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Effect of process parameters on parts quality and process efficiency of Fused 

Deposition Modeling 

 

Abstract  

Fused Deposition Modeling (FDM) is an additive manufacturing technique for fabricating parts directly from 

computer-aided design data by melting, extruding, and resolidifying a thermoplastic filament. This paper 

presents a methodology for optimizing both process efficiency, i.e., time and energy consumption, and part 

quality, i.e., surface roughness and dimensional accuracy, of Polylactic Acid (PLA) components produced by 

FDM. In this work, a Design of Experiments (DoE) approach is adopted to quantify the effects of deposition 

parameters on process efficiency and part quality outputs. Specifically, the investigated input parameters are 

layer height, fill density, extruder temperature, part orientation, number of shells, print speed and retraction 

speed. The mathematical models relating the significant process parameters to the output responses are 

developed and the responses are optimized considering different scenarios. An experimental validation is 

performed to test the adequacy of such optimizations. These experimental results showed that, according to 

the context, different parameter settings pursue different goals in terms of part quality and process efficiency. 

The proposed approach may effectively help designers determine process parameters’ settings to optimize both 

part quality and process efficiency and can be applied to either prototype or part production.  

 

Keywords: Additive Manufacturing; Fused Deposition Modeling; Process Parameter Optimization; Design 

of Experiments; Polylactic Acid 

1. Introduction 

Additive Manufacturing (AM) is worldwide recognized as "the process of joining materials to make parts from 

3D model data, usually layer upon layer, as opposed to subtractive manufacturing technologies and formative 

manufacturing methodologies". Additive technologies have experienced significant growth over the past 30 

years in terms of the number of machines sold and parts produced. By researchers and practitioners, AM is 

considered one of the most dynamic and promising recent industrial innovations (Nyaluke et al., 1995; 

Wohlers, 2018). AM processes offer a novel approach for prototyping and manufacturing parts compared to 

traditional casting and metal-cutting processes. These technologies integrate computer-aided design (CAD) 

for creating a computer model of the final part with its manufacturing by adding layers of materials with 

dedicated equipment. Accordingly, it is possible to create spatially sophisticated and lightweight lattice 

components that would be impossible to obtain with traditional manufacturing techniques (Verna, Genta, et 

al., 2020). The rapid growth and improvements in AM technologies have enabled many industrial sectors to 

reap the advantages (Chergui et al., 2018; Lan & Ding, 2007). Typically, AM applications are found in the 

aerospace, energy, automotive, medical and dental, tooling and jewelry industries (Amini & Chang, 2018; 

Galetto et al., 2020; Gardan, 2016; Majeed et al., 2020; Verna et al., 2019). One of the main solid freeform 

fabrication (SFF) processes recognized as an AM technology is Fused Deposition Modeling (FDM). This 
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process is one of the most widely used, particularly for non-commercial use, due to its versatility in producing 

functional parts with complex geometry in reasonable production time (Rayegani & Onwubolu, 2014). In the 

FDM process, a thermoplastic filament is melted and extruded through a circular nozzle. The molten plastic is 

deposited onto a print bed through a nozzle movement, controlled through a 3-axis system. Thermoplastics are 

the most widely used feedstock materials, although different materials, including cement and composites, are 

also compatible with the FDM process (Abid et al., 2018; Li et al., 2018; Liu et al., 2019; Stoof & Pickering, 

2018). Due to the versatility of materials and shapes, FDM's main advantage is to produce polymeric complex-

shaped components in one step. The major applications are functional prototypes for commercial and non-

commercial use, rapid tooling patterns, and concept models. Despite FDM benefits, many technical challenges 

continue to hamper widespread adoption and achieve its full potential. One major barrier is the variation in the 

part quality and mechanical properties, due to inadequate dimensional tolerance, presence of defects, surface 

roughness, and residual stress, which is not sufficient yet to meet the industrial sectors' stringent requirements 

(Dong et al., 2018; Perez, 2002; Wu et al., 2018). Achieving high levels of surface roughness and dimensional 

accuracy of FDM parts is an extremely challenging task due to many factors, such as the high complexity of 

the underlying physical phenomena and transformations that take place during part production. Nowadays, 

there is no unique standard method to model and improve the surface quality and dimensional accuracy due to 

the complex nature of the process and the different properties of the material used. Indeed, several approaches 

have been adopted in the literature to this purpose, such as Design of Experiments (DoE), simulations and 

optimizations, involving different process parameters and their interactions. In particular, several attempts 

have been made to model the surface roughness of FDM parts. Ahn et al. (2009) proposed a theoretical model 

to express surface roughness distribution according to changes in surface angle by considering the main factors 

that crucially affect surface quality. In the study of Anitha et al. (2001), parameters' influence on prototype 

quality characteristics using Taguchi technique was assessed. Pandey et al. (2003) described a methodology 

and software implementation that provide the designer with a computer graphics-based visualization of surface 

roughness. In the study of Durgun and Ertan (2014), the effect of five different raster angles for three 

orientations was tested on surface roughness, tensile strength, and flexural strength. Furthermore, several 

studies have been published in the literature on modeling the dimensional accuracy of FDM parts. Sood et al. 

(2009) investigated the effect of different process parameters, such as layer height, part orientation, raster 

angle, air gap and raster width, on the dimensional accuracy of FDM processed ABSP400 (acrylonitrile-

butadine-styrene) parts. Also in the paper of Nancharaiah et al. (2010), the effect of layer height, road width, 

raster angle and air gap on the surface finish and dimensional accuracy was investigated.  Sahu et al. (2013) 

presented experimental data and a fuzzy decision-making logic combined with Taguchi method for improving 

the dimensional accuracy of FDM processed ABSP 400 parts. Garg et al. (2016) investigated the effect of part 

deposition orientation on surface finish and dimensional accuracy of FDM parts. Previous research has also 

investigated the effect of several process parameters on the FDM process's efficiency in terms of printing time 

and energy consumption (Frank et al., 2015; Griffiths et al., 2016). It is evident from the literature that several 

input parameters can be controlled and varied in order to optimize the selected output parameters, involving 
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efficiency and quality of FDM parts (Pandey et al., 2004). In this work, a methodology for choosing the input 

parameters is proposed and implemented. When a combination of different input variables and their 

interactions affect selected responses, the Design of Experiments (DoE) is an effective statistical approach for 

optimizing the process (Mason et al., 2003; Verna, Biagi, et al., 2020).  

This paper aims at investigating FDM processed PLA (Polylactic Acid) parts through statistically designed 

experiments to determine the significance of the process parameters affecting parts quality (surface roughness 

and dimensional accuracy) and process efficiency (printing time and energy consumption). To date, few 

detailed studies have proposed a combined analysis of the quality and efficiency of parts produced by the FDM 

process. This investigation attempts to provide a reference procedure to determine the combination of process 

parameters that optimize both part quality and process efficiency, with the minimum number of tests. To this 

end, a fractional factorial design is performed. The Analysis Of Variance (ANOVA) is used to estimate the 

statistical significance of parameters' effects on the observed differences in the selected responses. The 

adequacy of the obtained models is demonstrated by using the coefficients of determination, and the residual 

plots are analyzed to verify the basic assumptions to perform the ANOVA. The mathematical models relating 

the significant process parameters to the output responses are derived and optimized, considering different 

scenarios. Finally, new samples are produced to test the models' adequacy and the optimizations performed in 

each scenario. The findings should make an important contribution to the field of FDM production by 

supporting designers in the improvement of process efficiency and parts quality, according to their objectives.  

It is worth remarking that, in the scientific literature, it has been shown that some parameters may have a 

quadratic effect on responses (Lužanin et al., 2014; Sanatgar et al., 2017). To this end, four central points are 

added to the experiment, which allowed evaluating the model's curvature. However, since the effects of each 

quadratic term of the model cannot be estimated without performing further tests, i.e., by adding axial points, 

these models may not be used for forecasting purposes (Myers & Montgomery, 1995). Further tests will aim 

at estimating the quadratic effects, thus improving the predictions and optimizations obtained in this paper. 

Despite this limitation, the proposed methodology can represent an effective and efficient approach to support 

researchers and practitioners. 

The remainder of this paper is organized into five sections, including one appendix. Section 2 presents the 

FDM process and the produced PLA samples. Section 3 contains the description of the design of experiments 

and the related experimental details. Section 4 contains the performed analysis with the related experimental 

results and discussion. Section 5 summarizes the results obtained, specifying the practical implications and 

insights for future research. The Appendix section provides further information to support the proposed 

analysis. 

 

2.  FDM process and samples 

 

2.1. FDM machine 
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The AM machine used in this study is the MakerBot z18. It is characterized by a layer resolution of 100 µm 

and an on-board camera to remotely monitor the print progress. Besides, it enables the production of both 

prototypes and finished products due to the high performance, including high speed, good reliability and free 

design, in a build volume of 30.0 L x 30.5 W x 45.7 H cm. Shortly, in the machine MakerBot z18, the filament 

is fed into the extruder of the printer, where it is heated to a temperature high enough to melt it. Then, it is 

extruded from a nozzle to create an object, each layer at a time. The machine is provided with a nozzle with a 

diameter of 0.4 mm. Furthermore, it does not have a heated build plate, and thus it operates at room temperature 

(between 15 °C to 24 °C). A schematic representation of the FDM machine is provided in Figure 1. 

