
  
 

Doctoral Dissertation 
Doctoral Program in Civil and Environmental Engineering (33rd Cycle) 

 

Elastic Lattice Models: From Proteins 
to Diagrid Tall Buildings 

 
 
 
 

Domenico Scaramozzino 
* * * * * * 

 
 
 
 

Supervisors 
 

Prof. Alberto Carpinteri 
Prof. Giuseppe Lacidogna 

 
 
 
 

Doctoral Examination Committee: 
 
Prof. Luciano Lamberti, Referee, Politecnico di Bari, Italy 
Prof. Sanichiro Yoshida, Referee, Southeastern Louisiana University, USA 
Prof. Horacio D. Espinosa, Northwestern University, USA 
Prof. Fernando Fraternali, Univerità di Salerno, Italy 
 
 

Politecnico di Torino 
October, 2020



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This thesis is licensed under a Creative Commons License, Attribution – 
Noncommercial – NoDerivative Works 4.0 International: see 
www.creativecommons.org. The text may be reproduced for non-commercial 
purposes, provided that credit is given to the original author. 
 
 
 
I hereby declare that, the contents and organisation of this dissertation constitute 
my own original work and does not compromise in any way the rights of third 
parties, including those relating to the security of personal data. 

 
 
 

 
 
 

…………………………………. 
Domenico Scaramozzino 
Turin, October 31, 2020

 



Summary  

What do proteins and diagrid tall buildings have in common? Apparently 
nothing. The former are nanoscopic biological systems, functioning in a complex 
chemo-physical environment, whose activity is pivotal to carry out a variety of 
physiological processes. The latter are macroscopic structural systems that are 
employed nowadays for the design and construction of tall buildings. 
Nevertheless, in this Thesis, it will be shown that both proteins and diagrid tall 
buildings can be investigated and modeled by means of the same structural 
system, the Elastic Lattice Model (ELM). ELMs are spatial structures usually 
made of springs or bars connected in correspondence of nodes, that can be treated 
as spherical hinges. In this Thesis, we will use the ELMs to explore a variety of 
behaviors and features of proteins and diagrids. 

In particular, it will be shown that proteins can be efficiently modeled as a 
network of springs and point masses. Within the framework of modal analysis, 
these ELMs will be very useful to obtain accurate information regarding protein 
dynamics and vibrations. Specifically, the low-frequency vibrations extracted 
from the protein ELMs will be shown to correlate truthfully with the protein 
biological mechanisms and conformational changes, as well as to provide correct 
insights on the protein experimental flexibility, as obtained from the experimental 
B-factors. For this purpose, various modeling approaches will be presented and 
analyzed. Furthermore, we will see that applying point forces on the protein ELM 
also provides remarkable insights on protein flexibility. Two novel force 
application patterns will be reported for this purpose and the results will show that 
the protein ELMs coupled with the traditional linear static analysis can lead to 
correct predictions of the protein deformability. Finally, the possible role of 
geometrical non-linearities will also be investigated within the large-scale 
conformational changes, which are usually known to exhibit fairly large 
displacements. From the analyses, it will be shown that these conformational 
changes often imply curvilinear pathways and possible mechanical non-linearities 
in the structural response. 
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Switching to the subject of diagrid tall buildings, the ELMs will then be used 
to develop a matrix-based method (MBM) for the structural analysis of generic 
three-dimensional diagrid systems. Based on matrix calculus and the 
displacements method, the MBM will be applied to perform the structural analysis 
of diagrids, both alone and coupled with internal cores. The force distribution and 
the interaction of the external diagrid with the internal resisting element will be 
studied by inserting the MBM within the General Algorithm (GA), a semi-
analytical framework developed few decades ago for the investigation of complex 
three-dimensional buildings. Furthermore, the MBM will be deeply exploited to 
investigate the influence of the diagrid geometry on the structural response. 
Namely, geometrical parameters such as the diagonal inclination, floor shape and 
building aspect ratio, will be changed in order to obtain information on the lateral 
and torsional flexibility of the diagrid. From these analysis, it will be shown that 
different diagrid geometries have a marked effect on the structural response and 
often a unique solution that allows to optimize all the responses does not exist. 
For this reason, a novel multi-response optimization will be presented, which 
makes use, for the first time in this field, of the desirability function approach. 
Based on the results of the MBM structural analyses, the desirability function will 
be applied to evaluate the optimal diagrid geometry that simultaneously optimizes 
the lateral and torsional rigidity, the amount of used material as well as the 
construction complexity. The outcomes will show that the desirability approach, 
coupled with the ELM-based MBM, is a simple yet valuable and robust tool for 
the selection of the optimal diagrid geometry.  
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between directionality of nodal forces; (c) ratio between absolute values of nodal forces. 
Figure 3.24. Scheme for the evaluation of non-linearities in the protein conformational 
transitions: (a) non-linearity of the displacement field; (b) the non-linearity of the 
structural response. 
Figure 3.25. Non-linearities in the LAO-binding protein open-to-closed conformational 
change: (a) non-linearity in the displacement field; (b) non-linearity in the structural 
response. 
Figure 3.26. Non-linearities in the LAO-binding protein closed-to-open conformational 
change: (a) non-linearity in the displacement field; (b) non-linearity in the structural 
response. 
Figure 4.1. Different structural systems for 20th century tall buildings: (a) moment 
resisting frame (Empire State Building, New York, USA); (b) braced tube (John Hancock 
Center, Chicago, USA) [100]. 
Figure 4.2. Examples of diagrid systems in tall buildings: (a) Hearst Tower (New York, 
USA); (b) Swiss Re Tower (London, UK), from https://larryspeck.com/; (c) Tornado 
Tower (Doha, Qatar), from http://www.asergeev.com/. 
Figure 4.3. Fundamental diagrid geometrical features: (a) diagrid module and basic 
triangular element, used with permission from Asadi and Adeli [107]; (b) diagrid tubular 
configuration, used with permission from Angelucci and Mollaioli [108]. 
Figure 4.4. Scheme of the elementary diagrid module for the definition of the stiffness-
based approach to the diagrid preliminary design. Used with permission from Moon et al. 
[109]. 
Figure 4.5. Scheme of the elementary diagrid module for the definition of the strength-
based approach to the diagrid preliminary design, under: (a) gravity loads; (b) overturning 
moment; (c) shear force. Used with permission from Montuori et al. [111]. 
Figure 4.6. Scheme for the calculation of (a) shear rigidity and (b) bending rigidity, 
according to the modular method (MM). Used with permission from Liu and Ma [115]. 
Figure 4.7. Conventions for three-dimensional diagrid structure: (a) displacements and 
rotations of the floors; (b) floors and modules numbering and subscripts of diagonal 
coordinates. Used with permission from Lacidogna et al. [117]. 
Figure 4.8. (a) Internal loadings Si transmitted to the ith bracing in the global reference 
system; (b) global and local reference systems. Used with permission from Carpinteri [6]. 
Figure 4.9. Diagrid system coupled with central core: (a) top view; (b) side view. Used 
with permission from Lacidogna et al. [117]. 
Figure 4.10. Diagrid system coupled with central core: (a) horizontal displacements; (b) 
torque rotations. Used with permission from Lacidogna et al. [117]. 
Figure 4.11. Diagrid system coupled with central core: (a) shear; (b) bending moment; 
(c) torque moment. Used with permission from Lacidogna et al. [117]. 
Figure 4.12. Building geometry: (a) floor plans, (b) lateral views. Used with permission 
from Lacidogna et al. [129]. 
Figure 4.13. Diagrid tube coupled with closed-section shear wall: (a) lateral 
displacements, (b) torsional rotations. Used with permission from Lacidogna et al. [129]. 
Figure 4.14. Diagrid tube coupled with open-section shear wall: (a) lateral displacements, 
(b) torsional rotations. Used with permission from Lacidogna et al. [129]. 
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Figure 4.15. Relative stiffness of diagrid and shear wall: (a) lateral stiffness, (b) torsional 
stiffness. Used with permission from Lacidogna et al. [129]. 
Figure 5.1. Different diagonal angle patterns: (a) varying-angle with steeper diagonals at 
the base; (b) uniform-angle; (c) varying-angle with steeper angle at the top, used with 
permission from Moon [110]; (d) varying-angle with straight diagonals; (e) varying-angle 
with curved diagonals, used with permission from Zhao and Zhang [130]. 
Figure 5.2. (a) Different geometrical patterns from Montuori et al. [133]: uniform-angle 
patterns (60°, 70°, 80°), varying-angle patterns according to Moon approach (VA1, VA2) 
[110,131], varying-angle pattern according to Zhang approach (VA3) [132], variable-
density patterns (VD1, VD2). (b) Efficiency parameters for the investigated solutions. 
Used with permission from Montuori et al. [133]. 
Figure 5.3. Variable-density (VD) patterns proposed by Angelucci and Mollaioli [108]: 
(a-b) concentrated outrigger-like VD pattern; (c-d) distributed VD pattern. Used with 
permission from Angelucci and Mollaioli [108]. 
Figure 5.4. (a) Geometrical patterns for the 90-story tall diagrid building considered by 
Tomei et al. [134]: uniform-angle patterns (60°, 70°, 80°), varying-angle pattern 
according to Zhang approach (VA) [132], double-density pattern (DD), variable-density 
pattern (VD), stress lines pattern (ISO). (b) Unit structural weight (blue bars) and 
complexity index (red curve) for the investigated diagrid patterns. VA_IDR, VD_1, 
VD_15, ISO_15, ISO_9, ISO_5, ISO_5* refer to additional subsets of the corresponding 
patterns, as reported in [134]. Used with permission from Tomei et al. [134]. 
Figure 5.5. Geometry of the generated diagrid buildings: (a) four different total heights; 
(b) four different floor plan shapes; (c) six different diagonal inclinations. Used with 
permission from Lacidogna et al. [137]. 
Figure 5.6. Displacements and rotations for the 36-story building: (a–b) lateral 
displacements; (c–d) torsional rotations. Used with permission from Lacidogna et al. 
[137]. 
Figure 5.7. Displacements and rotations for the 48-story building: (a–b) lateral 
displacements; (c–d) torsional rotations. Used with permission from Lacidogna et al. 
[137]. 
Figure 5.8. Displacements and rotations for the 60-story building: (a–b) lateral 
displacements; (c–d) torsional rotations. Used with permission from Lacidogna et al. 
[137]. 
Figure 5.9. Displacements and rotations for the 72-story building: (a–b) lateral 
displacements; (c–d) torsional rotations. Used with permission from Lacidogna et al. 
[137]. 
Figure 5.10. Graphical representation of the individual desirability functions di(yi) for 
different optimization criteria. The response yi is most desirable if it reaches (a) the upper 
value Ui, (b) the lower value Li, (c) a specified target value Ti. Continuous lines are 
obtained with ri equal to 1, dashed lines with ri less than 1 and dotted lines with ri higher 
than 1. 
Figure 5.11. (a) Individual desirability values for the four response variables (#$ = 1) and 
(b) OD values. Used with permission from [142]. 
Figure 5.12. Surface representation of the OD with respect to the diagrid geometrical 
parameters (diagonal angle and floor shape). OD values are reported in the vertical axis 
and represented by means of color shades. Used with permission from [142]. 
Figure 5.13. Optimal diagrid geometry based on 4096 simulations with different 
exponents of the individual desirability values. Used with permission from [142]. 
Figure 5.14. Results for the 126-meter tall building: (a) surface representation of the OD 
obtained with #& = #" = #' = #() = 1; (b) optimal diagrid geometry based on 4096 
simulations with different exponents ri. Used with permission from [142]. 
Figure 5.15. Results for the 210-meter tall building: (a) surface representation of the OD 
obtained with #& = #" = #' = #() = 1; (b) optimal diagrid geometry based on 4096 
simulations with different exponents ri. Used with permission from [142]. 
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Figure 5.16. Results for the 252-meter tall building: (a) surface representation of the OD 
obtained with #& = #" = #' = #() = 1; (b) optimal diagrid geometry based on 4096 
simulations with different exponents ri. Used with permission from [142]. 
Figure 5.17. Three different varying-angle diagrid generated from the combination of the 
basic triangular units for the square plan shape: (a) combination #88: M1 = M2 = M4 = M5 
= M6 = 0, M3 = 16; (b) combination #872: M1 = 1, M2 = 2, M3 = 13, M4 = 1, M5 = M6 = 0; 
(b) combination #1004: M1 = 1, M2 = 5, M3 = 3, M4 = 3, M5 = 2, M6 = 1. 
Figure 5.18. Results for the 168-meter tall building with 31040 varying-angle 
geometries: (a) top lateral displacement, top torsional rotation, steel mass and complexity 
index obtained for each of the 31040 diagrid geometries; (b) distribution of the four 
response variables across the population of diagrid geometries. The red star refers to the 
optimal geometry (#15608), which has been obtained from the desirability approach with 
#& = #" = #' = #() = 1. 
Figure 5.19. Optimal geometry for the 168-meter varying-angle diagrids based on the 
desirability function, obtained with #& = #" = #' = #() = 1: (a) OD values obtained for 
each geometry; (b) distribution of the OD across the population of diagrid geometries. 
The red star refers to the optimal geometry (#15608), which is shown in panel (c). 
Figure 5.20. Optimal diagrid geometry based on 4096 simulations with different 
exponents ri. 
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Chapter 1 

Introduction 

The ground foundation of every Structural Mechanics course is based on the 
Hooke’s law. It is the simplest constitutive relation that describes the mechanical 
behavior of an elastic material. In 1679, Robert Hooke published a book titled 
Lectures Cutlerianae, or a Collection of Lectures [1], where various systems and 
topics were addressed in details, ranging from the observation of the earth motion 
to the description of helioscopes and microscopes, from the observation of comets 
to the description of wind-fountains and force pumps. The wide variety of 
investigated subjects reveals the different sensibility of past scientists, at a time 
when science was not broken into smaller and smaller pieces but it was deemed to 
provide answers for multiple questions. 

One of the lectures contained within the Hooke’s collection, titled De 
Potentia Restitutiva or of Spring [1], has become particularly of interest for civil 
and mechanical engineers of the centuries to come. At the beginning of that 
lecture, Hooke writes: 

 
The Theory of Springs, though attempted by drivers eminent Mathematicians of this 
Age has hitherto not been Published by any. It is now about eighteen years since I 
first found it out, but designing to apply it to some particular use, I omitted the 
publishing thereof. 

About three years since His Majesty was pleased to see the Experiment that made 
out this Theory tried at White-Hall, as also my Spring Watch. 

About two years since I printed this Theory in an Anagram at the end of my Book 
of the Description of Helioscopes, viz. c e i i i n o s s s t t u v, id est, Ut tensio sic vis; 
That is, the Power of any Spring is in the same proportion with the Tension thereof: 
That is, if one power stretch or bend it one space, two will bend it two, and three will 
bend it three, and so forward. Now as the Theory is very short, so the way of trying 
is very easie [1]. 

 
Ut tension sic vis. This is the basic idea of Hooke’s law, firstly printed as an 
encrypted anagram, that can also be formulated with the expression As the 
extension, so the force. Therefore, there exists a linear proportion between the 
applied force and the corresponding extension. If the force doubles or is halved, 
so does the extension. In mathematical terms, this law can be expressed as the 
famous: 
 
 * = ,!, (1.1) 
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* being the force, ! the extension and , the so-called spring constant, that plays 
the role of the stiffness of the system. Hooke carried out several experiments 
when suggesting this law. Figure 1.1 shows the picture of one of these 
experiments, as reported in De Potentia Restitutiva [1]. 
 

 
Figure 1.1. Experimental set-up regarding the Hooke’s law, as reported in De Potentia 
Restitutiva [1]. 

 
More than three centuries after the publication of Hooke’s collection of 

lectures, today we know that the Hooke’s law is valid in certain cases, but it does 
not hold true in a variety of other cases. Most likely, Hooke already observed this 
during his experiments. Materials are known to exhibit a linear elastic behavior 
for low stress levels and subsequently they can show non-linear responses in the 
load-deflection curve because of several phenomena, such as internal damaging 
process, cracking, yielding, etc. Also at the level of the structural elements, such 
as beams, plates, trusses, frames, etc., we know that the linearity between the 
applied forces and the corresponding deformations holds true for low values of the 
external perturbation. After a certain point and depending on the characteristics of 
the structural elements and employed materials, non-linear paths can show up in 
the load-deflection curve due to various effects, such as geometrical non-
linearities, fracturing of some members, etc. 

