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An analytic approximation of the feasible space
of metabolic networks
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Assuming a steady-state condition within a cell, metabolic fluxes satisfy an underdetermined

linear system of stoichiometric equations. Characterizing the space of fluxes that satisfy such

equations along with given bounds (and possibly additional relevant constraints) is con-

sidered of utmost importance for the understanding of cellular metabolism. Extreme values

for each individual flux can be computed with linear programming (as flux balance analysis),

and their marginal distributions can be approximately computed with Monte Carlo sampling.

Here we present an approximate analytic method for the latter task based on expectation

propagation equations that does not involve sampling and can achieve much better predic-

tions than other existing analytic methods. The method is iterative, and its computation time

is dominated by one matrix inversion per iteration. With respect to sampling, we show

through extensive simulation that it has some advantages including computation time, and

the ability to efficiently fix empirically estimated distributions of fluxes.
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T
he metabolism of a cell entails a complex network of
chemical reactions performed by thousands of enzymes
that continuously process intake nutrients to allow for

growth, replication, defence and other cellular tasks1. Thanks
to the new high-throughput techniques and comprehensive
databases of chemical reactions, large-scale reconstructions
of organism-wide metabolic networks are nowadays available.
Such reconstructions are believed to be accurate from a
topological and stoichiometric viewpoint (for example, the set
of metabolites targeted by each enzyme, and their stoichiometric
ratio). For the determination of reaction rates, large-scale
constraint-based approaches have been proposed2. Typically,
such methods assume a steady-state regime in the system
where metabolite concentrations remain constant over time
(mass-balance condition). A second type of constraints limit
the reaction velocities and their direction. In full generality,
the topology of a metabolic network is described in terms of the
chemical relations between the M metabolites and N reactions. In
mathematical terms, we can define aM�N stoichiometric matrix
S in which rows correspond to the stoichiometric coefficients
of the corresponding metabolites in all reactions. A positive
(resp. negative) Sij term indicates that metabolite i is created
(resp. consumed) by reaction j. Assuming mass-balance and
limited interval of variation for the different reactions, we can
cast the problem in terms of finding the set of fluxes nARN

compatible with the following linear system of constraints and
inequalities:

Sn¼b ð1Þ

ninf � n � nsup ð2Þ
where bARM is the known set of intakes/uptakes, and the pair
ninf, nsup represent the extremes of variability for the variables of
our problem. Only in few cases, the extremes are experimentally
accessible, in the remaining ones they are fixed to arbitrarily large
values. It turns out that NZM, and the system is typically
underdetermined. As an example, the RECON1 model of Homo
sapiens has N¼ 2,469 fluxes (that is, variables) and M¼ 1,587
metabolites (that is, equations). The mass-balance constraints and
the flux inequalities encoded in equations (1 and 2) define a
convex-bounded polytope, which constitutes the space of all
feasible solutions of our metabolic system.

The most widely used technique to analyse fluxes in
large-scale metabolic reconstruction is flux balance analysis
(FBA)3,4 where a linear objective function, typically the biomass
or some biological proxy of it is introduced, and the problem
reduces to find the subspace of the polytope, which optimizes
the objective function. If this subspace consists in only one
point, the problem can be efficiently solved using linear
programming. FBA has been successfully applied in many
metabolic models to predict specific phenotypes under specific
growth condition (for example, bacteria in the exponential
growth phase). However, if one is interested in describing
more general growth conditions, or is interested in other fluxes
than the biomass5, different computational strategies must be
envisaged6–8.

