the corresponding boundary values through the supergravity solution. So when we
write δω̂ab, δΨA, δÂ, we mean the variations of the bulk fields in a supergravity solution,
originating from a variation of the corresponding boundary conditions. Using the compact
form (3.9) of the full supergravity action and using the field equations, we find

δW = δIon−shell =
∫
∂M

(
−`

2

4 δω̂abR̂cdεabcd − 2i`δΨAΓ5ρ̂A + 1
2 δÂ

∗F̂

) ∣∣∣∣on-shell

z=dz=0
, (5.9)

where we have explicitly indicated that the quantities in the integral are to be computed
on the boundary ∂M, namely at z = dz = 0. Using the boundary expansion of the four-
dimensional fields in (4.52), we can write the above variation in the form (5.8) (recall that
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we have set ω(1) and ζA+ to zero) and read off the explicit form of the external current
2-forms on ∂M,

Ji = 1
2 εijk

[2
`
Ej∧(τk + 2τ̃k) + ψ

A
+∧γjkζA−

]
,

Jij = 0 ,

J = 1
2 εijk F̃

i3 V j∧V k

∣∣∣∣
z=0

,

JA+ = −2 iEi∧γiζA− +A(1) ∧ εAB ψB+ , (5.10)

where F̃ab are the components of the supercovariant field strength associated with the
graviphoton, see eq. (3.14). The current associated with the Lorentz transformation (Jij)
is zero because it corresponds to the field that is composite (ωijµ ), but it has been treated
as independent in first order formulation of gravity. The other composite fields (Siµ and
ψA−µ) have not been taken into account as sources.

From the above expressions for the conserved current 2-forms, JΛ, we can obtain the
Noether currents JµΛ as the Hodge-dual 3-vectors ∗JΛ = JΛµ dxµ defined by eq. (2.54). The
non-vanishing currents are

Jµi = −1
`

(
(τµi + 2τ̃µi)− E

µ
i(τ

k
k + 2τ̃kk)

)
+ i
e3
εµνρ ψ̄A+νγiζA−ρ ,

JµA+ = − 2i
e3
εµνργνζA−ρ + 1

e3
εµνρA(1)νεAB ψ

B
+ρ ,

Jµ = −gµν(0) F̃νz = 1
2` g

µν
(0)A(1)ν , (5.11)

where in the first equation the traces τkk, τ̃kk are defined using the vielbein tensor (e.g.
τkk ≡ τkµE

µ
k). In the last equation we have used the fact that the contribution of Az to

F̃µz is subleading in z, while the fermion bilinears do not contribute at z = 0 having set
ϕ−Az = 0.

In particular, the holographic stress tensor is Jµν = JµiE
i
ν . Recall that, in the CFTd

dual to pure AdSd+1 gravity, this tensor is proportional to the (symmetric) metric coefficient
g(d)µν ∝ τµν whose trace is zero. Indeed, the above result in pure gravity with the traceless
τµi = τ̃µi reduces to Jpure GR

µν = −3
` τµν . In the SCFT3, the relevant bosonic coefficient is

τµν + 2τ̃µν and generally it is not symmetric any longer because of τ̃µν . Furthermore, the
trace of τµν + 2τ̃µν is not necessarily zero — it has to be computed from the conservation
law of the local Weyl symmetry.

In supergravity, the holographic stress tensor contains the fermionic contribution.
Which particular fermionic coefficient becomes holographic can be determined by simple
power counting in the variation of the action. Since the on-shell action is always a bound-
ary term, the Jacobian e given by (2.13) expressed in terms of the boundary Jacobian e3
has the factor 1/z4, but on the boundary z = const it becomes 1/z3. Thus, the holographic
order — the one that contributes to the holographic current — is always the third order
in z of the variation of the Lagrangian density on-shell on the three-dimensional bound-
ary. For the metric, it means the third coefficient in the expansion (τµν). For fermions,
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it means Ψ(3/2)−µ = ζ−µ. Similarly, the third coefficient on the boundary of the Maxwell
Lagrangian comes from (∂zÂµ)2, implying that the finite part of ∂zÂµ, that is Â(1)µ, enters
the holographic current. In d dimensions, the respective holographic orders are τ iν = Êi(d)ν ,
Ψ(d/2)−µ, and Â((d−1)/2)µ. They are the last terms in the near-boundary power expansion
of the variation of the action which do not vanish when z = 0.

Conservation laws in SCFT. We observe that, in the boundary expansion of the
integrand form in (5.9), the divergent terms vanish by virtue of the conditions (3.23) that,
in components, are given by eqs. (4.26). These conditions therefore guarantee consistency
of the holographic construction. Namely, both the currents and the conservation laws
become finite, confirming that the bulk supergravity has been properly regularized in the
asymptotic region.

Being the leading terms in the boundary expansion of the bulk curvatures zero
by (4.26), from eq. (5.9) it follows that the currents in (5.10) are expressed in terms of
the subleading terms in the same expansions. The reader can check, for instance, that

Jij = −`2 εijk R̂k3
(0) , Ji = − `2 εijk R̂jk

(1) , JA+ = −2` ρ̂(1/2)A+ . (5.12)

Next we seek for the form of conservation laws associated with the residual symmetry
discussed in section 4.2, in case when the quantum effective action is invariant (after that we
will have to check whether the obtained supercurrents indeed satisfy these conservation laws
and since they are quantum, in fact they will give the Ward identities.) The corresponding
transformations are parametrized by ξi, θij , λ, ηA±. This means that δW evaluated on
the corresponding symmetry transformations of the fields must vanish and amounts to the
following conservation laws for the Noether currents which are the generalization of the
pure gravity laws (2.57) (we omit the wedge symbol),

DJi = Sj Jij −
i
`
JA+γiψA− + Ski Jkj Ej −

i`
2 S

j
i J

A
−γjψA+ ,

DJij = 2E[i Jj] −
i
2 J

A
+γijψA+ −

i
2 J

A
−γijψA− ,

0 = ∂µ

[
Eµi

(
Jij E

j − i`
2 J

A
−γiψA+

)]
+ Ei Ji + 1

2 J
A
+ ψA+ −

1
2 J

A
− ψA− ,

dJ = 1
2` εAB

(
JA+ ψB+ + JA− ψB−

)
,

∇JA+ = 1
2` γ

ijψA− Jij + i γi ψA+ Ji −
i`
2 S

i γi JA− + 2 εAB ψB− J + 1
`
ψiA− Jij E

j

− i
2 ψ

i
A− JB−γiψB+ , (5.13)

∇JA− = 1
2` γ

ijψA+ Jij + 2 εAB ψB+ J −
i
`
Ei γi JA+ −

1
`
ψiA+ Jij E

j + i
2 ψ

i
A+ JB−γiψB+ .

We use the boundary vielbein Eiµ and its inverse Eµi to project the boundary spacetime
indices (µ, ν, . . .) to the boundary Lorentz ones (i, j, . . .) and vice versa. Note that the
above conservation laws reduce to those in (2.57) in the pure gravity case, namely in the
absence of the fermionic superpartners and of the U(1) gauge field. This is best seen from
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the pure gravity laws (2.58) when the dilatation gauge field is B = 0 and the conformal
current is J(K)i = 0. Then the dilatation current J(D) is not independent and can be solved
from the last (algebraic) equation in (2.58), leading to the identities `SiJ(D) = S k

i JkjE
j

and `dJ(D) = ∂µ
(
EµiJijE

j
)
. The obtained set of equations matches (5.13) when all spinors

are zero and Sij is symmetric. In addition, it is explicit from (5.13) that the fermions are
sources of the electromagnetic current J .

As a final comment we observe that, in supergravity, invariance of the boundary action
under Weyl transformations is guaranteed by the third of eqs. (5.13) which, taking into
account eqs. (5.10), amounts to the condition

Ei ∧ Ji = −1
2 J

A
+ ∧ ψA+ + 1

2 J
A
− ∧ ψA− = −1

2 J
A
+ ∧ ψA+ . (5.14)

Let us now use the explicit form of the currents, given in eqs. (5.10), to write eq. (5.14)
in components. Using eq. (5.11) we find the trace of the bosonic part of the holographic
stress tensor, namely

(2τ̃ + τ)l l = −i ` εijkψ̄A+jγiζA− k . (5.15)
Using the properties of the gamma matrices, the reader can verify that the above relation
is consistent with eq. (3.34) of [6].

Notice that neither the holographic stress tensor Jµν nor its bosonic part τµν+2τ̃µν have
vanishing trace as in pure gravity. This does not mean that we have the trace anomaly
because the value of the trace J i ∧ Ei, given in (5.14), is fixed by the structure of the
superalgebra. This is consistent with the result in N = 1 supergravity [6]. Furthermore,
the trace anomaly is a local expression even though all currents, in particular τµi , τ̃

µ
i and

Jij are, in general, non-local tensors. Having a quantum anomaly would mean that J i∧Ei
is a different expression than the one given in eq. (5.14).