However, the Hooke’s law is still the building block of most of the first-order 
approaches to analyze the response of the most common structural elements. In its 
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original formulation, it has been referred to the most simple structural element, i.e. 
the linear spring. Given the spring constant ,, we can immediately know the 
spring elongation ! for a given external perturbation * based on Eq. (1.1). Also, 
we can estimate the amount of force * which is required to obtain a certain spring 
elongation !. This simple equation can be generalized in matrix form to obtain 
what is usually referred to as the generalized Hooke’s law: 

 
 . = /0, (1.2) 

 
being . the generalized force vector, 0 the generalized displacement vector and / 
the stiffness matrix. By means of Eq. (1.2), much more complex systems than the 
simple linear spring can be analyzed. In this case, given the stiffness matrix of the 
structure /, we can immediately obtain the structure displacements 0 for a given 
set of external perturbations ., or we can estimate the amount of external forces . 
which is required to obtain certain structure displacements 0. 

It is then clear that, despite the simplicity of Eq. (1.1), the generalization of 
such a law to more complex structural systems allows their solution to become 
quite simple and automatic. Equation (1.2) is the foundation of one of the most 
used approaches to solve structures, which is taught to every student in Structural 
Mechanics classes: the displacements method. It relies on the calculation of the 
stiffness matrix of the structural members that form the structure, which is nothing 
more than the application of the Hooke’s law for systems with a higher number of 
degrees of freedom (DOFs). One of the advantages of the displacements method 
to solve structures is that it can be easily made automatic and coded within 
modern computers. This is what is usually done within the framework of the 
Finite Element Method (FEM). These methodologies can be applied to a wide 
variety of structural systems with different types and numbers of DOFs, e.g. 
springs, beams, shells, plates, solids, frames, trusses, etc. 

In the next Section, one kind of structural system will be described, which 
can be thought of as the generalization of the Hookean linear elastic spring and 
will be deeply analyzed in this Thesis with respect to two diverse fields of 
investigation: the Elastic Lattice Model (ELM). 

1.1. Elastic Lattice Models (ELMs) 

The Elastic Lattice Model (ELM) is an elastic truss system where various 
elements are connected together, generally in a complex three-dimensional 
fashion. Depending on the specific application, the ELMs can be thought of as 
made of springs or bars, connected together at nodal points which usually embody 
spherical hinges. The difference between thinking of the ELM as made of springs 
or rods is that the flexural stiffness of the former (the spring) is usually negligible, 
whereas the latter (the bar) can exhibit a significant resistance against bending 
actions. However, in most cases, the external perturbations are often applied to the 
nodal points of the ELM, thus the bending stiffness of the elementary members is 
not involved into the deformation mechanism and therefore it becomes not 
relevant. The axial rigidity of the members, either springs or rods, is the 
fundamental characteristic of the structure and drives the deformation mode. For 
this reason, in the ELM each member is supposed to obey to Eq. (1.1), where , 
can be seen as the spring constant for the ELM springs or the axial stiffness for 
the ELM bar members. 
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Figure 1.2. ELMs and their different field of (methodological or physical) application: 
(a) ELM as the basic unit of the truss-like Discrete Element Method for the investigation 
of fracture and damage mechanics (used with permission from Kosteski et al. [2]); (b) 
ELM-based tensegrity structure for the analysis of the bio-mechanical response of cells 
(used with permission from Verdier [3]); (c) ELM for the realization of the high-rise 
Eiffel Tower in Paris; (d) ELM for the construction of the DZ Bank roof in Berlin. 

 
ELMs are employed in a wide variety of cases and research fields to describe 

properties of materials and structures. A typical example is the lattice modeling of 
inter-atomic interactions in crystalline materials. The recurring pattern of 
connections among the atomic networks is often modeled through the lattice 
representation. ELMs are also used to simulate the micro-mechanical 
characteristics of materials, the continuum solid being discretized into tiny 
elementary components. In this case, modeling the micro-mechanical features of 
the lattice allows to investigate the mechanical behavior of the continuum. One of 
the examples is represented by the truss-like Discrete Element Method (Figure 
1.1a), useful for the investigation of fracture and damaging processes [2,4]. Also, 
special types of ELMs have been developed, called tensegrity structures, where 
members under compression are not in contact with each other and are kept in 
equilibrium by means of a network of pretensioned cables. These ELMs have 
been shown to be impressively successful in describing the bio-mechanical 
features of cells, such as their shape, movements and response to mechanical 
stimuli (Figure 1.1b) [5]. Obviously, ELMs do not represent only methodological 

(a) (b) 

(c) (d) 
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frameworks useful to investigate some ethereal feature of the microscopic world. 
They are also exploited in the world of constructions and architecture, typically as 
steel or timber truss structures. Well-known examples of lattice (truss) structures 
range from the high-rise Eiffel Tower in Paris (Figure 1.1c) to the DZ Bank roof 
in Berlin (Figure 1.1d), up to the giant electric poles which are found in every 
sub-urban environment. As can be deduced, ELMs have a variety of (physical or 
methodological) applications in a wide variety of fields, ranging from atomic and 
crystal matter up to continuum solid mechanics, through biology and structural 
engineering. 

The ELMs will be the major focus of this Thesis. As will be introduced in the 
next Section and will be seen in the next Chapters, these structural systems will be 
applied to two diverse research fields. Notwithstanding, it is to be remarked how 
the theoretical and methodological framework is essentially the same, as we refer 
to the same structural system. 

During the research work behind the results that will be presented in this 
Thesis, the ELMs have been exploited by making use of essentially three kinds of 
structural analyses: the linear static analysis, modal analysis and geometrically 
non-linear analysis. All of these start from the basic relationship reported in 
Hooke’s lecture from 1679, that relates the elongation of the ELM basic member 
(spring or bar) to the corresponding internal stress state. In the next sub-sections 
these three structural analyses will be described referring to the ELMs. 

1.1.1. ELMs and linear static analysis 

Linear static analysis is the basic structural analysis that allows to evaluate 
the displacements and deformations of any structural system given the external 
perturbation (forces, moments, thermal distortions, imposed displacements, etc.). 
The ELM is a structural system made up of elastic connections that link various 
nodes in the three-dimensional space. Therefore, there exists a double way of 
thinking about the ELM in terms of free objects and internal constraints. The first 
one identifies the bars as the free objects, whose displacements and deformations 
are to be computed, and the point nodes as the internal constraints in the form of 
internal hinges. The second one recognizes the nodes as the moving points in the 
space, characterized by three unknown DOFs each, and the bars as the compliant 
constraints that restrict the free motion of the nodes based on the bars axial 
rigidity. Although the first point of view can be useful to evaluate the degree of 
statically (in)determination of the structure via the computation of the number of 
DOFs of the members and constraints due to the internal hinges, the second 
perspective is more useful to carry out the structural analysis in a quick and 
efficient way. 

Each node is thus seen as a point with known coordinates with respect to the 
global reference system XYZ and whose displacements !1, !2 and !3 are the three 
DOFs to be calculated. Correspondingly, in the realm of linear static analysis, the 
ELM is subjected to force vectors acting at the level of each node, whose 
components in the global reference system are *1, *2 and *3. Therefore, for an 
ELM counting N nodes, we deal with a 3N × 1 displacement vector 0, which 
contains all the three unknown displacements for each of the N nodes, and a 3N × 
1 force vector ., which contains all the three force components for each node. 

At this point, the linear structural analysis yields the simple application of Eq. 
(1.2), i.e. the generalized Hooke’s law, to solve the structural problem. For a 
given set of applied forces, we then obtain the corresponding displacements of the 
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nodes, thus obtaining information about the overall motion and deformation of the 
ELM. 

The problem that needs to be addressed at this point to solve the problem is 
how to compute the stiffness matrix / reported in Eq. (1.2). Several 
methodologies can be applied for this purpose. Since we are posing the linear 
problem in matrix form, the most proper one seems to be the displacements 
method, which is based on the direct calculation of the stiffness coefficients. As a 
matter of fact, by expanding Eq. (1.2) we can observe that each i-j entry of the 
stiffness matrix, i.e. the element at row i and column j, exactly corresponds to the 
force component on the ith row of the force vector when the displacement 
component on the jth row of the displacement vector is equal to 1, the others being 
identically equal to 0. This observation tells us that in order to calculate each entry 
of the 3N × 3N stiffness matrix it is sufficient to apply unitary displacements in a 
certain direction and computing the resulting force components for each direction 
at each node. 

To do so from an operative perspective, once the directional displacement is 
applied at the generic node, the deformations of all the bars joining to that node 
are computed based on kinematic (compatibility) equations, taking also into 
account the external constraint conditions. Then, once the deformation of the bars 
is known, the corresponding stress state and internal axial force can be computed 
through the constitutive equations, i.e. the Hooke’s law from Eq. (1.1). Finally, 
once all the internal forces in the deformed bars are known, the component of the 
force in the generic direction at each node can be computed, based on equilibrium 
equations. This is the core of the displacements method: starting from the 
displacement we come up with the force [6]. In this way, the stiffness matrix 
reported in Eq. (1.2) can be completely computed and the linear static analysis can 
be carried out to evaluate the displacements of the ELM nodes. Once the motion 
of the nodes is known, we can apply once again the kinematic (compatibility) and 
constitutive equations, to find out the stress state, i.e. the axial force, within each 
ELM elementary member. As can be seen, this is not an energetic approach, but a 
displacement-based method. Due to the fact that ELMs are easily implementable 
in matrix form into computer-based codes, this is likely to be the most rational 
way to tackle the problem. 

In the following Chapters, this approach will be used various times to directly 
compute the stiffness matrices of the ELMs and perform the linear static analysis. 
As will also be seen in the following Chapters, the procedure for the calculation of 
the global stiffness matrix will be applied with slight differences depending on the 
underlying assumptions for the different cases under investigation, e.g. taking into 
account internal constraint conditions that restrict certain nodes to move together, 
etc. 

1.1.2. ELMs and modal analysis 

In the framework of linear static analysis, external perturbations are usually 
applied to the structure and the goal is to evaluate the motion of the structural 
elements as well as their internal stress state. All we need in order to solve the 
problem is the information about the geometry of the ELM and the stiffness 
characteristics of its members. We then acknowledge that the mass of the 
structure does not play any role. 

Vice versa, the goal of modal analysis, i.e. linear dynamic analysis, is to 
evaluate the dynamic characteristics of a certain structure in the linear regime. In 
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this contest, the mass of the structure does play a role, since it affects the 
dynamical properties of the system. The main objective of modal analysis is to 
evaluate the intrinsic vibrational modes of the structure, from which we can obtain 
important information about its dynamic features. The problem is usually tackled 
by posing the global equilibrium of the system, which is subjected to the elastic 
forces due to the internal deformations of the ELM members and the inertia forces 
due to the mass-based accelerations of the nodes. The elastic forces arise from the 
stiffness characteristics of the ELM and can be obtained from the nodal 
displacements via the generalized Hookean’s law reported in Eq. (1.2). Instead, 
the inertia forces depend on the mass of the ELM and can be calculated through: 

 
 .45 = 60̈, (1.3) 
 
being .45 the 3N × 1 vector of the inertia forces, 6 the 3N × 3N mass matrix of 
the ELM and 0̈ the 3N × 1 vector of the nodal accelerations. The modal analysis 
yields the equilibrium between the stiffness-based elastic forces from Eq. (1.2) 
and the mass-based inertia forces from Eq. (1.3), leading to: 
 
 /0 +60̈ = 9. (1.4) 
 
In order to find the free vibrations of the system, we usually look for a stationary 
harmonic solution in the following form: 
 
 0 = ; sin?@, (1.5) 
 
being ; the amplitude of motion, @ the time variable, and ? the angular frequency 
(rad/s) which is related to the frequency of vibration (Hz) through the relationship 
? = 2BC. By substituting Eq. (1.5) into Eq. (1.4), one obtains: 
 
 (/ − ?F6); = 9. (1.6) 
 
Equation 1.6 represents the fundamental equation of modal analysis for the 
investigation of a multi degree-of-freedom (MDOF) system [6]. Besides the trivial 
solution ; = 9, which represents the case of the system being motionless, the 3N 
vibrational modes of the ELM can be found in the following way. Pose the 
determinant of the matrix /−?F6 equal to zero, so that one finds the set of 3N 
angular frequencies ?H associated to each vibrational mode n. Consequently, by 
applying again Eq. (1.6), one obtains the complete set of the 3N mode shapes ;5. 

Therefore, from Eq. (1.6), modal analysis yields the evaluation of the 
complete ensemble of eigenvalues (vibrational frequencies) and eigenvectors 
(mode shapes) of the modal problem. The former is informative of the number of 
cycles performed during the unit time and it is the inverse of the period of 
vibration T. The latter provides information about the directions and spatial 
characteristics of each vibrational motion. In Chapter 2, this theoretical 
framework will be thoroughly exploited for the investigation of the dynamics of 
particular ELMs. 
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1.1.3. ELMs and geometrically non-linear analysis 

The ELMs which will be used in this Thesis exploit the Hooke’s equation 
regarding the constitutive law of the members. This means that the deformation 
state of the members is always linearly proportional to the underlying stress state. 
However, ELMs can sometimes exhibit non-linear responses due to the 
geometrical effects, which are usually referred to as geometrically non-linearities. 

To show this phenomenon, we can refer to one of the simplest ELMs, the 
Von Mises truss [6,7] (Figure 1.3a). In its basic two-dimensional representation, it 
is a plane truss made of two axially deformable bars, with axial stiffness k, joint 
together by means of an internal hinge and fixed to the ground by means of two 
external hinges. If the arch is subjected to a vertical downward force applied on 
the apex node, it is easy to understand that the loaded node will move downward, 
causing an axial shortening of the inclined bars. At the very beginning of the 
loading process, i.e. for low values of the force and displacement, the global 
force-displacement relationship will be linear. However, it is easy to show that for 
higher loads the force-displacement curve will exhibit strong non-linearities, 
potentially leading to instability phenomena. 

 

 
 

Figure 1.3. Geometrical non-linearity in one of the simplest ELMs, the Von Mises truss: 
(a) geometry of the truss; (b) non-linearity in the loading curve. Adapted from [6]. 

 
Assuming the rotation of the bars to be the Lagrangian parameter of the 

system, the force-rotation curve shown in Figure 1.3b is representative of the 
loading process. This curve shows us that the response is linear for low values of 
the force, and then it exhibits significant non-linearities leading to lower 
tangential stiffness values as long as the force increases. Eventually, when 
reaching point M in Figure 1.3b, the tangential stiffness gets to zero and then the 
curve exhibits a softening behavior, i.e. the force needs to decrease if the rotation 
(or the vertical displacement of the node) has to keep increasing. 

If we control the loading process just by monotonically increasing the force, 
the point M represents a point of instability. Reached that point, the system will 
undergo an instability phenomenon, which is called snap-through, that makes the 
structure jump directly into point P, following the dashed arrow shown in Figure 
1.3b. The snap-through usually takes place in a dynamic fashion and can also lead 
to the final collapse of the structure if the released energy is strong enough to 
break some of the members. Conversely, if the system does not collapse due to the 
dynamic effect, the force-deflection curve then follows a stiffening pathway 
beyond point P, where the structure is completely overturned but it is still able to 
carry some additional load and the inclined bars start experiencing tensile stresses. 

(a) (b) 
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Vice versa, if the loading process is controlled by monotonically increasing 
the Lagrangian parameter, i.e. the vertical displacement of the apex node or the 
rotation of the bars, the entire MO’NO’’P branch is followed and the structure 
avoids the dynamic snap-through between point M and point P. In this case, the 
force has to decrease in order for the load-deflection pathway to be followed up to 
point O’. After that, the force also needs to change its arithmetic sign, meaning 
that the apex node starts experiencing an upward force, even though it is still 
moving downwards. 

The case of the Von Mises truss shown above is quite simple as it represents 
a one-DOF system. Tracing these non-linear curves gets more difficult for MDOF 
systems, where multiple Lagrangian parameters are necessary to describe the 
motion and deformation of the system, while multiple forces act simultaneously in 
various directions. Nevertheless, there exist various ways to trace these curves: by 
writing the total potential of the system and analyzing its derivatives [6], by 
applying the global equilibrium in the deformed configuration [7], etc. In this 
Thesis, especially in Chapter 3, the procedure relying on the application of the 
equilibrium equations in the deformed configuration will be applied to investigate 
the geometrical non-linearities of ELMs. Still, it has to be kept in mind that these 
non-linearities do not arise from a non-linear constitutive behavior of the single 
bar members, which still obey the Hooke’s law from Eq. (1.1), but rather they 
occur due to geometrical effects related to the difference that exists between the 
initial (undeformed) and final (deformed) structural configuration upon which the 
forces need to find the equilibrium. 

