
24 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Improved 64-bit Radix-16 Booth Multiplier Based on Partial Product Array Height Reduction / Antelo, Elisardo;
Montuschi, Paolo; Nannarelli, Alberto. - In: IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS. I, REGULAR
PAPERS. - ISSN 1549-8328. - ELETTRONICO. - 64:2(2017), pp. 409-418. [10.1109/TCSI.2016.2561518]

Original

Improved 64-bit Radix-16 Booth Multiplier Based on Partial Product Array Height Reduction

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/TCSI.2016.2561518

Terms of use:

Publisher copyright

©2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2645860 since: 2021-04-06T22:32:55Z

IEEE Circuits and Systems Society

1

Improved 64-bit Radix-16 Booth Multiplier Based

on Partial Product Array Height Reduction
Elisardo Antelo, Paolo Montuschi, Fellow, IEEE, and Alberto Nannarelli, Senior Member, IEEE

Abstract—In this paper we describe an optimization for binary
radix-16 (modified) Booth recoded multipliers to reduce the
maximum height of the partial product columns to ⌈n/4⌉
for n = 64-bit unsigned operands. This is in contrast to the
conventional maximum height of ⌈(n + 1)/4⌉. Therefore, a
reduction of one unit in the maximum height is achieved.
This reduction may add flexibility during the design of the
pipelined multiplier to meet the design goals, it may allow further
optimizations of the partial product array reduction stage in
terms of area/delay/power and/or may allow additional addends
to be included in the partial product array without increasing
the delay. The method can be extended to Booth recoded
radix-8 multipliers, signed multipliers, combined signed/unsigned
multipliers, and other values of n.

Index Terms—Binary multipliers, radix-16, modified Booth
recoding.

I. INTRODUCTION

Binary multipliers are a widely used building block element

in the design of microprocessors and embedded systems, and

therefore, they are an important target for implementation

optimization [1]–[6]. Current implementations of binary mul-

tiplication follow the steps of [7]: 1) recoding of the multiplier

in digits in a certain number system, 2) digit multiplication of

each digit by the multiplicand, resulting in a certain number

of partial products, 3) reduction of the partial product array

to two operands using multioperand addition techniques, and

4) carry-propagate addition of the two operands to obtain the

final result.

The recoding type is a key issue, since it determines the

number of partial products. The usual recoding process recodes

a binary operand into a signed-digit operand with digits

in a minimally redundant digit set [7] [8]. Specifically, for

radix-r (r = 2m), the binary operand is composed of non-

redundant radix-r digits (by just making groups of m bits),

and these are recoded from the set {0, 1, . . . , r − 1} to the

set {−r/2, . . . ,−1, 0, 1, . . . , r/2} to reduce the complexity of

digit multiplications. For n-bit operands, a total of ⌈n/m⌉
partial products are generated for two’s complement represen-

tation, and ⌈(n+ 1)/m⌉ for unsigned representation.

Radix-4 modified Booth is a widely used recoding method,

that recodes a binary operand into radix-4 signed digits in

the set {−2,−1, 0, 1, 2}. This is a popular recoding since

the digit multiplication step to generate the partial products

E. Antelo is with the Department of Electrónica e Computación, University
of Santiago de Compostela, Santiago de Compostela, Spain.

P. Montuschi is with the Department of Control and Computer Engineering,
Politecnico di Torino, Turin, Italy.

A. Nannarelli is with the Department of Applied Mathematics and Com-
puter Science, Technical University of Denmark, Kongens Lyngby, Denmark.

only requires simple shifts and complementation. The resulting

number of partial products is about n/2.

Higher radix signed recoding is less popular because the

generation of the partial products requires odd multiples

of the multiplicand which can not be achieved by means

of simple shifts, but require carry-propagate additions. For

instance, for radix-16 signed digit recoding [9] the digit set is

{−8,−7, . . . , 0, . . . , 7, 8}, so that some odd multiples of the

multiplicand have to be generated. Specifically, it is required

to generate x3, x5 and x7 multiples (x6 is obtained by simple

shift of x3). The generation of each of these odd multiplies

requires a two term addition or subtraction, yielding a total of

three carry-propagate additions.

However, the advantage of the high radix is that the number

of partial products are further reduced. For instance, for radix-

16 and n-bit operands, about n/4 partial products are gener-

ated. Although less popular than radix-4, there exist industrial

instances of radix-8 [10]–[16]. and radix-16 multipliers [17]

in microprocessors implementations.

The choice of these radices is related to area/delay/power

optimization of pipelined multipliers (or fused multiplier adder

as in the case of a Intel Itanium microprocessor [17]), for

balancing delay between stages and/or reduce the number of

pipelining flip-flops.

A further consideration is that carry-propagate adders are

today highly energy-delay optimized, while partial product re-

ductions trees suffer the increasingly serious problems related

to a complex wiring and glitching due to unbalanced signal

paths. It is recognized in the literature that a radix-8 recoding

leads to lower power multipliers compared to radix-4 recoding

at the cost of higher latency (as a combinational block, without

considering pipelining) [18] [4].

Moreover, although the radix-16 multiplier requires the

generation of more odd multiples and has a more complex

wiring for the generation of partial products [4], a recent

microprocessor design [17] considered it to be the best choice

for low power (under the specific constraints for this micro-

processor).

