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Distributed Dynamic Pricing of
Multiscale Transportation Networks

Giacomo Como, Member, IEEE, and Rosario Maggistro

Abstract—We study transportation networks controlled by
dynamic feedback tolls. We focus on a multiscale model whereby
the dynamics of the traffic flows are intertwined with those
of the routing choices. The latter are influenced by the cur-
rent traffic state of the network as well as by dynamic tolls
controlled in feedback by the system planner. We prove that
a class of decentralized monotone flow-dependent tolls allows
for globally stabilizing the transportation network around a
generalized Wardrop equilibrium. In particular, our results imply
that using decentralized marginal cost tolls, stability of the
dynamic transportation network is guaranteed around the social
optimum traffic assignment. This is particularly remarkable as
such dynamic feedback tolls can be computed in a fully local way
without the need for any global information about the network
structure, its state, or the exogenous network loads. Through
numerical simulations, we also compare the performance of such
decentralized dynamic feedback marginal cost tolls with constant
off-line (and centrally) optimized tolls both in the asymptotic and
in the transient regime and we investigate their robustness to
information delays.

Index Terms—Transportation networks, distributed control,
robust control, dynamical flow networks, marginal cost tolls,
congestion pricing, user equilibrium, social optimum.

I. INTRODUCTION

Over the past years there has been an increasing interest in
the control analysis and synthesis of dynamical transportation
networks. This is especially motivated by the wide-spreading
sensing, communication, information, and actuation technolo-
gies that are dramatically changing the transportation system
dynamics and affecting the users’ decision making and behavior.
There is a growing awareness that the new opportunities and
risks created by these technologies can be fully understood
only within a dynamical network framework.

Dynamics and control of traffic flows over networks have
received a great deal of research attention, motivated by
applications both to communication networks [2]–[6] and
to road transportation systems [8]–[12]. Special emphasis in
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Part of the results appeared in a preliminary form in [1].

this literature has been put on mathematical properties of
the dynamical system model —e.g., convexity, monotonicity,
contractivity, Lyapunov functions’ separability— that allow
for scalable control architectures such as, e.g., distributed or
decentralized control policies [14]–[17].

A central aspect of dynamical flow networks is related to
the routing decisions. In classical approaches to road traffic
networks, the routing is considered static (see, e.g., the Cell
Transmission Model [18]), possibly determined by a network
flow optimization problem such as a system or user optimum
traffic assignment problem ([19], [20]). In fact, it is widely
recognized that when drivers make their routing decisions by
choosing the paths that minimize their own experienced delays,
network congestion can increase significantly with respect to
a hypothetical scenario where a central planner was able to
directly impose an optimized routing, a phenomenon known as
the price of anarchy [21], [22]. On the other hand, the impact
of dynamic routing on the stability and resilience of traffic
flow networks has been recently analysed [23]–[25] and there
has been also a significant research effort to understand the
drivers’ answer to external communications from intelligent
traveller information devices [26]–[29]. Charging tolls or
providing signalling schemes subject to a non-trivial amount of
uncertainty are, therefore, two potential strategies to influence
drivers to make routing choices that result in globally optimal
routing (see [30]–[38]).

In this paper, we study multiscale dynamical flow networks
whereby the physical dynamics of the traffic flows are in-
tertwined with those of the routing choices. In particular,
we extend the model and results of [25] by introducing
decentralized flow-dependent tolls in order to influence the
route choice behavior. Specifically, we consider a multiscale
dynamical model of the transportation network whereby the
traffic dynamics describing the real time evolution of the local
traffic level are coupled with those of the path preferences.
We assume that the latter evolve following a perturbed best
response to global information about the traffic status of the
whole network and to decentralized flow-dependent tolls.

Our main result shows that by using monotone decentralized
flow-dependent tolls and in the limit of small update rate
of the aggregate path preferences, the transportation network
globally stabilizes around a generalized Wardrop equilibrium
[39]. The latter is a configuration in which the perceived
cost associated to any source-destination path chosen by a
nonzero fraction of users does not exceed the perceived cost
associated to any other path. As in [25], we assume that the
path preferences evolve at a slower time scale than the physical
traffic flows and adopt a singular perturbation approach [40]
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to the stability analysis of the ensuing multiscale closed-loop
traffic dynamics. In fact, classical results from evolutionary
game theory and population dynamics [41]–[42] cannot be
directly applied to our framework since they assume that
information is accessed at a single temporal and spatial scale
while the traffic dynamics are neglected as they are assumed
to be instantaneously equilibrated.

The introduction of tolls has long been studied as a way
to influence the rational and selfish behavior of drivers so
that the associated user equilibrium can be aligned with the
system optimum network flow. A particular taxation mechanism
that guarantees this alignment is marginal-cost pricing, see,
e.g., [43] and [44]. Marginal-cost tolls do not require any
global information about the network structure or traffic state,
nor of the exogenous user demands, and can be computed
in a fully local way. We prove that using marginal-cost tolls
our multiscale dynamical flow network stabilizes around the
social optimum traffic assignment. We observe that our results
go well beyond the traditional setting [43] where only static
frameworks are considered as well as the evolutionary game
theoretic approaches [44] where only path preference dynamics
are considered, as the physical ones are assumed equilibrated.
In fact, our analysis is performed in a fully dynamical flow
network setting. In this respect, the global optimality guarantees
obtained in this paper should be compared with recent results
on global performance and resilience of robust distributed
control of dynamical flow networks [23], [13].

In the last part of the paper, we present numerical simulations
comparing the asymptotic and transient performance of the
system with dynamic distributed feedback marginal cost tolls
and constant marginal cost tolls. While it is known that
the latter can be computed to enforce the social optimum
equilibrium —provided that the system planner has a complete
knowledge of the network topology, user demand profile,
and delay functions— we show that not only do the former
achieve the same optimal asymptotic performance but they
also guarantee faster convergence and are strongly robust to
variation of network topology and exogenous traffic load. It is
worth pointing out that robustness of the marginal cost tolls
was recently investigated also in the case of static models
[22], [45]. Finally, we study the effect of time-delays in
the global information of the routing decision dynamics and
analyze their influence on the evolution of the multi-scale
dynamical system. For different values of such time delays,
one observes different behaviors of the system depending on
whether dynamic feedback marginal cost tolls are used instead
of constant marginal cost ones. With the latter, the system
remains stable and converges to the equilibrium, instead with
the former a phase transition and an oscillatory behavior may
emerge for large enough delays.

The rest of this paper is organized as follows. In Section
II, we describe the multiscale model of network traffic flow
dynamics and introduce distributed dynamics tolls. In Section
III we present the main technical results of the paper, whose
proofs are then presented in Section IV. In Section V, we
discuss possible extensions of the results presented in the
previous sections. In Section VI, we provide a numerical study
of the transient and asymptotic performance of both dynamic

feedback and constant tolls and we analyze their robustness with
respect to information delays. Section VII draws conclusions
and suggests future works.

A. Notation

For two finite sets A and B, |A| denotes the cardinality
of A, RA the space of real-valued vectors whose entries are
indexed by elements of A, and RA×B the space of real-valued
matrices whose entries are indexed by pairs in A × B. The
transpose of a matrix Q in RA×B is denoted by Q′ in RB×A,
I is an identity matrix and 1 an all-one vector whose size
depends on the context. For, i in A, δ(i) in RA denotes the
vector with all entries equal to 0 except for the i-th that is
equal to 1. We use the notation Φ := I − |A|−111′ in RA×A
to denote the projection matrix of the space orthogonal to
1. The simplex of a probability vector over A is denoted by
S(A) = {x ∈ RA+ : 1′x = 1}. Let ‖ · ‖p be the class of
p-norms for p in [1,∞], and by default, let ‖ · ‖ := ‖ · ‖2. Let
now sgn : R → {−1, 0, 1} be the sign function, defined by
sgn(x) = 1 if x > 0, sgn(x) = −1 if x < 0 and sgn(x) = 0 if
x = 0. By convention, we will assume the identity d|x|/dx =
sgn(x) to be valid for every x in R, including x = 0. Finally,
given the gradient ∇f of a function f : D → R with D ⊆ RA,
we denote with ∇̃f = Φ∇f the projected gradient on S(A).