Similarly, Jµν and τµν + 2τ̃µν are not symmetric: the second conservation law in (5.13)
with Jij = 0 and J− = 0 gives the antisymmetric part as E[i ∧ Jj] = i

4J+γij ∧ ψ+. A
reason is that, with our gauge fixing choice, Jµν is not, as in pure gravity, the traceless
Belinfante-Rosenfeld stress tensor. However, we know that, in principle, it is possible to use
an ambiguity in definitions of Noether currents to construct a so-called ‘improved’ stress
tensor which would be symmetric and traceless.

5.3 The Ward identities

We now prove that the Ward identities are indeed satisfied by using the explicit form of the
currents and showing that δW = 0. We remind the reader that, although all expressions
are evaluated on-shell in the bulk supergravity, they present off-shell identities in CFT
computed on the curved background. We start by integrating (5.9) by parts,

δW =
∫
∂M

[
`2

4 j
abDR̂cdεabcd −

`2

4

( 2
`2
paV b + 1

`
εAΓabΨA

)
R̂cdεabcd + 2i`εAΓ5Dρ̂A

− 2i`
(1

4j
abΨAΓab + i

2`p
aΨAΓa + 1

2`λε
ABΨB −

1
2`Âε

ABεB −
i

2`ε
AΓaV a

)
Γ5ρ̂A

− 1
2 λ d ∗F̂ + εAΨBεAB

∗F̂

]∣∣∣∣∣
on-shell

z=dz=0

. (5.16)
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We now make use of the Bianchi identities (3.11), to obtain

δW =
∫
∂M

[
`

4j
abΨAΓcdρ̂Aεabcd−

`2

4

( 2
`2
paV b+ 1

`
εAΓabΨA

)
R̂cdεabcd

+2i`
( 1

2`Âε
ABεAΓ5ρ̂B−

i
2`ε

AΓ5Γaρ̂AV a+ 1
4R̂

abεAΓ5ΓabΨA−
1
2`ε

ABF̂ εAΓ5ΨB

)
−2i`

(1
4j

abΨAΓab+
i

2`p
aΨAΓa+ 1

2`λε
ABΨB−

1
2`Âε

ABεB−
i

2`ε
AΓaV a

)
Γ5ρ̂A

− 1
2λ d∗F̂+εAΨBεAB

∗F̂

]∣∣∣∣∣
on-shell

z=dz=0

. (5.17)

We are now able to write the Ward identities, in the four-dimensional notation, which
have to hold on-shell. They originate from requiring the vanishing of the coefficient of
the independent symmetry parameters in δW . Let us denote the independent asymptotic
parameters by Λ(x) =

{
θij , ξi, σ, ηA±, λ

}
, computed in Subection 4.2 as the radial expansion

of the bulk parameters Λ̂(x, z) = {jab, pa, εA±, λ̂}. Since in the quantum effective action all
divergences cancel out and the subleading terms vanish on the boundary, we can identify
the bulk gauge transformations with the boundary ones,

δW ≡ δΛW = δΛ̂W
∣∣∣on-shell

z=dz=0
. (5.18)

This method makes use of the fact that the quantum effective action has already been
renormalized and enables to prove the invariance of the action (and therefore the validity
of the Ward identities) by looking directly at the bulk parameters Λ̂.

Lorentz transformations. We can easily verify that the coefficient of the four-
dimensional Lorentz parameters jab vanishes identically due to the identity (A.6) for four-
dimensional gamma matrices whose properties are given in appendix A.2,

`

4 j
abΨAΓcdρ̂A εabcd −

i`
2 j

abΨAΓabΓ5ρ̂A = 0 . (5.19)

Translations. As for the terms containing pa one finds, up to terms which vanish in the
z → 0 limit,

−1
2 p

aV bR̂cdεabcd + paΨAΓaΓ5ρ̂A . (5.20)

The above expression vanishes at the boundary by effect of the Einstein equations in the
bulk (see the second of eqs. (3.16)),

−1
2 p

aV bR̂cdεabcd + paΨAΓaΓ5ρ̂A = 1
2 p

aεabcdV
b
(
F̂ cdF̂ − 1

6 F̂ef F̂
efV cV d

)
, (5.21)

since the two terms on the right-hand side are zero at z = 0.
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Supersymmetry. The terms involving the parameter εA are given by

iÂεABεAΓ5ρ̂B + εAΓ5Γaρ̂AV a + i`
2 R̂

abεAΓ5Γabρ̂A − iεABF̂ εAΓ5ΨB

− `

4ε
AΓabΨAR̂

cdεabcd + iÂεABεBΓ5ρ̂A − εAΓaΓ5ρ̂AV
a + εAΨBεAB

∗F̂

= εA(−2ΓaV aΓ5ρ̂A + εABΨB ∗F̂ − iεABF̂Γ5ΨB) . (5.22)

They vanish as a consequence of the equations of motion of the gravitini (3.16).

Abelian transformations. Finally, we evaluate the terms depending on λ̂ and find

λ̂

(
−1

2 d∗F̂ − iεABΨBΓ5ρ̂A

)
, (5.23)

which vanishes by virtue of the gauge field equation of motion in (3.16).
This proves that, on-shell, δW = 0, namely that the equations (5.13), which were

derived from δW = 0 in the three-dimensional notation, are indeed satisfied. This can be
seen as a consequence of the absence of any anomaly, in particular conformal anomaly, in
d = 3. Note that the term in (5.21) which is proportional to p3 and which, as we have
shown above, vanishes once the a = 3 component of the Einstein equations in the bulk (the
second of eqs. (3.16)) is implemented, coincides, once integrated over the boundary, with
the variation of the generating functional under a dilatation, being p3 = −`σ at z = 0. Its
vanishing provides the trace Ward identity (5.14).

The above explicit proof can also be seen as following from the general form of the field
equations (3.19) derived from the N = 2 bulk Lagrangian (3.9), which is of MacDowell-
Mansouri type. Indeed, being the currents identified with subleading terms in the boundary
expansions of the curvatures, see eq. (5.12), one can view the Ward identities as following
from eq. (3.19), computed at the boundary.

Note that, in the above derivation, we have neglected the curvature-contraction terms
occurring in the general expression of the symmetry variations of the fields (3.15),16 which
one can check to give vanishing contributions at the boundary.

6 Discussion

In the present paper we have developed in detail the holographic framework for an N = 2
pure AdS4 supergravity in the first order formalism, including all the contributions in
the fermionic fields. This analysis, which generalizes the one of [6, 7], includes a general
discussion of the gauge-fixing conditions on the bulk fields which yield the asymptotic
symmetries at the boundary. The corresponding currents of the boundary theory are
constructed and shown to satisfy the associated Ward identities, once the field equations
of the bulk theory are imposed.

16These are the terms in the symmetry transformation of the fields which, according to the general
formula given in footnote 7, are expressed in terms of the superspace components of the curvatures along
the anholomic basis (V a,ΨA), whose expressions can be found in eqs. (3.14).
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Consistency of the holographic setup, in particular the finiteness of the quantum gener-
ating functional of the boundary theory, is shown to require the vanishing of the super-AdS
curvatures computed at the boundary, which was proven in [27] to be a necessary condi-
tion for a consistent definition of the bulk supergravity. In particular, the vanishing of
R̂ij |∂M determines the general expression of the super-Schouten tensor Si of the bound-
ary theory, which generalizes the more familiar bosonic expression of standard gravity by
the inclusion of gravitini bilinears, see eq. (4.28). The same applies to the superpartner
of Si, namely the conformino. Working in the first order formalism, we are able to keep
the full superconformal structure of the theory manifest in principle, even if only a part
of it is realized as a symmetry of the theory on ∂M, as the rest appears as a non-linear
realization on ∂M. Furthermore, an important role in our analysis is played by the su-
pertorsion constraint R̂a = 0, where R̂a was defined in eq. (3.8), which determines the
bulk spin connection. In particular, the radial component, R̂3 = 0, of this condition poses
general constraints on the sources of the boundary CFT. In the FG parametrization of the
bulk background, that condition implies a non-vanishing antisymmetric component of the
super-Schouten tensor, proportional to the gravitini bilinear ψA+[µψA−ν], see eq. (4.23).
This shows that in general the superconformal structure and the conformino field ψA−µ
pose an obstruction to the symmetrization of Sµν . For a special choice of background, for
which ψA−µ ∝ ψA+µ, ψA+[µψA−ν] = 0 and the super-Schouten tensor becomes symmetric,
i.e. Si ∧ Ei = 0. This latter property restricts Si to be proportional to Ei. The mani-
fest SCFT symmetry is then broken to the symmetry of the chosen background which, in
this case, is a maximally symmetric spacetime: AdS3 (Si 6= 0, ψ±µ 6= 0), dS3 (Si 6= 0,
ψ±µ = 0) or Mink3 (ψ−µ = Si = 0), and provides the vacuum of the boundary theory.17

The three (super)algebras associated with the symmetries of these backgrounds are defined
by suitable projections on the OSp(2|4) asymptotic symmetry group.