1.2. Fields of Application of ELMs: Proteins and Diagrid 
Tall Buildings 

In the previous Sections of this Introduction, a general overview of the ELMs 
has been carried out, together with three of the most common structural analyses 
that are usually performed, namely linear static analysis, modal analysis and 
geometrically non-linear analysis. The ELMs have been introduced in a 
completely general way, without any specification on their detailed nature or 
purpose of investigation, although a short overview of some of their 
methodological and physical applications has been briefly presented, as shown in 
Figure 1.2. Here, more details will be provided on the specific fields of 
application which will be addressed in this Thesis, namely proteins and diagrid 
tall buildings. 

One might wonder what proteins and diagrid tall buildings have in common. 
Apparently, nothing. Proteins are tiny biological systems, few nanometers large, 
that carry out most of the important tasks in every human and animal body and act 
in an environment with complex chemo-physical features. Conversely, diagrids 
are special systems that have been exploited worldwide in the last decade for the 
realization of tall buildings, which are made of inclined mega-diagonals placed all 
over the exterior of the structure. So, why are proteins and diagrids part of the 
same PhD Thesis? The answer to this question relies on the Elastic Lattice Model. 
As a matter of fact, this Thesis will show that various aspects of the behavior of 
both proteins and diagrid systems can be investigated by means of the ELMs, 
basically relying on the same methodological framework (Figure 1.4). 

As can be seen in Figure 1.4a and as will be thoroughly described in the 
following Chapters, proteins are complex biological systems that are made of a 
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specific collection of small groups of atoms, called the amino acids. They usually 
have a well-defined three dimensional shape, which will be shown to be strongly 
related to the biological functionality. Conversely, Figure 1.4b shows the 180-
meter tall Swiss Re Tower in London, which is also known as The Gherkin and is 
one of the first realized diagrid systems for tall buildings. As will be extensively 
described in the upcoming Chapters, diagrids are structural systems made of 
inclined mega-diagonals placed on the building surface, which are able to carry 
both vertical and horizontal loadings. For this reasons, the tall buildings adopting 
the diagrid framework usually do not need the traditional space-consuming 
vertical columns. Diagrids have been shown to achieve extreme structural 
efficiency and also allow to reach remarkable architectural effect. The interesting 
thing is that both proteins and diagrids can be analyzed – and their behavior can 
be deeply investigated – by means of the same theoretical, numerical and 
methodological framework relying on the ELM. 

 

 
Figure 1.4. ELMs used for the investigation of two different systems: (a) protein, (b) 
diagrid tall building, (c) protein ELM, (d) diagrid ELM. 

 
Figure 1.4c shows the protein from Figure 1.4a modeled through an ELM, 

where certain atoms are selected as the nodes of the ELM (in red) and their 
chemo-physical interactions are modeled through elastic bars (in black). As will 
be shown in Chapters 2 and 3, the ELMs applied to proteins allow to obtain useful 
information about their dynamics, their flexibility and their biological 
mechanisms. Similarly, Figure 1.4d shows the Swiss Re Tower from Figure 1.4b 
modeled through the ELM. In this case, the external mega-diagonals are 

(a) (b) 

(c) (d) 
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obviously the bar members of the ELM and the nodes are the physical nodes 
which are present in the building. As will be extensively reported in Chapters 4 
and 5, the ELMs applied to diagrids allow to quickly perform their structural 
analysis and obtain information about their flexibility and their structural response 
under external loads. Ultimately, these information also allow to carry out 
optimization processes, leading to the selection of the optimal diagrid structure 
under certain loading and constraint conditions. 

Therefore, the structure of this Thesis is as follows: Chapters 2 and 3 describe 
the application of the ELMs to the field of proteins, whereas Chapters 4 and 5 deal 
with the structural analysis and optimization of diagrid systems. Both are 
investigated by means of the theoretical framework relying on the ELMs. 

1.3. Outline of the Thesis 

Specifically, Chapter 2 contains three Sections. The first Section provides a 
brief yet fairly exhaustive description of the proteins as biological systems (Figure 
1.4a). Starting from the description of the basic chemical building block of the 
protein, i.e. the amino acid, the four hierarchical levels of the protein structure are 
reported. Then, the process of protein folding, which allows the protein to reach 
the functional three-dimensional structure starting from the linear sequence of 
amino acids, is described and the fundamental sequence-structure-dynamics-
function paradigm is discussed. The second Section puts the attention on the 
protein dynamics and the numerical methodologies that are nowadays used for its 
investigation. Particularly, the more recent approaches relying on Normal Mode 
Analysis (NMA), i.e. modal analysis, are addressed. After a brief overview of the 
methods that have been developed in the literature in the last decades, such as the 
Gaussian Network Model (GNM) and the Anisotropic Network Model (ANM), 
attention is paid to the coarse-grained Elastic Lattice Models (ELMs) that describe 
the protein as a network of point masses bonded by elastic connections (Figure 
1.4c). In particular, a recently developed Finite Element (FE)-based ELM is 
presented, which is useful to describe the low-frequency global protein vibrations, 
occurring in the THz frequency range, and is shown to be methodologically 
consistent with the traditional ANM. Finally, the last Section of this Chapter 
shows the close correspondence between the low-frequency modes of the protein 
ELM and the functional motions, i.e. the conformational changes, observed during 
the biological activity. The ELM-based low-frequency modes are found to 
correlate fairly accurately with the conformational changes, which represent the 
fingerprints of the biological mechanism, as well as with the Principal 
Components (PCs) arising from the ensemble of the protein crystal structures. The 
latter derive from the protein dynamic communities and are representative of the 
functional flexibility of the protein. Finally, the Chapter is concluded with the 
presentation of a new and computationally efficient ELM for the prediction of the 
protein functional global motions. This method relies on the discretization of the 
protein structure as made of (flexible) hinges and (rigid) domain regions, which 
has been called the hinge-domain ANM (hdANM). By means of this highly 
coarse-grained model, we are able to obtain useful predictions of the protein 
functional motions (conformational changes) and information about the 
generation of the dynamic community (PCs). 

Chapter 3 also focuses on the ELMs applied to the protein structure, but from 
a static perspective rather than a dynamic one. As in Chapter 2 modal analysis 
was the main tool applied to the protein ELMs, in this Chapter linear static 
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analysis and geometrically non-linear analysis are the main players, the former 
being exploited in the first Section, while the latter in the second Section. In the 
first Section of this Chapter, two force-based methodologies are proposed and 
developed for the measurement of the protein internal flexibility, based on linear 
static analysis. The flexibility of a protein is often experimentally obtained by 
means of the B-factors, also known as the temperature factors, which are extracted 
by X-ray crystallographic experiments on protein samples. The first proposed 
force-based approach relies on a pairwise force application framework, where 
point forces are applied to each couplets of nodes in the protein ELM. Typical 
Structural Mechanics metrics are suggested in order to assess the protein 
flexibility, i.e. compliance and stiffness, which are found to show a good 
correlation with the experimental B-factors. The second force-based approach 
relies on a random application of point forces on the protein surface. Based on the 
evaluation of the displacements of the protein ELM, it is shown that this external 
random force bombardment can also provide a good correlation with the 
experimental B-factors, i.e. the experimental protein flexibility. These force-based 
approaches suggest that the intrinsic protein flexibility can be seen as the result of 
both the internal residue-residue (pairwise) interactions as well as the effect of the 
bombardment due to the external environment. Conversely, the second (and last) 
Section of this Chapter, investigates the possible role of geometrical non-
linearities on the protein ELM when it goes through a conformational change. To 
this purpose, the geometrically non-linear analysis is applied. First, for a given 
conformational transition, the forces that guarantee the equilibrium of the final 
configuration are evaluated both via the linear and non-linear approach, i.e. by 
posing the equilibrium on the undeformed or deformed structure. The comparison 
between the two quantifies the influence of the geometrical non-linearities in the 
conformational transition. Secondly, a step-by-step evaluation of the equilibrium 
forces is carried out through the conformational pathway and synthetic indexes 
are computed in order to assess the magnitude of these geometrical non-
linearities. 

In Chapter 4 the field of application of the ELMs is switched from proteins to 
diagrid tall buildings. This Chapter is divided into two main Sections. The first 
one is devoted to a brief description of the diagrid as a modern and efficient 
structural system for tall buildings (Figure 1.4b). In particularly, after presenting 
the specific structural features that characterize the diagrid, such as the inclined 
mega-diagonals, the tubular arrangement, etc., the methodologies that have been 
developed in the literature for the diagrid preliminary design and structural 
analysis are thoroughly addressed. The second Section of this Chapter is devoted 
to the presentation of a recently developed ELM-based methodology for the 
structural analysis of diagrid systems. In particular, the diagrid is modeled as an 
ELM, with additional constraints at the level of the rigid floor slabs (Figure 1.4d). 
This novel method, which is grounded on matrix calculus and has been called the 
matrix-based method (MBM), is useful for the prediction of the building 
deformation and stress state, due to horizontal, torque and vertical loads acting at 
the floor level. Moreover, the MBM is also shown to be suitable for the 
investigation of the force distribution among different resisting elements. For the 
purpose, the MBM is inserted within the framework of the so-called General 
Algorithm, a semi-analytical approach that allows to evaluate the structural 
response of tall buildings, made up of various resisting elements, such as frames, 
tubes, shear walls, etc. Based on the coupling of the MBM with the General 
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Algorithm, the force distribution between an external diagrid tube and an internal 
shear wall is investigated. 

Chapter 5 also focuses on the diagrid tall buildings, with attention to the 
optimization of the geometrical characteristics for the enhancement of the 
structural response. Particularly, three Sections are present in this Chapter. The 
first one provides a brief yet fairly complete overview of the literature work that 
has been carried out in the last decade about the optimization of the diagrid 
performance. As will be seen, most of the researches are based on FE calculations, 
often coupled with Genetic Algorithms, which look for the diagrid structure that 
minimizes the amount of structural weight, while complying with the maximum 
allowed lateral deflection. In the second Section, the influence of the diagrid 
geometry (floor shape and diagonal inclination) is thoroughly investigated on the 
diagrid flexibility, both in terms of lateral deflections and torsional rotations, as 
obtained from the ELM-based MBM. From the results obtained in this Section, it 
is shown that minimizing the lateral flexibility of the building can be in contrast 
with the minimization of the torsional flexibility and vice versa. For this reason, 
there is the need of a multi-response optimization technique, that allows to find 
the geometry that minimizes several responses simultaneously. Based on this 
consideration, the third (and last) Section of this Chapter, introduces the 
application of the desirability function approach for the optimization of the 
diagrid geometry. Specifically, four responses are taken into account for the 
optimization of both uniform- and varying-angle diagrid structures, i.e. the top 
lateral displacement, top torsional rotation, structural mass and complexity index. 
The first two are related to the structural response under external loads, and their 
minimization is important for safety and serviceability issue. The third one is 
related to the diagrid weight and needs to be minimized for sustainability and 
economic purposes. Finally, the fourth one is an index which takes into account 
the easiness of construction of the diagrid geometry and depends on the number of 
nodes, number of different cross-sections, etc. Based on the application of this 
multi-response desirability approach, the designer is quickly able to select the 
diagrid geometry that can better reach a good tradeoff to achieve a stiff, light and 
easily constructible tall building. 

Finally, Chapter 6 summarizes the work contained in this Thesis and 
discusses possible further developments. Note that, since the analyses and results 
reported in this Thesis expand in a fairly wide range of topics, each individual 
Chapter has already been incorporated of a specific Conclusions Section, in order 
to better discuss the potential developments of each topic. 
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Chapter 2 

ELMs and Proteins: Introduction, 
Vibrations and Biological 
Mechanisms 

Proteins represent one of the main building blocks of the biological reactions 
that occur every day in our body and that allow a variety of crucial processes to 
take place properly. Proteins are in charge of pivotal transportation activities, such 
as carrying nutrients and molecules within the cell (e.g. molecular motors), across 
the cellular membrane (e.g. transmembrane proteins) and throughout the body 
(e.g. hemoglobin). Some proteins are necessary to provide the required strength 
and stiffness to tissues (e.g. collagen), while others act as antibodies to recognize 
and get rid of external pathogens. Certain proteins are associated with enzymatic 
activities and catalyze important biochemical reactions (e.g. lysozyme), while 
others are involved in signaling pathways (e.g. MAPK) and other much more 
diverse tasks. 

Astonishingly, such a variety of functions only depends on the different 
arrangement of the same few tiny components, the amino acids. Tens, hundreds or 
thousands of amino acids can assemble with each other to give birth to a specific 
protein structure, through the complex chemo-physical phenomenon which is 
known as the protein folding. Nowadays, it is fairly well-established that the 
specific protein structure is evolutionary related to the required biological task, 
and protein dynamics represents the bridge between the structure and 
functionality. Despite the extreme complexity of protein formation and activity, 
simplified models based on Structural Mechanics concepts have proven 
amazingly effective to unravel certain aspects of protein features and mechanisms. 
In particular, despite their minimalism, the ELMs coupled with Structural 
Mechanics concepts such as modal analysis are discovered to provide extremely 
useful insight into protein flexibility and biological mechanisms. 

In this Chapter, the use of ELMs for the investigation of protein activity is 
addressed. In Section 2.1 a brief overview of the fundamental protein features is 
provided, which focuses on the different levels of protein structure, the complex 
phenomenon of protein folding and the main paradigm that relates the protein 
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structure to biological functionality through protein dynamics. In Section 2.2, the 
use of the ELMs is addressed for the investigation of protein dynamics and 
vibrations, starting from the first models that have been developed in the literature 
up to the most recent ones, which mostly exploit Structural Mechanics concepts. 
In Section 2.3, the relationship between protein vibrations and biological function 
is presented through the analysis of protein conformational changes. From the 
analyses and results presented in this Chapter, it will be seen that, despite their 
minimalism, simplified models purely based on Structural Mechanics concepts, 
such as the ELMs, are still able to provide remarkable insights regarding protein 
features, flexibility and biological functionality. 

2.1 Proteins: The Building Blocks of Biological Activity  

As briefly mentioned in the beginning of this Chapter, the function of 
proteins in our body can be extremely diverse. In the human body, we have 
hundreds of thousands of different proteins, that work relentlessly to accomplish 
the variety of tasks to be carried out for the proper functioning of our cells, tissues 
and organs. Nevertheless, such a variety of activities is based on the same basic 
characteristics shared by the protein structure, as will be described in this Section. 

2.1.1 From the amino acid to the three-dimensional structure 

The elementary building block of the protein structure is the amino acid [8,9]. 
The amino acid is a chemical group made up of a central carbon atom, typically 
called the alpha-carbon (Cα), which is covalently bonded to a hydrogen atom H, 
an amine group (-NH2), a carboxyl group (-COOH) and a side chain Ri (Figure 
2.1). What really distinguishes one amino acid from each other is the side chain 
Ri. 

 

 
Figure 2.1. Condensation reaction between two amino acids to form a dipeptide. Colors 
for the atoms: white for hydrogen, black for carbon, red for oxygen and cyan for nitrogen. 

 
Under physiological conditions, the amino acid is usually found in the ionized 

form, meaning that the amine group is in the form -NH3+ and the carboxyl group 
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in the form -COO-. Two amino acids can interact with each other in order to 
create a dipeptide, as shown in Figure 2.1. The carboxyl group of one amino acid 
interacts with the amine group of the other, leading to the generation of a strong 
C-N covalent bond, which is called the peptide bond. This reaction is usually 
known as condensation reaction, since a water molecule is expelled as a 
secondary result. The condensation reaction can take place repeatedly among 
several amino acids, leading to the formation of a polypeptide chain, which in turn 
is the linear arrangement of the protein structure. Note that, when the amino acids 
combine themselves to form a polypeptide chain, they are often called residues, as 
this is what remains after the expulsion of the water molecule. This term, i.e. 
residue, will be used in the remaining of this Thesis to refer to the specific amino 
acid in the protein chain. 

The amino acids differ from each other depending on the specific side chain 
Ri. In eukaryotes, twenty different types of amino acids are often found in proteins 
(Figure 2.2). They can be classified into groups depending on the characteristics 
of the side chain Ri. 