As long as no prior knowledge is considered, each point of the
polytope is an equally viable metabolic phenotype of the
biological system under investigation. Therefore, being able to
sample high-dimensional polytopes becomes a theoretical
problem with concrete practical applications. From a theoretical
standpoint, the problem is known to be #P-hard9 and thus an
approximate solution to the problem must be sought. A first class
of Monte Carlo–Markov chain sampling techniques available to
analyse large-dimensional polytopes was originally proposed
three decades ago10 and falls under the name of Hit-and-Run

(HR)11. Basically, it consists on iteratively collecting samples by
choosing random directions from a starting point belonging to
the polytope. Unfortunately, polytopes defined by large-scale
metabolic reconstructions are typically ill conditioned (that is,
some direction of the space are far more elongated than others),
and improved HR techniques to overcome this problem have
been proposed12 and implemented in the context of metabolic
modelling6,8,13. Despite the fact that these dynamic sampling
strategies are often referred as uniform random samplers, the
uniformity of the sampling is guaranteed only in an asymptotic
sense, and often establishing in practice how long a simulation
should be run and how frequently the measurement should be
taken for a given instance of the problem requires extensive
preliminary simulations, which make their use very difficult
under general conditions. Note, also that the problem of assessing
how perturbations of network parameters affect the structure of
the polytope is often of practical importance; for example,
changing extremal flux values for studying growth rate
curves or enzymopaties14. In these situations, in principle, the
convergence time of the algorithm should be established
independently for each new value of the parameter. Another
limitation of this class of sampling strategies is the difficulty
of imposing other constraints15 such as the experimentally
measured distribution profiles of specific subset of fluxes
(typically biomass and/or in-take/out-take of the network),
a particularly timely issue given the recent breakthrough
of metabolic measurements in single cell16, although recent
attempts in this direction exist17,18.

Recently, alternative statistical methods based on message
passing (MP) techniques (also known as cavity or Bethe
approximation in the context of statistical mechanics)19 have
been proposed7,20–23, allowing for sampling of the polytope
orders of magnitude faster than HR methods, under two main
conditions: (i) the graphical structure of the graph must be a tree
or, at least, locally tree like (that is, without short loops), (ii) the
rows of the stoichiometric matrix S should be statistically
uncorrelated. Unfortunately, neither assumption is really
fulfilled by large-scale metabolic reconstructions. To give an
example, consider the rows of the stoichiometric matrix for
E. colicore model24. The rows corresponding to the adenosine–
diphosphate and adenosine–triphosphate appear strongly
correlated as both metabolites commonly appear in 11
reactions; the same apply for the intracellular water and
hydrogen ion that have 10 reactions in common. For these
reasons, MP methods suffer from all kind of convergence and
accuracy problems.

In this work, we propose a new Bayesian inference strategy to
analyse with unprecedented efficiency large dimensional poly-
topes. The use of a Bayesian framework allows us to map the
original problem of sampling the feasible space of solutions of
equations (1 and 2) into the inference problem of the joint
distribution of metabolic fluxes. Linear and inequality constraints
will be encoded within the likelihood and the prior probabilities
that via Bayes theorem provide a model for the posterior P n bjð Þ.
The goal of this work is to determine a tractable multivariate
probability density Q n bjð Þ able to accurately approximate the
posterior even in the case of strongly row-correlated stoichio-
metric matrices. This strategy relies on an iterative and local
refinement of the parameters of Q n bjð Þ that falls into the class of
expectation propagation (EP) algorithms. We report results of EP
for representative state-of-the-art models of metabolic networks
in comparison with HR estimate, showing that EP can be used to
compute marginals in a fraction of the computing time needed
by HR. We also show how the technique can be efficiently
adapted to incorporate the estimated growth rate of a population
of Escherichia coli.
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Results
Formulation of the problem. We are going to formulate an
iterative strategy to solve the problem of finding a multivariate
probability measure over the set of fluxes n compatible with
equations (1 and 2). For a vector of fluxes satisfying bounds 2, we
can define a quadratic energy function E(n) whose minimum(s)
lies on the assignment of variables n satisfying the stoichiometric
constraints in equation (1):

E nð Þ¼ 1
2

Sn� bð ÞT Sn� bð Þ ð3Þ

We define the likelihood of observing b given a set of fluxes n as a
Boltzmann distribution:

P b njð Þ¼ b
2p

� �M
2

e�
b
2 Sn� bð ÞT Sn� bð Þ ð4Þ

where b is a positive parameter, the ‘inverse temperature’ in
statistical physics jargon, that governs the penalty of whose
configurations of fluxes that are far from the minimum of the
energy. In a Bayesian perspective, one can consider the posterior
probability of observing P n bjð Þ as:

P n bjð Þ¼ P b njð ÞP nð Þ
P bð Þ ð5Þ

where the prior

P nð Þ¼
YN
n¼1

cn nnð Þ¼
YN
n¼1

1ðnn 2 ninfn ; nsupn �
� �

nsupn � ninfn
ð6Þ

enforces the bounds over the allowed range of fluxes. The func-
tion 1 nn 2 ninfn ; nsupn

� �� �
is an indicator function that takes value 1

if nnA[ninfn , nsupn ] and 0 otherwise. We finally obtain the following
relation for the posterior:

P n bjð Þ¼ 1
P bð Þ

b
2p

� �M
2

e�
b
2 Sn� bð ÞT Sn� bð Þ

YN
n¼1

cn nnð Þ ð7Þ

and eventually we will investigate the b-N limit. Neglecting

terms that do not depend on n, the posterior takes the form of

P n bjð Þ / e�
b
2 Sn� bð ÞT Sn� bð Þ

YN
n¼1

cn nnð Þ ð8Þ

where we have not explicitly reported the normalization constant.
By marginalization of equation (7), one can determine the mar-
ginal posterior Pn nn bjð Þ for each flux nA{1, y, N}. However,
performing this computation naively would require the calcula-
tion of a multiple integral that is in principle computationally
very expensive and cannot be performed analytically in an effi-
cient way.

A standard way of approximately computing P n bjð Þ is through
sampling methods, such as the HR technique. The accuracy
obtained with HR depends of course on the number of samples,
and sampling accurately can be very time consuming. In the
following, we develop an analytic approach to approximately
compute marginal posteriors, which is able to achieve results as
accurate as the HR sampling technique for a large number of
sampled points in a fraction of the computing time. But first, we
will describe as a warm-up naive analytic method to approxi-
mately compute marginal distributions Pn nn bjð Þ.

A non-adaptive approach. As a first approximation, one can
think of replacing each exact prior cn(nn) with a single Gaussian

distribution fn nn; an; dnð Þ¼ e
� nn � anð Þ2

2dnffiffiffiffiffiffiffi
2pdn

p , whose statistics, that is, the
mean and the variance, are constrained to be equal to the one of
cn(nn). That is

an ¼ nnh icn nnð Þ
dn ¼ n2n

	 

cn nnð Þ � nnh i2cn nnð Þ

n 2 1; . . . ;Nf g
(

ð9Þ
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Figure 1 | Marginal probability densities of nine fluxes of the red blood cell. The blue bars represent the result of Monte Carlo estimate for T B108

sampling points. The cyan line is the result of the non-adaptive Gaussian approximation while the red line represents the EP estimate.
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We estimate the marginal posteriors from the distribution

Q n bjð Þ¼ 1
ZQ

e�
b
2 Sn� bð ÞT Sn� bð Þ

YN
n¼1

fn nn; an; dnð Þ ð10Þ

ZQ¼
Z

dNne�
b
2 Sn� bð ÞT Sn� bð Þ

YN
n¼1

fn nn; an; dnð Þ ð11Þ

Notice that in this approximation fluxes result unbounded.
Marginals obtained by this strategy against the HR Monte Carlo
estimate are shown in Fig. 1 (cyan line) for nine representative
metabolic fluxes of one of the standard model for red blood cell25.
Marginals evaluated with this simple non-adaptive strategy differ
significantly from the ones evaluated with the Monte Carlo
sampling technique. In the following, we will show how we can
overcome this limitation by choosing different values for the
means a and the variances d in equation (10) making use of the
EP algorithm.