In [1] [2] some optimizations for radix-4 two’s complement

multipliers were introduced. Although for n-bit operands, a

total of ⌈n/2⌉ partial products are generated, the resulting

maximum height of the partial product array is ⌈n/2⌉ + 1
elements to be added (in just one of the columns). This extra

height by a single-bit row is due to the +1 introduced in the bit

array to make the two’s complement of the most significant

partial product (when the recoded most significant digit of

the multiplier is negative). The maximum column height may

Copyright c©2016 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending an email to pubs-permissions@ieee.org.

2

determine the delay and complexity of the reduction tree [7]

[16]. In [1] [2] authors showed that this extra column of

one bit could be assimilated (with just a simplified three bit

addition) with the most significant part of the first partial

product without increasing the critical path of the recoding

and partial product generation stage. The result is that the

partial product array has a maximum height of ⌈n/2⌉.

This reduction of one bit in the maximum height might be

of interest for high-performance short-bit width two’s comple-

ment multipliers (small n) with tight cycle time constraints,

that are very common in SIMD digital signal processing

applications. Moreover, if n is a power of two, the optimization

allows to use only 4-2 carry-save adders for the reduction tree,

potentially leading to regular layouts [16].

These kind of optimizations can become particularly im-

portant as they may add flexibility to the “optimal” design

of the pipelined multiplier. Optimal pipelining in fact, is a

key issue in current and future multiplier (or multiplier-add)

units: i) the latency of the pipelined unit is very important,

even for throughput oriented applications, as it impacts the

energy consumption of the whole core [19]; ii) the placement

of the pipelining flip-flops should at the same time minimize

total power, due to the number of flip-flops required and the

unbalanced signal propagation paths.

The methods proposed in [1] [2] were mostly focused on

two’s complement radix-4 Booth multipliers, thus leaving open

the research and extension to higher radices and unsigned

multiplications (for unsigned integer arithmetic or mantissa

times mantissa in a floating-point unit). For a radix higher

than 4, it is necessary to generate the odd multiples (usually

with adders), resulting in the reduction of the time slacks

necessary to “hide” the simplified three bit assimilation. Un-

signed multiplication may produce a positive carry out during

recoding (this depends of the value of n and the radix used

for recoding), leading to one additional row, increasing the

maximum height of the partial product array by one row, not

just in one but in several columns. For all these reasons, we

need to extend the techniques presented in [1] [2].

In this work we present a technique that allows partial prod-

uct arrays of maximum height of ⌈n/m⌉ (with the goal of not

increasing the delay of the partial product generation stage),

for r > 4 and unsigned multipliers. Since for the standard

unsigned multiplier the maximum height is ⌈(n+ 1)/m⌉, the

proposed method allows a reduction of one row when n is

a multiple of m. Our technique is general, but its impact

(reduction of one row without increasing the critical path of

the partial product generation stage) depends on the specific

timing of the different components. Therefore, we can not

claim a successful result for all practical values of r and n and

different implementation technologies. Thus, we concentrate

on an specific instance: a 64-bit radix-16 Booth recoded

unsigned multiplier implemented with a synthesis tool and

a standard-cell library. We use radix-16 since it is the most

complex case, among the practical values of the radix, for

the design of our scheme. The unsigned multiplier is also

more complex for the design of our scheme than the signed

multiplier. We use 64 bits, since it is a representative large

wordlength. The method proposed can be adapted easily to

other instances (signed, combined unsigned/signed, radix-8

recoding, different values of n).

The paper is structured as follows. Section II reviews the

basic radix-16 Booth recoded multiplier. Section III describes

the proposed method. Section IV presents the evaluation of

our scheme, and Section V is devoted to the final conclusions.

II. BASIC RADIX-16 BOOTH MULTIPLIER

In this section, we describe briefly the architecture of the

basic radix-16 Booth multiplier (see [17] for instance). For

sake of simplicity, but without loss of generality, we consider

unsigned operands with n = 64.

Let us denote with X the multiplicand operand with bit

components xi (i = 0 to n− 1, with the least-significant bit,

LSB, at position 0) and with Y the multiplier operand and bit

components yi.
The first step is the recoding of the multiplier operand

[8]: groups of four bits with relative values in the

set {0, 1, . . . , 14, 15} are recoded to digits in the set

{−8,−7, . . . , 0, . . . , 7, 8} (minimally redundant radix-16 digit

set to reduce the number of multiples).

This recoding is done with the help of a transfer digit ti
and an interim digit wi [7]. The recoded digit zi is the sum

of the interim and transfer digits:

zi = wi + ti.

When the value of the four bits, vi, is less than 8, the

transfer digit is zero and the interim digit wi = vi. For

values of vi greater than or equal to 8, vi is transformed

into vi = 16− (16− vi), so that a transfer digit is generated

to the next radix-16 digit position (ti+1) and an interim digit

of value wi = −(16− v) is left. That is:

0 ≤ vi < 8 : ti+1 = 0 wi = vi wi ∈ [0, 7]
8 ≤ vi ≤ 15 : ti+1 = 1 wi = −(16− vi) wi ∈ [−8,−1]

The transfer digit corresponds to the most-significant bit

(MSB) of the four-bit group, since this bit determines if the

radix-16 digit is greater than or equal to 8. The final logical

step is to add the interim digits and the transfer digits (0 or

1) from the radix-16 digit position to the right.