II. MODEL DESCRIPTION

A. Transportation network

We model the topology of the transportation network as a
directed multi-graph G = (V, E), where V is a finite set of
nodes and E is a finite set of directed links. Each link i in E
is directed from its tail node θi to its head node κi 6= θi. We
shall allow for parallel links, i.e., links i 6= j such that θi = θj
and κi = κj . On the other hand, we shall assume that there
are no self-loops, i.e., that θi 6= κi for every link i in E . We
shall denote by B in {−1, 0, 1}V×E the node-link incidence
matrix of a multigraph G, whose entries are given by

Bvi =


+1 if v = θi

−1 if v = κi

0 if v 6= θi, κi.

A length-l path from a node v0 to a node vl is an ordered
l-tuple of links γ = (i1, i2, . . . , il) such that the tail node of
the first link is θi1 = v0, the head node of the last link is
κil = vl, the tail node of the next link coincides with the
head node of the previous link, i.e., vs = κis = θis+1

for
1 ≤ s ≤ l − 1, and no node is visited twice, i.e., vr 6= vs for
all 0 ≤ r < s ≤ l, except possibly for v0 = vl, in which case
the path is referred to a cycle. A node d is said to be reachable
from another node o if there exists at least a path from o to
d. Observe that, in contrast to [25] where the transportation
network was assumed to be cycle-free, in this paper we allow
for the possible presence of cycles.

Throughout the paper, we will consider a given origin node
o and a destination node d 6= o that is reachable from o and
let Γ be the set of paths from o to d of any length l ≥ 1. We
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shall denote the corresponding link-path incidence matrix by
A in {0, 1}E×Γ with entries

Aiγ =

{
1 if i ∈ γ,
0 if i /∈ γ.

We shall assume that every link i lies on some path from o to
d so that A has no all-zero rows. We shall refer to nonnegative
vectors y in RE+ generally as flow vectors. Upon recalling that
δ(o) (δ(d)) is the vector with all entries equal to 0 except for
the one in the origin (destination) node that is equal to 1, we
shall refer to a flow vector y such that

By = λ
(
δ(o) − δ(d)

)
, (1)

for some λ ≥ 0 as an o-d equilibrium flow vector of throughput
λ. For λ ≥ 0, let us consider the simplex

Sλ =
{
z ∈ RΓ

+ : 1′z = λ
}
. (2)

Observe that, for every z in Sλ, one has BAz = λ(δ(o)−δ(d)),
so that

yz := Az (3)

is an o-d equilibrium flow vector of throughput λ. Throughout,
we shall refer to any z in Sλ as a path preference vector and to
yz defined as in (3) as the associated equilibrium flow vector.

Each link i in E of the transportation network topology
G represents a cell. We shall denote the density on and the
outflow from cell i in E by xi and yi, respectively. We shall
assume that density and outflow of each cell are related by a
functional dependence

yi = ϕi(xi), i ∈ E , (4)

satisfying the following property.

Assumption 1. For every link i in E the flow-density function
ϕi : R+ → R+ is twice continuously differentiable, strictly
increasing, strictly concave, and such that

ϕi(0) = 0, ϕ′i(0) < +∞ .

For every link i in E , let

Ci := sup{ϕi(xi) : xi ≥ 0}

be its maximum flow capacity.

Remark 1. Notice that in road traffic networks the assumption
that the flow-density functions are strictly increasing remains
valid provided that we confine ourselves to so-called the free-
flow region, as is done in [25]. In Section V we will discuss
how the framework of this paper could possibly be extended to
more accurate dynamical models for road traffic flow networks,
such as the Cell Transmission Model [18].

Let us denote cell i’s latency function by τi : R+ → [0,+∞],
returning the delay incurred in traversing link i in E as a
function of the current flow out of it. This is defined as

τi(yi) :=


1/ϕ′i(0) if yi = 0

ϕ−1
i (yi)/yi if 0 < yi < Ci

+∞ if yi ≥ Ci .

(5)

Notice that the third line in (5) is merely a convenient
mathematical convention allowing us to formally extend the
range of the flow variable yi to values above the cell i’s capacity,
albeit such values of flow remain not physically achievable.
The following simple useful result is proven in Appendix A.

Lemma 1. Let ϕi : R+ → R+ be a flow-density function
satisfying Assumption 1. Then, the corresponding latency
function τi defined in (5) is twice continuously differentiable,
strictly increasing on the interval [0, Ci), and such that
τi(0) > 0. Moreover, its first derivative is given by

τ ′i(y) =
y − xϕ′i(x)

ϕ′i(x)y2
, x = ϕ−1

i (y) , (6)

and the function y 7→ yτi(y) is strictly convex on [0, Ci).

Let us now define the set of feasible flow vectors as

F :=
{
y ∈ RE+ : yi < Ci , i ∈ E

}
and the set of feasible path preferences as

Z := {z ∈ Sλ : yz ∈ F}.

Moreover, let the total latency associated to a nonnegative
vector y in RE+ be

L(y) =
∑
i∈E

yiτi(yi) . (7)

Observe that the total latency L(y) is finite if and only if the
flow vector y is feasible. In fact, as a consequence of Lemma
1, we have that the total latency function L(y) is a strictly
convex function of y in F . Notice that, by the max-flow min-
cut theorem (see [19], Thm. 4.1), the set of feasible flows F
contains equilibrium o-d flows if and only if the throughput
λ < Cmin cut

o,d , where

Cmin cut
o,d = min

U⊆V :
o∈U, d/∈U

∑
i∈E :

θi∈U, κi /∈U

Ci

is the min-cut capacity. It then follows that, for every λ in
[0, Cmin cut

o,d ), the total latency L(y) admits a unique minimizer
y∗(λ) in the set of feasible equilibrium o-d flows of throughput
λ. We shall refer to such unique minimizer

y∗(λ) := argmin
y∈RE

+

By=λ(δ(o)−δ(d))

L(y) (8)

as the social optimum equilibrium flow.

Example 1. Consider the network in Figure 1 with node
set V = {o, a, b, d} and link set E = {i1, i2, i3, i4, i5, i6}.
It contains four distinct paths from o to d. In fact, we
may write Γ = {γ(1), γ(2), γ(3), γ(4)}, where γ(1) = (i1, i5),
γ(2) = (i2, i6), γ(3) = (i1, i3, i6), and γ(4) = (i2, i4, i5).
Notice that there is a cycle γ(o) = (i3, i4). For every link
i in E , let the flow-density functions be given by

ϕi(xi) = Ci(1− e−xi) , xi ∈ R+ , (9)
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Figure 1. Example of network with cycle.
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Figure 2. Plots of the flow-density function (9) in (a) and of the latency
function (10) in (b), in the special case of capacity Ci = 1.

where Ci > 0 is link i’s capacity. Then, the corresponding
latency functions are given by

τi(yi) =


1/Ci if yi = 0
1

yi
log

(
Ci

Ci − yi

)
if 0 < yi < Ci

+∞ if yi ≥ Ci .

(10)

Plots of the flow-density function (9) and of the latency function
(10) are reported in Figure 2. In the special case when the
link capacities are

Ci1 = 3 , Ci2 = 1 , Ci3 = 1 , Ci4 = 1 , Ci5 = 1 , Ci6 = 3 .
(11)

In this case, the min-cut capacity is Cmin cut
o,d = 3 and the

minimum total latency and social optimum flow are plotted in
Figure 3 as a function of the throughput λ in [0, Cmin cut

o,d ).
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Figure 3. In (a), plot of the minimum total latency as a function of the
throughput λ for a transportation network with topology as in Figure 1, flow-
density functions as in (9), and link capacities as in 11. In (b), plots of
the corresponding social optimum flow vector y∗(λ). In particular y∗6(λ) is
overlapped to y∗1(λ), while y∗5(λ) is overlapped to y∗2(λ).