Expectation propagation. EP26 is an efficient technique to
approximate intractable (that is, impossible or impractical to
compute analytically) posterior probabilities. EP was first
introduced in the framework of statistical physics as an
advanced mean-field method27,28 and further developed for
Bayesian inference problems in the seminal work of Minka26.

Let us consider the nth flux and its corresponding approximate
prior fn(nn; an, dn). We define a tilted distribution Q(n) as

Q nð Þ n bjð Þ � 1
ZQ nð Þ

e�
b
2 Sn� bð ÞT Sn� bð Þcn nnð Þ

Y
m 6¼ n

fm nmð Þ ð12Þ

The important difference between the tilted distribution and the
multivariate Gaussian Q n bjð Þ is that all the intractable priors are
approximated as Gaussian probability densities except for the nth
prior, which is treated exactly. For this reason, we expect that this
distribution will be more accurate than Q n bjð Þ regarding the
estimate of the statistics of flux n without significantly affecting
the computation of expectations. Bearing in mind that it is a large
number of exact priors (that is, the distributions cif gi¼1;���;N ) that
make the computation intractable and not a single one, we have
introduced only one exact intractable prior in Q(n).

One way of determining the unknown parameters an and dn
of fn(nn; an, dn) is to require that the multivariate Gaussian
distribution Q n bjð Þ is as close as possible to the auxiliary
distribution Q nð Þ n bjð Þ. Intuitively, there are at least two
possibilities to enforce this similarity: (i) matching the first and
the second moments of the two distributions (ii) minimizing the
Kullback–Leibler divergence DKL Qn Qkð Þ; these two methods
coincide (see details in Supplementary Note 1). Thus, we aim at
imposing the following moment matching conditions:

nnh iQ nð Þ ¼ nnh iQ
n2n
	 


Q nð Þ ¼ n2n
	 


Q

�
ð13Þ

from which we get a relation for the parameters an, dn that is
explicitly reported in section 3.

EP consists in sequentially repeating this update step for all the
other fluxes and iterate until we reach a numerical convergence.
Further technical details about the convergence are reported in
subsection 1. At the fixed point, we directly estimate the marginal
posteriors Pn nn bjð Þ, for nA{1,y, N}, from marginalization of the
tilted distribution Q(n) that turns out to be a truncated Gaussian
density in the interval [ninfn , nsupn ] (see Supplementary Note 2).

At difference from the non-adaptive approach, the EP
algorithm determines the approximated prior density by trying
to reproduce the effect that the true prior density has on variable
nn, including the interaction of this term with the rest of the

system. First, the information encoded in the stoichiometric
matrix is surely encompassed in the computation of the
means and the variances of the approximation since both
the distributions Q(n) and Q contain the exact expression of the
likelihood. Second, the refinement of each prior also depends on
the parameters of all the other fluxes.

As an example of the accuracy of this technique, we report in
Fig. 1 (red line) the nine best marginals estimated by EP of the red
blood cell against the results of HR Monte Carlo sampling.
Figure 1 suggests that this technique leads to a significant
improvement of the non-adaptive approximation as the plot
shows a very good overlap between the distributions provided by
HR and EP. The entire set of marginals and a comparison with a
state-of-the-art MP algorithm7 is reported in the Supplementary
Fig. 2.

Numerical results for large-scale metabolic networks. This
section is devoted to compare the results of our algorithm against
the outcomes of a state-of-the-art HR Monte Carlo sampling
technique on three representative models of metabolic networks,
precisely the iJR904 (ref. 29), the CHOLnorm30 and the RECON1
(ref. 31) models for E. coli, the Cholinergic neuron and Homo
sapiens organisms, respectively. In Supplementary Fig. 3, we
report results for a larger set of models all selected from the Bigg
models database32.

Experiments are performed as follows. First, we preprocess the
stoichiometric matrix of the model in order to remove all
reactions involving metabolites that are only produced or only
degraded33.