 

 
Figure 2.2. The most common twenty amino acids found in eukaryotes. The amino acids 
are grouped depending on the characteristics of the side chain. The one- and three-letter 
code used to identify each amino acid is also shown. Used with permission from [10]. 

 
A typical classification is based on the definition of hydrophobic or polar 

amino acid. The former has a side chain that tends to avoid the contact with the 
surrounding water molecules, whereas the latter mostly generates interactions 
with water molecules based on hydrogen bonds. Among polar amino acids, 
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residues can have uncharged or charged (both positively and negatively) side 
chains. Based on the hydrophobicity or hydrophilicity of the side chains, 
hydrophobic amino acids tend to aggregate within the core of the protein, while 
polar amino acids often distribute on the protein surface. As will be shown below, 
the hydrophobicity is one of the main driving force of the folding phenomenon 
and for the formation of the protein three-dimensional structure. Other 
classifications based on the amino acid side chains can also take into account the 
presence of aromatic or aliphatic groups, as well as the presence of sulphur or 
nitrogen atoms, the tendency to act as acids or bases, etc. 

The amino acids combine themselves according to a specific sequence in 
order to generate the protein polypeptide chain. The linear sequence of amino 
acids is known as the primary structure of the protein (Figure 2.3a). By 
convention, the primary structure extends from the amino group of the first amino 
acid (N-terminus) to the carboxyl group of the last one (C-terminus) and it is 
usually expressed as a string of letters that are associated to each amino acid. Each 
sequence depends on the genetic information related to the codification of the 
protein to be expressed. This process is known as protein biosynthesis.  

Protein biosynthesis starts into the cell nucleus. The genes encoded within the 
DNA contain all the necessary information for making proteins. The genetical 
information of the gene is firstly transcripted by an enzyme, the RNA polymerase, 
into a strand of messenger RNA (mRNA). When the mRNA is mature enough to 
be processed, it gets translated outside the cell nucleus by a complex molecular 
machine, the ribosome, into the specific amino acid sequence. In this final step, 
the job of the ribosome is made possible through the support of another key 
player, the transfer RNA (tRNA), which is able to deliver a certain amino acid for 
each specific triplet of mRNA bases. 
 

 
Figure 2.3. The four hierarchical levels of the protein structure. Used with permission 
from [11]. 
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Once the formation of the primary structure gets done, as the polypeptide 

chain starts to get out from the ribosome into the cytoplasm, the amino acids start 
interacting with each other and with the environment, and give birth to new spatial 
arrangements. As a result, local segments which share the same geometrical 
patterns are often found in proteins. This is the case of the secondary structures 
(Figure 2.3b). 

The most common secondary structures found in proteins are the α-helix [12] 
and β-sheet [13]. Both are stabilized by specific patterns of hydrogen bonds. The 
former is a spiral-like geometrical configuration, where each helical turn consists 
of 3.6 amino acids and the side chains usually point outwards the helix. The latter 
is a pleated sheet, where two or more amino acids strands are connected side-by-
side by hydrogen bonds, in a parallel or anti-parallel fashion, the amino acid side 
chains pointing out of the sheet plane. Despite the α-helix and the β-sheet are the 
most common secondary structures, other local patterns can be observed in some 
cases, such as the π-helix, the 310-helix, loops and β-turns, each of them exhibiting 
distinctive geometrical features. Sometimes, assemblies of multiple secondary 
structures, which are known as structural motifs, can also be found in proteins. 

The third hierarchical level of the protein structure is referred to as the tertiary 
structure and basically represents the three-dimensional shape of the protein 
(Figure 2.3c). This is generated due to the chemo-physical interaction between the 
amino acids and the surrounding environment, through the complex phenomenon 
of protein folding. In this process, the native protein structure is generated due to 
specific driving forces which often lead to densely-packed structures, with 
hydrophobic residues embedded within the core and polar residues exposed on the 
surface. Nowadays, thanks to crystallographic experiments with X-ray or Nuclear 
Magnetic Resonance (NMR) techniques, plenty of detailed protein structures are 
available on public databases, such as the Protein Data Bank (PDB) [14]. 

Finally, certain proteins are also found to exhibit a fourth hierarchical level, 
which corresponds to the so-called quaternary structure (Figure 2.3d). This is the 
case of proteins that are made up of more than one amino acid chain, which 
interact and stabilize with each other via non-covalent bonds. These amino acid 
chains form distinct subunits, which act cooperatively to carry out the protein 
biological task. The most famous example is hemoglobin, which is made up of 
four subunits, each of them coupled with one heme group which is in charge of 
carrying one oxygen molecule. 

2.1.2 Protein folding 

As mentioned above, the linear sequence of amino acids evolves into the 
protein tertiary structure due to the folding process. This phenomenon is a 
complex chemo-physical process involving the balancing of different forces to 
achieve a final stable configuration. Covalent interactions, hydrogen bonds, 
electro-static forces and Van der Waals interactions balance themselves 
simultaneously and lead the random coil configuration of the primary structure 
(Figure 2.3a) to the folded three-dimensional protein structure (Figure 2.3c). 

The folding process does not take place in vacuum, conversely it occurs 
within a specific environment, made up of water molecules, ions, other proteins, 
etc. This has led to the belief that hydrophobic interactions should play a relevant 
role in driving the folding process. Hydrophobic residues tend to avoid water 
molecules, therefore they often form a bulk core embedded within the interior of 
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the final fold. Conversely, polar residues easily form hydrogen bonds with water 
molecules, thus they are mostly positioned on the protein surface (Figure 2.4). 
 

 
Figure 2.4. Influence of amino acid hydrophobicity in the folding process. Black dots 
stand for hydrophobic residues, whereas white dots represent polar amino acids. Used 
with permission from [15]. Copyright 2000 National Academy of Sciences. 
 

The interactions between the amino acids that form the protein chain and with 
the water molecules are not the only parameters affecting the folding process. 
Environmental conditions, such as temperature, pH, ion concentration, presence 
of denaturants, etc., play a significant role as well. As a matter of fact, despite 
under physiological conditions a certain amino acid sequence has the potential to 
lead to the correctly folded protein, increasing the temperature or the pH of the 
surrounding environment may cause the unfolding of the protein structure, with 
formation of the random coil configuration. Similar results occur when certain 
concentrations of denaturants or specific molecules are added to the environment. 
However, it is true that, under specified external conditions, there exists a one-to-
one correspondence between the amino acid sequence and the folded protein 
structure. Based on this observation, the Anfisen’s dogma, known also as the 
thermodynamic hypothesis, was formulated. It states that, in the conditions where 
the folding can occur properly, the folded state is unique, stable and kinetically 
accessible [16,17]. 

Many scientists have wondered how is possible that the linear amino acid 
sequence, initially in the random coil configuration, is able to sample the entire 
conformational space to finally achieve the unique functional folded structure. 
Based on this, the Levinthal’s paradox has derived [18,19]. It states that, given the 
incredibly high number of available conformations, if the final folded structure 
had to be reached by randomly sampling the whole conformational ensemble, the 
process would require more than the life of the universe even for a small 
polypeptide chain. This paradox basically refuses the idea of random sampling. 

If not a random search process, how can the protein folding be explained? 
The answer relies on the concept of energy minimization. Based on the 
Anfinsen’s dogma and taking into account the Levinthal’s paradox, it implies that 
the final folded shape is reached through a series of energetically-favorable 
intermediate states. Thus, the protein folding can be described as a 
thermodynamic phenomenon that drives the random coil configuration to the 
unique and stable folded shape which minimizes the energy of the system. This 
process is straightforwardly represented by the so-called folding energy funnel 
(Figure 2.5) [20]. This plot is a useful graphical representation of the folding 
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pathway. Initially the protein lies in the random coil configuration (upper part of 
the funnel), which is characterized by high energy (height of the funnel) and high 
conformational entropy (width of the funnel). The folding process drives the 
protein through a series of energetically-favorable conformations towards the 
bottom of the funnel. Meanwhile, the width of the funnel decreases, since the 
conformational entropy of the new configurations is much smaller than the 
random coil’s one. After sampling a few intermediate conformations, the final 
folded shape is usually reached (bottom part of the funnel). 

 

 
Figure 2.5. Energy funnel of the protein folding (two- and three-dimensional 
representations), from [21]. 

 
As can be seen from the simplified representation of the funnel shown in 

Figure 2.5, the pathway is not necessarily unique, as it depends on the starting 
point. Moreover, sometimes proteins might also remain trapped in local minima 
of the energy funnel, thus adopting intermediate states. Also, the energy funnel is 
not a static feature which only depends on the specific protein. It also depends on 
the conditions of the environment, meaning that if something changes in the 
surrounding environment (temperature, pH, ion concentration, electric charge, 
presence of denaturants, etc.), the energy funnel gets modified as well. As a 
consequence, this means that the most stable, i.e. energetically-favorable, folded 
conformation in physiological conditions might not coincide with that in the 
modified environment. 

From the energy funnel represented in Figure 2.5, it is also worthy to observe 
that in the bottom part of the funnel, multiple minima can exist. This means that, 
for certain proteins, multiple folded conformations are possible which are similar 
from an energetical point of view. This brings to two additional observations. 

First, proteins are not static in nature, but they keep jiggling and vibrating 
around the folded equilibrium state. If their vibrational state is strong enough, they 
can “jump” from one local minimum to another which is close to the initial one. 
This leads to the occurrence of multiple similar conformations and to the 
definition of the so-called conformational ensemble. It means that the correct and 
functional folded shape is not a fixed structure, but rather a distribution of similar 
conformations generated by the continuous protein motions. More details about 
the conformational ensemble and protein vibrations will be provided in the 
remaining of this Chapter, when introducing the concept of Principal Component 
Analysis (PCA) and multiple protein conformations. 
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The second observation is associated with the concept of conformational 
changes. Despite the concept of conformational change is in a way related to the 
conformational ensemble described above, there exists a fundamental difference. 
As described above, the conformational ensemble represents the union of the 
multiple similar conformations of the folded state, which is generated by the 
intrinsic protein vibrations. Conversely, the conformational change is usually 
defined as that particular conformational transition involved into the biological 
mechanism. This is, for example, the case of proteins associated with ligand-
binding activities. These proteins often exhibit two different conformations, 
generally called the “open” and “closed” form. The former is found when the 
protein is free, while the latter often occurs when the protein is bounded to the 
ligand. In this case, the “jump” from one conformation to the other in the energy 
funnel is due to the interaction with the ligand, which can modify the shape of the 
funnel and bias the preference of the protein towards the closed conformation. As 
will be thoroughly described in Section 2.3, the dynamics of the protein structure 
plays an important role on driving these conformational changes. 

To conclude this brief section about protein folding, it is worthy to observe 
that, understood the main principles governing this process, many researchers and 
scientists have been struggling to simulate the three-dimensional protein structure 
given the amino acid sequence. Simplified theoretical models have been proven 
quite effective to the purpose [22,23]. However, nowadays, the most exploited 
approaches rely on numerical simulations, mostly based on Molecular Dynamics 
(MD). Despite the supposed accuracy of MD simulations, its computational 
complexity is often a limit for the investigation of long polypeptide chains. Recent 
approaches tend to exploit shared computational resources from volunteers all 
over the world to achieve enough computational power to successfully simulate 
the protein folding [24]. 

2.1.3 The sequence-structure-dynamics-function paradigm 

The Anfinsen’s dogma and the studies developed in the twentieth century 
established that, under proper conditions, there exists a one-to-one 
correspondence between the protein sequence and structure. As described in the 
previous Section, protein folding is the complex phenomenon linking these two. It 
has also been established that the protein biological function is strictly related to 
the three-dimensional structure, as this one is found to be related to the biological 
mechanism. Note that, with the word “mechanism”, we refer here to the specific 
functional motion or set of motions required for the protein to perform its 
biological task. The structure of collagen, in the form of a triple helix, seems to be 
the most rational shape to perform the task of maintaining the required mechanical 
strength and stiffness of tissues. The shape of globular proteins usually involves 
specific binding pockets, whose geometry is precisely suitable for the ligand-
binding task to be carried out. These are just few example of the general 
sequence-structure-function relationship which holds true for the majority of 
proteins. The biological function is thus connected to the specific amino acid 
sequence through the protein structure. 

However, although the sequence-structure-function paradigm explains the 
reason why proteins are evolutionary conserved and have kept adjusting 
themselves in order to improve the biological functionality during the evolution, it 
does not explain completely how they are able to carry out their task. The 
fundamental answer to this question was given in the last decades and it relies on 
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protein dynamics. The sequence generates the three-dimensional structure, which 
is not a static element but rather it keeps vibrating around the equilibrium fold. 
These vibrations are in turn driven by the structure and can generate mechanisms 
and functional motions. The biological functionality is thus adjusted from the 
structure through the dynamics. In this way, the fundamental paradigm for protein 
activity becomes sequence-structure-dynamics-function [9]. 

This paradigm has been used to explain protein mechanisms, it has been 
deeply exploited in recent years to investigate several aspects of their biological 
activity, such as the effect of amino acid mutations, and it has involved different 
disciplines and methodologies. As already mentioned above, the sequence-
structure relationship is mainly addressed by the investigation and simulation of 
protein folding. The structure-dynamics relationship is often analyzed through 
MD simulations, even though simplified models based on Structural Mechanics 
concepts have proven their efficacy in recent years. This subject will be addressed 
in Section 2.2. Finally, the dynamics-function relationship is strongly related to 
the concept of the conformational changes, since protein vibrations have been 
found to drive the protein transitions. This will be the subject of Section 2.3. 

2.2 Protein Vibrations and ELMs 

Protein dynamics has been found to explain fairly successfully protein 
mechanisms and functionality. For this reason, plenty of research has been 
conducted in the last decades to investigate protein dynamics by means of 
numerical approaches. Molecular Dynamics (MD) is nowadays one of the most 
used methodologies to simulate protein dynamics and vibrations [25]. The main 
feature of MD relies on the formulation of the interaction potentials between each 
couple of atoms, that should be as accurate as possible to properly model the 
system (Van der Waals interactions, electro-static potential, hydrogen bonding, 
etc.). Numerical integration strategies are then applied to solve the Newton’s laws 
of motion, which allow to obtain the trajectories of the atoms, thus providing 
information about the dynamics. Despite its capability to simulate the most 
complex details of the system, its computational complexity often prevents its 
application to large macromolecules and might make lose confidence in the 
results. 

Still relying on the definition of complex interaction potentials among all the 
atoms of the system, another approach was developed to focus on the intrinsic 
dynamics of the protein. This is the case of Normal Mode Analysis (NMA) 
[26,27]. NMA assumes that the vibrations of the atoms are sufficiently small to be 
approximated as a sum of terms that are quadratic in the degrees of freedom 
(DOFs). Therefore, NMA gives up calculating the complete atom trajectory, as in 
MD simulations, but it focuses on the evaluation of the small-amplitude harmonic 
dynamics. Note that, in this approach, the harmonicity assumption is only on the 
motion, and not on the interaction potential which is generally as complex as in 
MD simulations. The first studies showed that NMA was indeed a powerful tool 
to evaluate the internal dynamics of the protein, allowing to obtain good 
agreements with the experimental fluctuations of the atoms found in 
crystallographic experiments [26,28]. In particular, low-frequency modes were 
found to contribute for the most part to the fluctuations and seemed to represent 
collective functional motions [28]. 

As it is still based on the formulation of detailed potentials, NMA usually 
requires the energy minimization of the initial crystal structure, which can be 
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costly and inaccurate. Moreover, the detailed potentials usually require taking into 
account multiple DOFs of the system. A typical example of semi-empirical 
potential used in MD and NMA analysis takes the following form: 
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where the first two terms refer to the quadratic potentials related to the bond 
lengths and bond angles, the third term refers to dihedral angles, and the last one 
contains the Van der Waals attractions, steric repulsions and electro-static 
interactions between non-bonded pairs [29]. In her ground-breaking work, for the 
first time, Tirion [29] showed that a simplified single-parameter potential, such as 
the Hookean pairwise potential (between atoms a and b) 
 
 

I(nW, nN) =
o
2
(pnW,Np − pnW,NPp)Q, (2.2) 

 
is sufficient to represent the slow dynamics of the protein with sufficient details. 
In Eq. (2.2), nW,N = nN − nW denotes the vector connecting atoms a and b, and the 
zero subscript indicates the given initial configuration. Thus, it is shown that the 
harmonicity hypothesis can be used both assuming the smallness of the atom 
displacements and as regards the energy potential. Despite its simplification, this 
model provides accurate results for the prediction of the low-frequency protein 
dynamics, while drastically reducing the computational cost with respect to both 
MD and NMA calculations. 