B. Multi-scale model of network traffic flow dynamics

We shall consider a physical traffic flow entering the network
from the origin node o at a constant rate λ, travelling on
the different paths and finally exiting the network from the
destination node d. Conservation of mass implies that the
density on every link i in E at time t ≥ 0 evolves as

ẋi(t) = λδ
(o)
θi
Roi +

∑
j∈E

Rji(t)yj(t)− yi(t) , (12)

where
yi(t) = ϕi(xi(t)) (13)

is the total outflow from link i, the terms Rji(t) and Roi(t)
stand for the fractions of outflow from link j and, respectively,
from the origin node o, that moves directly towards link j, and
the term λδ

(o)
θi

accounts for the constant exogenous inflow in the
origin node o. Topological constraints and mass conservation
imply that: (i) Rij(t) = 0 whenever κi 6= θj , i.e., whenever link
j is not immediately downstream of link i; (ii) that Roj(t) = 0
whenever θj 6= o; and (iii) that

∑
j∈E Rij(t) = 1 for i = o

and for every i in E such that θi 6= d. The square matrix
R(t) = (Rij(t))i,j∈E will be referred to as the routing matrix.

Throughout, we shall assume that the routing matrix is
determined by the path preferences that are continuously
updated in response to available current traffic information
and dynamic tolls. Formally, the relative appeal of the different
paths to the users is modelled by a time-varying nonnegative
vector z(t) in the simplex Sλ, to be referred to as the
current aggregate path preference.1 We shall assume that such
aggregate path preferences determine the routing matrix as

Rij(t) =

{
Gj(z(t)) if θj = κi
0 if θj 6= κi ,

(14)

for i, j in E and t ≥ 0, where G : Z → RE+ is given by

Gj(z) =



yzj∑
i∈E:θi=θj

yzi
if

∑
i∈E:θi=θj

yzi > 0

1

|{i ∈ E : θi = θj}|
if

∑
i∈E:θi=θj

yzi = 0 ,

(15)

for each cell j in E . Equations (14) and (15) state that at every
junction, represented by a node v in V , the outflow from every
incoming cell i such that κi = v gets split among the cells
j immediately downstream (i.e., such that θj = v) according
to the proportion associated to the equilibrium flow vector yz

corresponding to the path preference z, provided that yz is such
there is flow passing through node v, and otherwise the split
is uniform among the immediately downstream cells. Notice
that G(z) as defined in (15) is continuously differentiable on
the interior of the set Z , to be denoted as

Z◦ := {z ∈ Z : zγ > 0∀γ ∈ Γ} .

In the considered dynamical network traffic model, the
aggregate path preference vector z(t) is continuously updated
as route decision makers access global information about the

1Recall that Sλ stands for the simplex over the set of o-d-paths Γ, as
defined in (2).
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current traffic state of the whole network embodied by the
vector

l(t) = (li(t))i∈E , li(t) = τi(yi(t)) , (16)

of current latencies on the different links. The aggregate
path preference vector is also influenced by a vector w(t) =
(wi(t))i∈E of dynamic tolls, that are to be determined by
the transportation system operator. Specifically, let the cost
perceived by each user, crossing a link i in E , be given by the
sum of the latency li(t) and the toll wi(t) so that the perceived
total cost that is expected to incur on a path γ in Γ assuming
that the traffic levels on that path won’t change during the
journey is

∑
iAiγ(li(t) + wi(t)). We shall then assume that

the path preferences are updated at some rate η > 0, according
to a noisy best response (a.k.a. logit) dynamics

ż(t) = η
(
F (β)(l(t), w(t))− z(t)

)
, (17)

where for every fixed uncertainty parameter β > 0 the function
F (β) : RE+ × RE+ → Z is the perturbed best response defined
as follows:

F (β)(l, w) =
λ exp(−β(A′(l + w)))

1′ exp(−β(A′(l + w)))
. (18)

We shall compactly rewrite the coupled dynamics of the
physical flow and the path preferences defined in (12)–(18) as{

ẋ(t) = H(y(t), z(t)) , y(t) = ϕ(x(t)) ,

ż(t) = η
(
F (β) (l(t), w(t))− z(t)

)
,

(19)

where H : F × Z → RE is defined as

Hi(y, z) := Gi(z)

(
λδ

(o)
θi

+
∑

j:κj=θi

yj

)
−yi , i ∈ E . (20)

III. PROBLEM STATEMENT AND MAIN RESULTS

The goal of this paper is to design robust scalable feedback
pricing policies

ω : F → RE+ (21)

determining in real time the dynamic tolls

w(t) = ω(y(t)) (22)

with the objective of guaranteeing stability and achieving social
optimality for the closed-loop network traffic flow dynamics
(19)—(22).

Observe that, for any given fixed inflow vector λδ(o) and
constant toll vector w, and in the special case of cycle-free
network topology, stability and convergence to the correspond-
ing Wardrop equilibrium —as defined later in this section—
follow from the results in [25]. In fact, given full knowledge
of the exogenous inflow λδ(o) and of the whole transportation
network characteristics, one could use classical results in order
to pre-compute static tolls that would align such Wardrop
equilibrium with the social optimum. However, even for cycle-
free networks, such an approach would result in an inadequate
solution as it would lack robustness with respect to the value
of the exogenous inflow λδ(o), as well as to changes of the

network characteristics in response, e.g., to accidents and other
disruptions.

In contrast, we seek to design feedback pricing policies that
are universal with respect to values of the exogenous inflow
and robustly adapt in real time to changes of the network
characteristics. We shall particularly focus on the class of
decentralized monotone feedback pricing policies, as defined
below.

Definition 1. In a transportation network with topology G =
(V, E), a feedback pricing policy ω : F → RE+ is said to be:

(i) monotone if ω(y) ≥ ω(y′) for every y, y′ in F such
that y ≥ y′, where inequalities are meant to hold true
entrywise;

(ii) decentralized if, for every i in E , the toll wi = ωi(y) is
a function of the flow yi on link i only.

Throughout the rest of the paper, we shall emphasize the
local structure of decentralized pricing policies by writing
wi = ωi(yi), with a slight abuse of notation. As shown in the
following, such robust fully local feedback pricing policies can
be designed with global guarantees on stability and optimality.
Before stating our main results, we introduce the notion of
generalized Wardrop equilibrium with feedback pricing.

Definition 2. (Generalized Wardrop equilibrium with feedback
pricing). For a transportation network with topology G = (V, E)
and latency functions τi, let o and d in V , with d 6= o reachable
from o, be an origin and a destination, respectively. Let Γ the
set of o-d paths and A the link-path incidence matrix. Then,
for a feedback pricing policy ω : F → RE+, an o-d equilibrium
flow vector y in F of throughput λ is a generalized Wardrop
equilibrium if y = Az for some path preference vector z in
Sλ such that for every path γ in Γ with zγ > 0, we have

(A′ (τ(y) + ω(y)))γ ≤ (A′ (τ(y) + ω(y)))γ̃ ∀γ̃ ∈ Γ. (23)

Equation (23) states that the sum of the total delay and
the total toll associated to an o-d path γ at the equilibrium
flow y are less than or equal to the sum of the total delay
and the total toll associated to any other o-d path γ̃. Hence,
a generalized Wardrop equilibrium with feedback pricing is
characterized as being the flow associated to a path preference
vector supported on the subset of paths with minimal sum of
total latency plus total toll. In the special case with no tolls,
i.e., when the feedback pricing policy ω(y) ≡ 0, this reduces
to the classical notion of Wardrop equilibrium [39]. More in
general, for constant tolls ω(y) ≡ w we get the standard notion
of Wardrop equilibrium with tolls. For general decentralized
monotone feedback pricing policies, existence and uniqueness
of a generalized Wardrop equilibrium are guaranteed by the
following result, proven in Appendix B.