After the preprocessing, we run HR and EP, both implemented
on Matlab or as Matlab libraries, to the reduced model. Let us
explain how the two methods work. Starting from a point lying
on the polytope, HR iteratively chooses a random direction
and collects new samples in that direction such that they also
reside in the solution space. In this work, we use an optimized
implementation of HR, called optGpSampler6. Regarding the HR
simulations, we set the number of sampled points to be equal to
104 for an increasing number of explored configurations T from
104 to 107 in most of the cases; for some specific models, that is,
very large networks having N B103 reactions, we explore up to
T B109 points. Concerning the EP algorithm, we perform the
same experiment setting the b parameter to be equal to 1010 for
almost all models. In only one case (the RECON1 model), we
encountered convergence problems and thus we decreased it to
109. Numerical convergence of EP depends on the refinement of
parameters a and d or, more precisely, on the estimate of the
marginal distributions of fluxes. At each iteration t, we compute
an error e, which measures how the approximate marginal
distributions change in two consecutive iterations. Formally, we
define the error as the maximum value of the sum of the
differences (in absolute values) of the mean and second moment
of the marginal distribution, that is

et ¼ max
n

nnh itþ 1
Q nð Þ � nnh itQ nð Þ

��� ���þ n2n
	 
tþ 1

Q nð Þ � n2n
	 
t

Q nð Þ

��� ���
If et is smaller than a predetermined target precision (we used
10� 5), the algorithm stops.

To quantitatively compare the two techniques, we report here
the scatter plots of variances and means of the approximate
marginals computed via HR and EP. Moreover, we estimate
the degree of correlation among the two sets of parameters
computing the Pearson product-moment correlation coefficient.

Notice that we cannot have access to the exact marginals and
that we assume that the results obtained by HR are exact only
asymptotically. Thus, our performances, both for the direct
comparison of the means and variances and for the Pearson’s
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coefficient, should be considered accurate if they are approached
by the Monte Carlo ones for an increasing number of explored
points.

The three large subplots in Fig. 2 show the results for E. coli,
C. neuron and Homo sapiens, respectively. For each organism, we
report on the top-left panel the time spent by EP (straight line)
and by HR (cyan points) and on the bottom-left panel the
Pearson correlation coefficients. Both measures of time and
correlation are plotted as functions of the number of configura-
tion T obtained from the HR algorithm. As shown in these plots,
we can notice that to reach a high correlation regime a very large
number of explored configurations, employing a computing time
that is always several orders of magnitude larger than the EP
running time. This is particularly strinking in the case of the
RECON1 model, for which we needed to run HR for about
20 days in order to reach results similar to the outcomes of EP,
that converges in less than 1 h on the same machine.

To underline how EP seems to approach HR results in the
asymptotic limit, we report in the rest of the sub-figures
the scatter plots of the means (top) and the variances (bottom)
of the marginals. On the y axis, we plot the EP means (variances)
against the HR means (variances) for an increasing number of
explored configurations, as indicated in x axis. Results clearly
show that as T grows, the points (both means and variances) are
more and more aligned to the identity line: not only these
measures are highly correlated for large T, but they assume very
similar values. This is remarkably appreciable in the results for
CHOLnorm model: for T¼ 4� 104 the means of the scatter plots
are quite unaligned but as T reaches 4� 107, they almost lie on
the identity line. In fact, means are poorly correlated for
T¼ 4� 104 while the Pearson correlation coefficient is close to
1 for T¼ 4� 107.

Study of E. coli metabolism for a constrained growth rate. The
EP formalism can efficiently deal with a slightly modified version
of problem of sampling metabolic networks. Suppose to have
access to experimental measurements of the distribution of some
fluxes under specific environmental conditions. We would like to
embed this empirical knowledge in our algorithm, by matching
the posterior distribution of the measured fluxes with the
empirical measurements. Within the EP scheme, this task cor-
responds to matching the first two moments (mean and variance)
of the posteriors with the one defined by the empirical mea-
surements. With the inclusion of empirically established prior
knowledge, we want to investigate how the experimental evidence
is related to the metabolism at the level of reactions or, in other
words, we want to determine how fluxes modify in order to
reproduce the experiments. In this perspective, the EP scheme
can easily accommodate additional constraints on the posteriors
by modifying the EP update equations as outlined in Methods
section.