2.2.1 The coarse-grained Elastic Network Models 

The Tirion’s model is the first example of ELM developed in the literature for 
the investigation of protein dynamics, as it relies on a network of elastic Hookean 
springs that connect all the protein atoms. Further developments of this model 
were developed in the following years, which take the Tirion’s simplification even 
further, considering a coarse-grained model for the protein structure. This is the 
case of the so-called Elastic Network Models (ENMs): the Gaussian Network 
Model (GNM) [30] and Anisotropic Network Model (ANM) [31]. 

2.2.1.1 Gaussian Network Model 

The fundamental postulate in the Gaussian Network Model (GNM) is that the 
protein in the folded state is equivalent to the reference three-dimensional elastic 
network to be used for the calculations [30]. Only the Cα atoms are considered in 
the original GNM as the nodes of the network. Close Cα atoms are connected by 
linear Hookean springs, based on the geometrical cutoff limit rc. This means that 
nodes whose distance is lower than rc are connected, while nodes whose distance 
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is greater are not. Usual values of the geometrical cutoff limit in the GNM are 
around 7 Å. 

Based on the three-dimensional coordinates of the Cα atoms of the crystal 
structure and the value of rc, a N × N connectivity matrix is derived, N being the 
number of protein residues, i.e. the number of Cα atoms. Figure 2.6a shows the 
connectivity map of the hen egg white (HEW) lysozyme GNM (PDB: 4ym8), 
obtained with a geometrical cutoff equal to 7.3 Å. Black dots in the i-j position of 
the matrix denote a contact between nodes i and j, while white dots denote no 
interaction. Once the connectivity matrix is derived, the GNM yields the 
definition of the N × N Kirchhoff matrix q, as follows: 
 
 

r$,s =

⎩
⎪
⎨

⎪
⎧
−1, x ≠ z, 		{$,s < #}			
0, x ≠ z, 		{$,s > #}

− L r$,s

Ä

sÅf,sÇ$

, x = z
, (2.3) 

 
r$,s being the i-j entry of the Kirchhoff matrix, Ri,j the geometrical distance 
between nodes i and j in the three-dimensional structure and rc the cutoff limit. 
Note that in the original formulation of the GNM, equal spring constants are used 
to connect nodes within the cutoff limit, without any dependence on their actual 
distance Ri,j. 

Computed the Kirchhoff matrix, the eigenvalue-eigenvector decomposition is 
carried out to obtain the dynamical features of the protein ELM, namely the N-1 
non-rigid mode shapes 0H

ÉÄ' and the N-1 non-zero eigenvalues ÑH
ÉÄ'. Note 

that, being the protein structure not externally constrained, the first mode has zero 
frequency as it corresponds to the uniform translation of the network. The 
calculated eigenvectors and eigenvalues are used to compute the pseudo-inverse 
of the Kirchhoff matrix qÖlf, as follows: 
 
 

qÖlf = L
0H0H

Ü

ÑH

Ä

HÅQ

	. (2.4) 

 
Assuming that the fluctuations of the atoms obey a Gaussian distribution, it is 

proven that the elements of the pseudo-inverse matrix are proportional to the 
cross-correlations between the residues fluctuations: 
 
 

< ∆{$ ∙ ∆{s >=
3,äã
å

	rçlf$,s, (2.5) 

 
being ∆{$ and ∆{s the fluctuations of atoms i and j, respectively, kB the 
Boltzmann constant, T the absolute temperature in Kelvin, and å the force 
constant of the springs. From Eq. (2.5) the mean-square fluctuation of the ith Cα 
atom < ∆{$

Q > are readily evaluated from the diagonal elements of the pseudo-
inverse matrix, i.e. with j = i [30]. Figure 2.6b shows the map, in color scale, of 
the normalized cross-correlations for the HEW lysozyme GNM, defined as: 
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Figure 2.6. GNM for HEW lysozyme (PDB: 4ym8), rc = 7.3 Å: (a) connectivity map; (b) 
cross-correlation map; (c) experimental B-factors vs. computed fluctuations (% = 0.71). 
 

Despite the extreme simplification of the GNM, it has proven to be effective 
in the prediction of the mean-square fluctuations of the protein residues. These are 
usually compared to the experimental B-factors, also called temperature factors, 
that are obtained from crystallographic experiments. Experimental B-factors result 
from the local uncertainty about the atom position and, although they can result 
from a combination of different elements, for very high-resolution protein 
structures they can provide information about the inherent flexibility of the 
protein. B-factors are related to the computed GNM fluctuations as: 
 
 

g$ =
8BQ

3
< ∆{$

Q >=
8BQ,äã

å
	rçlf$,$	. (2.7) 

 
Figure 2.6c shows the comparison of the computed fluctuations from Eq. 

(2.7) and the experimental B-factors for HEW lysozyme. As can be seen, the 
computed fluctuations are in good accordance with the experimental B-factors, 
with a Pearson correlation coefficient % of 0.71. 

The fact that the GNM provides accurate predictions of the protein 
fluctuations is fascinating, considering the extreme simplification of this model. 
The mean-square fluctuations are due to the protein thermal vibrations, which in 
turn depend on several factors, such as the intramolecular interactions among all 
the atoms and the interactions with the environment. These are not deterministic 
factors, being stochastic in nature. Nevertheless, a simple and deterministic model 
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that is only dependent on the folded crystal structure and on a network of linear 
elastic springs, such as the GNM, is amazingly able to provide an accurate 
description of the mean-square fluctuations (Figure 2.6c). This suggests that the 
folded protein structure potentially contains in itself all the information we need to 
extract the dynamical features. 

The agreement of the GNM outcomes with experimental data is even 
improved when distance-dependent spring constants are considered in the model. 
Yang et al. [32] suggested a parameter-free GNM (pfGNM), where the need of 
the arbitrary cutoff limit rc is avoided. Each node is connected to each other and 
the spring constants are inversely proportional to the square distance between the 
nodes. Applying both the GNM and pfGNM on a set of 1220 protein structures, 
the pfGNM is shown to outperform the GNM, with an improvement of the mean 
correlation values around 5%. This shows that considering higher ranges of 
cooperativity, coupled with the distance-dependent information, improves the 
accuracy of the ENM in the fluctuation prediction [32]. 

The GNM has still some limitations. The most important one relies on the 
fact that, given the nature of the N × N Kirchhoff matrix, the GNM does not take 
into account the directionality of the protein motions and dynamics. As a matter of 
fact, the GNM dynamics is only informative of the different amplitudes of motion 
among different residues, but does not provide any information about the 
directions of these motions in the three-dimensional space. This limitation has 
been overcome with the introduction of another ENM, the so-called Anisotropic 
Network Model (ANM). Moreover, as will be pointed out after the description of 
the ANM, both these ENMs do not include the explicit information about the 
mass of the system, at least in their original definition. For this reason, the 
eigenvalues obtained from the matrix decomposition are only representative of the 
vibrational frequencies, but they do not allow to quantitatively estimate the 
absolute frequency values in Hz. 

2.2.1.2 Anisotropic Network Model 

To include the directionality feature in the protein ENM, the Anisotropic 
Network Model (ANM) was developed by Atilgan et al. in 2001 [31]. Similarly to 
the GNM, the ANM considers the protein elastic network as made up of a set of 
nodes connected by linear springs. For a system counting N nodes, i.e. the Cα 
atoms of the protein, the ANM yields the definition of the 3N × 3N Hessian matrix 
ë, which is defined as follows: 
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⎤

, (2.8) 

 
where ë4,ó is a 3 × 3 matrix related to the nodes i and j. This can be calculated by 
taking the second derivatives of the potential Vi,j, with respect to the three 
directions of the global reference system XYZ: 
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The potential Vi,j is assumed as the elastic potential of the Hookean spring 

connecting residues i and j, which takes the following quadratic form: 
 
 

ù$,s =
1
2
å°{$,s − {$,s

P¢
Q
, (2.10) 

 
being {$,s and {$,sP the current and initial distance between nodes i and j, and å 
the force constant of the spring. In the original ANM, å is the same for all the 
couple of nodes which are closer than the imposed cutoff limit rc. Typical values 
of rc in the ANM are in the range 12-18 Å. In Figure 2.7a, the ANM of HEW 
lysozyme (PDB: 4ym8) is shown, with cutoff limit of 15 Å. 

Inserting the equation of the elastic potential in Eq. (2.9) and calculating the 
partial derivatives in the equilibrium position, i.e. {$,s = {$,sP, one obtains: 
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where û$, ü$ and †$ are the crystal coordinates of residue i, and ûs, üs and †s are 
the crystal coordinates of residue j. Known ë4,ó for each i ≠ j, the diagonal 
matrices ë4,4 can be computed as: 
 

ë4,4 = − L ë4,ó

Ä

sÅf,sÇ$

. (2.12) 

 
Once the complete Hessian matrix from Eq. (2.8) is calculated, it undergoes the 
eigenvalue-eigenvector decomposition to extract the dynamical features, namely 
the 3N-6 non-rigid mode shapes 0H

£Ä' and the 3N-6 non-zero eigenvalues 
ÑH

£Ä'. Note that, in the ANM, since the protein is not externally constrained, one 
obtains six zero eigenvalues that are related to the six rigid-body motions, 
composition of three global translations and three rigid rotations. 
 



 

 34 

 

 
Figure 2.7. ANM for HEW lysozyme (PDB: 4ym8), rc = 15 Å: (a) graphical 
representation of the ENM (red dots: Cα atoms, black lines: springs); (b) the first four 
non-rigid motions; (c) experimental B-factors vs. computed fluctuations (% = 0.68). 
 

The 3N × 1 eigenvectors 0H provide the normal modes of the elastic network, 
whereas the eigenvalues ÑH are proportional to the corresponding frequencies of 
vibrations. Figure 2.7b shows the first four non-rigid motions of lysozyme, with 
the profiles of absolute displacements, that provide information about the most 
flexible parts of the protein structure. Differently from the GNM, the ANM 
eigenvectors contain three-components for each residue modal displacement. 
Therefore, one can also visualize the directionality of motion, and not only its 
amplitude distribution along the protein chain [33]. As will be shown below, this 
is of great help in order to understand the biological mechanisms of the protein. 
However, it should be noted that, since no explicit mass is included in the original 
ANM, the information about the vibrational frequency is still only qualitative, and 
not quantitative. 
Similarly to Eq. (2.4) for the GNM, the ANM eigenvectors and eigenvalues are 
used to calculate the pseudo-inverse Hessian matrix: 
 
 

ëÖlf = L
0H0H

Ü
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The cross-correlations of the residue fluctuations and the mean-square 

fluctuations can be finally obtained from the entries of the pseudo-inverse matrix 
as follows: 
 
 

< ∆{$ ∙ ∆{s >=
3,äã
å

	¶ßÖlf§$lQ,§slQ + ßÖlf§$lf,§slf + ßÖlf§$,§s®, (2.14) 

 
which are then used to compare the ANM results to the experimental data, such as 
the experimental B-factors. Figure 2.7c reports this comparison for the HEW 
lysozyme, where a Pearson correlation coefficient of 0.68 is reached. Despite the 
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fact that often the GNM slightly outperforms the ANM in the prediction of 
experimental B-factor (see Figures 2.6c and 2.7c, and corresponding correlation 
coefficients), the ANM has the advantage to provide the additional information 
about the motion directionality, which is pivotal for understanding the protein 
mechanism. 

As seen from Eqs. (2.10) and (2.11), the original ANM takes into account 
equal spring constants for each couple of connected nodes, despite their distance. 
Distance-dependent springs were then considered in subsequent works from Eyal 
et al. [34] and Yang et al. [32], where each spring constant å$,s depends on the 
actual inter-residue distance {$,s with an inverse power decay: 
 
 

å$,s ∝
1

{$,s
J, (2.15) 

 
™ being the decay parameter. Extensive analyses based on large sets of protein 
structures showed that ™ values greater than one lead to higher correlations with 
the experimental B-factors [32,34]. 

2.2.1.3 Further developments and assessments of the ENMs 

Beside the GNM and ANM, other models based on the elastic description 
have been developed in the last decades for the investigation of protein vibrations 
and dynamics. Hinsen [35] made use of simplified mechanical models for the 
investigation of low-frequency protein vibrations, that were found to be 
independent of the force field details, and he showed that these simplified models 
are effective in predicting the protein flexibility as well as the existence of quasi-
rigid domains. Durand et al. [36] and Tama et al. [37] developed a new kind of 
ENM, where low-frequency normal modes of proteins can be described as pure 
rigid-body motions of blocks of consecutive protein residues. This approach has 
been called RTB (rotations-translations of blocks) and it has been proven useful to 
predict the low-frequency protein dynamics as well as to reduce the computational 
cost. Recently, the RTB was further enriched by Hoffmann and Grudinin [38] to 
describe the non-linear normal modes, obtained by extrapolating the contribution 
of the translations and rotations of the blocks. Mixed coarse-grained strategies, 
where both high- and low-resolution modeling representations are applied in the 
ENMs, were also employed by Kurkcuoglu et al. [39,40], showing high efficiency 
in the prediction of the low-frequency dynamics. An enhanced ENM, based on 
rigid domains and flexible hinges, was also proposed by Song and Jernigan [41] to 
represent the motions of domain-swapping proteins. 

Despite their very simplified nature, the Elastic Network Models coupled 
with normal mode calculations are extremely useful in order to obtain insights 
about protein flexibility and low-frequency dynamics [9,42,43]. In this regards, 
other than reducing the computational costs, coarse-graining strategies seem to be 
beneficial in terms of low-frequency dynamics evaluation [44,45]. Beside the B-
factors prediction, ENMs have been used to discover the similarities and 
differences in the large-scale dynamics of proteins with similar architectures [46]. 
Normal modes from coarse-grained ENMs were also found to closely align to the 
dynamic communities extracted from MD simulations [47] and those extracted 
from the experimental ensembles of crystal structures [48,49]. Yang et al. [50] 
also made use of the ANM to predict the anisotropic counterpart of the thermal 
fluctuations, i.e. the anisotropic B-factors, which are available in highly-refined 



 

 36 

protein structures. As will be shown in Section 2.3, plenty of work has also been 
carried out to investigate the conformational transitions of proteins, that are 
associated to the biological mechanism, through the evaluation of the ENM 
normal modes. 

2.2.2 Finite-element-based ELMs and experimental tests for the 
investigation of protein vibrations 

Given the clear relevance of Structural Mechanics concepts in the ENM 
formulation described above, some models were also developed within the 
framework of the Finite Element Method (FEM) for the calculation of protein 
vibrations. Bathe [51] treated proteins as continuum elastic solids with molecular 
volumes defined by their solvent-excluded surface. The FE-based protein surface 
was used to calculate normal modes, that were found in agreement with 
experimental data and previous approaches, such as RTB. More recently, the 
method was also enriched by adding Brownian dynamics accounting for the 
presence of solvent, simulated by taking into account viscous forces and diffusion 
phenomena [52]. Following FE-based approached were also based on frame-like 
structures and ELMs, as described below, in order to focus on the low-frequency 
protein vibrations, that are found to occur in the THz range. 

2.2.2.1 Protein vibrations in the THz range: Experimental tests 

Experimental investigations, by means of spectroscopy techniques such as 
Raman and THz Time Domain Spectroscopy (THz-TDS), have shown that low-
frequency protein vibrations are mostly found in the THz frequency range. 

Raman spectroscopy is a vibrational spectroscopy technique, based on the 
detection of the light scattered by the sample under investigation and further 
processed by a spectrometer. Eventually, from the experimental test, one obtains 
the Raman spectrum of the material, that provides useful information about the 
vibrational levels of the molecular bonds and allows to recognize the fingerprints 
of specific chemical groups. Raman spectroscopy has been deeply used for the 
analysis of peptides and proteins [53,54]. Although it poses challenges for the 
analysis of biological materials such as proteins [55], Raman technique can be 
very helpful for the detection of low-frequency protein modes. 