Proposition 1. Consider a transportation network with topol-
ogy G = (V, E) and strictly increasing latency functions. Let
o and d in V , with d 6= o reachable from o, be an origin and
a destination, respectively. Then, for every throughput λ in
[0, Cmin cut

o,d ) and every decentralized monotone feedback pricing
policy ω : F → RE+, there exists a unique generalized Wardrop
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equilibrium y(ω) and it can be characterized as the solution
of the convex optimization problem

y(ω) = arg min
y∈RE

+

By=λ(δ(o)−δ(d))

∑
i∈E

Di(yi) , (24)

where, for each link i in E ,

Di(yi) =

∫ yi

0

(τi(s) + ωi(s)) ds (25)

is the primitive of the perceived cost τi(yi) + ωi(yi).

Remark 2. It is possible to modify the definition of perceived
cost by weighing τi differently from ωi. This modification would
cause no restriction on the validity of our results.

In the following, we shall prove that for small values of η
and large values of β, the long-time behavior of the system
(19) is approximately at the corresponding generalized Wardrop
equilibrium, which —under proper distributed feedback pricing
policies— coincides with the social optimum equilibrium. The
following is the main result of this paper. It will be proved in
the next section using a singular perturbation approach.

Theorem 1. Consider a transportation network with topology
G = (V, E) and flow-density functions satisfying Assumption
1. Let λ in [0, Cmin cut

o,d ) be the throughput and ω : F → RE+
be a Lipschitz-continuous monotone decentralized feedback
pricing policy. Then, there exists a perturbed equilibrium flow
y(ω,β) in F such that, for every initial condition (z(0), x(0))
in Z◦ × RE+, the solution of the closed-loop network traffic
flow dynamics (19)—(22) satisfies

lim sup
t→∞

‖y(t)− y(ω,β)‖ ≤ δ̄(η) , η > 0 , (26)

where δ̄(η) is a nonnegative-real-valued, nondecreasing func-
tion such that limη→0 δ̄(η) = 0. Moreover,

lim
β→∞

y(ω,β) = y(ω). (27)

Theorem 1 states that the system planner globally stabilizes
the transportation network around the Wardrop equilibrium
using non-decreasing decentralised flow-dependent tolls. Notice
that the case λ ≥ Cmin cut

o,d is not covered by Theorem 1 and in
fact in that case one can show that the transportation system
would become unstable as time grows large (see e.g., [23]).

Remark 3. Even in the cycle-free case, Theorem 1 does not
follow from Theorem 2.5 in [25] if the tolls are not constant.
Indeed, although the functions τ and ω both depend on the
flow y, it is not always possible consider an auxiliary function
τ̄ = τ + ω and directly apply the result from [25] due to the
specific structure imposed on τ in (5). The feedback structure
of the considered closed-loop multiscale transportation network
dynamics is illustrated in Figure 4.

Now, we focus on the special case of decentralized feedback
tolls the marginal cost tolls, namely, when

wi(t) = ωi(yi(t)) = yi(t)τ
′
i(yi(t)) , i ∈ E . (28)

Due the properties of the delay function τi, the marginal cost
tolls ωi(yi(t)) defined in (28) are increasing functions of the

Figure 4. Block diagram of the problem.

flow yi(t), so that Theorem 1 applies in this case. Moreover,
the following additional result holds true.

Corollary 1. Consider a transportation network with topology
G = (V, E) and flow-density functions satisfying Assumption
1. Let λ in [0, Cmin cut

o,d ) be the throughput and ω : F → RE+
be the dynamic feedback marginal cost tolls defined in (28).
Then, the transportation network globally stabilizes around
the social optimum traffic assignment y∗(λ), i.e., for every
initial condition (z(0), x(0)) in Z◦ × RE+, the solution of the
closed-loop network traffic flow dynamics (19)—(22) satisfies

lim
β→∞

y(ω,β) = y∗(λ) . (29)

Proof. First, notice that with feedback marginal cost tolls
ωi(yi) = yiτ

′
i(yi), the perceived cost τi(yi) + ωi(yi) on each

link i in E has primitive

Di(yi) =

∫ yi

0

(
τi(s) + sτ ′i(s)

)
ds = yiτi(yi) ,

so that ∑
i∈E

Di(yi) = L(y)

coincides with the total latency. It then follows from the
characterization (24) of Proposition 1 that

y(ω) = arg min
y∈RE

+

By=λ(δ(o)−δ(d))

∑
i∈E

Di(yi) = arg min
y∈RE

+

By=λ(δ(o)−δ(d))

L(y) = y∗(λ) .

The claim then follows by directly applying Theorem 1.

Remark 4. Corollary 1 holds true also if the dynamic feedback
marginal cost tolls (28) are replaced by the constant tolls

w∗i = y∗i (λ)τ ′i(y
∗
i (λ)) , i ∈ E . (30)

However, in contrast to the dynamic feedback marginal cost
tolls (28), such constant marginal cost tolls (30) require
knowledge both of the social optimum flow and the exogenous
inflow λδ(o) and lack robustness with respect to changes of
the value of λ, as well as to changes of the network.

Remark 5. In order to implement the dynamic feedback
marginal cost tolls (28), each local controller is required to
compute the product yiτ ′i(yi) of the link’s current flow and its
latency function’s derivative. Notice that, using (5), we get

ωi(yi) = yiτ
′
i(yi) =

1

ϕ′i(xi)
− xi
yi
.
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Hence, for the computation of ωi(yi) is is sufficient to measure
the current link density xi, the flow yi = ϕi(xi) and the
derivative of the flow-density function ϕi(xi).

IV. PROOF OF THEOREM 1

In this section, we prove Theorem 1. First of all, notice that
since the functions F (β), G, and ϕ are differentiable, standard
results imply the existence and uniqueness of a solution of the
initial value problem associated to (19), with initial condition
(z(0), x(0)) in Z◦ ×RE+. In order to prove the stability result,
we shall adopt a singular perturbation approach. Our strategy
consists in thinking of the path preference vector z as quasi-
static when we analyse the fast-scale dynamics (12), and
considering the flow vector y almost equilibrated (i.e., close
to yz) when study the slow-scale dynamics (17). Below, we
will derive a series of intermediate results that will then be
combined to prove Theorem 1.

Before proceeding, we introduce some notation to be used
throughout the section. Similar to (16) and (22) let

lz(t) = (lzi (t))i∈E , lzi (t) = τi(y
z
i (t))

and
wz(t) = (wzi (t))i∈E , wzi (t) = ωi(y

z
i (t))

be respectively the vector of current latencies and the one of
dynamic tolls both corresponding to the flow yz associated to
the path preference z.

Furthermore, observe that the perturbed best response
function (18) satisfies

F (β)(l, w) := arg min
α∈Zh

{α′A′(l + w) + h(α)}, (31)

where h : Z → R is the negative entropy function defined as

h(z) := β−1
∑
γ∈Γ

zγ log zγ , (32)

using the standard convention that 0 log 0 = 0. In fact, all our
analysis and results apply to a more general setting where the
perturbed best response function is defined as

F (h)(l, w) := arg min
α∈Zh

{α′A′(l + w) + h(α)}, (33)

for some admissible perturbation h : Zh → R such that Zh ⊆
Z is a closed convex set, h(·) is strictly convex, twice differen-
tiable in the interior Z◦h of Zh, and limz→∂Zh‖∇̃h(z)‖ =∞.
These conditions on h imply that Fh(l, w) belongs to Z◦h
and that it is continuously differentiable on RE+ × RE+. Notice
that clearly the negative entropy function (32) is an admissible
perturbation as defined above. We shall then proceed to proving
Theorem 1 in this more general setting.

Now, let

xzi := ϕ−1
i (yzi ), σi := sgn(xi − xzi ) = sgn(yi − yzi )

denote, respectively, the density corresponding to the flow
associated to the path preference z and the sign of the difference
between it and the actual density xi. Then, we define the
functions

V (y, z) = ‖y − yz‖1, and W (x, z) = ‖x− xz‖1. (34)

The following technical results aim at showing that (34) are
Lyapunov functions for the fast-scale dynamics (12) with
stationary path preference z.