Since the transfer digit is either 1 or 0, the addition of the

interim digit and the transfer digit results in a final digit in

the set {−8,−7, . . . , 0, . . . , 7, 8}. Due to a possible transfer

digit from the most significant radix-16 digit, the number of

resultant radix-16 recoded digits is ⌈(n + 1)/4⌉. Therefore,

for n = 64 the number of recoded digits (and the number of

partial products) is 17. Note that the most significant digit is

0 or 1 because it is in fact just a transfer digit.

After recoding, the partial products are generated by digit

multiplication of the recoded digits times the multiplicand X.

For the set of digits {−8,−7, . . . , 0, . . . , 7, 8}, the multiples

1X, 2X, 4X and 8X are easy to compute, since they are

obtained by simple logic shifts. The negative versions of these

multiples are obtained by bit inversion and addition of a 1

in the corresponding position in the bit array of the partial

products. The generation of 3X, 5X and 7X (odd multiples)

requires carry-propagate adders (the negative versions of these

3

Fig. 1. Partial product generation.

multiples are obtained as before). Finally, 6X is obtained by

a simple one bit left shift of 3X.

Figure 1 illustrates a possible implementation of the partial

product generation. Five bits of the multiplier Y are used to

obtain the recoded digit (four bits of one digit and one bit of

the previous digit to determine the transfer digit to be added).

The resultant digit is obtained as a one-hot code to directly

drive a 8 to 1 multiplexer with an implicit zero output (output

equal to zero when all the control signals of the multiplexer

are zero). The recoding requires the implementation of simple

logic equations that are not in the critical path due to the

generation in parallel of the odd multiples (carry-propagate

addition). The XOR at the output of the multiplexer is for

bit complementation (part of the computation of the two’s

complement when the multiplier digit is negative).

Figure 2(a) illustrates part of the resultant bit array for

n = 64 after the simplification of the sign extension [7].

In general, each partial product has n+4 bits including the

sign in two’s complement representation. The extra four bits

are required to host a digit multiplication by up to 8 and a sign

bit due to the possible multiplication by negative multiplier

digits.

Since the partial products are left shifted four bit positions

with respect to each other, a costly sign extension would

be necessary. However, the sign extension is simplified by

concatenation of some bits to each partial product (S is the

sign bit of the partial product and C is S complemented):

CSSS for the first partial product and 111C for the rest of

partial products (except the partial product at the bottom that

is non negative since the corresponding multiplier digit is 0 or

1). The bits denoted by b in Figure 2 corresponds to the logic

1 that is added for the two’s complement for negative partial

products.

After the generation of the partial product bit array, the re-

duction (multioperand addition) from a maximum height of 17

(for n = 64) to 2 is performed. The methods for multioperand

addition are well known, with a common solution consisting

of using 3 to 2 bit reduction with full adders (or 3:2 carry-save

adders) or 4 to 2 bit reduction with 4:2 carry-save adders.

The delay and design effort of this stage are highly depen-

dent on the maximum height of the bit array. It is recognized

that reduction arrays of 4:2 carry-save adders may lead to more

regular layouts [16]. For instance, with a maximum height

of 16, a total of 3 levels of 4:2 carry-save adders would

be necessary. A maximum height of 17 leads to different

approaches that may increase the delay and/or require to use

arrays of 3:2 carry-save adders interconnected to minimize

delay [20].

After the reduction to two operands, a carry-propagate

addition is performed. This addition may take advantage of the

specific signal arrival times from the partial product reduction

step.

III. PROPOSED METHOD

To reduce the maximum height of the partial product bit

array we perform a short carry-propagate addition in parallel

to the regular partial product generation. This short addition

reduces the maximum height by one row and it is faster than

the regular partial product generation. Figure 2(b) shows the

elements of the bit array to be added by the short adder. Figure

2(c) shows the resulting partial product bit array after the

short addition. Comparing both figures, we observe that the

maximum height is reduced from 17 to 16 for n = 64.

Figure 3 shows the specific elements of the bit array (boxes)

to be added by the short carry-propagate addition. In this

figure, pi,j corresponds to the bit j of partial product i, s0
is the sign bit of partial product 0, c0 = NOT (s0), bi is the

bit for the two’s complement of partial product i, and zi is the

i-th bit of the result of the short addition.

The selection of these specific bits to be added is justified

by the fact that, in this way, the short addition delay is hidden

from the critical path that corresponds to a regular partial

product generation (this will be shown in Section IV). We

perform the computation in two concurrent parts A and B as

indicated in Figure 3. The elements of the part A are generated

faster than the elements of part B. Specifically the elements

of part A are obtained from:

• The sign of the first partial product: this is directly

obtained from bit y3 since there is no transfer digit from

a previous radix-16 digit.

• Bits 3 to 7 of partial product 16: the recoded digit for

partial product 16 can only be 0 or 1, since it is just a

transfer digit. Therefore the bits of this partial product

are generated by a simple AND operation of the bits of

the multiplicand X and bit y63 (that generates the transfer

from the previous digit).