In 1972, Brown et al. [56] found a pronounced peak at 29 cm–1 (~ 0.87 THz) 
in the Raman spectra of α-chymotrypsin samples prepared in several ways. 
Remarkably, this peak is absent only when the protein is denatured by means of 
sodium dodecyl sulfate (SDS). This led the authors to conclude that this THz 
vibration must involve all, or very large portions, of the protein molecule [56]. 
Chou suggested that low-frequency vibrations involve collective motions of the 
protein and can be relevant for its biological functionality [57,58]. Peaks below 50 
cm–1 were also found in several protein structures by Painter et al. [59]. More 
recently, Carpinteri et al. [60] and Lacidogna et al. [61] made use of special ultra-
low-frequency (ULF) filters and detected some pronounced Raman peaks around 
30 cm–1 in HEW lysozyme and Na/K-ATPase powder samples (Figure 2.8). 

Another spectroscopy technique which has been recently exploited for the 
investigation of protein vibrations is THz-TDS [62], that enables to measure 
photons in the range of THz frequencies. The range 0.1–1.5 THz was previously 
known as the “Terahertz Gap”, as it was difficult to investigate due to the lack of 
a suitable light source. This technique allowed the discovery of the infrared (IR) 
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activity of a large number of low-frequency protein collective motions in the THz 
range [63]. THz-TDS absorbance spectra were found to well represent the density 
of the protein normal modes [64]. The first optical observation of long-range THz 
vibrational modes was achieved with THz-TDS by Acbas et al. [65]. By thorough 
analyses via THz-TDS, it was found that these motions are related to the protein 
biological mechanisms through the protein conformational changes and to the 
allosteric activity [66,67]. 
 

      
Figure 2.8. Low-frequency Raman spectra obtained with ULF filters on: (a) HEW 
lysozyme [60]; (b) Na/K-ATPase [61]. Used with permission from [60,61]. 

2.2.2.2 Protein vibrations in the THz range: Numerical FE models 

In order to focus mostly on the THz frequency range of the vibrational space, 
Carpinteri et al. [60,68] developed a FE model where the expansion-contraction 
modes of the protein backbone were investigated. These models included all the 
heavy atoms of the protein and were based on a frame-like elastic representation 
of the protein structure. Based on the atomic mass values and the stiffness values 
of the covalent bonds, the FE models were applied to the case studies of HEW 
lysozyme [60] and Na/K-ATPase [68]. The outcomes from modal analysis 
calculations provided some explanations on the possible low-frequency 
expansion-contraction modes found in the THz range, with comparison to the 
vibrations obtained from Raman experiments [60,61]. Further analyses by 
Lacidogna et al. [69,70] showed that coarse-grained FE models, using the same 
frame-like representations but based only on the Cα atoms, allowed to obtain the 
same results in terms of low-frequency expansion-contraction modes, while 
reducing the computational cost. 

The FE frame-like models presented above allowed to obtain information 
regarding the expansion-contraction protein modes occurring in the THz range. 
However, to properly describe also the low-frequency distortional motions, a FE-
based ELM was recently developed by Scaramozzino et al. [71], which is the 
counterpart of the ANM by following a purely Structural Mechanics approach.  

The FE-based ELM was developed within the FE commercial code LUSAS 
[72]. The model is made up of point masses, corresponding to the Cα atoms of the 
protein, and an assembly of elastic bars that simulate the interactions between the 
amino acids. The connections are generated by using a geometrical cutoff limit rc, 
hence only the nodes whose distance is lower than this value are connected by an 
elastic bar. The model is applied to the case study of HEW lysozyme (PDB: 
4ym8) by considering five different cutoff values, i.e. 8, 10, 12, 15 and 20 Å. 

(a) (b) 
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Based on these different geometrical constraints, five different FE models were 
generated, as shown in Figure 2.9. 

 

 
Figure 2.9. HEW lysozyme models with varying cutoff values: (a) 8 Å; (b) 10 Å; (c) 12 
Å; (d) 15 Å; (e) 20 Å. (f) zoomed picture of the FE-based ELM highlighting the single 
bar element. Used with permission from [71]. 

 
According to the FE theory [6], for an ELM made up of N nodes and M 

connections, one can compute the global 3N × 3N stiffness matrix /, in this case 
N being the number of Cα atoms and M the total number of elastic bars. The 
calculation starts from the definition of the 2 × 2 local stiffness matrix ´¨∗ , 
associated to the mth elastic bar (Figure 2.9f), which is defined as: 
 
 

´¨∗ =
I$,se$,s
{$,s

Æ 1 −1
−1 1

Ø, (2.16) 

 
being I$,s, e$,s and {$,s the Young’s modulus, the cross-sectional area and the 
length of the mth bar connecting nodes i and j, respectively. In the proposed FE-
based ELM, the elastic and geometrical properties of the bars were kept constant 
for all the connections, i.e. I$,se$,s = Ie. This implies that the stiffness of each 
bar ,é turns out to be inversely proportional to its length (,é ∝ {$,s

lf). 
However, assigning different patterns of I$,s and e$,s throughout the ELM, one 
can also obtain different distance-dependence stiffness patterns. 

Taking into account the local orientation of the mth bar with respect to the 
global reference system XYZ, the 2 × 2 local stiffness matrix ´¨∗  can be converted 
into the 6 × 6 stiffness matrix ´¨ expressed in the global system. This is achieved 
by means of the 2 × 6 rotation matrix	ò¨, which is related to the mth bar element 
and contains the three directional cosines between the local and global reference 
systems: 
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ò¨ =

⎣
⎢
⎢
⎡
ûs − û$
{$,s

üs − ü$
{$,s

†s − †$
{$,s

0 0 0

0 0 0
ûs − û$
{$,s

üs − ü$
{$,s

†s − †$
{$,s ⎦

⎥
⎥
⎤
, (2.17) 

 
being û$ (ûs), ü$ (üs) and †$ (†s) the three-dimensional coordinates of node i (j) in 
the global reference system XYZ, and {$,s their spatial distance. Based on Eqs. 
(2.16) and (2.17), the 6 × 6 stiffness matrix of the element ´¨ in the global 
reference system takes the following form: 
 
 ´¨ = ò¨

∞´¨∗ ò¨ = Æ
±¨ −±¨
−±¨ ±¨

Ø, (2.18) 
 
being ±¨ the 3 × 3 matrix containing the stiffness values and the directional 
cosines: 
 
 

±¨ =
I$,se$,s
{$,s

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

(ûs − û$)Q

{$,s
Q

(ûs − û$)(üs − ü$)

{$,s
Q

(ûs − û$)(†s − †$)

{$,s
Q

(ûs − û$)(üs − ü$)

{$,s
Q

(üs − ü$)Q

{$,s
Q

(üs − ü$)(†s − †$)

{$,s
Q

(ûs − û$)(†s − †$)

{$,s
Q

(üs − ü$)(†s − †$)

{$,s
Q

(†s − †$)Q

{$,s
Q ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

. (2.19) 

 
Note that Eq. (2.19) is analogous to Eq. (2.11) arising from the ANM 

framework, showing that there exists complete consistency between the ANM and 
the FE-based ELM. Once the stiffness matrix of the single bar ´¨ is computed in 
the global system from Eqs. (2.18) and (2.19), the FE-based theoretical 
framework relies on the expansion of the element matrix to the global structural 
dimension 3N (/¨), by means of the 6 × 3N expansion matrix ≤¨ [6]. Finally, the 
3N × 3N global stiffness matrix / of the whole ELM is computed by assembling 
all the elements’ stiffness matrices as follows: 
 
 

/ = L /¨

'

éÅf

= L ≤¨
∞´¨≤¨

'

éÅf

= L ≤¨
∞ò¨

∞´¨∗ ò¨≤¨

'

éÅf

. (2.20) 

 
The stiffness matrix / is consistent with the 3N × 3N Hessian matrix ë of the 
ANM reported in Eq. (2.8). 

Beside the calculation of the stiffness matrix, the FE model yields the 
definition of the 3N × 3N global mass matrix 6, associated with the mass of the 
ELM. This is a diagonal matrix, made up of 3 × 3 diagonal sub-matrices 64, 
containing the mass values of the ith node. Since in globular proteins the 
distribution of the mass throughout the system does not deviate so much from the 
uniform distribution, the total mass of the protein has been equally divided among 
the N nodes of the Lattice Model. This simplifies the input procedure, while 
capturing the global behavior of the system. 

It has also to be noted that, since we are dealing with very small quantities, 
with masses in the order of magnitude of 10–26 kg and distances in the order of 10–

10 m, this might cause issues when working within a FE environment meant for 
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larger systems. For this reason, a numerical scaling procedure is applied to masses 
and distances, as thoroughly reported in [60,68]. 

Once the stiffness and mass matrix are computed within the FE code, a free 
vibration analysis, i.e. modal analysis, is carried out. It consists of solving the 
equations of motion for a multi degree-of-freedom (MDOF) undamped oscillator 
[6], which leads to the generalized eigenvalue-eigenvector problem: 
 
 (/ − ?HQ6) ∙ 05 = 9, (2.21) 
 
where ?HQ and 05 represent the nth eigenvalue and eigenvector, respectively. The 
latter has dimension of 3N × 1 and is associated to the vibrational shape of the nth 
mode, while the former is related to the vibrational frequency of the mode CH, 
through the following relationship: 
 
 CH =

?H
2B
. (2.22) 

 
Equation (2.21) is solved by setting the determinant of the matrix within the 

brackets equal to zero and finding the 3N set of eigenvalues and corresponding 
eigenvectors. Note that, in accordance to what reported in Section 2.2.1.2 
regarding the ANM, since the protein is not externally constrained, the first six 
eigenvectors are rigid-body motions at zero frequency. From the seventh mode 
onwards, we obtain the information about the internal deformation modes of the 
protein ELM. 

Based on the evaluated set of frequencies and mode shapes, the numerical B-
factor for the ith node of the FE model can be computed as follows [43]:   
  
 

g$ =
8
3
BQ,äãL

!$,H
Q

?HQ

§Ä

HÅ•

, (2.23) 

 
being !$,H the absolute mass-weighted modal displacement of node i 
corresponding to the mode n, and the other terms having same meaning explained 
above. The B-factors computed by the FE ELM are finally compared to the 
experimental thermal fluctuations available in the PDB file. The comparison is 
also used to set the rigidity value of the elastic bars (I$,se$,s), which initially is set 
as a tentative value. By posing that the mean value of the experimental and 
computed B-factors along the protein chain are equal, one is able to define the 
material (I) and geometrical (e) properties of the elastic bars. For more details, 
refer to Scaramozzino et al. [71]. Ultimately, based on these rigidity values and 
the mass values contained in the mass matrix, it is finally possible to obtain 
quantitative information about the values of the vibrational frequencies. 

In Figure 2.10, the normalized B-factors obtained from Eqs. (2.23) are 
compared to the experimental values from the PDB file. The correlation 
coefficients between numerical and experimental distributions vary from 0.57 to 
0.72, depending on the adopted cutoff value. A complete consistency between the 
FE-based ELM is found with the ANM, when a distance-dependent decay is 
considered with ™ equal to one. Whereas, slightly better results are found when 
comparing the FE ELM to the original ANM with ™ equal to zero [71]. 
 



 

 41 

 
Figure 2.10. FE-based ELM of HEW lysozyme. Comparison between experimental and 
computed B-factors (normalized values). Adapted with permission from [71]. 
 

The utility of models like the ANM and the FE-based ELM presented here 
relies on their capability to show the directionality of the protein motions. Since 
low-frequency modes have been found to involve collective motions and to be 
generally related to the biological mechanisms (see Section 2.3), their 
investigation and visualization is of great interest [33,73]. 

 

 
Figure 2.11. First non-rigid mode of HEW lysozyme: (a) normalized absolute 
displacements; (b) MAC matrix; (c,d,e) 3D mode shapes from Model A, C, E. Used with 
permission from [71]. 

 
The first two non-rigid modes extracted from modal analysis on the ELM of 

HEW lysozyme are shown in Figure 2.11 and 2.12, respectively. Specifically, 
Figures 2.11a and 2.12a show the normalized modal displacements associated to 
the first and second non-rigid mode, respectively, depending on the cutoff limit. 
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Models A, B, C, D and E stand for the models with cutoff limits equal to 8, 10, 
12, 15 and 20 Å, respectively. As can be seen, changing the cutoff limit can affect 
the vibrational shape. In order to quantitively assess this influence, Figures 2.11b 
and 2.12b show the MAC (Modal Assurance Criterion) matrix between the 
vibrational modes arising from the different models. MAC values are calculated 
as follows [74,75]: 
 
 

≥eo$,s =
°04

∞ ∙ 0ó¢
Q

°04
∞ ∙ 04¢°0ó

∞ ∙ 0ó¢
, (2.24) 

 
04 and 0ó corresponding to the two eigenvectors of the vibrational modes to be 
compared. MAC values are always between 0 and 1, the former meaning 
complete orthogonality and the latter meaning complete similarity between the 
modes. Finally, Figures 2.11c-e and 2.12c-e show the 3D mode shapes for models 
A, C and E. As can be seen from the profiles of the normalized absolute 
displacements, both the first and second non-rigid mode associate great amount of 
flexibility to the protein regions close to residues 46–49 and 70–72. This is in 
accordance with the hinge-bending motion already found by Levitt et al. [28], 
who made use of NMA using internal coordinates. Moreover, from Eq. (2.23), it 
is clear that the B-factors are dominated by the low-frequency motions, as they are 
weighted by the inverse of the squared vibrational frequency. As can be seen by 
comparing Figure 2.10 to Figures 2.11a and 2.12a, the first low-frequency 
motions have an important role in defining the peaks of flexibility in the final B-
factors distribution. 

 

 
Figure 2.12. Second non-rigid mode of HEW lysozyme: (a) normalized absolute 
displacements; (b) MAC matrix; (c,d,e) 3D mode shapes from Model A, C, E. Used with 
permission from [71]. 
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The three-dimensional visualization of the protein motions is shown in the 
lower panels of Figures 2.11 and 2.12, as obtained from the commercial code 
LUSAS [72]. These modes are clearly associated with a hinge-bending motion, 
the lysozyme vibrating in a way that it opens and closes its binding cleft. 
However, it is evident that changing the model parameter, e.g. the cutoff limit, 
affects the modal results. The MAC matrices in Figures 2.11b and 2.12b show that 
model B, C and D provide relatively similar results, being their cutoff values 
fairly close (10, 12 and 15 Å). Conversely, models A and E provide modal 
displacements which correlate less with the other models. This is especially true 
for the latter, where MAC values lower than 0.2 are found when comparing the 
modes from model E to the ones arising from the other models. This is found to 
occur because of a switch between the first and second mode in model E [71]. 
This aspect, e.g. the role of the model parameters on the outcomes, needs 
therefore to be properly taken into account when investigating the low-frequency 
protein modes via ANM-like approaches, such as the ELM presented here. 

By setting the values of the bar stiffness based on the experimental B-factor 
distribution, it was also possible to obtain quantitative information about the 
absolute values of the vibrational frequencies. In Figure 2.13 the first five non-
zero frequencies are reported depending on the geometrical cutoff limit. The 
lowest motions are found to vibrate in the low-THz frequency range, but the exact 
value exhibits a significant dependence on the model parameter. The fundamental 
frequency, i.e. the frequency associated to the lowest mode, is found to vary from 
0.046 THz (~ 1.5 cm–1) for model A to 0.117 THz (~ 3.9 cm–1) for model E. 
Despite the not negligible variation, these values are still in line with the 
frequency values obtained by Levitt et al. [28] and Markelz et al. [64]. The former 
used NMA with internal coordinates and found that the lowest mode in lysozyme 
occurs at 2.98 cm–1 and involves high motility near residues 47, 70 and 103 
(which is in accordance with Figure 2.11). The latter made use of Chemistry at 
HARvard Molecular Mechanics (CHARMm) simulations, and found similar 
frequency values for the lowest vibrational modes. 
 

 
Figure 2.13. Lowest five non-zero vibrational frequencies of HEW lysozyme. Used with 
permission from [71]. 
 

The proposed FE-based ELM represents then a valid engineering-based 
approach for analyzing the small-amplitude low-frequency collective protein 
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vibrations. As already mentioned above, this model can be seen as the counterpart 
of the ANM, obtained by following a purely Structural Mechanics approach 
according to the FE framework [71]. This makes this model more easily 
accessible to the engineering community, for the investigation of the low-
frequency protein dynamics as well as other structural aspects, such as the effect 
of force application on the ELM, instability phenomena, etc.  