We have tested this variant of EP algorithm on the iJR904
model of E. coli for a constrained growth rate. In fact, one of the
few fluxes that are experimentally accessible is the biomass flux,
often measured in terms of doubling per hour. As a matter of
example, we decide to extract one of the growth rates reported in
Fig. 3a of ref. 34; the profile labelled as Glc (P5-ori) can be well
fitted by a Gaussian probability density of mean 0.92 h� 1 and
variance 0.0324 h� 2. This curve represent single-cell measures of
a population of bacteria living in the so-called minimal substrate
whose main characteristics are in principle well caught by the
iJR904 model. We fixed the bound on the glucose exchange flux
EX_glc(e) such that the maximum allowed growth rate (about
2 h� 1) contained all experimental values in the profile labelled as
Glc (P5-ori) of Fig. 3a of ref. 34. This was easily computed by

fixing the biomass flux to the desired value and minimizing the
glucose exchange flux using FBA, and gies a the lower bound of
the exchanged glucose flux of � 43mmol (g[DW])� 1 h� 1.

We then apply EP algorithm to the modified iJR904 model in
two different conditions. First, we do not impose any additional
constraint and we run the original EP algorithm as described in
the previous section. Then, as described in Methods section, we
fix the marginal posterior of the biomass. We can now compare
the means and the variances of all the other fluxes in the two
cases and single out those fluxes that have been more affected by
the empirical constraints on the growth rate. We report in Fig. 3
the plot of the ratio between the means (Fig. 3a) and the variances
(Fig. 3b) in the unconstrained case and in the constrained case. In
Fig. 3a, these ratios are plotted against the logarithm of the
absolute value of the unconstrained means to differentiate those
fluxes having means close to zero and all the other cases. The
ratios of the variances are instead plotted as a function of the
unconstrained variances in semi-log scale. We can notice that
apparently a large fraction of the fluxes have changed their
marginal distribution in order to accommodate the fixed marginal
for the biomass. We have reported the name of the reactions with
the most significant changes; for instance, the marginal of the
TKT2 reaction has reduced its mean of more than one third,
while many reactions involving aspartate have significantly
lowered their variances.

To underline the non-trivial results of EP algorithm in the
constrained case, we apply again the standard EP algorithm to
the iJR904 model when the lower bound and the upper bound of
the biomass is fixed to the average value of the experimental
profile. The comparison (not shown) between the two approaches
suggests that the most relevant change concerns the EX_asp_L(e)
flux as both the average value and the variance estimated in
the second case are about two times the ones predicted by
constrained EP. The distributions of most other fluxes remain
do not considerably change. We underline that the different
behaviour of the marginals in the two cases, even if not significant
for most of the fluxes, was in principle unpredictable without
the use of constrained EP; and we do not exclude that fixing
other empirical profiles can lead to very different results.
Likewise, it seems unlikely that the results computed with
constrained EP could be obtained using unbiased samples as
provided by standard HR implementations (see a discussion in
Supplementary Note 6).

Discussion
In this work, we have shown how to study the space of feasible
configurations of metabolic fluxes within a cell via an analytic
description of the marginal probability distribution characterizing
each flux. Such marginals are described as truncated Gaussian
densities whose parameters are determined through an iterative
and extremely efficient algorithm, the EP algorithm. We have
compared our predictions against the estimates provided by HR
sampling technique and results shown in Subsection 1 suggest a
very good agreement between EP and HR for a large number of
explored configurations, T. First of all, the direct comparison of
the means and variances of EP versus HR reported in the scatter
plots shows that the more we increment the HR points, the more
the scatter points are aligned. Second, we see an increment of the
correlation between EP and HR statistics for an increasing
number of sampled points; correlations reach values very close to
1 for large values of T and for almost all the models we have
considered. The most important point is that the computation
times of EP, at high correlation regime, are always orders of
magnitude lower than HR sampling times. This is extremely
time-saving when we deal with very large networks, as the
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RECON1 model for Homo sapiens where the running time (in
seconds) of EP is three order of magnitude smaller than HR. We
underline that exact marginals are generally inaccessible and we
cannot compare our results against a ground-truth; our measures

well approximate ‘true’ distributions as long as the exactness of
HR in the asymptotic limit is correct.