 

Figure 1 – Schematic of the FDM process 

 

2.2. Process parameters 

A considerable amount of literature focused on the effect of FDM process parameters on parts quality and 

process efficiency. These process parameters can be grouped into three categories (see also Table 1): 

(i) Process-specific influencing variables: layer height, bed temperature, nozzle temperature, fill 

density, print speed, infill speed, retraction distance, retraction speed, initial layer height, initial 

layer line width, bottom layer speed, raster angle, raster width, air gap, number of shells, shell 

thickness, bottom/top thickness, outer shell speed, inner shell speed; 

(ii) Machine-specific influencing variables: nozzle diameter, speed of material feeding rollers, 

filament width, layer height, platform adhesion type, temperature of removal, filament diameter; 

(iii) Geometries-specific influencing variables: part orientation, particular features. 

The parameters listed above are first reduced by selecting the parameters that are actually controllable on the 

MakerBot z18. For instance, parameters such as nozzle diameter or bed temperature are not considered in the 

present analysis because they cannot be modified and controlled in the adopted AM machine. Secondly, a 

qualitative matrix of relation is created to identify not significant parameters (see Table 1). In the column 

Build 

material 

filament

Support 

material 

filament

Build platform

Foam base

Extrusion nozzles

Liquefier head
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"Literature", the evaluations are related to the relations identified in the literature. A nominal scale from 1 to 

5 is adopted. This 5-point scale is chosen because it enables the evaluator to clearly distinguish between the 

various levels, without generating ambiguity and/or item omissions in the evaluation process (Agresti, 2003; 

Franceschini et al., 2007, 2019). Specifically:  

• 5 is assigned when three or more papers identified a relation between the process parameter and the 

response;  

• 4 means that two papers showed the existence of a relation among the variables;  

• 3 is assigned when one paper proved a relation among the variables;  

• 2 when one paper suggested that no relation exists;  

• 1 when more than one paper showed the non-relation between the parameter and the response;  

• NC, i.e., not classifiable, is introduced when no paper investigated the relation between the parameter 

and the response.  

Table 1 – Qualitative matrix of relation between process parameters and responses, according to literature 

and experts' evaluations 

Category Parameter 

Printing time 

[min] 

Energy 

consumption 

[kWh] 

Surface roughness 

[µm] 

Dimensional 

accuracy [mm] 

Literature Expert Literature Expert Literature Expert Literature Expert 

(i) 
Print Speed 

[mm/s] 
4 4 4 4 3 3 4 4 

(i) 
Layer Height 

[mm] 
5 5 4 4 5 5 4 4 

(i) 
Fill Density 

[%] 
5 4 4 4 2 1 4 3 

(i) 

Extruder 

temperature 

[°C] 

NC NC 4 4 2 2 3 3 

(i) 
Number of 

shells [-] 
4 4 3 3 3 1 3 2 

(i) 

Bottom/Top 

thickness 

[mm] 

3 2 2 2 2 1 2 2 

(i) 
Retraction 

speed [mm/s] 
4 1 2 1 3 NC 3 NC 

(i) 

Retraction 

distance 

[mm] 

3 1 2 1 3 NC 3 NC 

(ii) 

Filament 

diameter 

[mm] 

1 NC 1 NC 3 2 2 2 

(iii) 

Part 

orientation 

[°] 

1 NC 2 NC 4 4 4 4 
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The matrix reported in Table 1 also includes the evaluation of experts in the FDM process. Three experts were 

interviewed since three can be considered the minimum acceptable number for obtaining reliable evaluations 

without significantly increasing the cost of acquiring information (Franceschini et al., 2019). The experts' 

evaluation, obtained according to the 5-points scale, is reported in the column "Expert". Finally, process 

parameters having at least one evaluation equal to 4 in the relation matrix are chosen as potential control factors 

for the planned experimentation. These parameters are: print speed, layer height, fill density, extruder 

temperature, part orientation, number of shells, retraction speed. Although part orientation was significant, it 

is not considered in this study as the aim is to produce parts without using supports. To this purpose, new 

experiments will be designed to evaluate part orientation's effect on selected responses. It has to be remarked 

that the selection of process parameters for the DoE, also called pre-experimental planning, requires in-depth 

process knowledge. According to Montgomery (2017), different techniques can support designers in this 

phase, such as cause-and-effect diagrams. However, no standard procedure exists. In this paper, rather than 

relying only on prior knowledge, a structured method has been proposed that combines literature review and 

practical experience. 

Finally, the six process parameters considered are described in detail. 

1. Print speed: this parameter specifies the printing speed used during the process. It influences the speed 

of material deposition. Frank et al. (2015) included print speed as one of the seven input parameters 

for the experiment and discovered that this factor has a statistical influence on the overall time needed 

to finish a printed part.  

2. Layer height: layer height represents the thickness of each printed layer. It is equivalent to vertical 

resolution in FDM parts. The thinner the layer, the smoother the printed object's texture, but more time 

is required. This strictly depends upon the type of nozzle used (Anoop K Sood et al., 2012). The 

standard nozzle diameter on MakerBot z18 is 0.4 mm, and therefore, this is the highest layer height 

that can be achieved. In literature, several studies have investigated the key role of layer height in 

FDM processes (Anitha et al., 2001; Frank et al., 2015; Griffiths et al., 2016; Onwubolu & Rayegani, 

2014; Pandey et al., 2003; Pennington et al., 2005; Anoop K Sood et al., 2012).  

3. Fill density: the infill percentage gives the support structure inside the object and can be varied 

depending on the part's application field. The density of the part is strictly related to the infill 

percentage. A higher percentage will result in a more robust object, while 0% infill will make the 

object hollow. When a prototype is only used for shape and fit testing, the infill percentage can be 

decreased, allowing it to be made at a lower cost and faster. Griffiths et al. (2016) included fill density 

and other three process parameters to investigate the relation among these and output variables. 

4. Extruder temperature: this is the temperature of the nozzle. This parameter affects the viscosity of the 

polymer. In the research of  Frank et al. (2015), it was shown that the high temperature of the nozzle 

strongly impacts the shrinkage. Kaveh et al. (2015) investigated the effect of the extruder temperature 
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on precision and internal cavity of geometries produced by FDM. The results showed that the 

temperature affects both the output variables (Kaveh et al., 2015). 

5. Number of shells: a shell is a border that is extruded for each layer. The minimum number of shells 

per layer is one (Griffiths et al., 2016). Adding more shells does not affect its external dimensions but 

can make the part stronger. The number of shells is one of the process parameters considered by 

Griffiths et al. (2016) in their research. 

6. Retraction speed: the retraction speed gives information on how fast the filament is retracted. In many 

cases, this parameter is not considered in investigations. However, since two parts are printed together 

in this study, the retraction speed might significantly affect part final quality and printing time. 

 

 

 

2.3. PLA samples 

Two FDM processed PLA (polylactic acid) samples are produced, following the six steps illustrated in Figure 

2: 3D model creation, STL file, File transfer to the machine, Machine setup, Build, Part removal (Gibson et 

al., 2014). 

Two shapes considered “problematic features” in literature are designed to analyze how the machine works 

under stressed conditions. The two samples that are produced together in the same job are an overhang and a 

bridge. They can be seen, respectively, as prototypes of a connector for a pump and a door hinge (see Figure 

3). 

Regarding the prototype of a connector for a pump, the main features are the overhanging surfaces. An 

overhang occurs when the material on the printed layer is partially supported by the underlying layer. At 45°, 

the newly printed layer is supported by 50% of the previous layer, allowing sufficient support and adhesion to 

build on it. Above 45°, although overhanging features may be produced without supports, the angled surface 

begins to suffer in quality due to the molten filament's inherent stickiness (Montero et al., 2001). For that 

reason, supports are highly recommended. Another issue that occurs when printing overhangs is curling. The 

newly printed layer becomes increasingly thinner at the overhang's edge, resulting in differential cooling 

causing it to deform upward (Gibson et al., 2014). For these two reasons, the prototype in Figure 3 is designed 

with an overhang of 45° to stress this boundary condition. 
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Figure 2 – The six steps to produce the samples (3D model creation, STL file, File transfer to the machine, 

Machine setup, Build, Part removal) 

 

 

 

 

 

Figure 3 - Prototypes of a connector for a pump and of a door's hinge 

 

Concerning the second prototype, the door's hinge, it is characterized by a bridge structure. Bridging occurs 

when the machine has to deposit material between two supports or anchor points. In general, the shorter is the 

length of the bridge, the greater is its structural success. Instead, the longer the bridge, the more post-processing 

and supports will require (Gibson et al., 2014). The bridge is 24 mm in length in the sample produced and is 

printed without supports.  

 

3. Design of experiments and experimental details 

 

3.1. Design of experiments 

As abovementioned, the six process parameters or control factors chosen are: layer height (L), fill density (F), 

extruder temperature (T), number of shells (S), print speed (P), and retraction speed (R). These parameters 

were kept at two levels, i.e., "minimum value" and "maximum value" (Table 2). Minimum, center and 

maximum values of each process parameter were obtained starting from the default values suggested by the 

producer, also taking into account the values used in the scientific literature and the empirical tests carried out 
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on the machine in preliminary tests. From the manufacturing viewpoint, the levels of each process parameter 

can be set in the FDM machine through the MakerBot Desktop application before each planned test.  