Lemma 2. Let E ⊆ E be a nonempty set of cells. Then,

max
j∈E

{
1−

∑
i∈E:
θi=κj

Gi(z)
}
≥ 1

|V|
(35)

Proof. Let V = {v ∈ V : v = κi, i ∈ E}. Observe that∑
i∈E
θi=d

Gi(z) = 0 ,

so that, if d in V then

max
j∈E

{
1−

∑
i∈E:
θi=κj

Gi(z)
}

= 1 ,

and the claim follows immediately.
We can then focus on the case when d /∈ V . Let

α =
∑
i:κi∈V
θi /∈V

yzi + λδ
(o)
i (36)

be the total inflow in V which is also equal to the total outflow
from V . Indeed α in (36) can be also written as

α =
∑
i:κi /∈V
θi∈V

yzi =
∑
v∈V

∑
i:κi /∈V
θi=v

yzi ≤
∑
v∈V

∑
i/∈E
θi=v

yzi (37)

Now, let
fv =

∑
i:κi=v

yzi

be outflow from a single node v and observe that fv ≤ α for
every node v. Using this and (37) we get

α ≤
∑
v∈V

∑
i/∈E
θi=v

yzi =
∑
v∈V

fv
∑
i/∈E
θi=v

Gi(z) ≤ α
∑
v∈V

∑
i/∈E
θi=v

Gi(z).

(38)
Hence,

1

|V|
≤ 1

|V|
≤ 1

|V|

∑
v∈V

∑
i/∈E
θi=v

Gi(z) ≤ max
v∈V

∑
i/∈E
θi=v

Gi(z) , (39)

so that

max
j∈E

(
1−

∑
i∈E
θi=κj

Gi(z)
)

= max
v∈V

∑
i/∈E
θi=v

Gi(z) ≥
1

|V|
,

hence proving the claim.

Lemma 3. For every y = ϕ(x) in F and z in Z

∇xW (x, z)′H(y, z) ≤ −ςV (y, z),

where ς = 1/|V||E|.

Proof. Observe that by (15) we get

yzi = Gi(z)

(
λδ

(o)
θi

+
∑

j:κj=θi

yzj

)
.
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We will use the above in the second equality of the computation
below. Indeed we have

∇xW (x, z)′H(y, z) =∑
i∈E

σi

(
Gi(z)

(
λδ

(o)
θi

+
∑

j:κj=θi

yj

)
− yi

)
=
∑
i∈E

σi

(
Gi(z)

(
λδ

(o)
θi

+
∑

j:κj=θi

yj

)
−Gi(z)

(
λδ

(o)
θi

+
∑

j:κj=θi

yzj

))
+
∑
i∈E

σi(y
z
i − yi)

=
∑
i∈E

σi

(
Gi(z)

∑
j:κj=θi

(yj − yzj )
)
−
∑
i∈E

σi(yi − yzi ).

(40)

Now, define
E = {i ∈ E : σi 6= 0}

and put
δi = |yi − yzi | , i ∈ E .

We have that

δi ≥ min
k∈E

δk ≥
‖δ‖1
|E|

, ∀ i ∈ E .

Then by (40)∑
i∈E

σi

(
Gi(z)

∑
j:κj=θi

(yj − yzj )
)
−
∑
i∈E

σi(yi − yzi )

≤
∑
i∈E

(
Gi(z)

∑
j∈E:κj=θi

δj

)
−
∑
i∈E

δi

= −
∑
j∈E

δj

(
1−

∑
i∈E:θi=κj

Gi(z)
)

≤ −‖δ‖1
|E|

max
j∈E

(
1−

∑
i∈E:θi=κj

Gi(z)
)

≤ − ||δ||1
|V||E|

= −ςV (y, z)

(41)

by using Lemma 2

The following two results show that both yzi (t) and yi(t)
stay bounded away from the maximum flow capacity Ci.

Lemma 4. Given the admissible perturbation (32), there exists
t0 in R+ and, for every link i in E , a finite positive constant
Ci, dependent on h, but not on η, such that for every initial
condition (z(0), x(0)) in Z◦ × RE+,

yzi (t) ≤ Ci < Ci ∀t ≥ t0, ∀i ∈ E .

Proof. The fact that yzi (t) ≤ λ for all i in E follows from the
fact that the arrival rate at the origin is unitary. Hence, for
all i in E with Ci > λ (and therefore also for Ci = ∞) the
claim follow with Ci = λ and t0 = 0. We now consider the
case when Ci < λ for all i in E . Recall that by the definition
of admissible perturbation, the domain of (32) is a closed set
Zβ ⊆ Z◦. This implies that

ξi := Ci − sup{(Aα)i : α ∈ Zβ} > 0.

It follows from (18) that

Ci − ξi = sup{(Aα)i : α ∈ Zβ} ≥ sup{(AF (β)(l, w))i}.

Hence, one gets

d

dt
yzi (t) = η(A(F (β)(l(t), w(t))− z(t)))i ≤ η(Ci − ξi − yzi ).

This implies that

yzi (t)−Ci+ξi ≤ (yzi (0)−Ci+ξi)e−ηt ≤ λe−ηt, t ≥ 0, (42)

where the last inequality comes from the fact that yzi (0) ≤ λ
and Ci ≥ ξi. For i in E with Ci < λ the claim now follows
from (42) by choosing, for example, Ci := Ci−ξ/2 with ξ :=
min{ξi : i ∈ E s.t. Ci < λ} and t0 := −η−1 log(ξ/2λ).

Lemma 5. Given the admissible perturbation (32), there exist
some η∗ > 0 and C̃i > 0 for i in E , such that for every η < η∗

and every initial condition (z(0), x(0)) in Z◦ × RE+,

yi(t) ≤ C̃i < Ci ∀t ≥ 0, ∀i ∈ E .

Proof. For t ≥ 0, let us define

ζ(t) := W (x(t), z(t)), χ(t) := V (y(t), z(t)),

where V and W are defined in (34). By the Lemma 4 there
exists t0 ≥ 0 and a positive constant Ci for every i in E , such
that for every t ≥ t0 and applying the inverse of the function
ϕi we get

xzi (t) ≤ x∗i , x∗i := ϕ−1
i (Ci) ∀i ∈ E . (43)

Since xzi (t) ≥ 0, (43) implies that if |xi(t) − xzi (t)| ≥ 2x∗i
for some t ≥ t0, then xi(t) ≥ 2x∗i for t ≥ t0. Hence yi(t)−
yzi (t) ≥ χ∗i for all t ≥ t0, where χ∗i = ϕi(2x

∗
i ) − Ci. Since

ϕi(xi) is a strictly increasing function, one has that

χ∗i = ϕi(2x
∗
i )− Ci > ϕi(x

∗
i )− Ci = 0.

Now, let

ζ∗ := 2|E|max{x∗i : i ∈ E}, χ∗ := min{χ∗i : i ∈ E}.

and observe that

W (x, z) ≤ |E|max{|xi − xzi | : i ∈ E},
V (y, z) ≥ |yi − yzi | ∀i ∈ E .

Therefore, it follows that for any t ≥ t0, if ζ(t) ≥ ζ∗, then for
some i′ in E we have that |xi′(t)− xzi′(t)| ≥ 2x∗i′ for t ≥ t0.
This in turn implies that χ(t) ≥ χ∗i′ ≥ χ∗. Hence,

ζ(t) ≥ ζ∗ =⇒ χ(t) ≥ χ∗ > 0 ∀t ≥ t0. (44)

Moreover by (43) follows that there exists some µ > 0 such
that ∑

i∈E

1

ϕ′i(x
z
i (t))

≤ µ ∀t ≥ t0.
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By combining the above with Lemma 3 one finds that for every
u, t ≥ t0,

ζ(t)− ζ(u) =

∫ t

u

∑
i∈E

σi

(
d

ds
xi −

d

ds
xzi

)
ds

≤
∫ t

u

∇xW (x, z)′H(y, z)ds

+

∫ t

u

∑
i∈E

η

ϕ′i(x
z
i (t))

|(AF (β)(lz, wz))i − (Az)i|ds

≤
∫ t

u

(
− ς χ(s) + 2ληµ

)
ds.