As far as the gauge fixing conditions are concerned, we refrain from imposing γµψ±µ=0
in SCFT, having in mind generalizations of standard holography where this condition is
relaxed in the boundary theory. This has a bearing on the radial gauge fixing condition
on the gauge field. This generalization is needed in particular to apply the holographic
analysis to the AVZ model [28] as boundary field theory, where the only propagating degrees
of freedom are associated with a spin-1/2 field χ, which is identified with the contraction
γµψµ itself. This theory is naturally defined on an AdS3 background. In [31] it was shown
that the spinor χ is actually the Nakanishi-Lautrup field associated with the covariant
gauge fixing of the odd local symmetries in a three-dimensional Chern-Simons theory with
gauge supergroup OSp(2|2)× SO(2, 1). This opens a window on the definition of the dual
field theory of which the AVZ model provides an effective description. We shall pursue
this objective in a future investigation. Other future directions of research would be an
extension of the present analysis to N > 2 bulk supergravity, along the lines of [30], or the
D > 4 bulk dimensions where, for odd D, quantum anomalies would arise in a boundary
SCFT. Furthermore, a generalization of the present work to the case where the FG choice
of parametrization is relaxed, which would allow the full superconformal symmetry of the
boundary theory to be linearly realized, will also be object of our investigation.

17The AdS3 and dS3 cases are distinguished by the sign of the proportionality factor between Si and Ei.
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A Conventions

A.1 Curvature conventions

In our conventions, the bulk local coordinates are denoted by xµ̂ = (xµ, z) and the boundary
coordinates by xµ (µ = 0, . . . 3). In general, the hatted quantities always refer to the bulk
and the non-hatted ones to the boundary placed at z = 0.

As respect to the connection and curvature conventions, apart from the hatted (bulk)
ones {ω̂, Γ̂, R̂, R̂, ρ̂} and the non-hatted (boundary) ones {ω,Γ,R, R, ρ}, the circle above
the quantity, {ω̊, Γ̊, R̊}, denotes that it is torsion-free and the bold symbol, {R̂,R, ρ̂,ρ}, de-
notes that it is super-covariant. Here {ρ̂, ρ̂, ρ,ρ} correspond to the fermionic components of
the supercurvatures. Similar notation applies for the Abelian supercurvatures {F̂ , F̂, F,F}
where, furthermore, the Maxwell field strength on the boundary is denoted by F .

Explicitly, we have in the bulk the Lorentz curvature 2-form R̂ab = 1
2 R̂

ab
µ̂ν̂ dxµ̂ ∧ dxν̂

defined in terms of the bulk spin connection ω̂abµ̂ . Using the first vielbein postulate,

∂µ̂V
a
ν̂ + ω̂abµ̂ Vbν̂ = Γ̂λ̂ν̂µ̂V a

λ̂
, (A.1)

it is mapped to the bulk curvature tensor,

R̂λ̂σ̂µ̂ν̂(Γ̂) = R̂abµ̂ν̂(ω̂)V λ̂
aVσ̂b , (A.2)

expressed in terms of the bulk affine connection Γ̂λ̂ν̂µ̂. The bulk AdS curvature 2-form is
denoted by R̂ab and the super AdS curvature by R̂ab.

On the other hand, on the boundary, the Lorentz curvature 2-form is Rij = 1
2 R

ij
µν

dxµ ∧ dxν , from which we can obtain Rλσµν(Γ) = Rijµν(ω)Eλ iEσj , where Γλνµ and ωijµ
are the (torsionful) affine and spin connection, respectively. The boundary AdS curvature
2-form is Rij and the super AdS curvarure Rij . Similarly, the torsionless quantities on the
boundary are R̊λσµν = R̊ijµνEλ iEσ j , where the corresponding Levi-Civita connections are
Γ̊λνµ and ω̊ijµ .
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In the following list, we summarize different Lorentz and AdS (super)curvatures and
the places where they appear for the first time in the text.

Pure gravity.

d = 3

In (2.3): R̊µνλσ torsionless Lorentz curvature of Γ̊µνλ = Γ̊µνλ(g(0))
In (2.21): Γ̊µνλ(g) z-dependent affine Levi-Civita
In (2.27): R̊ij torsionless Lorentz curvature of ω̊ij

D = 4

In (2.6): R̂ab AdS curvature of ω̂ab

After (2.6): R̂ab Lorentz curvature of ω̂ab

In (2.20): Γ̂λ̂ν̂µ̂ affine connection

Supergravity.

d = 3

In (4.16): Rµνλσ torsionful Lorentz curvature of Γλµν
In (4.18): R̊µνλσ torsionless Lorentz curvature of Γ̊λµν
In (4.26): Rij torsionful Lorentz curvature of ωij

In (4.28): Rµνλσ torsionful Lorentz curvature of Γλµν
In (5.6): Rij boundary AdS supercurvature

D = 4

In (3.7): R̂ab Lorentz curvature of ω̂ab

In (3.8): R̂ab super-AdS curvature
In (4.30): R̃abcd rheonomic parametrization of the supercurvature

A.2 Gamma matrices and spinor conventions

In the present paper we follow the notation of [30]. The four-dimensional 4 × 4 gamma
matrices Γa (a = 0, 1, 2, 3) satisfy the Clifford algebra

{Γa,Γb} = 2κab , κab = diag(+,−,−,−) , (A.3)

and the fifth matrix is defined by

Γ5 = i Γ0Γ1Γ2Γ3 . (A.4)

They have the properties

(Γi)† = Γ0ΓiΓ0 , (Γ5)† = Γ5, (A.5)
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and they satisfy the identity

1
2 εabcd Γcd = iΓabΓ5 , (A.6)

where

Γa1···an = Γ[a1···an] ≡


1
2
[
Γa1 ,Γa2···an

]
, for even n ,

1
2
{
Γa1 ,Γa2···an

}
, for odd n .

(A.7)

We can also define the charge conjugation matrix C that determines the symmetry
properties of the gamma matrices,

C = Γ0 , CΓaC−1 = −(Γa)T . (A.8)

From this condition, we can derive a general property of the antisymmetric product of k
gamma matrices as

(CΓa1...ak)T = −(−1)
k(k+1)

2 CΓa1...ak . (A.9)

Furthermore, the following identity holds for the gamma matrices in any D dimen-
sions [39, 40]

Γa1...anc1...cqΓc1...cqb1...bm =
inf(n,m)∑
k=0

ck(q, n,m) δ[a1
[b1 . . . δ

ak
bk

Γak+1...an]
bk+1...bm] , (A.10)

where the coefficients reads

ck(q, n,m) = (−1)
1
2 q(q−1)+ k

2 [k−(−1)n−1]
(
n

k

)(
m

k

)
q! k!

(
D − n−m+ k

q

)
. (A.11)

It is convenient to introduce the 2 × 2 gamma matrices γi (i = 0, 1, 2) that are the
elements of the d = 3 Clifford algebra

{γi, γj} = 2κij , κij = diag(+,−,−) . (A.12)

The D = 4 gamma matrices can be represented in terms of these d = 3 gamma matrices as

Γi = σ1 ⊗ γi , γ0 = σ2 , γ1 = iσ1 , γ2 = iσ3 ,

Γ3 = iσ3 ⊗ 1 , Γ5 = i Γ0Γ1Γ2Γ3 = −σ2 ⊗ 1 =
(

0 i12
−i12 0

)
. (A.13)

An identity often used in the text is

γiγj = κij + i εijk γk , ε012 = 1 , (A.14)

that implies
γij = i εijk γk , γij ≡ 1

2 [γi, γj ] . (A.15)
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Let us now focus on the spinor conventions. The Majorana 4-spinor 1-form Ψ =
Ψµ̂ dxµ̂ has Grassmannian components Ψµ̂. Using the symmetry properties of the gamma
matrices (A.8), we obtain the following ones for the fermionic bilinears,

ΨAµ̂ΨBν̂ = ΨBν̂ΨAµ̂ , ΨAµ̂Γ5ΨBν̂ = ΨBν̂Γ5ΨAµ̂ ,

ΨAµ̂ΓaΨBν̂ = −ΨBν̂ΓaΨAµ̂ , ΨAµ̂ΓaΓ5ΨBν̂ = ΨBν̂ΓaΓ5ΨAµ̂ ,

ΨAµ̂ΓabΨBν̂ = −ΨBν̂ΓabΨAµ̂ , ΨAµ̂ΓabΓ5ΨBν̂ = −ΨBν̂ΓabΓ5ΨAµ̂ .