We have shown how to include empirical knowledge on
distribution of fluxes on the EP algorithm without compromising
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the computing time. More precisely, we have investigated how
fixing an experimental profile of the growth rate into the iJR904
model of E. coli affect non-trivially all other fluxes. This is a
remarkable advantage of the EP algorithm with respect to other
methods.

EP provides an analytic estimate of each single flux marginal,
which relies on the optimization of two parameters, the mean and
the variance of a Gaussian distribution. The formalism allows in
principle more complicated parametrizations of posteriors to
include other biological insights.

EP equations are extremely easy to derive and to implement, as
the main loop can be written in few lines of Matlab code. The
method is iterative, and the number of operations in each
iteration scales as Y(N3), rendering EP extremely convenient in
terms of computation time with respect to existing alternatives.

An shown in Fig. 2 in real cases, variances of the marginal
distributions can span several orders of magnitude. This range of
variability implies that also the variances of the approximation
need to allow both very small and huge values. To cope with the
numeric problems that may arise, we allow parameters d to vary
in a finite range of values with the drawback of limiting the set of
allowed Gaussian densities of the approximation. For instance,
a flat distribution cannot be perfectly approximated through a

Gaussian whose variance cannot be arbitrary large; in the
opposite extreme, imposing a lower bound on variances prevents
the approximation of posteriors that are too concentrated on a
single point. Thus, this range needs to be reasonably designed in
order to catch as many ‘true’ variances as possible. In this work,
we have tried to impose a very large range of values, typically
(10� 50, 1050), to include as many distributions as possible
without compromising the convergence of the algorithm. More-
over, the Gaussian profile itself is surely a limitation of the
approximation as true marginals can have in principle arbitrary
profiles.

EP performances are sensitive to the parameter b and
equations become numerically unstable for too large b (for
example, 1011–1012). On the other hand, b can be seen as the
inverse-variance of a Gaussian noise affecting the conservation
laws. The nature of this noise could depend on localization
properties on the cell and real thermal noise. In this case, an
optimization of the free energy with respect to b can in principle
lead to better predictions.

Methods
Update rule. The algorithm described in the EP section relies on local moves in
which, at each step, we refine only the parameters of one single prior, minimizing
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the dissimilarity between the auxiliary tilted distribution Q(n) and Q. The values of
the mean and of the variance of fn(nn; an, dn) are iteratively tuned in a way that the
first and second moments of the two distributions match. The update rule for the
parameters an and dn of the Gaussian prior will be derived in details in the fol-
lowing section.

Let us express the auxiliary density Q(n) in equation (12) as a standard
multivariate Gaussian distribution times the exact prior of the nth flux as

Q nð Þ n bjð Þ¼ 1
ZQ nð Þ

e�
b
2ðSn� bÞT ðSn� bÞ� 1

2ðn� aÞTDðn� aÞcn nnð Þ ð14Þ

¼ 1
~ZQ nð Þ

e�
1
2 n� �nð ÞTS� 1 n� �nð Þcn nnð Þ ð15Þ

where ~ZQ nð Þ¼ZQ nð Þ e
b
2b

Tb� 1
2�n

T �n , D is a diagonal matrix with components Dmm¼ 1
dm

for
man and Dnn¼ 0 (and of course non-diagonal terms Dmk¼ 0 if mak). The
covariance matrix S� 1 and the mean vector �n satisfy:

S� 1 ¼ bSTSþD
�n ¼ S bStbþDað Þ

�
ð16Þ

Note that we are omitting for notational simplicity the dependence of D, S, �n on n.
Equivalently