(45)

Now, by contradiction, let us assume that lim supt→∞ yi(t) ≥
Ci for some i in E . Since yi(t) = ϕi(xi(t)) < Ci for every
t ≥ 0, this would imply that lim supt→∞ xi(t) = ∞. From
this follows that the lim supt→∞ ζ(t) =∞. Then, in particular,
the set T := {t > 0 : ζ(t) > ζ(s) ∀ s < t} is an unbounded
union of open intervals with limt∈T ,t→∞ ζ(t) =∞. This and
(44) imply that there exists a nonnegative constant t∗ ≥ t0
such that

χ(t) ≥ χ∗ ∀t ∈ T ∩ [t∗,∞). (46)

Defining η∗ := ς χ∗/2λµ, for every η < η∗, (45) and (46) give

ζ(t)− ζ(u) ≤
∫ t

u

(
− ς χ(s) + 2ληµ

)
ds

≤
∫ t

u

(
− ς χ∗ + 2ληµ

)
ds < 0

for every t > u ≥ t∗ such that t and u belong to the same
connected component of T . But this contradicts the definition
of T . Hence, if η < η∗ then lim supt→∞ yi(t) < Ci for any
i in E . Since supt∈I yi(t) = yi(t̂) < Ci for some t̂ on every
compact time interval I ⊆ R+, the claim follows.

Lemma 6. There exist constants K > 0 and t1 ≥ 0 such
that for every initial condition (z(0), x(0)) in Z◦ × RE+,
‖∇̃zh(z(t))‖ ≤ K for all t ≥ t1.

Proof. From Lemma 5, there exists T ∗, υ∗ > 0 such that
‖l(t)‖ ≤ T ∗ and ‖w(t)‖ ≤ υ∗ for all t ≥ 0. This fact
together with the definition of F (β)(l, w) (18) implies that
F (β)(l(t), w(t)) belongs to Z◦β and ∇̃zh(F (β)(l(t), w(t))) =

−ΦA′(l(t) + w(t)). Hence ‖∇̃zh(F (β)(l(t), w(t)))‖ ≤
‖Φ‖‖A′‖S∗, with S∗ = T ∗+υ∗. This implies the existence of
a convex compact K ⊂ Z◦β such that F (β)(l(t), w(t)) belongs
to K for all t ≥ 0. Define

∆(t) :=
η

1− e−ηt

∫ t

0

e−η(t−s)F (β)(l(s), w(s)) ds.

Since ∆(t) is an average of elements of the convex set K, then
∆(t) ∈ K ∀t ≥ 0. Moreover, z(t) = e−ηtz(0)+(1−e−ηt)∆(t)
approaches K, which implies that for large enough t, z(t)
belongs to a closed subset K1 of Z◦β that contains K. Hence,
after large enough t, say, t1, ∇̃zh(z(t)) stays bounded.

Lemma 7. There exist ` > 0 and t0 ≥ 0 such that for every
initial condition (z(0), x(0)) in Z◦ × RE+,

∇̃zW (x(t), z(t))′(F (β)(l(t), w(t))−z(t)) ≤ 2λ`|E| ∀t ≥ t0.

Proof. Observe that thanks to Lemma 4 there exists t0 ≥ 0
such that `i := sup{1/ϕ′i(xzi (t)) : t ≥ t0} < +∞. Put ` :=
max{`i : i ∈ E}. Then, for every path γ in Γ and for every
t ≥ t0, one has∣∣∣∣∂W (x, z)

∂zγ

∣∣∣∣ =

∣∣∣∣∣−∑
i∈E

σi
∂

∂zγ
xzi

∣∣∣∣∣
=

∣∣∣∣∣∑
i∈E

σi
∂

∂zγ
ϕ−1
i

(∑
γ

Aiγzγ

)∣∣∣∣∣
≤
∑
i∈E

Aiγ
1

ϕ′i(x
z
i )
≤
∑
i∈E

Aiγ`i ≤ `|E|.

Therefore,

2λ`|E| ≥
∑
γ

F (β)
γ (l, w)

∣∣∣∣∂W (x, z)

∂zγ

∣∣∣∣+
∑
γ

zγ

∣∣∣∣∂W (x, z)

∂zγ

∣∣∣∣
≥
∑
γ

F (β)
γ (l, w)

∂W (x, z)

∂zγ
−
∑
γ

zγ
∂W (x, z)

∂zγ

= ∇̃zW (x, z)′(F (β)(l, w)− z) ,

thus proving the claim.

We now combine Lemmas 3 and 7 in order to estimate the
behavior in time of W (x(t), z(t)).

Lemma 8. There exist `, L, η∗ > 0 and t0 ≥ 0 such that for
every initial condition z(0) in Z , x(0) in [0,+∞)E ,

W (x(t), z(t)) ≤
2λ`Lη|E|

ς
+ e−ς(t−t0)/L

(
W (x(t0), z(t0))− 2λ`Lη|E|

ς

)
for t ≥ t0 and η < η∗.

Proof. Define ζ(t) := W (x(t), z(t)). Note that thanks to
Lemmas 4 and 5, there exist L > 0, η∗ > 0 and t0 ≥ 0
such that for any η < η∗,

|xi(t)− xzi (t)| ≤ L|yi(t)− yzi (t)| ∀i ∈ E , t ≥ t0.

This involves that

V (y(t), z(t)) ≥ 1

L
W (x(t), z(t)) =

1

L
ζ(t) ∀η < η∗, t ≥ t0.

Moreover W (x, z) is a Lipschitz function of x and z, while
both x(t) and z(t) are Lipschitz on every compact time interval.
Therefore ζ(t) is Lipschitz on every compact time interval and
hence absolutely continuous. Thus dζ(t)/dt exists for almost
every t ≥ 0, and, thanks to Lemmas 3 and 7 it satisfies

dζ(t)

dt
=
dW (x(t), z(t))

dt
= ∇xW (x, z)′H(y, z) + η∇̃zW (x, z)′(F (β)(l, w)− z)

≤ −ςV (y, z) + 2λ`η|E| ≤ − ς ζ(t)

L
+ 2λ`η|E|.

Then, integrating both sides we get the claim.
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A. Proof of Theorem 1

We are now in a position to prove Theorem 1. Let us consider
the function

Θ : Z → R+, Θ(z) :=
∑
i∈E

∫ yzi

0

(
τi(s) + ωi(s)

)
ds (47)

and observe that

∇̃Θ(z) = ΦA′(lz + wz) ∀z ∈ Z◦. (48)

Note that since τi(yi)+ωi(yi) is increasing, then the map yi 7→∫ yzi
0

(
τi(yi) + ωi(yi)

)
dyi is convex. Hence, the composition

with the linear map z 7→ yzi =
∑
γ Aiγzγ is convex in z, which

in turn implies convexity of Θ over Z . Since h(z) defined in
(32) is strictly convex, we obtain strict convexity of Θ(z)+h(z)
on Zβ . Then, since Zβ is a compact and convex set, there
exists a unique minimizer

zβ := arg min{Θ(z) + h(z) : z ∈ Zβ}. (49)

Let now y(ω,β) := yz
β

. Then, the following result holds true.

Lemma 9. The perturbed equilibrium flow y(ω,β) in F is such
that

lim
β→+∞

y(ω,β) = y(w).

Proof. Since {Azβ} ⊆ AZ , and AZ is compact, there exists
a converging subsequence {Azβk : k ∈ N}. Let us denote by
ŷ := limk Az

βk in AZ its limit and choose some ẑ in Z such
that ŷ = Aẑ. Notice that since

sup{τi(yzi ) + ωi(y
z
i ) : z ∈ Zβ} < +∞ , ∀i ∈ E ,

the differentiability of h in the interior set Z◦β of Zβ implies
that the minimizer in (49) belongs to Z◦β . As a consequence,
one finds that necessarily

∇̃zh(zβk) = −ΦA′(τ(Azβk) + ω(Azβk)),

which successively implies that F βk(τ(Azβk), ω(Azβk)) =
zβk . Then, using (33), one finds that

(Azβk)′(τ(Azβk) + ω(Azβk)) + hβk(zβk)

≤(Azβk)′(τ(Azβk) + ω(Azβk)) + hβk(α),
(50)

for all α in Zβk . Now, fix any z in Z . Since Zβ → Z as
β → +∞,2 then there exists a sequence {z̃k} such that z̃k

belongs to Zβk for all k and limk z̃
k = z. Hence, taking

α = z̃k in (50) and passing to the limit as k grows large, one
finds that

ẑ′A′(τ(ŷ) + ω(ŷ)) ≤ z′A′(τ(ŷ) + ω(ŷ)) ∀ z ∈ Z.