(A.16)

In view of the application to the holographic duality, it is convenient to choose a gamma
matrix basis where only Lorentz invariance in d = 3 dimensions is manifest, where the
radial matrix Γ3 is associated with the generator T0 of the SO(1, 1) group given by eq. (5.2).
Then, for our purposes, it is useful to decompose the four-spinor Ψ in eigenmodes Ψ± of
the matrix Γ3,

Γ3Ψ± = ±iΨ± , (A.17)

where the projectors and the corresponding projections are given by

P± = 1∓ iΓ3

2 ⇒ P±Ψ± = Ψ± , Ψ± = Ψ±P∓ . (A.18)

Furthermore, in order to find chiral components of the fermionic expressions, we list
the following useful identities,

P±Γ3 = ±iP± , P±Γij = ΓijP± ,
P±Γi = ΓiP∓ , P±Γi3 = ±iΓiP∓ ,

(A.19)

as well as
P±Γ5 = Γ5P∓ . (A.20)

When the chiral spinors are involved, the fermionic bilinears have only the following non-
vanishing terms

Ψµ̂Ψν̂ = Ψµ̂+Ψν̂− + Ψµ̂−Ψν̂+ ,

Ψµ̂Γ3Ψν̂ = iΨµ̂−Ψν̂+ − iΨµ̂+Ψν̂− ,

Ψµ̂ΓiΨν̂ = Ψµ̂+ΓiΨν̂+ + Ψµ̂−ΓiΨν̂− ,

Ψµ̂ΓiΓ3Ψν̂ = iΨµ̂+ΓiΨν̂+ − iΨµ̂−ΓiΨν̂− ,

Ψµ̂ΓijΨν̂ = Ψµ̂+ΓijΨν̂− + Ψµ̂−ΓijΨν̂+ ,

Ψµ̂ΓijΓ3Ψν̂ = iΨµ̂−ΓijΨν̂+ − iΨµ̂+ΓijΨν̂− ,

Ψµ̂Γ5Ψν̂ = Ψµ̂+Γ5Ψν̂+ + Ψµ̂−Γ5Ψν̂− ,

Ψµ̂Γ5Γ3Ψν̂ = iΨµ̂+Γ5Ψν̂+ − iΨµ̂−Γ5Ψν̂− ,

Ψµ̂ΓiΓ5Ψν̂ = Ψµ̂+ΓiΓ5Ψν̂− + Ψµ̂−ΓiΓ5Ψν̂+ ,

Ψµ̂ΓiΓ5Γ3Ψν̂ = iΨµ̂−ΓiΓ5Ψν̂+ − iΨµ̂+ΓiΓ5Ψν̂− ,

Ψµ̂ΓijΓ5Ψν̂ = Ψµ̂+ΓijΓ5Ψν̂+ + Ψµ̂−ΓijΓ5Ψν̂− ,

Ψµ̂ΓijΓ5Γ3Ψν̂ = iΨµ̂+ΓijΓ5Ψν̂+ − iΨµ̂−ΓijΓ5Ψν̂− . (A.21)
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In the context of holography, only the radial decomposition (with respect to Γ3) is
relevant and used to define the chiral componets. We do not use the Weyl decomposition
of the four-spinor with respect to Γ5.

Finally, let us list the three-dimensional Fierz identities used in the main text,

ψA+ζB+ = −1
4 δAB

(
ψ
C
+ζC+

)
− 1

4 εABε
CD

(
ψC+ζD+

)
+ 1

4 δAB γi
(
ψC+γ

iζC+
)

+ 1
4 εABε

CD γi
(
ψC+γ

iζD+
)
,

ψA+ψB+ = −1
4 εABε

CD
(
ψC+ψD+

)
+ 1

4 δAB γi
(
ψC+γ

iψC+
)
, (A.22)

with the following convention for the SO(2) invariant tensor

εAB = εAB =
(

0 1
−1 0

)
, A,B, . . . = 1, 2 . (A.23)

B Asymptotic expansions

B.1 Spin connection

In pure AdS4 gravity, a spin connection ω̊abµ̂ (x, z) satisfies the torsion constraint T̂ aµ̂ν̂ =
D̊µ̂V a

ν̂ − D̊ν̂V a
µ̂ = 0, see eq. (2.21). If we use ω̊abµ̂ as a reference spin connection on space-

time also in the supersymmetric case, where the vielbein satisfies instead the supertorsion
constraint R̂a

µ̂ν̂ = D̂µ̂V a
ν̂ − D̂ν̂V a

µ̂ − iΨA[µ̂ΓaΨAν̂] = 0 given by eq. (3.8), then the contri-
bution of the fermions (gravitini and conformini) in the supertorsion can be taken into
account as contorsion on spacetime,

ω̂ab = ω̊ab + Cab , Cab = Cabµ̂ dx
µ̂ . (B.1)

We now evaluate how the fermions contribute to the contorsion using the condition of
vanishing supertorsion. From the decomposition D̂µ̂V a

ν̂ = D̊µ̂V a
ν̂ + Caν̂µ̂, we find

R̂a
µ̂ν̂ = 0 ⇔ Cλ̂[µ̂ν̂] = − i

2 ΨA
µ̂Γλ̂ΨAν̂ . (B.2)

The solution is
Cλ̂µ̂ν̂ = i

2 ΨA
λ̂Γµ̂ΨAν̂ −

i
2 ΨA

µ̂Γλ̂ΨAν̂ + i
2 ΨA

λ̂Γν̂ΨAµ̂ , (B.3)

which can be restated in the following way

Cabµ̂ = i
2 V

ν̂aΨA
ν̂ ΓbΨAµ̂ −

i
2 V

ν̂bΨA
ν̂ ΓaΨAµ̂ + i

2 V
ν̂aV λ̂bVcµ̂ ΨA

ν̂ ΓcΨAλ̂ . (B.4)

Note that, since ΨA
ν̂ ΓcΨAλ̂ = −ΨA

λ̂ΓcΨAν̂ , the tensor Cabµ̂ is explicitly antisymmetric in [ab].
To determine a radial dependence of the spin connection as it approaches to the bound-

ary, we express each component of the contorsion in terms of the fermionic fields regular

– 54 –



J
H
E
P
0
2
(
2
0
2
1
)
1
4
1

on ∂M4 and obtain

Ci3z = Êµi
(
ϕA+µϕA−z−

z2

`2
ϕA−µϕA+z

)
+ i

2

(
ϕA−zΓiϕA−z+ z2

`2
ϕA+zΓiϕA+z

)
,

Cijz = iz
`
Êµ[i

(
ϕA+µΓj]ϕA+z+ϕA−µΓj]ϕA−z

)
+ z

2` Ê
µi Êνj

(
ϕA−µϕA+ν−ϕA+µϕA−ν

)
,

Ci3µ = z

2` Ê
νi
(
ϕA+νϕA−µ−ϕA−νϕA+µ

)
+ iz

2`
(
ϕA+zΓiϕA+µ+ϕA−zΓiϕA−µ

)
− iz

2` Ê
νiÊjµ

(
ϕA+νΓjϕA+z+ϕA−νΓjϕA−z

)
, (B.5)

Cijµ = iÊν[i
(
ϕA+νΓj]ϕA+µ+ z2

`2
ϕA−νΓj]ϕA−µ

)
+ i

2 Ê
νiÊλjÊkµ

(
ϕA+νΓkϕA+λ+ z2

`2
ϕA−νΓkϕA−λ

)
.

From eq. (2.21), we find for the full spin-connection

ω̂i3z =
(
ϕAi+ + i

2 ϕ
A
−zΓi

)
ϕA−z + z2

`2

(
−ϕAi− + i

2ϕ
A
+zΓi

)
ϕA+z ,

ω̂ijz = z

`

(
iϕA[i

+ Γj]ϕA+z + iϕA[i
− Γj]ϕA−z + ϕ

A[i
− ϕ

j]
A+

)
,

ω̂i3µ = 1
z
Êiµ −

1
2 kµνÊ

νi + z

2`

(
ϕAi+ ϕA−µ − ϕAi− ϕA+µ + iϕA+zΓiϕA+µ

− iϕAi+ ΓµϕA+z + iϕA−zΓiϕA−µ − iϕAi− ΓµϕA−z
)
, (B.6)

ω̂ijµ = ω̊ijµ + iϕA[i
+ Γj]ϕA+µ + i

2 ϕ
Ai
+ ΓµϕjA+ + z2

`2

(
iϕA[i
− Γj]ϕA−µ + i

2 ϕ
Ai
− ΓµϕjA−

)
.

Therefore the O(1/z) term of the connection is not modified by the fermions. This is
consistent with the asymptotically AdS behaviour of the extrinsic curvature, being propor-
tional to the induced metric thanks to this fact.