Therefore, we decided to implement part A as a spec-

ulative addition, by computing two results, a result with

carry-in=0 and a result with carry-in=1. This can be computed

efficiently with a compound adder [7]. Figure 4 shows the

implementation of part A. The compound adder determines

4

Fig. 2. Radix-16 partial product reduction array.

Fig. 3. Detail of the elements to be added by the short addition.

5

Fig. 4. Speculative addition of part A.

speculatively the two possible results. Once the carry-in is

obtained (from part B), the correct result is selected by a

multiplexer. Note that the compound adder is of only five bits,

since the propagation of the carry through the most significant

three ones is straightforward.

The computation of part B is more complicated. The main

issue is that we need the 7 least-significant bits of partial

product 15. Of course waiting for the generation of partial

product 15 is not an option since we want to hide the

short addition delay out of the critical path. We decided to

implement a specific circuit to embed the computation of the

least-significant bits of partial product 15 in the computation

of part B (and also the addition of the bit b15). Note that

for the method to be correct the computation of the partial

product embedded in part B should be consistent with the

regular computation performed for the most significant bits of

partial product 15.

Figure 5 shows the computation of part B. We decided to

compute part B as a three operand addition with a 3:2 carry-

save adder and a carry-propagate adder. Two of the operands

correspond to the least-significant bits of the partial product 15

and the other operand corresponds to the three least-significant

bits of partial product 16 (that are easily obtained by an AND

operation). We perform the computation of the bits of the

radix-16 partial product 15 as the addition of two radix-4

partial products. Therefore, we perform two concurrent radix-4

recodings and multiple selection. The multiples of the least-

significant radix-4 digit are {−2,−1, 0, 1, 2}, while the multi-

ples for the most significant radix-4 digit are {−8,−4, 0, 4, 8}
(radix-4 digit set {−2,−1, 0, 1, 2}, but with relative weight of

4 with respect to the least-significant recoding). These two

radix-4 recodings produce exactly the same digit as a direct

radix-16 recoding for most of the bit combinations. However,

Fig. 5. Computation of part B.

among the 32 5-bit combinations for a full radix-16 digit

recoding, there are six not consistent with the two concurrent

radix-4 recodings. Specifically:

• The bit strings 00100 and 11011 are recoded in radix-16

to 2 and -2 respectively. However, when performing two

parallel radix-4 recodings the resulting digits are (4,-2)

and (-4, 2) respectively. That is, the radix-4 recoding per-

forms the computation of 2X (-2X) as 4X-2X (-4X+2X).

To have a consistent computation we modified the radix-

4 recoders so that these strings produce radix-4 digits of

the form (0,2) and (0,-2).

• The bit strings 00101 and 00110 are recoded in radix-16

to 3 in both cases. However, the resulting radix-4 digits

are (4,-1). This means that the radix-4 recoding performs

the computation of 3X as 4X-X.

To address this inconsistency problem, in this case, we

decided to implement the radix-16 multiple 3X as 4X-X.

This avoids the combination of radix-4 digits (2,1) and

simplifies the multiplexers in Fig 5.

• The bit strings 11001 and 11010 are recoded in radix-16

to -3 in both cases. However, the resulting radix-4 digits

are (-4,1). Therefore, for consistency, we proceed as in

the previous case by generating the radix-16 multiple -3X

as -4X+X.

To handle negative multiples, we select complemented in-

puts in the multiplexers and place 1 in a slot of the input of

the 3:2 carry-save adder with relative binary weight equal to

the absolute value of the corresponding radix-4 digit. These

hot ones for two’s complement are indicated in Figure 5 as the

string ”abcd”. For instance, if the least-significant radix-4 digit

is -2 and the most significant radix-4 digit is -4, then c = 1
and b = 1. Therefore, ”abcd” signals are obtained directly

from the selection bits of the 4:1 multiplexers.

6

Fig. 6. High level view of the recoding and partial product generation stage including our proposed scheme.

Figure 6 shows the recoding and partial product generation

stage including the high level view of the hardware scheme

proposed.

The way we compute part B may still lead to an incon-

sistency with the computation of the most significant part of

partial product 15. Specifically, when partial product 15 is the

result of an odd multiple, a possible carry from the 7 least-

significant bits is already incorporated in the most significant

part of the partial product. During the computation of part B

we should not produce again this carry. This issue is solved

as follows.

Let us consider first the case of positive odd multiples.

Figure 5 shows that the computation of part B may generate

two carry outs: the first from the 3:2 carry-save adder (Cout1),

and the second from the carry-propagate adder (Cout2). To

avoid inconsistencies, we detect the carry propagated to the

most significant part of the partial product 15 (we call this

CM) and subtract it from the two carries generated in part B.

TABLE I
TRUTH TABLE FOR COMPUTING THE CARRY OUT

(− STANDS FOR ”DON’T CARE”).

CM Cout1 Cout2 Cout

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 -

1 0 0 -

1 0 1 0

1 1 0 0

1 1 1 1

Specifically, Table I shows the truth table to generate the

carry out of part B. This truth table corresponds to the XOR of

the three inputs. The CM carry is obtained from a multiplexer

that selects among the carry to bit position 7 from the odd

multiple generators (x3, x5 and x7), the carry to bit position 6

from the multiple generator x3 (to get the carry to position

7 of multiple x6), or carry zero for the other multiples.