Table 2 – Levels of process parameters 

Process 

parameter 
Symbol Minimum value Center value 

Maximum 

value 

Layer height L [mm] 0.12 0.20 0.31 

Fill density F [%] 5 10 20 

Extruder 

Temperature  
T [°C] 205 215 220 

Number of 

shells 
S [-] 1 2 3 

Print speed P [mm/s] 140 150 160 

Retraction 

speed 
R [mm/s] 45 50 60 

 

Table 3 - Arrangement of the two-level factorial with half fractional design for the six process 

parameters used in the present study 

Run Order L [mm] F [%] T [°C] S [-] P [mm/s] R [mm/s] 

1 0.310 0.050 205 3 140 45 

2 0.120 0.200 220 1 160 60 

3 0.310 0.200 205 1 140 45 

4 0.310 0.200 220 1 140 60 

5 0.310 0.200 220 3 140 45 

6 0.310 0.200 205 1 160 60 

7 0.310 0.200 220 3 160 60 

8 0.310 0.050 220 1 160 60 

9 0.310 0.050 205 3 160 60 

10 0.310 0.200 220 1 160 45 

11 0.310 0.050 220 3 140 60 

12 0.120 0.050 205 3 140 60 

13 0.310 0.050 205 1 160 45 

14 0.120 0.200 205 3 140 45 

15 0.120 0.050 205 3 160 45 

16 0.120 0.200 220 3 140 60 

17 0.120 0.050 220 1 140 60 

18 0.120 0.050 205 1 140 45 

19 0.120 0.200 205 1 160 45 
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20 0.120 0.050 220 1 160 45 

21 0.120 0.200 220 1 140 45 

22 0.120 0.200 205 3 160 60 

23 0.120 0.050 205 1 160 60 

24 0.310 0.200 205 3 140 60 

25 0.310 0.050 220 1 140 45 

26 0.120 0.200 205 1 140 60 

27 0.120 0.050 220 3 140 45 

28 0.120 0.050 220 3 160 60 

29 0.310 0.050 220 3 160 45 

30 0.310 0.200 205 3 160 45 

31 0.310 0.050 205 1 140 60 

32 0.120 0.200 220 3 160 45 

 

With respect to the traditional full-factorial experimental plan, which would require 64 tests, a two-level 

factorial with half fractional design is performed, resulting in 32 experiments (see Table 3). The order of the 

tests is randomized. This half fractional design with six control factors is a Resolution VI design. This means 

that no main effects or 2-factor interactions are aliased with any other main effects or 2-factor interactions. 

However, 2-factor interactions are aliased with 4-factor interactions and main effects are aliased with 5-factor 

interactions (Montgomery, 2017). The complete list of the aliases generated by the half factorial design is 

provided: L=F·T·S·P·R, F=L·T·S·P·R, T=L·F·S·P·R, S=L·F·T·P·R, P=L·F·T·S·R, R=L·F·T·S·P, 

L·F=T·S·P·R, L·T=F·S·P·R, L·S=F·T·P·R, L·P=F·T·S·R, L·R=F·T·S·P, F·T=L·S·P·R, F·S L·T·P·R, 

F·P=L·T·S·R, F·R=L·T·S·P, T·S=L·F·P·R, T·P=L·F·S·R, T·R=L·F·S·P, S·P=L·F·T·R, S·R=L·F·T·P, 

P·R=L·F·T·S. 

The ANOVA is applied to assess if the observed differences in the responses, caused by the parameters' 

variation, are systematic rather than physiological. Therefore, the statistically significant parameters identified 

using the ANOVA are used as predictors in the regression models correlating each response with the relevant 

parameters.  

3.2. Experimental details 

Following the experimental plan, the 32 printing jobs resulted in 64 parts: 32 parts representing the connector 

for the pump and 32 parts representing the door's hinge. After the production, measurements are performed. 

The Printing Time (PT) and the Energy Consumption (EC) data are measured during the printing process for 

each job. Data for each job's energy consumption have been collected during the process using the Energy 

Logger 4000 EKM device by VOLTCRAFT. It is worth remarking that printing time and energy consumption 

values are not representative of a single object. Indeed, they are relevant to each job, which consists of the two 

parts together. 
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For the surface roughness and the dimensional accuracy, the parts are marked and measured afterward. In 

detail, the surface roughness is measured according to industrial standards ISO 4287 and ISO 4288, using a 

roughness tester RTP80 with a 2 μm radius stylus tip (ISO 4287:2009; ISO 4288:2000). Two surfaces for the 

overhang (Surface 1 and Surface 2) and three for the bridge (Surface 3, Surface 4 and Surface 5) are measured 

(see Figure 4). For such surfaces, characterized by a periodic profile due to the process's intrinsic 

characteristics, the prescribed sampling length is based on the mean width of profile elements (RSm). When 

RSm is included between 0.4 mm and 1.3 mm, it is recommended to use a sampling length for filtering (cut-

off length) of 2.5 mm and an evaluation length of 12.5 mm [38]. The Robust Regression Gaussian Filter, 

defined in ISO 16610-31, is used (ISO 16610-31:2016). It is an iterative algorithm that calculates local weights 

based on the distance between the primary and waviness profiles. This filter is the preferred choice for 

structured surfaces, stratified surfaces and in the presence of form, grooves or pores (ISO 16610-31:2016). In 

addition to the parameter RSm, the roughness parameter calculated from the filtered roughness profile is Ra, 

defined as the average value of the ordinates from the centerline. It is theoretically derived as the arithmetic 

average value of departure of the profile from the mean line along a sampling length. Three measurements, 

each spaced as far apart as possible on the surface, in the direction perpendicular to the deposition path, are 

performed on each surface of the samples. The Ra and RSm values are derived and the average values are 

examined. Accordingly, each surface, both of the overhang and the bridge, is characterized by two output 

variables (for instance, Surface 1 by Ra1 [µm] and RSm1 [mm]). 

These measurements aim to evaluate the effect of the different orientations of the surfaces with respect to the 

build direction on the parts surface quality. Since the two different geometries are built in the orientation of 

Figure 4, it is expected that Surface 3 and Surface 1 are rougher than Surface 2 and Surface 4. This expectation 

will be confirmed by analyzing the Ra and RSm values (see next Section 4). An example of the graph obtained 

by the surface roughness tester is provided in Figure 5. 

 

Figure 4 - Measurements of the surface roughness. Surface 1 and Surface 2 are analyzed on the overhang, 

while Surface 3, Surface 4 and Surface 5 on the bridge. 
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Figure 5 - Surface Roughness Graph of Surface 1 

 

For dimensional accuracy, the parts are measured using a digital caliper with a resolution of one-hundredth of 

a millimeter. One measure for each dimension is taken afterward (see Figure 6). Since the parts are created as 

prototypes, the dimensions measured are the ones that may require a more stringent tolerance, rather than the 

total height, width, and length, which could vary within certain limits. The target values of the dimensions that 

need to be achieved by the two prototypes are as follows: DA1 = DA2 = 14.59 mm, DA3 = 18.76 mm, DA4 = 

DA8 = 13.34 mm, DA5 = 10.00 mm, DA6 = DA7 = 23.35 mm, DA8 = 13.65 mm. The measurement results for 

all the responses are reported in Table A.1. 

 

Figure 6 - Measurements of dimensional accuracy 
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4. Experimental results and discussion 

 

4.1. DoE analysis 

The experiment aims to optimize the process parameters in the FDM process to get better responses. In detail,  

the objectives are minimizing printing time, energy consumption and surface roughness, and maximizing 

dimensional accuracy (i.e., minimizing the deviation from the target value of each dimension). The 

arrangement of the DoE allows the development of the appropriate empirical equations (first-order multiple 

linear regression equations, including two-way interactions), defined as follows:  

𝑦𝑗 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽3𝑥3 + 𝛽4𝑥4 + 𝛽5𝑥5 + 𝛽6𝑥6 + 𝛽12𝑥1𝑥2 + 𝛽13𝑥1𝑥3 +

+𝛽14𝑥1𝑥4 + 𝛽15𝑥1𝑥5 + 𝛽16𝑥1𝑥6 + 𝛽23𝑥2𝑥3 + 𝛽24𝑥2𝑥4 + 𝛽25𝑥2𝑥5 + 𝛽26𝑥2𝑥6 +
+𝛽34𝑥3𝑥4 + 𝛽35𝑥3𝑥5 + 𝛽36𝑥3𝑥6 + 𝛽45𝑥4𝑥5 + 𝛽46𝑥4𝑥6 + 𝛽56𝑥5𝑥6

 (1) 

 

where 𝑦𝑗 (j = 1, …, 20) corresponds to each response of Table A.1 (PT, EC, DA1-DA8, Ra1-Ra5, RSm1-RSm5). 

The predicted response (𝑦𝑗) is therefore related to the set of regression coefficients (β): the intercept (𝛽0), linear 

(𝛽1,𝛽2,𝛽3,𝛽4,𝛽5,𝛽6), and interaction (𝛽12,𝛽13,𝛽14,𝛽15,𝛽16,𝛽23,𝛽24,𝛽25,𝛽26,𝛽34,𝛽35,𝛽36,𝛽45,𝛽46,𝛽56). The 

software MINITAB® is used to perform the analysis. The ANOVA, the coefficients for each factor and their 

p-values (see Table A.2) are obtained separately for each response. 

In order to reveal the cause-and-effect relationships between the six factors and the twenty responses, a first 

qualitative analysis for each response may be carried out through the analysis of the “Interaction plot”. This 

plot is used to visualize possible interactions between variables. If there is no interaction, the lines in the plot 

are parallel. On the contrary, the higher the degree of interaction, the greater is the difference in slope between 

the lines. However, the interaction plot does not tell if the interaction is statistically significant. For DA1 (see 

Figure 7), many interactions between parameters appear to be evident, such as the interactions between L and 

F, L and T, F and T, L and P, S and P, F and S.  
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Figure 7 – Interaction plot for DA1 [mm] 

 

Through the ANOVA, the significance of every single main effect and interactions between variables is 

derived separately for each response. Furthermore, the coefficients of determination (R-Sq [%], R-Sq adj [%]) 

have been calculated for each variable. These values indicate whether the model fits the data adequately or 

not. The R-Sq value always increases when additional predictors are added to a model, whereas the R-Sq adj 

shows in percentage how much the model explains the variance of the responses considering the numbers of 

predictors (Myers & Montgomery, 1995). The R-Sq for the printing time is 99.99% and for energy 

consumption is 99.92 %. For the dimensional accuracy of the bridge, the R-Sq varies from 92.49 % to 68.09 

%; for the overhang from 93.40% to 84.14%. Concerning the Ra surface roughness parameters, the coefficients 

of determination for the overhang are 97.57% and 90.79%, and for the bridge varies from 77.83% and 92.07%. 