The most general gauge fixing, with Ψ±z 6= 0, is

ω̂i3z = wi(x, z) ,

ω̂ijz = z

`
wij(x, z) , (B.7)

where wi, wij = O(1) and the boundary fields are

ω̂i3µ = 1
z
Eiµ −

z

`2
S̃iµ −

2z2

`3
τ̃ iµ +O(z3) ,

ω̂ijµ = ωijµ + z

`
ωijµ(1) + z2

`2
ωij(2)µ + z3

`3
ωij(3)µ +O(z4) , (B.8)

where now Siµ 6= S̃iµ, τ iµ 6= τ̃ iµ and ωijµ 6= ω̊ijµ .
As particular cases, let us notice that when ΨA

−z = 0 and ΨA
+z 6= 0, the behaviour (B.6)

yields wi = O(z2) and all other components remain the same. Furthermore, if we set to
zero both components ΨA

±z = 0, we have wi = 0 exactly.
This behaviour of wi and wij that we just described is summarized in the table (4.12).
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B.2 The supercurvatures

In this subsection we evaluate, for the most general gauge fixings, the first contributions
in the asymptotic expansion of the super field strengths, decomposing them with respect
to a world-volume basis on the four-dimensional spacetime. Let us generically denote by
R̂Λ = {R̂ab, R̂a, ρ̂A, F̂} the supercurvature 2-form field strengths given by eq. (3.8) and
further discussed in eq. (5.1) of subsection 5.1,

R̂Λ = 1
2 R̂Λ

µ̂ν̂ dxµ̂ ∧ dxν̂ = 1
2 R̂Λ

µν dxµ ∧ dxν + R̂Λ
µz dxµ ∧ dz . (B.9)

We use the following notation for the supercurvature expansion,

R̂Λ
µ̂ν̂ =

∞∑
n=nmin

(
z

`

)n
R̂Λ

(n)µ̂ν̂ , (B.10)

where nmin denotes the minimal power of z` in the expansion, that is the order of the most
divergent term. Our covariant derivatives D̂ and D, acting as exterior covariant derivatives,
contain only the spin-connection.

From the supertorsion constraint R̂a
µ̂ν̂ = 2 D̂[µ̂V

a
ν̂] − i ΨA

µ̂ΓaΨA
ν̂ = 0, we get

R̂a
µ̂ν̂ =

∞∑
n=nmin

(
z

`

)n
R̂a

(n)µ̂ν̂(x) = 0 , (B.11)

and find the following expansion coefficients in terms of the boundary quantities,

R̂i
(−1)µν = Ri

µν = 2D[µE
i
ν] − iψA+[µγ

iψAν]+ = 0 ,

R̂i
(0)µν = 2ωij(1)[µEj|ν] − 2 i ζA+[µγ

iψAν]+ = 0 , (B.12)

R̂i
(1)µν = 2D[µS

i
ν] + 2ωij(2)[µEj|ν]

− i
(
ζ
A
+[µγ

iζAν]+ + 2 ΠA
+[µγ

iψAν]+ + ψ
A
−[µγ

iψAν]−

)
= 0 ,

R̂i
(2)µν = 2D[µτ

i
ν] + 2ωij(1)[µSj|ν] + 2ωij(3)[µEj|ν]

− 2 i
(
ζ
A
+[µγ

iΠA
ν]+ + fA+[µγ

iψAν]+ + ζ
A
−[µγ

iψAν]−

)
= 0 ,

where we identified fA+µ = ψA(3)+µ. Note that the last equation gives the expression for
ωij(3)µ in the supersymmetric case. The next supertorsion components to be expanded are
R̂i
µz, for which we obtain

R̂i
(0)µz = 1

2`
(
S̃iµ − Siµ

)
− 1

2 w
ij
(0)Ejµ

− i
2
(
ψA+µγ

iψA+z + ψA−µγ
iψA−z

)
= 0 , (B.13)

R̂i
(1)µz = 1

`

(
τ̃ iµ − τ iµ

)
− 1

2 w
ij
(1)Ejµ −

i
2
(
ψA+µγ

iζA+z

+ ψA−µγ
iζA−z + ζA+µγ

iψA+z + ζA−µγ
iψA−z

)
= 0 . (B.14)
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On the other hand, for the R̂3 components restricted to ∂M4 we find

R̂3
(0)µν = −2

`

(
S[µν] − S̃[νµ]

)
− 2 iψA+[µψA−ν] = 0 ,

R̂3
(1)µν = −2

`

(
τ[µν] − 2 τ̃[νµ]

)
− 2 i

(
ψA+[µζA−ν] + ζA+[µψA−ν]

)
= 0 , (B.15)

and projected to dxµ ∧ dz we have

R̂3
(−1)µz = 1

2 w
i
(0)Eiµ −

i
2 ψA+µψA−z = 0 ,

R̂3
(0)µz = 1

2 w
i
(1)Eiµ −

i
2
(
ψA+µζA−z + ζA+µψA−z

)
= 0 ,

R̂3
(1)µz = 1

2 w
i
(0)Siµ + 1

2 w
i
(2)Eiµ −

i
2 ψA−µψA+z

− i
2
(
ψA+µΠA−z + ζA+µζA−z + ΠA+µψA−z

)
= 0 , (B.16)

where ΠA
−z = ψA(2)−z. The last equation gives the expression for wi(2).

Focusing now on the AdS supersurvature, from R̂ij = Rij + 4
`2 V

[i
+V

j]
− − 1

`

(
ΨA

+ΓijΨA
−+

ΨA
−ΓijΨA

+

)
we get

R̂ij
(0)µν = Rij

µν = 2Rijµν − 4E[i
[µS

j]
ν] −

2
`
ψ
A
−µγ

ijψA+ν = 0 , (B.17)

R̂ij
(1)µν = 2D[µω

ij
(1)|ν] −

4
`2
E

[i
[µ(τ j]ν] + 2τ̃ j]ν])

− 2
`

(
ψ
A
−[µγ

ijζA+ν] + ψ
A
+[µγ

ijζA−ν]

)
,

R̂ij
(−1)µz = E

[i
µw

j]
(0) −

1
2` ψ

A
+µγ

ijψA−z ,

R̂ij
(0)µz = − 1

2`
(
−2`E[i

µw
j]
(1) + ωij(1)µ + ψ

A
+µγ

ijζA−z

)
,

R̂ij
(1)µz = 1

2 Dµw
ij
(0) −

1
`
ωij(2)µ − S̃

[i
µw

j]
(0)

− 1
2`
(
ψ
A
−µγ

ijψA+z + ψ
A
+µγ

ijΠA
−z + ΠA

+µγ
ijψA−z

)
.

Next, from R̂i3 = D̂ω̂i3 − 1
`2 V

iV 3 − i
2`

(
ΨA

+ΓiΨA
+ −ΨA

−ΓiΨA
−

)
, we find

R̂i3
(−1)µν = R̂i

(−1)µν = 0 ,

R̂i3
(0)µν = R̂i

(0)µν = 0 ,

R̂i3
(1)µν = −` Ciµν = −2

`
D[µS̃

i
ν] + 2

`
ωij(2)[µEj|ν] + i

`

(
ψ
A
−[µγ

iψA−ν] − ζ
A
+[µγ

iζA+ν]

−2 ΠA
+[µγ

iψA+ν]

)
,

R̂i3
(0)µz = 1

2 Dµw
i
(0) + i

`
ψ
A
−µγ

iψA−z ,

R̂i3
(1)µz = 1

2 Dµw
i
(1) + ω(1)|ij

µ w(0)|j + 1
2 `2 (2τ̃ iµ + τ iµ) + 1

2` w
ij
(0)Sj|µ

+ i
`

(
ψ
A
−µγ

iζA−z + ζ
A
−µγ

iψA−z

)
, (B.18)

where we have also exploited the vanishing supertorsion equations (B.13) and (B.14).
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As regards to the graviphoton super field strength F̂ = dÂ−2 εABΨ+AΨ−B, we obtain

F̂(0)µν = Fµν = 2 ∂[µAν] − 4 εABψ
A
+[µψ

B
−ν] = 0 , (B.19)

F̂(1)µν = 2 ∂[µA(1)ν] − 4
(
ψ
A
+[µζ

B
−ν] + ζ

A
+[µψ

B
−ν]

)
εAB ,

F̂(−1)µz = 1
2 ∂µA(−1)z − ψ

A
+µψ

B
−zεAB ,

F̂(0)µz = 1
2 ∂µA(0)z −

1
2` A(1)µ − ψ

A
+µζ

B
−zεAB ,

F̂(1)µz = 1
2 ∂µA(1)z −

1
`
A(2)µ −

(
ψ
A
−µψ

B
+z + ψ

A
+AµΠB

−z

)
εAB .

Furthermore, the gravitini supercurvature ρ̂+A = dΨ+A + 1
4 ω̂

ijΓijΨ+A− 1
2` εABÂΨ+B

+ i
` V

i
+ΓiΨ−A − 1

2` Ψ+AV
3 leads to

ρ̂(−1/2)+Aµν =ρ+Aµν = 2∇[µψ
A
+ν]+

2i
`
γ[µψ

A
−ν] = 0 , (B.20)

ρ̂(1/2)+Aµν = 2∇[µζ+Aν]+
2
`
γ[µζ−Aν]+

1
2 γijω

ij
(1)[µψ+Aν]−

1
`
A(1)[µψ+Bν]εAB ,

ρ̂(−3/2)+Aµz = i
2`

(
γµψ−Az−

i
2A(−1)zψ+BµεAB

)
,

ρ̂(−1/2)+Aµz = i
2`γµζ−Az+ 1

4`

(
A(0)zψ+Bµ+A(−1)zζ+Bµ

)
εAB−

1
2` ζ+Aµ ,

ρ̂(1/2)+Aµz = 1
2∇µψ+Az−

1
8 w

ij
(0)γijψ+Aµ+ i

4`
(
Siµ−S̃iµ

)
γiψ−Az−

1
`

Π+Aµ

− i
4 w

i
(0)γiψ−Aµ+ i

2` γµΠ−Az+
1
4`

(
A(1)zψ+Bµ+A(−1)zΠ+Bµ+A(0)zζ+Bµ

)
εAB .