In turn, the above can be easily shown to be equivalent to the
characterization (23) of Wardrop equilibria. From the unique-
ness of the Wardrop equilibrium, it follows that necessarily
ŷ = y(w). Then the claim follows from the arbitrariness of the
accumulation point ŷ, hence y(ω,β) → y(w).

2Here, Z stands for the closure of Z and the convergence Zβ → Z is
meant to hold true with respect to the Hausdorff metric.

We now estimate the time derivative of Θ(z) + h(z) along
trajectories of our dynamical system. Towards this goal, define

Ψ(t) := Θ(z(t)) + h(z(t)),

ψ(t) := ΦA′(lz(t) + wz(t)) + ∇̃zh(z(t)) .

Then, using (48), we get

Ψ̇(t) =
(
∇̃zΘ + ∇̃h(z)

)
ż

= ηψ(t)′(F (β)(l(t), w(t))− z(t))

= ηψ(t)′(F (β)(lz(t), wz(t))− z(t))

+ηψ(t)′(F (β)(l(t), w(t))− F (β)(lz(t), wz(t))) .
(51)

By Lemma 8, there exist t2 ≥ 0, η∗ > 0 and M1 > 0 such that
W (x(t), z(t)) ≤ ηM1 for all η < η∗ and t ≥ t2. From the
definition of W it follows that W (x, z) ≥ ‖x− xz‖1/|E| for
all x, z. Moreover, the properties of ϕ imply that ‖y− yz‖1 ≤
L‖x − xz‖1 for all y, z, and L := max{ϕ′i(0) : i ∈ E}.
Combining all these relationships we get that there exists
M > 0 such that, for every η < η∗,

‖y(t)− yz(t)‖ ≤ ηM ∀t ≥ t2, (52)

where M = |E|M1L. Thanks to the differentiability of F (β)

on RE+ ×RE+ and the boundedness of both yz(t) and y(t) one
gets that

‖F (β)(l(t), w(t))− F (β)(lz(t), wz(t))‖ ≤ K1η ,

for some positive constant K1, η < η∗ and large enough
t. Since Lemmas 4 and 6 guarantee that that lz(t), wz(t)
and ∇̃zh(z(t)) are eventually bounded, there exists a positive
constant K2 such that ‖ψ(t)‖ ≤ K2 for t large enough. This
implies that the second addend in the last line of (51) can be
bounded as

ηψ(t)′(F (β)(l(t), w(t))− F (β)(lz(t), wz(t))) ≤ Kη2 (53)

where K = K1K2, for all η < η∗ and t ≥ t3 for some
sufficiently large but finite value of t3. Now, observe that

ΦA′(lz(t) + wz(t))) = −∇̃zh(F (β)(lz(t), wz(t)))

for every z in Z , so that the first addend in the last line of
(51) may be rewritten as

ψ(t)′(F (β)(lz(t), wz(t))− z(t)) = −Υ(z(t)), (54)

where

Υ(z(t)) =
(
∇̃zh(F (β)(lz(t), wz(t)))− ∇̃zh(z(t))

)′
· (F (β)(lz(t), wz(t))− z(t)).

It follows from (51), (53), and (54) that for η < η∗ and t ≥ t3,

Ψ̇(t) ≤ −ηΥ(z(t)) +Kη2. (55)

From the strict convexity of h(z) on Zβ , Υ(z(t)) ≥ 0 for
every z, with equality if and only if z = zβ . Now, put

δ̄(r) ={
sup{‖yz − y(ω,β)‖ : Υ(z) ≤ Kr}+Kr if 0 ≤ r < η∗,

C̃
√
|E| if r ≥ η∗,
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where C̃ := max{1, C̃i : i ∈ E}, with C̃i as defined in Lemma
5. It can be proved that δ̄(r) is nondecreasing, right-continuous,
and such that limη→0 δ̄(η) = δ̄(0) = 0. Then, (52) and (55)
imply that for η < η∗,

lim sup
t→∞

‖y(t)− y(ω,β)‖ ≤ δ̄(η). (56)

Note that since y(t) in [0, C̃]E and y(ω,β) in AZ ⊆ [0, 1]E

then |yi(t)−y(β)
i | ≤ max{C̃i, 1} ≤ C̃ for all i in E and hence

‖y(t) − y(ω,β)‖2 ≤ |E|C̃2. Then (56) also holds for η ≥ η∗,
since in that range δ̄(r) = C̃

√
|E|. Together with Lemma 9,

this concludes the proof of Theorem 1.

V. POSSIBLE EXTENSIONS OF THE RESULTS

As discussed, the framework and results presented in
the previous sections have arguably two major limitations:
the assumption that there is a single origin/destination pair
and the assumption that the link flow-density functions are
strictly increasing. In this section, we briefly discuss possible
extensions of our results that include relaxations of these two
assumptions.

First, it is possible to extend our results to the case of
multiple origin-destination pairs as follows. Let {(ok, dk)}k∈K
be a set of origin-destination pairs where ok 6= dk in V for
each k in K. Let λ in RK+ be a vector of associated throughputs

ν =
∑
k∈K

λk

(
δ(θok ) − δ(κdk )

)
, ν+ = [ν] ν− = [ν]− .

Let Γk be the set of (ok, dk)-paths and A(k) in {0, 1}E×Γk

the link-path incidence matrix. Let Γ = ∪k∈KΓk and A in
{0, 1}E×Γ be the link-path incidence matrix. Let

Sλ =
{
z ∈ RΓ

+ :
∑

γ∈Γk
zγ = λk

}
For every z in Zλ, yz = Az is an equilibrium flow vector
satisfying Byz = ν. Define G(z) as in (14) and extend (12)
and (20) as

ẋi(t) = ν+
i +

∑
j∈E

Rji(t)yj(t)− yi(t) , (57)

and

Hi(y, z) := Gi(z)

(
ν+
i +

∑
j:κj=θi

yj

)
− yi , i ∈ E . (58)

respectively. Then, all the results carry over with the notion
of Wardrop equilibrium defined as in [20, Sect. 2.1] and the
min-cut feasibility condition (cf. [15])∑

i∈U
νi <

∑
i∈E :

θi∈U, κi /∈U

Ci , ∀U ⊆ V .

Notice that the extension illustrated above allows one
for considering multiple origin-destination pairs. However,
it considers physical dynamics of the traffic flows with a
single aggregate commodity, while it keeps the commodities
separated as far as the route decision dynamics are concerned.
An alternative approach could entail a multicommodity model
also of the physical dynamics of the traffic flows. However,
such multicommodity dynamical flow networks would lose

fundamental monotonicity properties (cf. [46]) that enable, in
particular, the proof of Lemma 2 as presented in this paper.
This means that, in order to generalize the results of this paper
with a multicommodity physical dynamics of the traffic flows,
one should be able to find different ways to guarantee their
global exponential stability.

Finally, as mentioned in Remark 1, the fact that the flow-
density functions are strictly increasing limits the applicability
of the results in this paper in road traffic network applications to
the so-called free-flow region. One possible approach to extend
the setting outside such free-flow region consists in modeling
the physical dynamics of the traffic flows with monotone non-
FIFO versions of the Cell Transmission Model [18] as proposed
and analysed, e.g., in [47], thus keeping monotonicity and
contractivity properties of the physical flow dynamics. The
difficulty in this case comes from the fact that the outflow from
and the latency on a cell would depend on the densities both on
that cell and on the ones immediately downstream, thus making
one lose separability of the latency functions. Such an approach
may possibly be pursued using techniques developed in the
context of traffic assignment problems with non-separable cost
functions, see, e.g., [48]–[50] and [20, Section 2.5].