As far as RSm parameters are concerned, R-Sq related to the overhang are 97.53% and 75.85%, and for the 

bridge varies from 71.70% and 85.81%. 

Based on the results, the models are subsequently reduced through the standard stepwise regression. This 

method both adds and removes predictors as needed for each step. It stops when all variables not in the model 

have p-values greater than the specified Alpha-to-Enter value and when all variables in the model have p-

values less than or equal to the specified Alpha-to-Remove value (Montgomery et al., 2009). According to the 

literature, the Alpha-to-Enter and Alpha–to–Remove values are set to 0.15 (15%) (Wiegand, 2010). The new 

p-values obtained from ANOVA are reported in Table 4. In the table, differentiation among the factors which 

have p-value ≤ 1% (a very significant influence) and p-value ≤ 5% (a significant influence) is introduced. The 

factors with p-value ≤ 1% are double-asterisked and the factors with p-value ≤ 5% are asterisked. If a term is 

not included in the model after the stepwise procedure, then no p-value is reported in the table. Comparing the 
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R-Sq adj of the reduced models with the previous ones, all the coefficients increased or remained constant, 

indicating that the terms deleted are not significant. 

A mathematical model of the relationship between process parameters and each response is developed by 

regression analysis, based on the previous analysis. The complete list of regression models is given in Table 

A.3 and their measures of goodness-of-fit in Table 4. For example, the following mathematical model is 

developed for the response DA1 [mm] (obtaining R-Sq = 68.33%): 

𝐷𝐴1 = 11.02 + 1.56 𝐿 − 0.0995 𝑆 + 0.0249 𝑃 + 0.0839 𝑅 − 0.0482 𝐿 · 𝑅 + 0.471 𝐹 · 𝑆
− 0.0152 𝐹 · 𝑅 − 0.000542 𝑃 · 𝑅   

(2) 

 

Besides, the surface plots of each response are obtained. In Figure 8, the surface plot of DA1 versus F and L, 

and DA1 versus P and S are reported. 

 

Figure 8 – Surface plots of DA1 [mm] versus F [%] and L [mm], and DA1 [mm] versus P [mm/s] and S [-]
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Table 4 – p-value [%] table resulting from ANOVA after the stepwise regression (Alpha-to-Enter = Alpha-to-Remove = 15%) 

 
PT 

[min] 

EC 

[kWh] 

DA1 

[mm] 

DA2 

[mm] 

DA3 

[mm] 

DA4 

[mm] 

DA5 

[mm] 

DA6 

[mm] 

DA7 

[mm] 

DA8 

[mm] 

Ra1 

[µm] 

Ra2 

[µm] 

Ra3 

[µm] 

Ra4 

[µm] 

Ra5 

[µm] 

RSm1 

[mm] 

RSm2 

[mm] 

RSm3 

[mm] 

RSm4 

[mm] 

RSm5 

[mm] 

L [mm] <0.1** <0.1** <0.1** <0.1** <0.1** 0.3**  <0.1** <0.1** 11.2 <0.1** <0.1** <0.1** <0.1** 0.3** <0.1** 0.1** <0.1**  7.3 

F [%] <0.1** <0.1**  7.0 0.2**   0.6** 0.6**     0.2**   0.7**  3.7*  

T [°C]  <0.1**     1.7* 1.5* 0.9**  11.9  12.1  7.9      

S [-] <0.1** <0.1** 7.5 <0.1** <0.1** <0.1**     <0.1** 5.2    <0.1**     

P [mm/s]   12.2        9.6     10.6     

R [mm/s]   0.3**    5.5        11.3      

L·F [mm] <0.1** <0.1**  14.5  6.8 14.6       0.1**     11.6  

L·T 

[mm∙°C] 
 0.2**  0.5**  7.8 1.9*        14.3      

L·S [mm] <0.1** <0.1**   <0.1** <0.1** 12.6 1.1*   <0.1** 0.6** 7.2   <0.1** 0.3**  3.8*  

L·P [mm2/s]    0.4** 6.9      9.3     6.1     

L·R [mm2/s]   12.8    0.6** 7.0 4.0*           14.4 

F·T [°C]  5.1   1.3* 5.3    12.4 3.7*    9.3 3.9*   0.5**  

F·S [-] <0.1** 0.1** 3.3*  0.1** 6.0 8.2  4.6*    14.4  4.7*   6.5  12.0 

F·P [mm/s]           8.5  11.5   7.8  3.7*   

F·R [mm/s]   7.5 5.7  10.0  2.6*             

T·S [°C]      10.0  2.0* 5.2 0.6** 14.6          

T·P 

[°C∙mm/s] 
                  11.3  

T·R 

[°C∙mm/s] 
      0.2**    6.2  3.8* 1.2* 0.2** 3.7*  2.6*  0.3** 

S·P [mm/s]    1.6* 0.3** 4.0*  7.9 1.0** 5.7 13.9    4.1* 2.1     

S·R [mm/s]    <0.1**      13.1  9.1     10.8  7.1  

P·R 

[mm2/s2] 
  7.5 3.5*        8.8     13.0  2.8*  

R-Sq [%] 99.97 99.88 68.33 88.86 90.60 80.74 66.67 81.18 77.90 44.07 95.53 86.39 90.25 74.31 65.26 95.44 60.72 80.46 58.48 41.54 

R-Sq adj 

[%] 
99.96 99.84 57.31 83.55 87.33 71.57 55.08 74.64 71.45 33.32 94.62 83.77 87.91 70.51 53.18 93.57 53.16 77.56 46.37 32.88 
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As shown in Table A.3, depending on the model considered, process parameters and interactions can have a 

direct or inverse proportionality effect. For instance, considering dimensional accuracy responses (DA1-DA8), 

layer height can have a directly proportional effect (as for DA1 and DA2) or an inversely proportional effect 

(as for DA3 and DA4). Therefore, given the complexity of the production process, identifying the different 

mathematical relationships between process parameters and responses is fundamental for improving the 

production process. In particular, as it will be described in the next Section 4.3, the modeling of the responses 

will enable to perform optimizations and thus obtain the optimal parameter sets. 

Moreover, for every regression model, externally studentized residuals, also called studentized deleted 

residuals, are obtained (Montgomery et al., 2012). The analysis of residuals is essential to understand if the 

ordinary least squares assumptions are satisfied. If these assumptions are fulfilled, then the regression produces 

unbiased coefficient estimates with the minimum variance (Montgomery et al., 2009). In detail, the following 

tests on externally studentized residuals are performed. Firstly, a normal Quantile-Quantile (Q-Q) plot of 

residuals for each selected regression is obtained. If the data points follow a 45° line, the normality assumption 

is likely to hold. Secondly, a test on the sample Skewness and Kurtosis (both approximately normal) of the 

residuals for each selected regression is carried out (Joanes & Gill, 1998). If both tests pass, the normality 

assumption is strengthened. Besides, a Shapiro-Wilk test on those same residuals for a final confirmation of 

normality is performed (Shapiro & Wilk, 1965). Finally, a Box and Whisker Plot for residuals is constructed 

to check for outliers (Devore, 2011). For instance, considering the regression model in Eq. (2) which refers to 

DA1, the normal Q-Q plot of residuals provided in Figure 9 shows that residuals follow a normal distribution. 

The Skewness test and the Kurtosis test (α = 0.05) cannot reject the null hypothesis of a normal distribution of 

residuals (p-value is, respectively, 0.97 and 0.70). Also, by performing the Shapiro-Wilk normality test (α = 

0.05), the null hypothesis of a normal distribution of residuals cannot be rejected (p-value = 0.71). From the 

Box and Whisker Plot, no outlier has been identified. The described procedure was applied to the externally 

studentized residuals of all the regression models reported in Table A.3. The normal Q-Q plots and the 

normality tests failed to reject the hypothesis of normality of residuals for all the models. However, some 

outliers have been identified by the Box and Whisker Plots. In detail, the residuals detected as outliers 

correspond to the following tests: test no. 2 for EC, test no. 1 and 24 for Ra1 and RSm1, test no. 22 for Ra2, 

test no. 26 for Ra4, and test no. 23 for DA5. The prevalence of outliers related to roughness measurements can 

be justified by the fact that in FDM parts, typically, the extent of roughness defects is greater than that of other 

issues, such as dimensional or process faults (Wickramasinghe et al., 2020). Additional normal Q-Q plots and 

normality tests results on externally studentized residuals are provided in Figure A.1 for the responses PT, EC, 

Ra5 and RSm5.  
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Figure 9 – Normal Q-Q plot of externally studentized residuals for DA1 [mm] 

 

4.2. Evaluation of quadratic effects 

In the scientific literature, it has been demonstrated that some parameters may have a quadratic effect on the 

responses (Lužanin et al., 2014; Sanatgar et al., 2017). To this end, four central points are added to the 

experiment, allowing the evaluation of the model's curvature. As shown in Table A.4, which reports the p-

values resulting from the ANOVA of the stepwise regression procedure, the quadratic effect is significant for 

some responses, including PT, EC, DA2, Ra1, Ra4 and RSm1. By introducing these 4 points, the R-Sq adj of 

most of the models has improved or remained unchanged. However, R-Sq adj has been reduced for DA1, DA4, 

DA5, DA8, Ra1, Ra3, Ra4 and RSm1. Although some models present a curvature, it is impossible to attribute 

the quadratic effect to a specific process parameter. In fact, only one quadratic effect at a time can be estimated 

because of the used design: starting from a fractional design and adding center points, the vectors of quadratic 

terms are all the same. As a result, all quadratic effects are aliased among them. For that reason, without further 

experiments, no regression curves can be derived for forecasting and optimization. Future research will include 

replications and axial points (also called star points) to estimate all the quadratic effects and improve 

forecasting models accordingly.  