Finally, using the negatively graded fermionic supercuvature ρ̂−A=dΨ−A+ 1
4 ω̂

ijΓijΨ−A
− 1

2` εABÂΨ−B − i
`V

i
−ΓiΨ+A + 1

2` Ψ−AV 3, we are left with

ρ̂(1/2)−Aµν = ΩAµν = 2∇[µψ−Aν] − i ` γiψ+A[µSiν] ,

ρ̂(3/2)−Aµν = ∇[µζ−Aν] −
i
2 ` γiζ+A[µSiν] + 1

4 ω
ij
(1)|[µγijψ−Aν]

− 1
2` A(1)[µψ−Bν]εAB + i

2`
(
τ i[µ + 2 τ̃ i[µ

)
γiψ+Aν] ,

ρ̂(−1/2)−Aµz = 1
2 ∇µψ−Az + 1

4` A(−1)z εABψ−Bµ + i
4γiw

i
(0)ψ+Aµ ,

ρ̂(1/2)−Aµz = 1
2 ∇µζ−Az + 1

4` A(0)z εABψ−Bµ + i
4γiw

i
(1)ψ+Aµ

− 1
2` ζ−Aµ + 1

4` A(−1)zζ−BµεAB . (B.21)

We observe that the R̂Λ
(nmin)µν components of R̂Λ = {R̂ab, R̂a, ρ̂A, F̂} define the cur-

vatures {Rij ,Ri,ρA,F, Ci,ΩA} of the N = 2 superconformal group OSp(2|4) discussed
in subsection 5.1 and given by eqs. (5.6). We expect naively that they all vanish in the
vacuum with the OSp(2|4) isometries in a superconformal theory on the three-dimensional
boundary. However, we obtain R̂Λ

(nmin)µν = 0 for all the curvatures except the ones with
the negative grading, R̂i3

µν and ρ̂−Aµν , where we find instead that the equations (3.23) lead
to the weaker condition (4.62).
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B.3 Equations of motion of the graviphoton

Here we analyse a relation between the gauge fixing and the asymptotic behaviour of the
fields, using radial field equations. In appendix B.1, a similar problem was discussed for
the spin connection using the vanishing supertorsion.

The radial evolution of the graviphoton is given by the respective field equation
in (3.16) that, in components, with the Hodge star dual (3.10), has the form

D̂ν̂F̂ν̂µ̂ = i
e
εµ̂ν̂λ̂ρ̂ ΨA

ν̂ Γ5ρ̂B
λ̂ρ̂
εAB . (B.22)

Using the conventions (2.9) and (2.13), the component µ̂ = µ acquires the form

D̂νF̂νµ + D̂zF̂zµ = − i
e
εµνλ

(
2ΨA

ν Γ5ρ̂
B
λz + ΨA

z Γ5ρ̂
B
νλ

)
εAB . (B.23)

For convenience, we factorize the relevant field strength components as

F̂zµ = −
(
z

`

)4
gµνF̂zν , ρ̂Aµz± =

(
z

`

)± 1
2

ΞAµ± ,

F̂µν =
(
z

`

)4
Fµν , ρ̂Aµν± =

(
z

`

)∓ 1
2

ΞAµν± ,
(B.24)

where F̂µν = Fµν and the tensors F̂zµ, Fµν , ΞAµ± and ΞAµν± have to be expanded in power
series in z. The metric gµν(x, z) and its inverse gµν rise and lower the spacetime indices on
∂M. Recalling the FG metric (2.1) and the tensor kµν = ∂zgµν introduced by eq. (2.22),
as well as using the Christoffel symbols

Γ̂µνz = −1
z
δµν + 1

2 k
µ
ν , Γ̂µzz = 0 = Γ̂zzµ ,

Γ̂zµν = −1
z
gµν + 1

2 kµν , Γ̂zzz = −1
z
,

(B.25)

the radial graviphoton equation becomes

DνF νµ −
(
kµν − k

2 g
µν
)

F̂νz + gµν∂zF̂νz (B.26)

= − i
ê3
εµνλ

(
2ϕA+νΓ5ΞBλ+ + 2ϕA−νΓ5ΞBλ− + ϕA+zΓ5ΞBνλ+ + ϕA−zΓ5ΞBνλ−

)
εAB .

Now we calculate F̂µz, ΞAµ± and ΞAµν± defined in (B.24). Evaluation of the components

F̂µ̂ν̂ = ĝµ̂α̂ĝν̂β̂
(
∂α̂Âβ̂ − ∂β̂Âα̂ − 2εAB ΨA

α̂ΨB
β̂

)
,

ρ̂Aµ̂ν̂ = 2D̂[µ̂ΨA
ν̂] −

1
`
εABÂ[µ̂ΨB

ν̂] −
i
`

ΓaΨA
[µ̂V

a
ν̂] (B.27)

leads to

F̂µz = ∂µÂz − ∂zAµ −
2`
z
εAB ϕ

A
+µϕ

B
z− −

2z
`
εAB ϕ

A
−µϕ

B
z+ ,

Fµν = gµαgνβ
(
Fαβ − 4εAB ϕA+αϕB−β

)
= 0 (B.28)
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and, by means of the rescalings (4.6), we get

ΞAµ± = DµϕA±z −
1
4

(
z

`

)1∓1
wijΓijϕA±µ −

(
z

`

)∓1
∂zϕ

A
±µ −

1
2` εAB Aµϕ

B
±z

∓ i
2 w

iΓiϕA∓µ + 1
2`

(
z

`

)∓1
εAB Âzϕ

B
±µ ±

i
`

(
z

`

)∓2
Ei±µΓiϕA∓z ,

ΞAµν± = 2D[µϕ
A
ν]± ±

2i
`
Ei±[µΓiϕAν]∓ −

1
`
εAB A[µϕ

B
ν]± . (B.29)

We also assume that the gauge-fixing functions are

Âz = `

z
A(−1)z +A(0)z + z

`
A(1)z +O(z3) ,

Âµ = `

z
A(−1)µ +Aµ + z

`
A(1)µ + z2

`2
A(2)µ +O(z3) ,

ϕA+µ = ϕA(0)+µ + z

`
ϕA(1)+µ +O(z2) , (B.30)

in general allowing for the linear terms (in contrast to eq. (4.14) valid in pure gravity),
where Ei± expand as (4.7), and we find

F̂µz = `

z2 A(−1)µ+ `

z

(
∂µA(−1)z−2εABϕA(0)+µϕ

B
(0)z−

)
+O(1) ,

ΞAµ+ = `

2z2

(
A(−1)z ε

ABϕB+µ+2iEiµΓiϕA(0)−z

)
+ 1
z

(1
2 εABA(0)zϕ

B
(0)+µ−ϕ

A
(1)+µ

)
+O(1) ,

Fµν , ΞAµ−, ΞAµν±=O(1) . (B.31)

Remembering that kµν = O(z), the graviphoton equation (B.26) then yields

`

z3 : A(−1)µ = 0 ,

`

z2 : ∂µA(−1)z =
(

2ϕA(0)+µ −
1
e3
g(0)µσ ε

σνλEiλϕ
A
(0)+νΓ5Γi

)
εABϕ

B
(0)−z ,

1
z

: 0 = εµνλ ϕA(0)+νΓ5

(1
2 A(0)zϕ

A
(0)+µ + ϕB(1)+µεAB

)
, (B.32)

and all other terms are finite. We used the fact that the term ϕA+νΓ5ϕA+λ is symmetric
in (νλ) so it vanishes when contracted with εσνλ. From the last equation in (B.32), when
ϕA(0)+µ 6= 0 (and otherwise), we can choose a particular solution A(0)z = 0, ϕA(1)+µ ≡(ζAµ+

0
)

= 0, which is in agreement with eq. (4.36) obtained in subsection 4.2. This choice
was also taken in [6] in the context of N = 1 supergravity. We will show below (see (B.44))
that, in fact, this is the only solution only if we assume the stronger condition (B.47) to
hold. Then (B.30) implies

Âz = `

z
A(−1)z + z

`
A(1)z +O(z3) ,

Âµ = Aµ + z

`
A(1)µ + z2

`2
A(2)µ +O(z3) ,

ϕA+µ = ϕA(0)+µ +O(z2) . (B.33)
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We also conclude that the gauge-fixing functions A(−1)z and ϕB(0)−z are correlated, which is
consistent with the table (4.12). In addition, the boundary graviphoton does not acquire
divergent terms of the form 1/z even when ϕA(0)z− 6= 0. We have not considered the
logarithmic terms here.