All the models presented in this Section have an important feature: they 
tackle the complexity of the protein behavior and dynamics by means of 
simplified mechanical models. First, the complex interaction potentials have been 
simplified into the Hookean pairwise potential related to the elastic spring [29]. 
Then, it has been shown that even considering a coarse-grained model for the 
protein structure works fairly accurately if one wants to obtain the information on 
the low-frequency dynamics [30,31,35]. These results are remarkable as they tell 
us that even simplified models purely based on Structural Mechanics concepts can 
provide important information about the protein low-frequency vibrations. As will 
be reported in the next Section, these vibrations are found to be strictly related to 
the protein conformational changes, which in turn are the fingerprints of protein 
biological behavior and mechanisms. This makes the outcomes of the ELMs even 
more astonishing, as they are ultimately able to provide information about protein 
biological functionality. 

2.3 Protein Vibrations and Biological Mechanisms 

Understanding the way in which proteins perform their biological function is 
crucial for theoretical purposes, disease control and prevention, and drug design. 
It is known that proteins often perform their biological tasks through a 
modification of their structural conformation. The structural modification can be 
small or significant and defines the so-called conformational change. The most 
common case occurs when the protein binds to an external ligand and it switches 
its conformation from an “open” form to a “closed” one that is more energetically 
favorable for the protein-ligand system. This conformational change is often 
reversible, so that when the ligand is not present anymore the protein usually 
returns to its “open” configuration. Therefore, it can be said that the 
conformational change occurs in a continuous timeframe and affects the 
biological activity of the protein. Various proteins can also show more than two 
conformations. Furthermore, since proteins are dynamic entities in nature, they 
generate the so-called conformational ensemble where multiple similar, but not 
identical, structures are clustered together. The comprehension of the mechanisms 
and motions that govern the protein conformational changes and define the 
conformational ensembles is a central issue addressed by computational 
biologists. 

As already mentioned in the previous Section, one of the leading approaches 
for these purposes relies on MD simulations [25]. Although MD simulations have 
been successful in predicting several aspects of protein functionality, their 
computational complexity usually prevent a thorough application to complex 
macromolecular systems that act on longer time scales. For this reason, the use of 
simplified ELMs, with all the different alternatives (GNM, ANM, FE-based 
models, etc.), has proven high efficacy in recent times for the prediction and 
analysis of protein mechanisms. In the remaining of this Section, the strict 
relationship between protein vibrations extracted from the ELMs and the 
conformational changes will be described. Eventually, a novel ELM, which has 
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been called the hinge-domain ANM (hdANM) and developed for the purpose of 
describing and predicting protein mechanisms, will be presented at the end of this 
Section. 

2.3.1 Protein normal modes and conformational changes 

A conformational change occurs when the protein undergoes a modification 
of its structural shape due to the biological activity to be carried out. Consider two 
different conformations e and g of the same protein structure. If ; and ¥ denote 
the 3N × 1 vectors containing the X, Y and Z coordinates of the N atoms (or 
residues) of the protein, the conformational change ≤≤ that leads from structure ; 
to structure ¥ can be expressed through the following equation: 
 
 ¥ = µ; + ∞ + ≤≤, (2.25) 
 
being µ and ∞ the 3N × 3N rotation matrix and 3N × 1 translation vector, 
respectively. The former takes into account the rigid-body rotation of the protein, 
whereas the latter accounts for the uniform translation. By posing the Ordinary 
Least Squares Method condition on the components of vector ≤≤, one can 
numerically obtain the estimate of the rotation matrix µ∂ and translation vector ∞∂ 
that best superimpose the two conformations. For this reason, this procedure is 
traditionally called superimposition. Figure 2.14 shows the superimposition of the 
closed form of LAO-binding protein (PDB: 1lst) to the open form (PDB: 2lao). 

Known the estimated parameters that account for the rigid-body rotation and 
translation, the final structure ¥ is superimposed onto the reference system of the 
initial structure (Figure 2.14), obtaining: 
 
 ¥µ∞ = µ∂lï	(¥ − ∞∂), (2.26) 
 
¥µ∞ containing the coordinates of the conformation ¥ after the rigid 
superimposition onto structure ;. Finally, the 3N × 1 vector of the conformational 
change	≤≤, containing the displacements along the X, Y and Z direction, is 
computed as: 
 
 ≤≤ = ¥µ∞ − ; = µ∂lï	(¥ − ∞∂) − ;. (2.27) 
 
 

   
 

Figure 2.14. Superimposition of the open and closed forms of LAO-binding proteins. 
Open form (PDB: 2lao) is represented in red. Closed form (PDB: 1lst) in green. (a) Not 
superimposed structures; (b) superimposed structures. 

(a) (b) 
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In the ground-breaking work from Tama and Sanejouand [76], it was firstly 
shown that the low-frequency normal modes arising from the simplified ELMs 
exhibit an astonishing correlation with the motion observed in the conformational 
change vector ≤≤. In their seminal work, Tama and Sanejounad [76] made use of 
the ANM, with a relatively short cutoff limit (8 Å), to investigate the 
conformational changes of twenty selected proteins, which are known to show 
two different conformations upon ligand-binding. The normal modes extracted 
from the ANM were compared to the conformational change by means of the 
overlap ∑s: 
 
 

∑s =
p0s ∙ ≤≤p

∏0s ∙ 0s√≤≤ ∙ ≤≤
, (2.28) 

 
being 0s the 3N × 1 eigenvector related to the jth normal mode and ≤≤ the 
conformational change vector from Eq. (2.27). Note that the overlap value in Eq. 
(2.28) basically corresponds to the square root of the MAC reported in Eq. (2.24), 
evaluated between each normal mode and the conformational change. Similarly to 
the MAC value, the overlap ∑s varies between 0 and 1, 0 meaning complete 
inconsistency and 1 complete similarity. 

From the results, it is shown that high overlap values (up to 0.86) are found 
between the conformational change and one of the first low-frequency modes 
extracted from the ANM [76]. In Figure 2.15, the comparison between the 
displacements of the second low-frequency mode and the conformational change 
is shown for the 238-residue LAO-binding protein. In this case, the maximum 
overlap is found for the second normal mode and is equal 0.84. This confirms that 
the low-frequency dynamics plays a pivotal role in governing the protein 
biological mechanism, as it is involved in the conformational change. Moreover, 
as seen in Section 2.2, these vibrations are usually found to occur in the THz 
range and, although the exact estimate of these frequencies is strongly dependent 
on the model parameters, these results suggest the possible occurrence of 
resonance phenomena at THz frequencies that might drive the protein biological 
activity. Moreover, once again it is found that, despite their simplified nature, 
ELMs yet provide impressive results for the prediction of the protein behavior and 
mechanism. 
 

  
Figure 2.15. ANM normal modes and open-to-close conformational change in LAO-
binding protein: (a) ANM of open conformation; (b) ANM of closed conformation; (c) 
absolute displacements of conformational change (thick line) and second low-frequency 
mode (thin line). Used with permission from [76]. 

(c) (a) 

(b) 
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The results found in [76] inform us also that ELMs are likely to predict fairly 

accurately the protein conformational change when the latter is more collective, 
thus it involves large portions of the protein, rather than a localized region. 
Moreover, it is found that the open-to-closed conformational change is more 
correlated to the normal modes extracted from the open form (Figure 2.15a). 
Conversely, it is more difficult to obtain high correlations when calculating the 
modes in the closed form (Figure 2.15b) and comparing them to the closed-to-
open transition. This is mostly due to the fact that the ELM of the closed 
conformation usually has more connections in the spring network, that ultimately 
might prevent to obtain the observed opening mechanism. 

After the seminal work of Tama and Sanejouand [76], several studies have 
investigated the relationship between low-frequency modes and the biologically-
relevant conformational changes [77]. Tobi and Bahar [78] made use of the GNM 
and ANM to analyze such relationship for protein complexes. Zheng and Brooks 
[79] used a linear combination of low-frequency modes to predict the 
conformational transition incorporating distance constraints. Petrone and Pande  
[80] suggested a methodology to identify the number of low-frequency normal 
modes needed to map the conformational change accurately. Yang et al. [81] 
thoroughly investigated the efficacy of the ELMs in predicting the transitions 
through the normal modes, finding that the collectivity of the motion is the 
fundamental parameter. More recently, Scaramozzino et al. [82] showed that also 
the low-frequency expansion-contraction modes evaluated by coarse-grained 
frame-like FE models are found to provide an important contribution to the 
conformational change. Finally, by taking into account that the large-scale 
transitions might also contain an important contribution given by the rotation of 
rigid portions of the protein structure, a new definition of the overlap metric was 
proposed by Song and Jernigan [41]. 

The amount of studies shown above confirm that there exists a close 
correspondence between the low-frequency protein dynamics and its mechanism, 
as observed by the conformational change. However, although this advocates that 
the protein flexibility and its dynamical features do play a role in influencing the 
conformational transition, it is still not clear whether the conformational change is 
only accommodated through that specific motion as it is energetically favorable 
(note in fact that low-frequency motions are also usually the low-energy ones), or 
if the low-frequency dynamics actually is able to trigger the conformational 
change. This is still an open question for computational biologists. However, it is 
evident that there exists a high correlation between the experimentally observed 
protein conformational change and the low-frequency protein motions. Therefore, 
a thorough investigation of the latter is surely beneficial to try and predict the 
protein functional modes. 

In order to predict the biologically-relevant motions and simulate the protein 
conformational changes, a novel ELM based on the partition of the protein into 
rigid domains and flexible regions was recently developed, which has been called 
the hinge-domain ANM (hdANM) [83]. This model has been used not only for the 
prediction of the conformational change between two known conformations, but 
also in order to study the entire conformational ensemble deriving from a set of 
known experimental structures. For this reason, before describing the framework 
of the hdANM, few remarks are given on the characteristics of the experimental 
ensemble and the typical analysis which is carried out to extract the dynamic 
features from it, which is called Principal Component Analysis (PCA). 
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2.3.2 Protein normal modes and Principal Component Analysis 

As mentioned in Section 2.1, the intrinsic dynamic nature of the protein 
structure generates a conformational ensemble made up of multiple 
conformations. PCA can be performed on a set of X-ray experimental structures, 
as well as on MD communities. It aims at extracting the motions from a set of 
known structures superimposed onto the reference one. The input is a n × 3N 
coordinate matrix ∫, where n is the number of available structures and N is the 
total number of nodes (atoms or residues). When dealing with coarse-grained 
models, the rows of ∫ essentially contain the XYZ coordinates of the Cα atoms 
[84]. Based on the coordinate matrix ∫, PCA relies on the calculation of the 3N × 
3N covariance matrix ª, whose elements can be calculated as: 
  
 º$,s = 〈°æ$,s − 〈æ$〉¢°æ$,s − 〈æs〉¢〉, (2.29) 
 
where the average 〈−〉 extends over all the n conformations. Based on the 
eigenvalue-eigenvector decomposition, the covariance matrix is further 
decomposed as: 
 
 ª = ¿∆¿∞, (2.30) 
 
¿ and ∆ being the eigenvector and eigenvalue matrix, respectively. ¿ contains the 
so-called principal components (PCs), which in this case reflect the virtual 
motions extracted from the set of experimental structures. Conversely, ∆ is the 
diagonal matrix containing the eigenvalues associated to each PCs, usually sorted 
in descending order. Each eigenvalue provides an estimate of the total variance 
captured in the corresponding PC. The PCs, namely the motions extracted from 
the set of experimental structures, provide the information about the mechanisms 
of the protein during its biological activity. 

Based on sets of experimental structures from both X-ray and NMR 
experiments, Yang et al. [48] showed that the low-frequency modes calculated 
from ANM exhibit significant similarities with the first PCs of the experimental 
ensemble of HIV-1 protease. Therefore, it is concluded that the global vibrations 
extracted from the ELMs are able to describe the biologically-relevant 
mechanisms observed in the experimental ensemble. More recently, Sankar et al. 
[49] showed similar results for a set of 50 proteins, comparing the ANM-based 
normal modes to the PCs extracted from the experimental ensemble. In the 
following sub-section, the newly developed hdANM is presented and the 
corresponding normal modes will be compared to the motions extracted from the 
experimental structure ensemble with PCA. 

2.3.3 A new ELM for the investigation of the protein 
mechanisms: The hdANM 

The idea behind the generation of the hinge-domain ANM (hdANM) is that 
protein mechanisms often involve the rigid translation and rotation of entire 
domains and the deformation of local flexible parts that constitute the hinges of 
the motion. The ANM and the FE-based ELM presented in Section 2.2 model the 
protein as a network of nodes connected by linear springs. This implies that the 
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higher rigidity of certain portions of the protein is only the result of the clustering 
of stronger springs in that area. Conversely, the RTB methodology [37] considers 
the protein as made up of a sequence of rigid blocks, that translate and rotate 
around their center of mass (COM). The hdANM is the generalization of both, as 
it represents the protein as a union of both rigid and flexible parts (Figure 2.16). 
The former is called a domain, the latter a hinge. 

Various methodologies have been developed in the literature to predict 
domain and hinge regions in experimental protein structures. One of the most 
recent ones was suggested by Khade et al. [85], that identifies protein hinges 
based on Delaunay tessellation of the protein surface and generation of alpha 
shapes. Based on these results, one can have the information about the hinge-
domain distribution within the protein structure. 
 

 
Figure 2.16. Scheme of protein structure according to the hdANM. Black dots represent 
nodes in rigid domains, red dots represent nodes in flexible hinge regions, green dots 
represent the COMs of the domains. 
 

The fundamental equations of the hdANM are the ones involving the 
dynamic equilibrium of an MDOF system. These can be obtained starting from 
the ANM equations with the addition of the mass of the system and the rigid-body 
equations applied to the rigid domains. Consider a protein ELM made up of N 
nodes. The mass-enriched ANM dynamic problem can be formulated in matrix 
form as follows: 
 
 (ë − ?HQ6) ∙ 05 = 9, (2.31) 
 
being ë the 3N × 3N Hessian matrix, 6 the 3N x 3N mass matrix, ?H the angular 
frequency related to the nth eigenmode and 05 the 3N × 1 vector containing the 
displacements of the nth mode shape. ë is computed according to the ANM 
methodology once the geometrical cutoff limit is chosen, and 6 is simply the 
diagonal matrix containing the masses of the protein atoms/residues. 

The equations for the rigid-body motions are then taken into account for the 
rigid portions of the protein structure, i.e. the rigid domains, that are considered to 
move as rigid bodies. These equations relate the XYZ displacements of each node 
to the three translations of the domain’s COM and the three rotations of the 
domain with respect to its COM. Under the assumption of small displacements 
and rotations, these equations can be written as follows: 
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 !1,$ = !1

S − "3S(ü$ − üS) + "2S(†$ − †S), (2.32a)  

 !2,$ = !2
S + "3S(û$ − ûS) − "1S(†$ − †S), (2.32b) 

 !3,$ = !3
S − "2S(û$ − ûS) + "1S(ü$ − üS), 

 

(2.32c) 

being !1,$, !2,$, !3,$ the displacements of the ith node within the domain d, û$, ü$, †$ 
its coordinates, !1

S, !2
S, !3

S the translations of the domain’s COM, "1S, "2S, "3S 
the rotations of the domain with respect to the COM, and ûS, üS, †S the 
coordinates of the COM. 

The 3N × 3N Hessian matrix ë corresponds to the stiffness matrix of the 
protein ELM, therefore it relates the 3N × 1 vector of elastic forces .¡¬ acting on 
the structure to the vector of the corresponding nodal displacements 0¡¬. 
Similarly, the mass matrix 6 relates the 3N × 1 vector of inertia forces .45 to the 
vector of the corresponding nodal accelerations 0̈45. 

By applying the equations of rigid-body motion to the displacements and 
accelerations of the nodes that belong to the domains, the hdANM Hessian matrix 
ëÖ	and mass matrix 6Ö  can be obtained. These matrices are smaller than the ANM 
ones, as their dimension correspond to (3_√ + 6j) × (3_√ + 6j), being _√ the 
total number of nodes in the hinge regions and j the total number of rigid 
domains. These dimensions arise from the fact that, in the hdANM, the DOFs of 
the system correspond to three translations for each node of the hinge regions and 
six DOFs (three translations and three rotations) for each rigid domain. The 
hdANM Hessian matrix ëÖ  relates the (3_√ + 6j) × 1 vector of elastic forces .Ö¡¬ 
to the vector of the corresponding displacements 0Ö¡¬. Similarly, the mass matrix 
6Ö  relates the (3_√ + 6j) × 1 vector of inertia forces .Ö45 to the vector of the 
corresponding accelerations 0̈ƒ5≈ . 