 

4.3. Optimization 

In order to optimize the responses, the regression models used are those including the parameters and 

interactions that have been identified as significant by the stepwise regression procedure (see Table 4 and 

Table A.3). The optimal combinations of parameters that optimize the response curves are obtained, firstly for 

optimizing all responses jointly (general scenario), and then a set of responses (scenarios I, II, IIIa and IIIb, 

IVa and IVb), as summarized in Table 5.  Since the joint optimization has to satisfy the requirements for all 

the selected responses, the more responses to be optimized, the more difficult it is to achieve high predictability 

due to the conflicting objectives. Therefore, different scenarios are analyzed in order to improve the percentage 

of predictability of responses.  



19 
 

In the general scenario, all responses are considered and optimized. In detail, the printing time, energy 

consumption and surface roughness are minimized, while all the dimensions are set to their target values. When 

different responses are optimized together, for each j-th response, an index “𝑑𝑗” is provided. It represents the 

individual desirability and evaluates how the settings optimize the response. For instance, if the objective is to 

minimize the j-th response, 𝑑𝑗 is calculated as:  

(i) 𝑑𝑗 = 0 if 𝑦𝑗̂ > 𝑈𝑗 

(ii) 𝑑𝑗 = (𝑈𝑗 − 𝑦𝑗̂)/(𝑈𝑗 − 𝑇𝑗) if 𝑇𝑗 ≤ 𝑦𝑗̂ ≤ 𝑈𝑗 

(iii) 𝑑𝑗 = 1 if 𝑦𝑗̂ < 𝑇𝑗 

where 𝑦𝑗̂ is the predicted value of the j-th response, 𝑈𝑗, 𝑇𝑗 and 𝐿𝑗 are, respectively, the highest acceptable value, 

the lowest acceptable value and the target value for the j-th response.  

 

Table 5 – Optimization scenarios 

 Responses to be optimized 

 
Printing 

time 

Energy 

consumption 

Overhang 

surface 

roughness 

Bridge surface 

roughness 

Overhang 

dimensional 

accuracy 

Bridge 

dimensional 

accuracy 

 PT EC 

Ra1, Ra2 

and RSm1, 

RSm2 

Ra3, Ra4, Ra5 

and RSm3, 

RSm4, RSm5 

DA1, DA2, 

DA3 

DA4, DA5, 

DA6, DA7, 

DA8 

General 

scenario 
X X X X X X 

I X      

II  X     

IIIa   X    

IIIb    X   

IVa     X  

IVb      X 

 

From the weighted geometric mean of the individual desirabilities, the composite desirability “D”, which 

evaluates how the settings optimize the overall set of responses, is obtained. The optimal solution is achieved 

when the composite desirability obtains its maximum. In detail, the formula for the composite desirability, 

when the importance is the same for each response, is: 

𝐷 = (𝑑1 ∙ 𝑑2 ∙ 𝑑3 ∙ … ∙ 𝑑𝑛)1/𝑛 (3) 

where n is the total number of responses optimized in the scenario and 𝑑𝑗 represents the individual desirability 

for the j-th response (i=1, …, n). For instance, if two responses are minimized and the obtained individual 

desirabilities are 𝑑1 = 80% and 𝑑2 = 90%, the composite desirability is 𝐷 = (𝑑1 ∙ 𝑑2)1/2 = 84.85%.  

When all the responses are considered, the composite desirability obtained is D=70.86% and the configuration 

of the process parameters is: layer height = 0.26 mm, fill density = 13%, extruder temperature = 215 °C, 

number of shells = 2, printing speed = 147 mm/s and retraction speed = 54 mm/s. Therefore, all process 

parameters must be set to an intermediate value in order to optimize all responses together. The optimal 

responses with the relevant standard error and prediction intervals are obtained using these process parameters.  
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In order to optimize each variable at a time, or group of similar variables such as dimensional accuracy and 

surface roughness, further four scenarios are created. In the I scenario, the printing time is minimized, and the 

other responses are not optimized. The process parameters which result in the best printing time, which is 

52.75 min, are maximum layer height (0.31 mm), minimum fill density (5%) and minimum number of shells 

(1). The other process parameters, i.e., T, P and R, can be set to any value in their range (minimum value-

maximum value, see Table 2) because they are not significant in predicting the printing time. Indeed, as shown 

in Table 4, their effect on printing time was not statistically significant.  

In the II scenario, the goal is to minimize energy consumption, while the other target variables are not 

optimized. With layer height set to the maximum (0.31 mm), fill density to the minimum (5%), extruder 

temperature to 220 °C and number of shells to 1, the optimal energy consumption obtained is 2.79 kWh. As 

for the printing time, L is the maximum value, as well as T, whereas F and S are at their minimum value. The 

values obtained are reasonable and reflect the system's physical nature, except for the temperature that, 

however, contributes only marginally to the variations of energy consumption. 

In the III scenario, the responses of the overhang's surface roughness are first minimized and then those of the 

bridge. In the first case - III scenario (a) - Ra1, Ra2, RSm1 and RSm2 are optimized (composite desirability D 

= 86.83%). The optimal process parameters obtained are layer height = 0.12 mm, fill density = 5%, extruder 

temperature = 220 °C, number of shells = 1, printing speed = 140 mm/s, and retraction speed = 60 mm/s. 

Therefore, L, S, F, and P have to be set at their minimum value, whereas T and R at their maximum value. In 

the second case - III scenario (b) -, for the bridge, optimizing Ra3, Ra4, Ra5 and RSm3, RSm4, RSm5 the 

optimal process parameters obtained are layer height = 0.31 mm, fill density = 20%, extruder temperature = 

205 °C, number of shells = 1, printing speed = 160 mm/s and retraction speed = 60 mm/s. In such a case, the 

composite desirability is 62.19%. Thus, T and S parameters are at the minimum level and L, F, P and R at the 

maximum level. When comparing the parameters obtained with those of the overhang, it is evident that for T, 

L, F and P the opposite setting occurs, while parameters S and R may be set at the same value. Hence, while 

the overhang requires low layer height levels, fill density and printing speed, and high value of temperature, 

the bridge is characterized by lower surface roughness if built with high layer height, density and printing 

speed, but with low values of temperature. The underlying reason is the geometric and structural differences 

between the two samples (see Figure 4). 

In the IV scenario, the aim is to maximize the overhang's dimensional accuracy and that of the bridge. For the 

first – IV scenario (a) - the process parameters which lead to the target values of the dimensions are layer 

height = 0.26 mm, fill density = 13%, extruder temperature = 220 °C, number of shells = 2, printing speed = 

140 mm/s, and retraction speed = 53 mm/s. In this case, the composite desirability D is 100%. Therefore, to 

obtain better dimensional accuracy, T should achieve high values and P low values, while L, F, S and R must 

be set to intermediate values. When optimizing the dimensional accuracy of the bridge - IV scenario (b) - the 

parameters which should be used are: layer height = 0.27 mm, fill density = 19%, extruder temperature = 211 

°C, number of shells = 2, printing speed = 159 mm/s, and retraction speed = 45 mm/s. In such a case, F, P and 

L assume high values, T and S intermediate values and R low values. In this case, the composite desirability is 

D = 99.59%. The differences between the process parameters obtained for the overhang and the bridge, mainly 
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referring to the print speed, are again due to geometric and structural reasons. Consequently, choosing the 

parameters to be used becomes closely linked to the goal of the optimization. 

 

4.4. Experimental validation 

In order to test the adequacy of the models relating each response with the process parameters and, accordingly, 

the set of parameters that optimize the response(s) in each scenario (see Section 4.3), experimental validations 

are performed. The method adopted for the validation consists of verifying if the experimental value of each 

j-th response (j=1,…, 20) of ad-hoc produced samples falls within the corresponding prediction interval. It has 

to be reminded that each j-th response prediction interval is the range in which the predicted j-th response for 

a new observation is expected to fall (Montgomery et al., 2012). 

Specifically, four new parts are produced for each scenario, and the related responses are measured using the 

same approach described in Section 3.2. After that, the responses' obtained experimental values are compared 

with the corresponding predicted values (obtained by exploiting the prediction models) and the prediction 

intervals, calculated using the software MINITAB®.  

In the first scenario, the optimal set of parameters leading to the best printing time is validated by the production 

of  4 samples. The values of T, P and R are set randomly in the range between 205 °C and 220 °C, 140 mm/s 

and 160 mm/s, 45 mm/s and 60 mm/s, respectively, because they are not statistically significant in predicting 

the printing time, while L, F and S are set to their optimal value. As shown in Figure 10, all the experimental 

values fall within the printing time's prediction interval, thus demonstrating the adequacy of the prediction 

model. 

In the second scenario, the combination of parameters resulting in the minimum value of energy consumption 

is validated through the other four samples' production. The parameters used are those obtained from the 

optimization, except for P and R that are set at random values in their range.  