VI. NUMERICAL SIMULATIONS

In this section, we present a numerical study comparing the
asymptotic and transient performance of multiscale transporta-
tion networks controlled by dynamic feedback marginal cost
tolls (28) and precomputed constant marginal cost tolls (30).

For the network topology of Figure 5 and for several values
of the parameter η, we found that dynamic feedback marginal
cost tolls outperform the constant marginal ones. Specifically:
• concerning the transient convergence, it appears that the

time needed to reach the perturbed equilibrium associated
to the dynamic feedback marginal cost tolls is lower than
the time to reach the perturbed equilibrium associated to
the constant marginal cost ones.

• as the uncertainty parameter β of the route choice goes to
infinity the perturbed equilibrium associated to dynamic
feedback marginal cost tolls asymptotically converges to
the social optimum flow faster than the one associated to
the constant marginal cost tolls.

We illustrate these findings in the following simple case:
• network topology G as in Figure 5;
• flow-density function as in (9) and corresponding latency

function as in (10), with capacity Ci = 2 for every link i;
• F (β) as in (18), η = 0.1, G as in (15) and λ = 1;
• initial conditions: zγ(1)(0) = 1/2, zγ(2)(0) = 1/6,
zγ(3)(0) = 1/3 xi1(0) = 4, xi2(0) = 2, xi3(0) = 3,
xi4(0) = 1, xi5(0) = 5.

Having settled a time horizon T = 350, Figure 6 displays the
l1-distance and the latency loss of y(ω,β)(T ) from the system
optimum y∗ = (1/2, 1/2, 0, 1/2, 1/2), for different values of
the uncertainty parameter β. This is done both considering
(28) and the constant marginal tolls (30). Note that while our
theoretical results guarantee that y(ω,β)(T ) converges to y∗ only
in the double limit of large T (asymptotically in time) and large
β (vanishing noise), in our numerical examples convergence
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Figure 5. The graph topology used for the simulations.
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Figure 6. Plot of ‖y(ω,β)(T ) − y∗‖1 and L(y(ω,β)(T )) − L(y∗) for
decentralised marginal and constant marginal tolls .

is practically observed already for relatively small values of
β. Our simulations also suggest that convergence of y(ω,β)(T )
to the system optimum is faster for the feedback marginal
cost tolls (28) than for the fixed marginal cost (30). Hence, in
addition to variations of network’s parameters and exogenous
loads, feedback marginal cost tolls appear to be more robust
than their constant counterparts also when it comes to noise.

A. Effect of information delays

In this subsection, we study the effects of delays in the global
information of the slow scale dynamics (17) on the system
(19). Considering at first the case of marginal cost tolls, we fix
a time-delay φ so that the cost perceived by each user crossing
a link i in E is li(t− φ) + wi(t− φ). Fixing the uncertainty
parameter β and varying φ, we observe how the time-evolution
of the density x(t) is changed and how the corresponding flow
y approximates the social optimum flow y∗(λ) with λ = 1.
For that, we consider the graph topology as in Figure 5 and the
same parameters as before. Then, fixing β = 5, we numerically
compute the trajectory x(t) for different values of the delay φ
as shown in Figure 7. In Figures 7(a) and 7(b) we can note
that the density vector x(t) converges to an equilibrium. By
numerical simulations one gets that φ = 9 is the largest value
for which one has convergence (see Figure 7(b)). In fact, for
φ > 9 one witnesses a phase transition of the system, with
the emergence of an oscillatory behavior. We can also note
in Figures 7(c) and 7(d) that the larger φ is, the larger the
oscillation amplitude and phase are. A similar situation can be
observed in the plot of the l1-distance of y from y∗ in Figure
8, for the same value of φ used in Figure 7.

Consider now the case of constant marginal cost tolls (30).
Let φ be the time delay as before and τi(yi(t − φ)) + w∗i
the cost perceived by each user crossing a link i in E . Still
using the graph topology as in Figure 5 and fixing β = 5 we
numerically compute the trajectory of the density vector x(t)

(a) (b)

(c) (d)

Figure 7. The density vector trajectory x(t) for two different values of the
information delay, φ = 10 and φ = 20.
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Figure 8. Plot of ‖y(t)− y∗‖1 for different values of the delay φ.

and the l1-distance of the corresponding flow vector y(t) from
the social optimal y∗. We perform this for the same values of
time delay φ used before. From Figure 9 we can note that for
all considered values of φ the trajectory x converges to the
equilibrium. This differs from what happens using the marginal
cost tolls (see Figure 7) and highlights how time-delays affect
marginal cost tolls more than their constant counterpart. The
plot of the 1-norm, Figure 10, confirms the same trend, indeed
after some initial oscillations, the 1-norm is the same for the
different values of φ.

VII. CONCLUSION

We have studied the stability of multi-scale dynamical
transportation networks with distributed dynamic feedback
pricing. We have proved that, if the frequency of path prefer-
ences updates is sufficiently low, monotone decentralized flow-
dependent dynamical tolls make the network asymptotically
approach a neighborhood of a generalized Wardrop equilibrium.
For a particular class of dynamic feedback tolls, i.e., the
marginal cost ones, we have proved that the stability is
guaranteed to be around the social optimum equilibrium.
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(a) (b)

(c) (d)

Figure 9. Trajectories with constant marginal tolls, for different values of
the delay φ.
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Figure 10. Plot of ‖y(t)− y∗‖1 for different values of φ.

Through numerical experiments, both asymptotic and tran-
sient performance have been shown to be better with dynamic
feedback marginal cost tolls than with constant ones. Finally,
the impact of information delays has been investigated through
numerical simulations, showing how such delays influence
the stability and convergence of the network flow dynamics.
In particular, feedback marginal cost tolls appear to be more
fragile to information delays that constant tolls.

These findings motivate future research aimed at providing
analytical estimates of the different convergence rates. It would
also be worth analytically investigating the robustness of
feedback tolls to information delays and to consider anticipatory
learning dynamics incorporating derivative actions (c.f., [51]).

APPENDIX A
PROOF OF LEMMA 1

The fact that the latency function τi(y) is twice continuously
differentiable on [0, Ci), strictly increasing, and such that
τi(0) > 0 directly follows from Assumption 1.

For a given y in [0, Ci), let x = ϕ−1
i (y), a = ϕ′i(x), and

b = ϕ′′i (x). Then,

τ ′i(y) =
d

dy

(
ϕ−1
i (y)

y

)
=
y/a− x
y2

=
y − ax
ay2

,

thus proving (6).
We now prove that y 7→ yτi(y) is strictly convex by

computing its second derivative. For that, first notice that

da

dy
=

d

dy
ϕ′i(ϕ

−1(y)) =
ϕ′′i (x)

ϕ′i(x)
=
b

a
,

d

dy
(y − ax) = 1− b

a
x− a1

a
= − b

a
x ,

and
d

dy

(
ay2
)

=
b

a
y2 + 2ya .

Then,

(yτi(y))
′′

= 2τ ′i(y) + yτ ′′i (y)

=
2(y − xa)

ay2
+ y

d

dy

(
y − xa
ay2

)

=
2(y − xa)

ay2
+

−bxy2 − (y − xa)

(
y2 b

a
+ 2ya

)
a2y3

= − b

a3
.

Now, observe that Assumption 1 guarantees that a > 0 and
b < 0. Hence, (yτi(y))

′′
> 0 and therefore yτi(y) is strictly

convex, thus completing the proof.

APPENDIX B
PROOF OF PROPOSITION 1

From Assumption 1 and the fact that the toll on a link is
a non-decreasing function of the flow on that link only, it
follows that the perceived cost function τi(yi) + ωi(yi) on
link i is continuous, strictly increasing, and grater than zero
when yi = 0. The claim then follows as a direct application
of Theorems 2.4 and 2.5 in [20].
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