The resultant carry out is the selection signal used in the

multiplexer of part A.

For negative odd multiples we use a similar scheme. In

this case the output of adder is complemented, but the only

information available about the carry to position 7 is obtained

directly from the adders that generate the positive odd multi-

ple.

Next, we show how to obtain the carry to the most signifi-

cant part of the resultant complemented odd multiple from the

carry to position 7 obtained from the adders.

Let us call M the result of the positive odd multiple (output

of the adder), and express M as

M = N + P (1)

with P being the seven least-significant bits of the result from

the adder, and N the remaining most significant bits of the

result of the adder. Let us express N in terms of C7 (carry to

position 7):

N = Q+ C72
7 (2)

that is, Q are the remaining most significant bits of the positive

odd multiple minus the carry to position 7. Assuming a m bit

partial product, the complement of M is expressed as

M = 2n − 1−M = 2n − 1−N − C72
7 −Q (3)

7

By adding and subtracting 27 and rearranging terms results in

M = 2n − 27 −N − C72
7 + 27 − 1−Q (4)

We identify the terms N = 2n− 27−N and Q = 27− 1−Q.

Taking into account these terms and adding and subtracting

27 and 2n−1 results in

M = −2n−1 +N + (2n−1 − 27) + (1 − C7)2
7 +Q (5)

The term (1 − C7)2
7 + Q = C7 + Q is computed in part B

of the proposed scheme (see Figure 5), but (1− C7)2
7 = C7

is also part of the most significant part of partial product 15.

Therefore, for a negative partial product we need to subtract

C7.

In summary, we take CM as the carry to position 7 of the

adder that generates the multiple when the partial product is

positive, and complement this carry, when the partial product

is negative.

IV. EVALUATION

In this section we evaluate the proposed method. The

main goal of this section is to demonstrate that with current

technologies, it is possible to “hide” the delay of the additional

logic placed in parallel to the partial product generation, so that

it is out of the critical path.

First, we show the results of the hardware synthesis using

state of the art CAD tools (Synopsys Design Compiler [21]).

Second, we evaluate the impact of the proposed method on the

whole multiplier for different pipeline choices. Then, we show

a technology independent path analysis using a high level area-

delay model to have more insight in the component delays of

the critical path.

A. Synthesis with CAD Tools

We have performed a hardware synthesis using Synopsys

Design Compiler [21] with the STM 90nm CMOS standard

cell library. For this library the delay of a FO4 is 45 ps (FO4

is the delay of an inverter of minimum size with a load of

four inverters), and the area of a two-input NAND gate is

4.4 µm2. We synthesized the full partial product generation

stage for the basic scheme allowing Synopsys’ DesignWare

[21] to choose the adder, and the proposed scheme with hand

coding of adders (we need the internal carry of the adders, so

we were not able to use DesignWare in this case). We did not

optimize the 3X adder as described for instance in [12], [22],

[23], since this optimization can not be applied to the 5X and

7X adders, so that the critical path remains the same.

Figure 7 shows the latency-area space for the two syn-

thesized designs. For higher latency points, as expected, the

proposed design has a slight increase in area. The fastest

design point is roughly the same for the two designs, although

the proposed design has a penalty of about 2K additional

NAND-2 gates with respect to the basic scheme. For the

fastest design point, the cost of the additional hardware in the

proposed scheme is about 500 NAND-2 gates (even less since

7 least-significant bits of one radix-16 regular partial product

are not required), less than 1.8% of the hardware complexity

of the partial product generation stage. Therefore, the extra

Basic
Proposed

 14

 16

 18

 20

 22

 24

 26

 28

 30

 20 30 40 50 60 70 80

C
el

l A
re

a
(K

 N
A

N
D

2)

Delay (FO4)

Fig. 7. Latency-area space for the partial product generation stage: basic
scheme vs proposed scheme.

1.5K NAND-2 gates corresponds to the penalty of not using

DesignWare adders in the proposed design.

Our synthesis experiment shows that the proposed scheme

does not introduce any significant variation in the latency-area

space of the partial product generation stage, confirming our

hypothesis that the introduced hardware has a minor cost and

is hidden from the critical path. Therefore, we have the benefit

of reducing the maximum height of the partial product array

by one unit without introducing any significant penalties in

the partial product generation stage.

B. Impact on the Multiplier

In the previous subsection, we provided the detail of the

synthesis of the partial product generation with the proposed

method. In this subsection, we evaluate the impact of our

method on the whole multiplier. We implement a multiplier by

the proposed method to reduce the partial products by one, and

we compare its performance (maximum clock frequency, area

and power dissipation) to a multiplier, referred as basic, with

the standard partial product generation and an extra operand

in the accumulation tree.

A practical design of a 64×64 multiplier is normally

pipelined to guarantee high-throughput. However, the place-

ment of pipeline registers depends mostly on the specific

technology and may vary from design to design. High radix

multipliers are chosen because the shallower trees allow a sig-

nificant power reduction, since the glitching power is limited

to a few levels of gates in the tree.

For this reason, it is realistic to place pipeline registers

before the tree, i.e., store the partial products in the pipeline

registers.