In the third scenario, which aims at minimizing the roughness of the overhang, III scenario (a), and of the 

bridge, III scenario (b), two overhang samples and two bridge samples are produced, using the optimal set of 

parameters reported in Section 4.3.   

Finally, in the last scenario, in which the dimensional accuracy is optimized separately for the overhang, IV 

scenario (a), and for the bridge, IV scenario (b), again two overhang samples and two bridge samples are 

produced using the optimal set of parameters.  

The experimental values and the related prediction intervals of the responses, separately for each scenario, are 

shown in Figure 10. 
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Figure 10 – Experimental validation of scenarios I, II, III and IV: experimental values, predicted 

values and prediction intervals. 

5. Conclusions 

This study presents a statistical analysis to investigate the cause-and-effect relationships among selected 

process parameters and output variables within the MakerBot z18 system. These experimental models are used 

to improve the FDM process in terms of efficiency and product quality. The macro responses analyzed in the 

experiments included printing time, energy consumption, surface quality and dimensional accuracy. These 

were split into twenty responses and measured on the PLA samples produced. By combining literature analysis 

and practical experience, six process parameters were selected and then analyzed by a two-level factorial with 

half fractional design. Accordingly, 32 tests were carried out, and the produced samples were examined to 

study the effect of process parameters and their interactions on the mentioned responses. The six process 

parameters considered were: layer height, fill density, extruder temperature, number of shells, printing speed 

and retraction speed. Firstly, through the ANOVA, the significance of every single main effect and interactions 

between process parameters was derived separately for each response. In addition, a differentiation among the 

factors with p-value ≤ 1% (a very significant influence), p-value ≤ 5% (a significant influence) and p-value > 

5% (no influence) has been introduced. Then, in order to select only significant factors, the standard stepwise 

regression was applied. Twenty final regression models were obtained.  

Because of the high number of variables and interactions, five different optimization scenarios were analyzed 

(one general and four specific), and the optimal settings of the parameters were determined for each goal 

selected. In the general scenario, all responses are jointly optimized. It was found that the process parameters 
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must be set to intermediate values to optimize both part quality and process efficiency. Regarding process 

efficiency, less dense workpieces with thicker layers and fewer shells ensure minimum process time and energy 

consumption. To minimize surface roughness, the different geometric and structural characteristics of the parts 

need to be considered. Specifically, the experimental results have shown that while the overhang requires low 

values of layer height, fill density and printing speed and a high value of temperature, the bridge needs opposite 

parameter settings. Finally, to maximize dimensional accuracy, the design features of parts have a key role. 

For instance, low printing speed is necessary to achieve better dimensional accuracy for overhangs, which 

leads to opposite results for bridges. Therefore, the evaluation of such experimental results shows that process 

parameters' optimal settings can vary according to the considered optimization objective. Moreover, 

optimizing different responses together, especially if they are heterogeneous, may lead to reduce the percentage 

of their predictability. The insights gained from this study may be of assistance to production designers in the 

continuous improvement of FDM efficiency and quality of products, both prototypes and finished parts. 

Further investigations will be carried out to include star points in the experimental plan, in addition to the 

central points, to investigate the curvature and estimate the effect of the quadratic terms that were not included 

in the preliminary models. Moreover, different weights could be assigned to the responses in the optimization 

scenarios, giving more importance to some objectives and less to others. Future research will be conducted to 

assess the models' adequacy and the optimal parameters settings by producing different geometries and using 

different materials or machines. Finally, different modeling approaches (e.g., grey box and white box) could 

be used to combine the statistical knowledge with the physical relationships. 
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Appendix 

 

A.1 Detail on the experiments 

This section contains the detail on the measurements of the responses described in Section 3.2. 
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Table A.1 - Measurement results for the responses of the implemented DoE 

Run 

Order 

PT 

[min] 

EC 

[kWh] 

DA1 

[mm] 

DA2 

[mm] 

DA3 

[mm] 

DA4 

[mm] 

DA5 

[mm] 

DA6 

[mm] 

DA7 

[mm] 

DA8 

[mm] 

Ra1 

[µm] 

Ra2 

[µm] 

Ra3 

[µm] 

Ra4 

[µm] 

Ra5 

[µm] 

RSm1 

[mm] 

RSm2 

[mm] 

RSm3 

[mm] 

RSm4 

[mm] 

RSm5 

[mm] 

1 58 3.40 14.43 14.40 19.95 14.15 10.16 24.33 24.34 13.54 83.63 25.23 43.70 20.53 26.27 1.038 0.627 0.497 0.582 0.385 

2 141 19.67 14.51 14.77 19.44 13.85 10.03 24.01 24.01 13.55 22.27 8.36 81.80 7.33 22.17 0.328 0.637 0.802 0.566 0.365 

3 65 4.29 14.51 14.65 19.33 13.78 10.00 24.21 24.24 13.72 36.77 27.47 40.13 13.27 28.33 0.475 0.743 0.509 0.570 0.438 

4 65 4.47 14.54 14.62 19.43 13.85 10.03 24.06 24.12 13.54 38.23 21.93 33.90 14.12 24.30 0.512 0.698 0.424 0.570 0.358 

5 66 4.81 14.39 14.31 19.83 14.05 10.18 24.29 24.27 13.61 70.73 19.97 46.40 18.40 33.03 0.867 0.571 0.568 0.855 0.469 

6 65 3.96 14.22 14.49 19.39 13.77 10.06 24.28 24.29 13.83 35.27 24.53 59.73 10.31 28.17 0.479 0.644 0.657 0.537 0.443 

7 66 4.53 14.29 14.19 19.65 13.88 10.16 24.18 24.21 13.71 62.97 21.27 44.47 13.00 32.47 0.765 0.585 0.527 0.678 0.541 

8 53 3.09 14.08 14.53 19.08 13.94 10.03 24.27 24.30 13.54 37.73 23.20 38.63 20.83 29.53 0.524 0.590 0.465 0.455 0.417 

9 58 3.55 14.03 14.18 19.67 14.07 10.08 24.28 24.25 13.65 61.30 18.23 43.83 19.37 27.73 0.731 0.551 0.481 0.662 0.409 

10 65 4.59 14.63 14.43 19.35 13.95 10.17 24.10 24.14 13.33 39.70 26.07 36.67 15.23 26.50 0.503 0.720 0.515 0.674 0.422 

11 58 2.93 14.19 14.16 19.73 14.02 10.03 24.37 24.43 13.62 65.13 18.07 44.67 18.87 29.07 0.820 0.511 0.580 0.547 0.467 

12 132 16.69 14.36 14.28 19.43 13.85 10.24 24.03 24.09 13.70 22.80 9.19 90.00 9.85 25.33 0.369 0.637 0.851 0.518 0.348 

13 53 3.05 14.60 14.41 19.09 13.73 10.03 24.25 24.34 13.58 37.07 23.73 39.03 19.17 38.23 0.480 0.595 0.502 0.462 0.549 

14 142 19.07 14.62 14.30 19.45 13.85 10.10 24.17 24.22 13.75 24.23 9.90 78.10 8.79 35.67 0.345 0.681 0.811 0.630 0.528 

15 132 16.93 14.56 14.55 19.42 13.88 10.06 24.11 24.20 13.81 24.73 10.71 85.43 8.80 34.17 0.364 0.600 0.719 0.598 0.544 

16 142 20.12 14.51 14.56 19.49 13.86 9.89 24.07 24.18 13.84 22.20 11.02 78.57 8.06 29.30 0.326 0.711 0.764 0.647 0.473 

17 125 14.97 14.71 14.68 19.09 13.77 10.15 24.10 24.10 13.74 21.73 7.05 88.57 11.42 21.30 0.332 0.574 0.881 0.602 0.347 

18 125 14.63 14.70 14.46 19.09 13.86 10.12 24.12 24.19 13.61 22.30 8.10 91.40 8.38 27.00 0.342 0.625 0.873 0.638 0.458 

19 141 17.99 14.49 14.61 19.29 13.94 10.00 24.18 24.19 13.88 21.87 10.88 83.57 12.08 27.10 0.354 0.641 0.769 0.608 0.460 

20 125 15.24 14.72 14.75 19.33 13.79 10.02 24.16 24.22 13.52 21.27 14.20 80.83 13.77 25.20 0.328 0.714 0.781 0.605 0.425 

21 141 18.86 14.50 14.63 19.26 13.89 10.00 24.12 24.09 13.48 15.53 12.03 89.77 11.92 16.83 0.243 0.726 0.846 0.743 0.284 

22 142 19.02 14.63 14.53 19.29 13.87 10.51 24.08 24.10 13.67 19.70 17.40 78.67 10.02 22.63 0.292 0.807 0.751 0.629 0.380 

23 125 14.35 14.67 14.58 19.14 13.89 10.90 24.25 24.26 13.81 22.27 8.01 90.33 12.69 17.87 0.353 0.653 0.824 0.622 0.274 

24 66 4.43 14.52 14.32 19.61 14.00 10.30 24.28 24.32 13.62 56.23 16.80 62.90 14.57 23.67 0.698 0.587 0.654 0.530 0.334 

25 53 3.01 14.67 14.57 19.00 13.75 10.17 24.13 24.13 13.97 41.53 21.57 61.00 24.53 23.07 0.516 0.550 0.726 0.412 0.330 

26 141 18.11 14.66 14.81 19.26 13.85 10.40 24.04 24.01 13.86 22.30 9.49 79.63 20.23 14.87 0.297 0.657 0.736 0.372 0.247 

27 132 17.53 14.81 14.53 19.30 13.81 10.12 24.11 24.07 13.77 15.10 10.84 77.10 14.43 15.57 0.253 0.701 0.749 0.442 0.233 

28 132 17.35 14.49 14.38 19.27 13.79 10.20 24.12 24.09 13.74 15.57 8.60 78.47 11.16 15.80 0.245 0.779 0.720 0.496 0.248 

29 58 3.61 14.48 14.40 19.55 13.97 10.21 24.31 24.31 13.76 49.60 16.93 57.13 19.97 22.80 0.633 0.548 0.715 0.451 0.321 

30 66 4.42 14.50 14.43 19.57 13.92 10.24 24.27 24.25 13.74 66.53 15.03 61.83 16.77 26.10 0.779 0.591 0.648 0.428 0.397 

31 53 2.83 14.64 14.71 19.22 13.80 10.12 24.39 24.39 13.85 41.60 20.03 57.30 22.50 25.87 0.514 0.592 0.634 0.425 0.402 

32 142 19.87 14.74 14.69 19.31 13.87 10.14 24.08 24.08 14.02 18.77 7.66 85.70 13.67 20.97 0.287 0.658 0.876 0.452 0.305 
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A.2 Detail on data analysis 

This section contains further tables related to the data analysis described in Section 4. 