The graviphoton curvature behaves in the following way on the boundary,

F̂µz = `

z

(
∂µA(−1)z − 2εAB ϕA(0)+µϕ

B
(0)−z

)
− 1
`
A(1)µ +O(z) ,

F̂µν = Fµν − 4εAB ϕA+[µϕ
B
−ν] = 0 . (B.34)

This shows that it is possible to have the components F̂µz 6= 0 on the boundary z = 0, dz =
0, with a suitable gauge choice which changes the asymptotics.

B.4 Equations of motion of the gravitini

The equation of motion that describes the dynamics of gravitini (3.16) in components has
the form

0 = εµ̂ν̂λ̂τ̂
(
V a

µ̂ΓaΓ5ρ̂Aν̂λ̂ + i
2 εABF̂µ̂ν̂Γ5ΨB

λ̂

)
+ e εABΨB

λ̂
F̂λ̂τ̂ , (B.35)

where the formula (3.10) was applied. The radial expansion of the gravitini is given by the
components τ̂ = µ which, with the conventions (2.9) and (2.13), leads to

0 = εµνλ
(
−V 3

zΓ3Γ5ρ̂Aνλ − 2V i
νΓiΓ5ρ̂Azλ + i

2 εABF̂νλΓ5ΨB
z + i εABF̂zνΓ5ΨB

λ

)
+ e εAB

(
ΨB
z F̂zµ + ΨB

ν F̂νµ
)
. (B.36)

Projecting it by P± defined by (A.18) and applying the identities (A.19) and (A.20) from
appendix A.2, we find

0 = εµνλ
(
∓iV 3

zΓ5ρ̂∓Aνλ − 2V i
νΓiΓ5ρ̂±Azλ + i

2 εABF̂νλΓ5ΨB
∓z + i εABF̂zνΓ5ΨB

∓λ

)
+ e εAB

(
ΨB
±z F̂zµ + ΨB

±ν F̂νµ
)
. (B.37)

Now we can use eqs. (B.24), (2.13), (4.11) and (4.52), to obtain the equation expressed in
terms of the auxiliary quantities with known asymptotic behaviour,

0 =
(
z

`

)± 1
2−1

εµνλ
(
∓i Γ5ΞAνλ∓ + 2Êi νΓiΓ5ΞAλ±

)
+
(
z

`

)± 1
2
εAB

(
−i εµνλΓ5ϕ

B
∓λ + e3 g

µνϕB±z

)
F̂νz

+
(
z

`

)∓ 1
2
εAB

( i
2 ε

µνλFνλΓ5ϕ
B
∓z + e3 F

νµϕB±ν

)
. (B.38)

All tensors appearing above are finite, except F̂µz and ΞAµ+. With this at hand, we identify
the leading orders of the z-component of the gravitini equations of motion (looking at the
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two projections separately). By requiring the most divergent terms to vanish (that are
(`/z)5/2 and (`/z)3/2 in the two chiralities), we get

0 = εijk
(
A(−1)z εAB ΓiϕB(0)+µE

µ
j + 2iΓijϕA(0)−z

)
,

0 = εµνλ
(
i ΞA(0)νλ+ − 2EiνΓiΞA(0)λ−

)
(B.39)

+ εAB
(
−i εµνλϕB(0)+λ + e3(0) g

µν
(0)Γ5ϕ

B
(0)−z

) (
∂νA(−1)z − 2εAC ϕA(0)+νϕ

C
(0)−z

)
,

where we multiplied the equations by Γ5. Since ∂νA(−1)z is correlated with ϕA(0)−z through
the condition (B.32), it can be used in the second equation.

It turns out that we can solve the gauge-fixing functions from the first equation
in (B.39), in terms of the dynamic fields. Contracting it by εki′j′ , it acquires an equiv-
alent form

0 = −A(−1)z εAB E
µ
[iΓj]ϕ

B
(0)+µ + 2i ΓijϕA(0)−z . (B.40)

We can contract the above equation by Γij and use the contractions of the gamma matri-
ces (A.10), which in this case become ΓiΓi = 3, ΓijΓj = 2Γi and ΓijΓij = −6. As a result,
we obtain a solution which relates the gauge fixing ϕA(0)−z with the gauge fixing A(−1)z,

ϕA(0)−z = i
6 A(−1)zε

AB ΓiϕB(0)+µE
µ
i . (B.41)

Then second equation in (B.32) becomes a linear differential equation in A(−1)z. One
possible solution is A(−1)z = 0 that, from eq. (B.41), yields ϕA(0)−z = 0. On the other hand,
when A(−1)z 6= 0, we can solve ϕA(0)+µ from the first equation in (B.39) as

A(−1)zϕ
A
(0)+µ = 2iEiµΓiϕB(0)−zεAB , (B.42)

and the differential equation becomes

A(−1)z∂µA(−1)z = 2iEkµϕA(0)−z

(
2Γk + εijkΓ5Γij

)
ϕA(0)−z = 0 , (B.43)

where the last zero is due to antisymmetry of the fermionic bilinears, namely
ϕA(0)−zΓ

kϕA(0)−z ≡ 0 and ϕA(0)−zΓ5ΓijϕA(0)−z ≡ 0 so that each term in the sum vanishes
independently. The only solution of the above equation is A(−1)z = const.

Moreover, as previously shown in the main text, we can choose a particular solution
with

ϕA(1)+µ = 0 . (B.44)

Consequently, taking A(−1)z = 0 and plugging (B.44) into the last equation in (B.32), we
are left with A(0)z = 0. On the other hand, if we take A(−1)z 6= 0 and use (B.42) and (B.44)
into the last equation of (B.32), we obtain

A(0)zE
λ
k ϕ

A
(0)−zΓ

kϕA(0)−z = 0 , (B.45)
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which is identically satisfied since ϕA(0)−zΓ
kϕA(0)−z = 0. In particular, this means that, in

this case, the last equation in (B.32) is solved by (B.42) and (B.44), without forcing A(0)z
to vanish.18

Summing up the results, the following gauge fixings for Az and ϕA−z are allowed:

A(−1)z = 0 , A(0)z = 0 , ϕA(1)+µ = 0 , ϕA(0)−z = 0 ,

A(−1)z = 0 , A(0)z 6= 0 , ϕA(1)+µ = 1
2 A(0)zϕ

B
(0)+µεAB , ϕA(0)−z = 0 , (B.49)

A(−1)z = const , A(0)z 6= 0 , ϕA(1)+µ = 0 , ϕA(0)−z = i
6 A(−1)zΓµϕB(0)+µεAB ,

where the first line can be seen as a special case of the general solution given in the second
line. If one imposes the condition Γµ̂Ψµ̂ = 0 as in [6], then eq. (B.41) implies ψ−z = 0 and
therefore A(−1)z = 0 as the only solution.

In this text, we mostly focus on the case ϕA(0)−z = 0. Then the gauge-fixing func-
tion ΨA

−z becomes subleading and can be safely set to zero at all orders, as suggested by
eq. (B.46).

At the end, let us recall that, in our approach, the gauge-fixing functions are invari-
ant under the gauge transformations (δÂz = 0). Thus, the above solutions are consistent
because, since A(−1)z is constant, it also implies δA(−1)z = 0 for the asymptotic transfor-
mations.

C The rheonomic parametrizations

In this section we present the asymptotic expansion of the rheonomic parametrizations
R̃abcd, ρ̃Aab and F̃ab. The procedure is the one described in the main text and the applied
gauge fixing corresponds to A(−1)z = 0 and ΨA

z− = 0.

18Note that one could consistently assume that the relation of proportionality between ϕA−z and Az given
by eq. (B.41) holds at all orders, in the neighborhood of the boundary, imposing the stronger condition

ϕA(n)−z = i
6 A(n−1)zε

AB Γi Eµi ϕB(0)+µ , ∀n , (B.46)

that is equivalent to

ϕA−z = i
6 Azε

AB Γi Eµi ϕB(0)+µ . (B.47)

One can then prove that, considering the divergent terms in the z/` expansion of the outer components
(τ̂ = z) of the gravitini equations (B.35), that is Ei[µΓiρ̂(−1/2)+Aν]z = 0 and in particular using (B.46) in
the equation for ρ̂(−1/2)+Aµz in (B.20), one obtains

ΓiEi[µ
(
A(−1)zεAB − 2 δAB

)
ϕB(1)+ν] = 0 , (B.48)

which enforces the condition (B.44) to hold also in the case Âz 6= 0, Ψz− 6= 0. If we now take A(−1)z = 0
and plug (B.44) into the last equation of (B.32), we can see that, in this case, A(0)z = 0, ϕA(1)+µ = 0 is
actually the only solution to the aforesaid equation.
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We start from the graviphoton field strength

F̂ = dÂ− ΨAΨBε
AB = F̃abV

aV b . (C.1)

By expanding both sides of this equation onto the basis dxµ̂ ∧ dxν̂ , one can derive the
explicit expression of the rheonomic parametrizations

F̃ij =
(
z

`

)3
Eµ[iE

ν
j]