Consequently, we evaluate two schemes:

1) a 2-stage pipelined design (Fig. 8.a) with pipeline regis-

ter placed between the partial products generation (stage

8

PPGEN

TREE

CPA

.

.

X Y

P

pi
pe

lin
e

 r

eg
is

te
rs

stage 1

stage 2

PPGEN

TREE

CPA

.

.

X Y

P

pi
pe

lin
e

 r

eg
is

te
rs

stage 1

stage 2

stage 3

a) b)

Fig. 8. Pipelined multiplier. a) 2-stage; b) 3-stage.

abbreviated as PPGEN in the figures and tables) and the

tree (TREE);

2) a 3-stage design (Fig. 8.b) with an additional pipeline

register placed between the tree and the final carry-

propagate adder (CPA).

Other pipeline placements are not convenient because they

will result in placing flip-flops inside functional units, such

as CPAs or adder trees. This may result in increased number

of flip-flops (e.g., inside the tree) and it is also non-suitable

for reuse. Standard datapath blocks (e.g., CPAs) are normally

taken from fully-tested hardware libraries and altering their

behavior (placing pipeline registers inside) will prolong de-

velopment times, re-validation and re-testing.

1) Design of 2-Stage Multiplier: For the 2-stage multiplier

the critical path lies in the second stage for both the basic and

the proposed multipliers. The delay of the critical path is 23

FO4 for the basic and 21.5 FO4 for the proposed multiplier.

Clearly, the reduced number of partial products in the

proposed unit at the tree input (16 vs. 17 operands) makes the

accumulation faster. The area of the 2-stage implementation

it is slightly larger for the proposed multiplier, as shown in

Fig. 9.

As for the power dissipation, Table II reports the power

breakdown for the main blocks of the pipelined multiplier.

The proposed unit consumes about 2% less power than the

basic unit. This is mostly due to the reduced switching activity

(glitches) in the second stage (tree and CPA).

2) Design of 3-Stage Multiplier: The maximum throughput

for the multiplier can be obtained by breaking the critical part

of the second stage in two stages. To minimize the number

of flip-flops, or latches, this second register is placed between

the tree and the CPA.

With this pipelining, the critical path lies in the first stage of

the multiplier for both the basic and the proposed multipliers.

As already shown in Sec. IV-A, the delay of the critical path

is 18 FO4 for both implementations.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

Basic Proposed

A
re

a
 i
n
 N

A
N

D
2

Units

Area Breakdown r-16 Multiplier
(two-stage)

PPGEN
TREE+CPA

Fig. 9. Area breakdown for 2-stage pipelined multipliers.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

Basic Proposed

A
re

a
 i
n
 N

A
N

D
2

Units

Area Breakdown r-16 Multiplier
(three-stage)

PPGEN
TREE
CPA

Fig. 10. Area breakdown for 3-stage pipelined multipliers.

TABLE II
POWER DISSIPATION IN THE PIPELINED MULTIPLIERS.

TWO-STAGE THREE-STAGE
BASIC PROPOSED BASIC PROPOSED

[mW] % [mW] % [mW] % [mW] %
PPGEN 1.93 28 1.95 29 3.29 46 2.97 43
TREE 2.44 35 2.29 34 1.29 18 1.27 19
CPA 0.51 7 0.47 7 0.23 3 0.23 3
REGs 1.99 29 2.02 30 2.34 33 2.37 35

TOTAL 6.86 100 6.72 100 7.15 100 6.84 100

Power is measured at 100 MHz frequency.

In this case, the larger slack1 in stage 2, allows for a good

reduction in area for the tree of the proposed multiplier, that

partly compensate the larger area in the first stage (Fig. 7). As

a result, the area of the two units in the 3-stage implementation

is almost the same, as reported in Fig. 10.

Also in this case, the power dissipation is slightly (4%)

lower in the proposed unit. The breakdown of the different

parts is reported in Table II.

C. High Level Evaluation

In this subsection we use a high level rough model to

evaluate the proposed method. We evaluate the critical path of

the conventional partial product generation and the critical path

of the hardware we added to reduce the maximum height of

the partial product array. Although real implementations rely

on optimizations of the critical path done by synthesis tools

1The synthesizer trades-off slack for smaller area and lower power dissipa-
tion gates. Therefore, the actual slack reported by the static timing analysis
is close to zero for the three stages.

9

TABLE III
DELAY EQUATIONS, INPUT CAPACITANCE AND HARDWARE COST OF BASIC

ELEMENTS.

Element Delay Input Capacitance Area
FO4 # inverters # NAND2

NAND2 0.4 + 0.2L 4/3 1.0
NOR2 0.4 + 0.2L 5/3 1.3
INV 0.2 + 0.2L 1 0.4

AOI12 0.47 + 0.2L (5/3, 2, 2) 2.1
OAI12 0.53 + 0.2L (4/3, 2, 2) 2.0
XOR 0.9 + 0.2L 7/3 2.5

MUX2 0.9 + 0.2L (data : 4/3, sel : 7/3) 2.5
MUX4 1.5 + 0.2L (data : 4/3, sel : 7/3) 5.0

Full-Adder a, b : 2.73 + 0.2L (a : 11/3, b : 7/3) 7.5
c : 0.9 + 0.2L 11/3

Buffer 0.72 ln(L/Lin) Lin ln(L/Lin)

on a specific standard cell library technology, this high level

analysis may give some insight about the relative contribution

to the critical path of each component.