Table A.2 refers to the p-values table obtained from the ANOVA presented in Section 4.1. In the table, the 

factors which have p-values equal or less than 1% are double-asterisked, while p-values equal or less than 5% 

are asterisked. 

Table A.3 contains the regression models related to the analysis performed using the stepwise regression in 

Section 4.1 (see also Table 4). 

Figure A.1  provides additional normal Q-Q plots and normality test results on externally studentized residuals 

related to the regression models of Table A.3 for selected responses. 

Table A.4 refers to the p-values table obtained from the ANOVA after the stepwise regression related to the 

DoE, including four central points, as detailed in Section 4.2. In the table, the factors which have p-values 

equal or less than 1% are double-asterisked, while p-values equal or less than 5% are asterisked. 



29 
 

Table A.2 - p-value [%] table resulting from the ANOVA 

 
PT 

[min] 

EC 

[kWh] 

DA1 

[mm] 

DA2 

[mm] 

DA3 

[mm] 

DA4 

[mm] 

DA5 

[mm] 

DA6 

[mm] 

DA7 

[mm] 

DA8 

[mm] 

Ra1 

[µm] 

Ra2 

[µm] 

Ra3 

[µm] 

Ra4 

[µm] 

Ra5 

[µm] 

RSm1 

[mm] 

RSm2 

[mm] 

RSm3 

[mm] 

RSm4 

[mm] 

RSm5 

[mm] 

L [mm] <0.1** <0.1** 0.3** <0.1** <0.1** 2.8* 29.1 <0.1** <0.1** 20.6 <0.1** <0.1** <0.1** <0.1** 2.2* <0.1** 1.1* <0.1** 54.4 13.3 

F [%] <0.1** <0.1** 87.6 12.0 2.1* 78.6 61.1 1.0** 2.4* 94.5 73.9 42.6 65.2 2.0* 79.3 39.0 4.3* 79.0 9.5 55.3 

T [°C] 100 0.3** 87.6 30.5 88.0 67.6 5.3* 2.0* 3.2* 32.1 19.8 76.4 28.7 60.5 16.0 21.8 90.7 96.7 48.6 23.3 

S [-] <0.1** <0.1** 11.3 <0.1** <0.1** 0.5** 64.3 18.3 32.1 40.1 <0.1** 15.6 93.4 52.7 39.1 <0.1** 55.6 95.2 60.3 73.0 

P [mm/s] 100 60.7 16.5 88.0 30.3 94.1 33.3 70.9 89.6 92.6 17.0 75.9 76.4 39.3 52.2 15.3 73.4 51.5 76.9 41.1 

R [mm/s] 100 56.0 1.2* 48.4 90.6 74.9 11.5 66.0 73.5 83.5 47.0 39.8 91.1 40.3 20.4 51.4 83.4 51.1 58.9 31.7 

L·F [mm] <0.1** <0.1** 28.7 20.8 80.1 17.9 22.7 18.3 42.6 38.9 68.5 84.2 63.3 1.5* 79.3 84.1 35.8 91.8 20.2 93.0 

L·T 

[mm∙°C] 
100 1.8** 53.5 2.0* 58.2 19.4 5.5 22.6 81.4 98.2 62.1 92.5 60.6 67.6 23.9 34.9 33.1 78.3 35.7 28.6 

L·S [mm] 0.3** <0.1** 29.8 25.3 0.1** 0.3** 20.4 1.6* 23.7 28.2 <0.1** 4.6* 21.8 42.8 29.4 <0.1** 2.7* 35.1 9.5 62.3 

L·P [mm2/s] 100 92.4 21.1 1.7* 16.5 45.1 32.2 25.0 37.0 50.7 16.6 60.9 99.5 63.6 52.3 10.0 52.1 72.3 81.6 62.9 

L·R [mm2/s] 100 45.8 17.2 32.4 80.1 64.1 2.7* 7.5 8.6 96.3 30.0 73.7 92.4 46.9 29.8 42.7 42.3 76.0 66.9 21.8 

F·T [°C] 100 12.9 79.5 43.4 6.0 15.3 78.4 18.3 77.4 22.1 8.8 98.4 56.6 33.0 17.8 7.2 71.6 40.7 2.6* 25.0 

F·S [-] <0.1** 0.9** 6.1 78.0 1.0** 16.6 15.1 16.5 9.4 36.5 57.5 49.9 31.5 61.7 11.4 75.1 35.7 19.9 80.3 19.0 

F·P [mm/s] 100 53.8 41.2 91.4 85.3 74.9 99.0 44.1 29.8 42.6 15.6 96.2 27.9 73.3 52.6 12.1 40.6 14.8 33.8 94.5 

F·R [mm/s] 100 33.7 11.3 10.4 65.2 22.6 71.2 3.3* 37.0 100 79.5 31.1 98.1 59.8 91.9 78.7 84.9 85.0 30.5 72.7 

T·S [°C] 100 49.9 62.2 94.9 47.6 22.6 74.8 2.6* 10.3 3.5* 22.9 60.7 97.2 64.7 88.4 23.4 83.3 77.6 46.2 91.0 

T·P 

[°C∙mm/s] 
100 49.2 64.1 62.3 58.2 78.6 95.2 61.2 77.4 41.3 96.8 94.1 78.4 90.6 66.6 97.5 48.4 88.2 19.9 62.9 

T·R 

[°C∙mm/s] 
100 82.1 23.7 28.7 47.6 78.6 1.5** 70.9 32.1 53.6 12.5 90.4 15.5 5.2 1.8* 6.9 72.1 12.2 78.3 1.6* 

S·P [mm/s] 100 81.5 25.6 4.3* 2.8* 13.1 69.4 8.4 3.5* 13.3 22.2 41.5 43.1 43.8 10.4 4.6* 86.3 60.8 31.7 23.9 

S·R [mm/s] 100 70.1 35.8 0.4** 36.6 64.1 24.4 20.4 97.9 22.9 29.1 21.5 70.6 34.1 48.5 23.0 21.8 76.8 14.5 28.3 

P·R 

[mm2/s2] 
100 67.6 11.3 7.3 96.0 71.2 35.6 61.2 42.6 59.7 57.3 21.2 69.5 44.1 65.0 55.0 24.5 64.7 7.9 68.4 

R-Sq [%] 99.99 99.92 84.14 93.27 93.40 83.77 80.21 92.49 88.04 68.09 97.57 90.79 92.07 85.90 77.83 97.53 75.85 85.81 75.31 71.70 

R-Sq adj 

[%] 
99.96 99.75 50.84 79.13 79.55 49.69 38.64 76.73 62.93 1.09 92.48 71.43 75.41 56.29 31.27 92.35 25.14 56.00 23.47 12.27 
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Table A.3 – Regression models obtained after stepwise regression. 

Response Regression equation 

PT [min] 𝑃𝑇 = 161.757 − 378.03 𝐿 + 135.23 𝐹 + 3.796 𝑆 − 118.0 𝐿 · 𝐹  +  0.31 𝐿 · 𝑆 −  16.13 𝐹 · 𝑆 

EC [kWh] 𝐸𝐶 = 6.01 − 4.0 𝐿 − 5.5 𝐹 + 0.0635 𝑇 + 1.545 𝑆 − 65.84 𝐿 · 𝐹 −  0.2501 𝐿 · 𝑇 − 3.409 𝐿 · 𝑆 + 0.1867 𝐹 · 𝑇 − 2.710 𝐹 · 𝑆 

DA1 [mm] 𝐷𝐴1 = 11.02 + 1.56 𝐿 − 0.0995 𝑆 + 0.0249 𝑃 + 0.0839 𝑅 − 0.0482 𝐿 · 𝑅 + 0.471 𝐹 · 𝑆 − 0.0152 𝐹 · 𝑅 − 0.000542 𝑃 · 𝑅 

DA2 [mm] 𝐷𝐴2 = 14.494 + 5.97 𝐿 − 1.75 𝐹 − 0.273 𝑆 − 2.68 𝐿 · 𝐹 − 0.00101 𝐿 · 𝑇 − 0.0412 𝐿 · 𝑃 + 0.0504 𝐹 · 𝑅 + 0.00339 𝑆 · 𝑃 − 0.00655 𝑆 · 𝑅 + 0.000035 𝑃 · 𝑅 

DA3 [mm] 𝐷𝐴3 = 19.002 − 1.34 𝐿 − 1.19 𝐹 + 0.357 𝑆 + 0.859 𝐿 · 𝑆 + 0.0031 𝐿 · 𝑃 + 0.0159 𝐹 · 𝑇 − 0.763 𝐹 · 𝑆 − 0.00199 𝑆 · 𝑃 