(
∂µA(1)ν−2εABψ

A
µ+ζ

B
ν−−2εABζ

A
µ+ψ

B
ν−

)
+O(z4) ,

2F̃i3 =−1
`

(
z

`

)2
A(1)µE

µ
i +

(
z

`

)3(
∂µA(1)z−

2
`
A(2)µ+2εABψ

A
z+ψ

B
µ−

)
Eµi +O(z4) , (C.2)

where we have used that F̂µν = O(z).
We now focus on the supercurvature of the gravitino and conformino,

ρ̂A = dΨA + 1
4Γabω̂abΨA − 1

2`Âε
ABΨB −

i
2`ΓaΨAV a

= ρ̃AabV
aV b − i

2ΓaΨBV
bF̃abε

AB − 1
4Γ5ΓaΨBV

bF̃ cdεABεabcd (C.3)

and expand this relation onto the basis dxµ̂ ∧ dxν̂ to obtain

ρ̃Aij+ =
(
z

`

) 5
2
Eµ[iE

ν
j]

(
∇µζAν+ + i

`
Ekµγkζ

A
ν− + 1

4ω
kl
(1)µγklψ

A
ν+−

1
4`A(1)µψν+Bε

AB

+ i
4`εlmnγ

lψBµ+E
m
ν E

ρnA(1)ρε
AB
)

+O(z7/2) ,

2ρ̃Ai3+ = −1
`

(
z

`

) 3
2
Eµi ζ

A
µ+ +

(
z

`

) 5
2
Eµi

(
∇µψAz+ −

1
4w

jk
(0)γjkψ

A
µ+ + 1

2`ε
ABA(1)zψBµ+

− 2
`

ΠA
µ+

)
+O(z7/2) ,

ρ̃Aij− =
(
z

`

) 5
2
Eµ[iE

ν
j]

(
∇µψAν− + i`

2 S
k
µγkψ

A
ν+

)
+O(z7/2) ,

2ρ̃Ai3− = −1
`

(
z

`

) 5
2
Eµi

(
ζAµ− + 1

4ε
ABγjψBµ+A(1)νE

ν
j

)
+O(z7/2) , (C.4)

where we used ρ̂Aµν = O(z1/2). This result allows to compute the spinor-tensor

Θab|c
A = −2iΓ[aρ̃

b]c
A + iΓcρ̃abA (C.5)

as an intermediate step necessary to find the remaining parametrizations. In particular,
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we obtain

Θij|k
A+ = i

(
z

`

) 5
2 (
−γiE[jµEk]ν+γjE[iµEk]ν+γkE[iµEj]ν

)(
∇µψAν−+ i`

2 S
l
µγlψAν+

)
+O(z7/2) ,

Θij|3
A+ =− i

`

(
z

`

) 5
2
γ[iEj]µ

(
ζAµ−+ i

4εABγ
kψBµ+A(1)ρE

ρ
k

)
−
(
z

`

) 5
2
E[iµEj]ν

(
∇µζAν+

+ i
`
EkµγkζAν−+ 1

4ω
kl
(1)µγklψAν+−

1
4`A(1)µψν+Bε

AB+ i
4`εklmγ

kψBµ+E
l
νE

ρmA(1)ρεAB

)
+O(z7/2) ,

Θi3|j
A+ = i

`

(
z

`

) 5
2
γ(iEj)µ

(
ζAµ−+ i

4εABγ
kψBµ+A(1)νE

ν
k

)
−
(
z

`

) 5
2
E[iµEj]ν

(
∇µζAν+

+ i
`
EkµγkζAν−+ 1

4ω
kl
(1)µγklψAν+−

1
4`A(1)µψν+Bε

AB+ i
4`εklmγ

kψBµ+E
l
νE

ρmA(1)ρεAB

)
+O(z7/2) ,

Θi3|3
A+ =−1

`

(
z

`

) 3
2
ζAµ+E

µi+
(
z

`

) 5
2
Eiµ

(
∇µψAz+−

1
4w

jk
(0)γjkψAµ++ 1

2`εABA(1)zψ
B
µ+

− 2
`

ΠAµ+

)
+O(z7/2) ,

Θij|k
A− = i

(
z

`

) 5
2 (
−γiE[jµEk]ν+γjE[iµEk]ν+γkE[iµEj]ν

)(
∇µζAν++ i

`
ElµγlζAν−

+ 1
4ω

lm
(1)µγlmψAν+−

1
4`A(1)µψν+Bε

AB+ i
4`εlmnγ

lψBµ+E
m
ν E

ρnA(1)ρεAB

)
+O(z7/2) ,

Θij|3
A− =− i

`

(
z

`

) 3
2
γ[iEj]µζAµ++i

(
z

`

) 5
2
γ[iEj]µ

(
∇µψAz+−

1
4w

kl
(0)γklψAµ+

+ 1
2`εABA(1)zψ

B
µ+−

2
`

ΠAµ+

)
+
(
z

`

) 5
2
E[iµEj]ν

(
∇µψAν−+ i`

2 S
k
µγkψAν+

)
+O(z7/2) ,

Θi3|j
A− = i

`

(
z

`

) 3
2
γ(iEj)µζAµ+−i

(
z

`

) 5
2
γ(iEj)µ

(
∇µψAz+−

1
4w

kl
(0)γklψAµ++ 1

2`εABA(1)zψ
B
µ+

− 2
`

ΠAµ+

)
+
(
z

`

) 5
2
E[iµEj]ν

(
∇µψAν−+ i`

2 S
k
µγkψAν+

)
+O(z7/2) ,

Θi3|3
A− = 1

`

(
z

`

) 5
2
Eiµ

(
ζAµ−+ i

4εABγ
jψBµ+A(1)ρE

ρ
j

)
+O(z7/2) .

We are now ready to compute the rheonomic parametrization of the supercurvature R̂ab.
Since

R̂ab = dω̂ab + ω̂acω̂c
b − 1

`2
V aV b − 1

2`ΨAΓabΨA

= R̃abcdV
cV d −Θab

A|cΨAV
c − 1

2ΨAΨBεABF̃
ab − i

4ε
abcdΨAΓ5ΨBεABF̃cd , (C.6)
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applying the usual procedure yields

R̃i3jk = i
2`

(
z

`

)2
Eµ[jE

ν
k]ψ

A
µ+γ

iζAν++ i
2`

(
z

`

)2
Eµ[jE

ν
k]ψ

A
µ+γ

lζAρ+ElνE
iρ

+ 1
`

(
z

`

)3
Eµ[jE

ν
k]

{
−DµS̃iν+ωi(2)lµE

l
ν−iΠA
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iψAν+−

i
2ζ

A
µ+γ

iζAν+

+ i
2ψ

A
µ−γ

iψA−ν+ψAµ+Elν

[
−iγ(iEl)ρ

(
∇ρψAz+−

1
4w
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(0) γmnψAρ+

+ 1
2`εABA(1)zψ

B
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2
`

ΠAρ+
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+E[iρEl]σ

(
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2 S
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ργmψAσ+
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+O(z4) ,

2R̃i3j3 =
(
z

`

)3
Eµj

{
− 1
`
wi(1)kE

k
µ+ 1

`2

(
4τ̃ iµ−τ iµ

)
− i
`
ζ
A
µ+γ

iψAz+−
i
`
ψ
A
µ+γ

iζAz+

+ 1
`
ψ
A
µ−ζAν+E

νi−ψAµ+E
iν
(1
`
ζAν−+ i

4`εABγ
lψBν+A(1)ρE

ρ
l

)}
+O(z4) , (C.7)

R̃ijkl =
(
z

`

)3
Eµ[kE

ν
l]

{
∂µω

ij
(1)ν+ωi(1)mµω

mj
ν+ωimµωmj(1)ν−

2
`2

(τ [i
µ +2τ̃ [i

µ )Ej]ν

− 1
`

(
ψ
A
µ+γ

ijζAν−+ζAµ+γ
ijψAν−

)
+iEmνψ

A
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(
−γiE[jρEm]σ+γjE[iρEm]σ

+γmE[iρEj]σ
)(
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`
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4ω
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+O(z4) ,

2R̃ijk3 =−
(
z

`

)2
Eµk

(1
`
ωij(1)µ−

i
`
ψ
A
µ+γ

[iEj]νζAν+

)
+
(
z
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)3
Eµk

{
∂µw

ij− 2
`
ωij(2)µ+ωilµwlj(0)−w

i
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(
Eiµw

j
(0)−w

i
(0)E

j
µ

)
+ 1
`
ψ
A
z+γ

ijψAµ−−ψ
A
µ+

[
iγ[iEj]ν

(
∇νψAz+−

1
4w

lm
(0)γlmψAν++ 1

2`εABA(1)zψ
B
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`

ΠAν+

)
+E[iνEj]ρ

(
∇νψAρ−+ i`

2 S
l
νγlψAρ+

)]}
+O(z4) .

To obtain the above formulas, we used R̂ab
µν = O(z) and that the supertorsion is zero (see,

in particular, (B.13)).
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