We use a rough delay model based on logical effort [24].

This model is based on using cells with transistor sizing so

that all the cells have the drive strength of the minimum size

inverter. Buffering is introduced when necessary to optimize

delays. We provide delays in FO4 units. Interconnections loads

are not taken into account. Optimizations such as gate sizing,

low/high Vth, etc. are not considered.

Table III shows the delay equations, input capacitance

and relative hardware cost of the basic hardware elements

used. In the table, the parameter L indicates the actual load

(capacitance) connected to the specific gate, and Lin indicates

the input capacitance of the buffers.

A key issue for the estimation of the critical path of the

conventional partial product generation is the architecture of

the adders for multiple generation. The worst case for our

analysis corresponds to the fastest design point for partial

product generation. Therefore we considered a fast Kogge-

Stone adder topology [7]. Although this is not energy/power

efficient in real implementations, at the logic level it is a good

lower bound of delay for an adder.

After the analysis of the conventional architecture, we

estimated the impact of the additional hardware required for

the proposed multiplier. For a quick reference, the timing paths

of Figures 4, 5 and 6 are summarized in Fig. 11. In the figure

the delay in the input registers (X and Y) and the delay of

buffers are omitted for simplicity.

The critical path of the conventional partial product gener-

ation is composed by the following items:

• Input register X: 3.0 FO4.

• Input buffering of multiplicand: 1.4 FO4.

• Multiple generation (adder): 10.3 FO4.

• Buffer between multiple generators and 8:1 mux: 1.7
FO4.

• 8:1 mux and inversion (input from data): 4.9 FO4.

This corresponds to a total delay of 21.3 FO4 in the critical

path.

The scheme we propose (Part A, Fig. 4, and Part B, Fig. 5,

in Fig. 11) has the following components in the critical path:

8:1
MUX

XOR

XOR

8−bit
CPA

7−bit
CPA

MUX
2:1

MUX
4:1

MUX
4:1

CSA

X

Y

PPs

C
M

sel

REC.
radix−16

REC.
radix−4

Part B

Part A

64−bit
CPA

21.3

20.6

Fig. 11. Timing paths for the proposed partial products reduction.

• Input register Y: 3.0 FO4.

• Input buffering of multiplier bits: 0.5 FO4.

• Radix-4 Booth recoding and selector with inversion (Part

B): 5.0 FO4.

• 3:2 carry-save adder (Part B): 3.5 FO4.

• Carry out of 7-bit carry-propagate adder (Part B):

4.4 FO4.

• XOR to produce sel signal (Part B) and six-bit 2:1

multiplexer (Part A): 4.2 FO4.

Thus, the path delay is 20.6 FO4 and it is not critical.

Our analysis shows that the CM signal is not in the critical

path (the worst case delay for CM is 13.1 FO4, while the

worst case delay for Cout2 is 16.4 FO4).

These results are coherent with the fastest design point in

the latency-area graph shown in Figure 7. The lower bound

in latency is about 18.2 FO4. The synthesis tool is able to do

some sort of gate sizing (dependent on the available gate sizes

for each instance gate), so a faster result than in our high level

analysis should be expected.

Therefore, our rough analysis is in agreement with the

synthesis results, as the proposed scheme is not in the critical

path for n = 64.

We performed a similar analysis for the critical path of the

conventional partial product generation for n = 32 (the case

for n = 16 is less attractive for radix-16 due to the small

number of partial products). For n = 32 we obtain a critical

path of 19.7 FO4. As it can be seen in Figure 2, the scheme

we propose is not sensitive to the variation of n (the number

of bits added in Figure 2(b) is independent of the value of

n), thus resulting in the same critical path as before (20.6
FO4). Therefore, for the fastest design point, for n = 32,

the proposed scheme is in the critical path, with a slack with

respect to the conventional partial product generation of 0.9
FO4 for n = 32. This negative slack of our scheme can be

reduced with conventional approaches like low Vth gates and

gate sizing without significant increase in power, since the

share of our scheme with respect to the total hardware is very

small.

We verified this statement with the synthesis tool. A syn-

thesis for n = 32 leads to a critical path of 16.5 FO4 and

this critical path corresponds to the computation of a regular

partial product.

10

V. CONCLUSIONS

Pipelined large wordlength digital multipliers are difficult to

design under the constraints of core cycle time (for nominal

voltage), pipeline depth, power and energy consumption and

area. Low level optimizations might be required to meet these

constraints.

In this work we have presented a method to reduce by one

the maximum height of the partial product array for 64-bit

radix-16 Booth recoded magnitude multipliers. This reduction

may allow more flexibility in the design of the reduction tree

of the pipelined multiplier. We have shown that this reduction

is achieved with no extra delay for n ≥ 32 for a cell-based

design.

The method can be extended to Booth recoded radix-8

multipliers, signed multipliers and combined signed/unsigned

multipliers.

Radix-8 and radix-16 Booth recoded multipliers are attrac-

tive for low power designs, mainly to the lower complexity

and depth of the reduction tree, and therefore they might be

very popular in this era of power-constrained designs with

increasing overheads due to wiring.