Q n bjð Þ¼ 1
~ZQ

e�
1
2 n� �nð ÞTS� 1 n� �nð Þfn nn; an; dnð Þ ð17Þ

where ~ZQ¼ZQe
b
2b

Tb� 1
2�n

T �n . If we now exploit the moment matching condition in
equation (13) (a detailed calculation of the moments of Q and Q(n) expressed in
standard form is reported in Supplementary Notes 2 and 3) we obtain an update
equation for the mean and the variance:

dn ¼ 1
n2nh iQ nð Þ � nnh i2

Q nð Þ
� 1

Snn

� �� 1

an ¼ dn nnh iQ nð Þ
1
dn

þ 1
Snn

 �
� �nn

Snn

h i
8><
>: ð18Þ

Notice that the sequential update scheme described in the EP section requires
the inversion of the matrix S� 1 each time that we have to refine the parameters of
flux n, leading to N inversions per iteration amounting to Y(N4) operations per
iteration. We propose in Supplementary Note 4 a parallel update that needs only
one matrix inversion per iteration, that is, Y(N3) operations per iteration.

Update equations for a constrained posterior. Let us assume to have access to
experimental measures of the (marginal) posterior f(ni) for flux i. We aim at
determining how the posteriors of other fluxes would modify to fit with the
experimental results compared, for instance, to the unconstrained case. The
so-called maximum entropy principle35 dictates that the most unconstrained
distribution which is consistent with the experiment, prior distributions and flux
conservation Sn¼ b, is simply

P m bjð Þ¼ 1
Z
e�

b
2 Sm� bð ÞT Sm� bð Þ

YN
n¼1

1 nn 2 ninfn ; nsupn

� �� �
g nið Þ ð19Þ

where b-N and g(ni) is the (exponential of the) function of unknown Lagrange
multipliers that has to be determined in order for the constraintR Q

n 6¼ i dnnP n bjð Þ¼f nið Þ to be satisfied. In the particular case in which the
posterior can be reasonably fitted by a Gaussian distribution N nijaexpi ; dexpi

� �
, then

it suffices to consider also a Gaussian g nið Þ¼N nijai; dið Þ¼fi nijai; dið Þ with only
two free parameters. The determination of ai, di can be achieved by slightly
modifying the EP update for flux i. Assuming as before that the prior of each flux
nai can be approximated as a Gaussian profile fn(nn; an, dn) of parameters an and
dn, also to be determined, we must impose that

N nijaexpi ; dexpi

� �
/ N nijai; dið Þ

Z Y
n 6¼ i

dnnQ n bjð Þ ð20Þ

/ fi ni; ai; dið Þe�
ni ��nið Þ2
2Sii ð21Þ

where the distribution Q n bjð Þ is the one in equation (10). Since both the left-hand
side and the right-hand side of equation (21) contain Gaussian distributions, the
relations for ai and di can be easily computed and take the form

di ¼ 1
dexpi

� 1
Sii

 �� 1

ai ¼ di
aexpi
dexpi

� �ni
�ii

 �
8<
: ð22Þ

This expression is exactly the same in equation (18) if we replace the mean and
the variance of the tilted distribution with the experimental ones.

Technical details. The computations were performed on a Dell Poweredge server
with 128Gb of memory and 48 AMD Opteron CPUs clocked at 1.9 Ghz. No
constraint have been placed on the number of CPU threads, allowing both EP and
HR to parallelize their processes. We observed that EP used 2–3 cores, exclusively
in the matrix inversion phase (which was time-dominant), while HR employed a

variable number of cores (around six or seven at some times). For this reason only,
the order of magnitude of computing times of HR and EP are fairly comparable but
they are sufficient to underline the differences between the two algorithms.

Code availability. An implementation of the algorithm presented in this work is
publicly available at https://github.com/anna-pa-m/Metabolic-EP.

Data availability. All data generated or analysed during this study are included in
the manuscript and its Supplementary Information file.
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