DA4 [mm] 𝐷𝐴4 = 13.8003 − 4.15 𝐿 + 0.598 𝑆 − 2.62 𝐿 · 𝐹 + 0.0178 𝐿 · 𝑇 + 0.510 𝐿 · 𝑆 + 0.00827 𝐹 · 𝑇 − 0.256 𝐹 · 𝑆 − 0.01198 𝐹 · 𝑅 − 0.00265 𝑇 · 𝑆 − 0.000444 𝑆 · 𝑃 

DA5 [mm] 𝐷𝐴5 = − 3.43 + 0.0572 𝑇 + 0.3108 𝑅 + 0.18 𝐿 · 𝐹 + 0.02364 𝐿 · 𝑇 + 0.114 𝐿 · 𝑆 − 0.1059 𝐿 · 𝑅 − 0.023 𝐹 · 𝑆 − 0.001328 𝑇 · 𝑅 

DA6 [mm] 𝐷𝐴6 = 24.901 − 0.942 𝐿 + 1.821 𝐹 − 0.00353 𝑇 + 0.254 𝐿 · 𝑆 + 0.02236 𝐿 · 𝑅 − 0.0419 𝐹 · 𝑅 + 0.000121 𝑇 · 𝑆 − 0.000445 𝑆 · 𝑃 

DA7 [mm] 𝐷𝐴7 = 25.127 + 0.577 𝐿 − 0.959 𝐹 − 0.00466 𝑇 + 0.00298 𝐿 · 𝑅 + 0.273 𝐹 · 𝑆 + 0.000391 𝑇 · 𝑆 − 0.000697 𝑆 · 𝑃 

DA8 [mm] 𝐷𝐴8 = 13.7397 − 0.375 𝐿 − 0.00029 𝐹 · 𝑇 − 0.000140 𝑇 · 𝑆 + 0.00060 𝑆 · 𝑃 − 0.00070 𝑆 · 𝑅 

Ra1 [µm] 𝑅𝑎1 = − 73.8 + 237 𝐿 + 0.213 𝑇 + 42.4 𝑆 + 0.351 𝑃 + 70.6 𝐿 · 𝑆 − 1.45 𝐿 · 𝑃 − 0.373 𝐹 · 𝑇 + 0.51 𝐹 · 𝑃 − 0.157 𝑇 · 𝑆 − 0.000398 𝑇 · 𝑅 − 0.1198 𝑆 · 𝑃 

Ra2 [µm] 𝑅𝑎2 = 3.59 + 87.2 𝐿 + 0.68 𝑆 − 14.54 𝐿 · 𝑆 + 0.0289 𝑆 · 𝑅 − 0.000601 𝑃 · 𝑅 

Ra3 [µm] 𝑅𝑎3 = 162.0 − 192.8 𝐿 − 0.248 𝑇 + 3.20 𝐿 · 𝑆 + 2.6 𝐹 · 𝑆 − 0.098 𝐹 · 𝑃 − 0.000183 𝑇 · 𝑅 

Ra4 [µm] 𝑅𝑎4 = 6.91 + 60.9 𝐿 + 28.6 𝐹 − 226.8 𝐿 · 𝐹 − 0.000266 𝑇 · 𝑅 

Ra5 [µm] 𝑅𝑎5 = 123.1 − 292 𝐿 − 0.437 𝑇 + 1.49 𝐿 · 𝑇 − 0.154 𝐹 · 𝑇 + 18.1 𝐹 · 𝑆 − 0.000667 𝑇 · 𝑅 − 0.0100 𝑆 · 𝑃 

RSm1 [mm] 𝑅𝑆𝑚1 = − 0.513 + 3.05 𝐿 + 0.245 𝑆 + 0.00593 𝑃 + 0.797 𝐿 · 𝑆 − 0.0194 𝐿 · 𝑃 − 0.00787 𝐹 · 𝑇 + 0.0104 𝐹 · 𝑃 − 0.000005 𝑇 · 𝑅 − 0.00231 𝑆 · 𝑃 

RSm2 [mm] 𝑅𝑆𝑚2 = 0.6546 + 0.209 𝐿 + 0.338 𝐹 − 0.2849 𝐿 · 𝑆 + 0.001029 𝑆 · 𝑅 − 0.000011 𝑃 · 𝑅 

RSm3 [mm] 𝑅𝑆𝑚3 = 1.026 − 1.201 𝐿 + 0.0678 𝐹 · 𝑆 − 0.00123 𝐹 · 𝑃 − 0.000007 𝑇 · 𝑅 

RSm4 [mm] 𝑅𝑆𝑚4 = 0.691 − 6.85 𝐹 + 0.14 𝐿 · 𝐹 + 0.005 𝐿 · 𝑆 + 0.0340 𝐹 · 𝑇 − 0.000005 𝑇 · 𝑃 + 0.000182 𝑆 · 𝑅 − 0.000005 𝑃 · 𝑅 

RSm5 [mm] 𝑅𝑆𝑚5 = 0.714 − 1.095 𝐿 + 0.0256 𝐿 · 𝑅 + 0.0807 𝐹 · 𝑆 − 0.000035 𝑇 · 𝑅 
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Figure A.1 – Normal Q-Q plots and normality tests results (α=0.05) on externally studentized residuals for the responses PT, EC, Ra5 and RSm5. 

EC [kWh] 

Skewness test: p-value=0.53, Kurtosis test: p-value=0.06, Shapiro-

Wilk test: p-value= 0.39. 1 outlier detected (test no. 2). 

Ra5 [µm] 

Skewness test: p-value=0.95, Kurtosis test: p-value=0.17, Shapiro-Wilk 

test: p-value= 0.41. No outliers detected. 

RSm5 [mm] 

Skewness test: p-value=0.96, Kurtosis test: p-value=0.44, Shapiro-

Wilk test: p-value= 0.53. No outliers detected. 

PT [min] 

Skewness test: p-value=0.95, Kurtosis test: p-value=0.53, Shapiro-Wilk 

test: p-value= 0.59. No outliers detected. 
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Table A.4 – p-value [%] table resulting from ANOVA after the stepwise regression (Alpha-to-Enter = Alpha-to-Remove = 15%) including four central points. 

Quadratic effect means L·L alias F·F alias T·T alias S·S alias P·P alias R·R. 

 
PT 

[min] 

EC 

[kWh] 

DA1 

[mm] 

DA2 

[mm] 

DA3 

[mm] 

DA4 

[mm] 

DA5 

[mm] 

DA6 

[mm] 

DA7 

[mm] 

DA8 

[mm] 

Ra1 

[µm] 

Ra2 

[µm] 

Ra3 

[µm] 

Ra4 

[µm] 

Ra5 

[µm] 

RSm1 

[mm] 

RSm2 

[mm] 

RSm3 

[mm] 

RSm4 

[mm] 

RSm5 

[mm] 

L [mm] <0.1** <0.1** <0.1** 0.4** <0.1** 0.1**  <0.1** <0.1** 8.9 <0.1** <0.1** <0.1** <0.1** 0.7** <0.1** <0.1** <0.1**  8.8 

F [%] <0.1** <0.1**   0.2**   0.8** 1.1*     0.1**   0.6**  3.0*  

T [°C]  <0.1**     1.1* 1.9* 1.6*  9.5  9.6  11.7 11.3     

S [-] <0.1** <0.1** 4.7* <0.1** <0.1** <0.1**     <0.1** 5.1    <0.1**     

P [mm/s]   8.3        7.5     6.5     

R [mm/s]   0.1**    4.1              

Quadratic 

effect 
<0.1** <0.1**  <0.1**       <0.1**   <0.1**  <0.1**     

L·F [mm] <0.1** <0.1**    4.8* 12.1       0.1**     10.3  

L·T [mm∙°C]  0.1**  10.1  5.6 1.2*              

L·S [mm] <0.1** <0.1**   <0.1** <0.1** 10.2 1.4*  15.0 <0.1** 0.6** 5.4   <0.1** 0.2**  3.1*  

L·P [mm2/s]   12.0 9.1 6.4      7.2     3.3*     

L·R [mm2/s]   8.9    0.3** 8.3 6.0           14.0 

F·T [°C]  3.8*   1.1* 3.5    10.1 2.6*    13.5 1.9*   0.3**  

F·S [-] <0.1** <0.1** 1.7*  <0.1** 4.1 6.3  6.7    11.7  7.6   5.4   

F·P [mm/s]           6.5  9.0   4.5*  2.9*   

F·R [mm/s]   4.7   7.4  3.3*             

T·S [°C]      7.4  2.5* 7.4 0.4** 11.9     12.6     

T·P 

[°C∙mm/s] 
                  10.0  

T·R 

[°C∙mm/s] 
  14.3    0.1**    4.5  2.6* 0.8** 0.5** 1.8*  2.0*  0.4** 

S·P [mm/s]     0.3** 2.6*  9.3 1.8* 4.2 11.3    6.7 0.9**     

S·R [mm/s]    3.0*   13.5   10.7  9.0    12.3 10.1  6.1  

P·R [mm2/s2]   4.7*         8.7     12.3  2.3*  

R-Sq [%] 99.97 99.89 72.94 61.79 89.41 80.53 67.77 76.72 71.25 46.85 96.68 84.57 90.18 76.92 50.31 96.73 58.05 79.57 53.35 31.90 

R-Sq adj 

[%] 
99.96 99.84 62.11 52.88 86.27 72.75 56.62 69.82 64.06 35.85 94.95 82.00 88.14 73.07 40.03 94.79 51.06 76.93 45.44 25.52 

 