REFERENCES

[1] S. Kuang, J. Wang, and C. Guo, “Modified Booth Multipliers With
a Regular Partial Product Array,” IEEE Transactions on Circuits and

Systems II: Express Briefs, vol. 56, no. 5, pp. 404–408, May 2009.
[2] F. Lamberti et al., “Reducing the Computation Time in (Short Bit-

Width) Twos Complement Multipliers,” IEEE Transactions on Comput-

ers, vol. 60, no. 2, pp. 148–156, Feb. 2011.
[3] N. Petra et al., “Design of Fixed-Width Multipliers With Linear Com-

pensation Function,” IEEE Transactions on Circuits and Systems I:

Regular Papers, vol. 58, no. 5, pp. 947–960, May 2011.
[4] S.Galal et al., “FPU Generator for Design Space Exploration,” in Proc.

21st IEEE Symposium on Computer Arithmetic (ARITH), Apr. 2013, pp.
25–34.

[5] K. Tsoumanis et al., “An Optimized Modified Booth Recoder for
Efficient Design of the Add-Multiply Operator,” IEEE Transactions on

Circuits and Systems I: Regular Papers, vol. 61, no. 4, pp. 1133–1143,
Apr. 2014.

[6] A. Cilardo et al., “High Speed Speculative Multipliers Based on Specu-
lative Carry-Save Tree,” IEEE Transactions on Circuits and Systems I:

Regular Papers, vol. 61, no. 12, pp. 3426–3435, Dec. 2014.
[7] M. Ercegovac and T. Lang, Digital Arithmetic. Morgan Kaufmann

Publishers, 2004.
[8] S. Vassiliadis, E. Schwarz, and D. Hanrahan, “A General Proof for

Overlapped Multiple-Bit Scanning Multiplications,” IEEE Transactions

on Computers, vol. 38, no. 2, pp. 172–183, Feb. 1989.
[9] “Binary multibit multiplier,” U.S. Patent 4 745 570 A, 1986.

[10] D. Dobberpuhl et al., “A 200-MHz 64-b Dual-Issue CMOS Micropro-
cessor,” IEEE Journal of Solid-State Circuits, vol. 27, no. 11, pp. 1555–
1567, Nov. 1992.

[11] E. M. Schwarz, R. M. A. III, and L. J. Sigal, “A radix-8 CMOS S/390
multiplier,” in Proc. 13th IEEE Symposium on Computer Arithmetic

(ARITH), July 1997, pp. 2–9.
[12] J. Clouser et al., “A 600-MHz Superscalar Floating-Point Processor,”

IEEE Journal of Solid-State Circuits, vol. 34, no. 7, pp. 1026–1029,
July 1999.

[13] S. Oberman, “Floating point division and square root algorithms and
implementation in the AMD-K7 microprocessor,” in Proc. 14th IEEE

Symposium on Computer Arithmetic (ARITH), Apr. 1999, pp. 106–115.
[14] R. Senthinathan et al., “A 650-MHz, IA-32 Microprocessor with En-

hanced Data Streaming for Graphics and Video,” IEEE Journal of Solid-

State Circuits, vol. 34, no. 11, pp. 1454–1465, Nov. 1999.
[15] K. Muhammad et al., “Speed, Power, Area, and Latency Tradeoffs in

Adaptive FIR Filtering for PRML Read Channels,” IEEE Transactions

on VLSI Systems, vol. 9, no. 1, pp. 42–51, Feb. 2001.

[16] G. Colon-Bonet and P. Winterrowd, “Multiplier Evolution: A Family
of Multiplier VLSI Implementations,” The Computer Journal, vol. 51,
no. 5, pp. 585–594, 2008.

[17] R. Riedlinger et al., “A 32 nm, 3.1 Billion Transistor, 12 Wide Issue
Itanium Processor for Mission-Critical Servers,” IEEE Journal of Solid-

State Circuits, vol. 47, no. 1, pp. 177–193, Jan. 2012.
[18] B. Cherkauer and E. Friedman, “A hybrid radix-4/radix-8 low power

signed multiplier architecture,” IEEE Transactions on Circuits and

Systems II: Analog and Digital Signal Processing, vol. 44, no. 8, pp.
656–659, Aug. 1997.

[19] D. Lutz and N. Burgess, “Low Latency is Low Energy,” in Proc. 48th

Asilomar Conf. on Signals, Systems and Computers, Nov. 2014.
[20] V. G. Oklobdzija, D. Villeger, and S. S. Liu, “A Method for Speed

Optimized Partial Product Reduction and Generation of Fast Parallel
Multipliers Using an Algorithmic Approach,” IEEE Transactions on

Computers, vol. 45, no. 3, pp. 294–306, Mar. 1996.
[21] Synopsys Inc. Design Compiler. [Online]. Available:

http://www.synopsys.com
[22] “A X+2X adder with multi-bit generate/propagate circuit,” U.S. Patent

5 875 125, 1997.
[23] “3x adder,” U.S. Patent 6 269 386 B1, 1998.
[24] A. Vazquez and E. Antelo. (2012, June) Area and Delay Evaluation

Model for CMOS Circuits. Internal Report, Univ. of Santiago de
Compostela. [Online]. Available: http://www.ac.usc.es/node/1607