The dynamic problem of the hdANM can then be reformulated as follows: 
 

 °ëÖ − ?∆H
Q6Ö ¢ ∙ 0Ö5 = 9, (2.33) 

 
being ?∆H and 0Ö5 the hdANM angular frequency and mode shape, respectively, 
and ëÖ  and 6Ö  the hdANM Hessian and mass matrix.  

Based on the domain-hinge partition of the hdANM vectors of displacements 
and accelerations, the hdANM Hessian and mass matrices can be expanded as 
follows: 
 

 
ëÖ = «

ëÖ»» ëÖ»ë
ëÖë» ëÖëë

…, 
(2.34a) 

   
 
 6Ö = «

6Ö »» 6Ö »ë

6Öë» 6Öëë
…, (2.34b) 

 
being ëÖ»» the 6j × 6j matrix relating the forces and torques acting on the 
domains’ COMs to the corresponding translations and rotations, ëÖ»ë the 6j ×  
3_√ matrix relating the forces and torques acting on the domains’ COMs to the 
displacements of the hinge nodes, ëÖë» the 3_√ × 6j matrix relating the forces 
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acting on the hinge nodes to the translations and rotations of the domains’ COMs, 
ëÖëë the 3_√ × 3_√ matrix relating the forces acting on the hinge nodes to the 
corresponding displacements. The same definitions apply for the component of 
the mass matrix in Eq. (2.34b), by taking into account inertia forces and torques 
and the corresponding translational and rotational accelerations. 

The 3_√ × 3_√	submatrices ëÖëë and 6Öëë are the easiest to compute as they 
simply constitute a rearrangement of the submatrices contained in the ANM-based 
ë and 6 matrices. Specifically: 
 
 

ëÖëë =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
ëïë,ïë … ëïë,4ë … ëïë,óë … ëïë,5ë
… … … … … … …

ë4ë,ïë … ë4ë,4ë … ë4ë,óë … ë4ë,5ë
… … … … … … …

ëóë,ïë … ëóë,4ë … ëóë,óë … ëóë,5ë
… … … … … … …

ë5ë,ïë … ë5ë,4ë … ë5ë,óë … ë5ë,5ë⎦
⎥
⎥
⎥
⎥
⎥
⎤

, (2.35a) 

 
 

6Öëë =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
6ïë,ïë … 9 … 9 … 9
… … … … … … …
9 … 64ë,4ë … 9 … 9
… … … … … … …
9 … 9 … 6óë,óë … 9
… … … … … … …
9 … 9 … 9 … 65ë,5ë⎦

⎥
⎥
⎥
⎥
⎥
⎤

, (2.35b) 

 
being ë4ë,óë the 3 × 3 submatrix from the ANM Hessian ë corresponding to the 
ith and jth nodes in the hinge region, and 64ë,4ë the 3 × 3 diagonal submatrix from 
the mass matrix 6 corresponding to the ith node in the hinge region. Note that, as 
a general property of the mass matrices of ELMs, 6Öëë is diagonal. 

The 3_√ × 6j	submatrices ëÖë» and 6Öë» relate the elastic and inertia forces 
on the hinge nodes to the DOFs of the rigid domains. Based on the application of 
Eqs. (2.32) and rearrangement of the Hessian and mass matrix, it can be shown 
that 6Öë» is a null matrix, while ëÖë»	can be expanded as follows: 
 
 

ëÖë» =

⎣
⎢
⎢
⎢
⎡ë
Öïë,»ï … ëÖïë,»  … ëÖïë,»»
… … … … …

ëÖ4ë,»ï … ëÖ4ë,»  … ëÖ4ë,»»
… … … … …

ëÖ5ë,»ï … ëÖ5ë,»  … ëÖ5ë,»»⎦
⎥
⎥
⎥
⎤

, (2.36) 

 
being ëÖ4ë,»  the 3 × 6 submatrix relating the three elastic forces acting on the ith 
node of the hinge region to the three translations and three rotations of the dth rigid 
domain. This submatrix depends on the elastic connections involving the hinge 
node i and all the nodes j belonging to the dth domain [83]. Once the ëÖë»	matrix 
is computed, ëÖ»ë	can be simply evaluated as the transpose of ëÖë» due to the 
symmetry of the global stiffness matrix. Similarly, 6Ö»ë	being the transpose of 
6Öë», it is a null matrix as well. 
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Finally, the 6j × 6j	submatrices ëÖ»» and 6Ö»» relate the elastic and inertia 
forces and torques on the domains’ COMs to the corresponding DOFs. Based on 
the partitioning used above, these matrices can be expanded as follows: 
 

 

ëÖ»» =

⎣
⎢
⎢
⎢
⎢
⎢
⎡ë
Ö»ï,»ï … ëÖ»ï,»  … ëÖ»ï,»¡ … ëÖ»ï,»»
… … … … … … …

ëÖ» ,»ï … ëÖ» ,»  … ëÖ» ,»¡ … ëÖ» ,»»
… … … … … … …

ëÖ»¡,»ï … ëÖ»¡,»  … ëÖ»¡,»¡ … ëÖ»¡,»»
… … … … … … …

ëÖ»»,»ï … ëÖ»»,»  … ëÖ»»,»¡ … ëÖ»»,»»⎦
⎥
⎥
⎥
⎥
⎥
⎤

, (2.37a) 

 
 

6Ö»» =

⎣
⎢
⎢
⎢
⎢
⎢
⎡6
Ö »ï,»ï … 9 … 9 … 9
… … … … … … …
9 … 6Ö» ,»  … 9 … 9
… … … … … … …
9 … 9 … 6Ö»¡,»¡ … 9
… … … … … … …
9 … 9 … 9 … 6Ö»»,»»⎦

⎥
⎥
⎥
⎥
⎥
⎤

, (2.37b) 

 
where ëÖ» ,»¡ represents the 6 × 6 Hessian matrix that relates the elastic forces 
and torques acting on the COM of domain d to the translations and rotations of the 
COM of domain e, while 6Ö» ,»  represents the 6 × 6 mass matrix that relates the 
inertia forces and torques acting on the COM of domain d to the corresponding 
translational and rotational accelerations. Note that 6Ö»» is a diagonal matrix. The 
generic blocks ëÖ» ,»¡ and 6Ö» ,»  can be further expanded by separating the 
contributions of the translational and rotational DOFs as follows: 
 

 
ëÖ» ,»¡ = À

ëÖ» ,»¡
.0 ëÖ» ,»¡

.Ã

ëÖ» ,»¡
∞0 ëÖ» ,»¡

∞Ã Õ, (2.38a) 

 
 

6Ö» ,»  = À
6Ö» ,» 
.0̈ 9

9 6Ö » ,» 
∞Ã̈ Õ, (2.38b) 

 
being ëÖ» ,»¡

.0  the 3 × 3 stiffness matrix relating the forces acting on the COM of 
domain d to the translations of domain e, ëÖ» ,»¡

.Ã  the 3 × 3 stiffness matrix relating 
the forces acting on the COM of domain d to the rotations of domain e,	ëÖ» ,»¡

∞0  the 
3 × 3 stiffness matrix relating the torques acting on the COM of domain d to the 
translations of domain e, ëÖ» ,»¡

∞Ã  the 3 × 3 stiffness matrix relating the torques 
acting on the COM of domain d to the rotations of domain e, 6Ö» ,» 

.0̈  the 3 × 3 
mass matrix relating the inertia forces acting on the COM of domain d to the 
corresponding translations, and 6Ö» ,» 

∞Ã̈  the 3 × 3 mass matrix relating the inertia 
torques acting on the COM of domain d to the corresponding rotations. Note that, 
again, the matrix 6Ö» ,»  is diagonal. These six matrices are derived by starting 
from the ANM Hessian and mass matrix, by applying the equations of rigid-body 
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motion and by calculating the total elastic and inertia forces and torques in the 
COM of domain d [83]. 

Once the complete hdANM Hessian and mass matrix are obtained as reported 
above, the eigenvalue-eigenvector problem in Eq. (2.33) can be solved to obtain 
the hdANM vibrational frequencies and mode shapes. Note that the hdANM 
eigenvectors reported in Eq. (2.33) have dimension (3_√ + 6j) × 1, as they 
contain the three modal displacements of the hinge nodes and the six DOFs per 
domain. By applying once again the equations of rigid-body motion from Eqs. 
(2.32) for each domain, one easily obtains the modal displacements of all the 
protein residues. Finally, the modal displacements obtained from the hdANM can 
be directly compared to the protein conformational changes and PCs from the 
ensemble of known crystal structures, to verify whether this new method can 
indeed capture the protein biological mechanism. 

The first example that has been investigated refers to the LAO-binding 
protein, whose conformational change and its relationship with ANM normal 
modes have already been discussed in Section 2.3.1. In Table 2.1, the sixteen 
crystal structures that have been used to calculate the PCs of LAO-binding protein 
are shown. Based on the application of Eqs. (2.29) and (2.30), the results of PCA 
are shown in Figure 2.17, where PC1 is plotted against PC2. Note that PC1 
captures 98.1% of the variance, and PC2 the 1.2%. From Figure 2.17, it can also 
be noted that the PC1 direction generates two main clusters of the protein 
structures: the tight cluster on the left of the PC map is mainly associated with 
closed forms of the protein, whereas the loose cluster on the right is associated 
with the open forms. For this reason, PC1 mainly corresponds to the LAO-binding 
protein conformational change between the open and closed conformations. 

 
Table 2.1. Crystal structures of LAO-binding protein from the PDB. 

2LAO (reference) 1LST 6MLA 6MLI 
1LAF 6MKU 6MLD 6MLO 
1LAG 6MKX 6MLE 6MLP 
1LAH 6ML0 6MLG 6MLV 

 

 
Figure 2.17. PC plot of the sixteen crystal structures of LAO-binding protein (PC1 vs. 
PC2). 

 



 

 54 

By comparing the hdANM modes of the reference structure (PDB: 2lao), 
obtained by using the hinge prediction method from Khade et al. [85] and a 
geometrical cutoff of 8 Å, to the obtained PCs from the structure ensemble by 
means of the overlap metric from Eq. (2.28), one obtains an overlap of 0.65 
between the first mode and PC1. Figure 2.18 reports the normalized 
displacements of PC1 against the first hdANM mode, showing a fairly good 
agreement. Note that the correlation found with the hdANM is lower than the one 
found with the standard ANM (Figure 2.15). However, with ANM the high 
correlation is found with the second lowest mode, whereas with the hdANM the 
fundamental vibrational mode is the one most associated with the biological 
mechanism. 

 

 
Figure 2.18. PC1 vs. the first hdANM mode of LAO-binding protein. 

 
The second example refers to the subunit of the GroEL large macromolecular 

complex [86]. The subunit is made up of 524 residues, and the fourteen crystal 
structures used for the PCA are shown in Table 2.2. The results of PCA are 
reported in Figure 2.19, where PC1 is plotted against PC2. In this case, PC1 
captures 99.3% of the variance, and PC2 0.2%. Similarly to the previous case 
related to LAO-binding protein, from Figure 2.19 it can be noted that the PC1 
direction generates two main clusters of the protein structures: the tight cluster on 
the left is associated with the open forms of the subunit, whereas the loose cluster 
on the right is associated with the closed forms. For this reason, PC1 mainly 
corresponds to the GroEL subunit conformational change between the open and 
closed conformations. 

 
Table 2.2. Crystal structures of GroEL subunit from the PDB (chains A). 

1AON (reference) 1PCQ 1SVT 2NWC 
1OEL 1PF9 1SX4 3E76 
1KP8 1J4Z 1XCK  
1MNF 1SS8 2EU1  
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Figure 2.19. PC plot of the fourteen crystal structures of GroEL subunit (PC1 vs. PC2). 

 
By comparing the hdANM modes of the refence structure (PDB: 1aon), 

obtained by using a geometrical cutoff of 15 Å, to the obtained PCs from the 
structure ensemble, one obtains an overlap of 0.73 between the first mode and 
PC1. Figure 2.20 reports the normalized displacements of PC1 against the first 
hdANM mode, showing again a clear agreement. 

 

 
Figure 2.20. PC1 vs. the first hdANM mode of GroEL subunit. 

 
The results shown above regarding the application of the hdANM to the 

LAO-binding protein and GroEL subunit show that this new model is indeed able 
to identify correctly the biological mechanism of these proteins. Moreover, being 
grounded on the coarse-graining of entire domains into their COM, it turns out to 
be much more computationally effective than traditional models, such as ANM. 
As a matter of fact, by considering only six DOFs per rigid domain, the whole 
dimension of the hdANM stiffness and mass matrices is much lower than the 
ANM ones. In turn, their diagonalization can take place with much less amount of 
time, allowing to carry out fast analyses even for large macromolecular 
assemblies. 

Nevertheless, this method still has some limitations. Firstly, it derives from 
the ANM, thus it contains only the information about the three-dimensional shape 
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and connectivity of the protein structure. Although coarse-grained models based 
only on protein topology (GNM, ANM, RTB, etc.) have been shown to be 
powerful in describing protein fluctuations and conformational transitions, their 
inherent simplicity might prevent the successful application to those proteins 
where the chemo-physical properties of certain amino acids in specific regions 
play a key role in defining the protein dynamics. Secondly, being based on the 
diagonalization of matrices and modal analysis, it allows the computation of the 
linear normal modes, that identify the small-amplitude protein vibrations. In some 
cases, these modes might fail to describe the large-scale conformational 
transitions that are involved in the biological mechanism. 

Although the first aspect is common to all the ELMs and constitutes their 
fundamental feature, the second issue could be overcome by extrapolating the 
linear normal modes, which are related to the small-amplitude protein vibrations, 
to obtain large-scale curvilinear transition pathways. This strategy has been 
recently adopted by Hoffmann and Grudinin [38] and might generate much more 
realistic motions, rather than simply re-scaling the small-amplitude normal modes 
for larger scales, which can induce unrealistic distortions within the domains. The 
hdANM is certainly suitable for that, since the rotational component of the 
domain motion can be easily extrapolated to generate large-scale curvilinear 
pathways of the conformational transition. This aspect will be treated in further 
contributions and it is believed to become a powerful yet simple tool for the 
evaluation of protein biological mechanisms. 

2.4 Conclusions 

In this Chapter, the subject of protein dynamics and biological mechanisms 
has been addressed through a pure Structural Mechanics approach. Specifically, 
after a brief overview of the protein structure presented at the beginning of the 
Chapter, together with the discussion of protein folding and the sequence-
structure-dynamics-function paradigm, the use of the Elastic Lattice Models 
(ELMs) for the investigation of protein dynamics has been discussed. 

Based on the seminal work of Tirion’s [29] and the subsequent development 
of the first Elastic Network Models (ENMs), such as the Gaussian Network 
Model (GNM) [30] and the Anisotropic Network Model (ANM) [31], the 
Structural Mechanics foundation of the ELMs for the analysis of protein 
vibrations has been thoroughly addressed. To the purpose, a FE-based ELM has 
been presented which is the counterpart of the ANM by following a pure 
Structural Mechanics approach, focuses on the low-frequency protein dynamics 
and is easily accessible to the engineering community. Despite the simplified 
nature of these models, they are shown to provide good estimate of the protein 
flexibility, by comparison with the experimental B-factors. 

Furthermore, the ELMs have been shown to be effective to investigate and 
predict the protein conformational changes, which are involved into the protein 
biological mechanisms. As a matter of fact, traditional ELMs, such as the ANM, 
allow to obtain a good prediction of the protein conformational transition through 
the computation of the low-frequency normal modes. Moreover, the ELM modes 
are also found to match fairly accurately with the Principal Components (PCs) 
arising from the Principal Component Analysis (PCA) on a set of known crystal 
structures. 

Consequently, a new ELM has been recently developed and presented at the 
end of this Chapter. It has been called the hinge-domain ANM (hdANM), since it 
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is based on a further coarse-graining of the protein ELM, which treats hinge 
regions as flexible and rigid domains as rigid bodies that translate and rotate 
around their center of mass (COM). This new model has been applied to extract 
the low-frequency motions of the protein structure, which in turn have been 
compared to the conformational changes and the PCs arising from sets of known 
crystal structures. From the analysis regarding LAO-binding protein and GroEL 
subunit, the hdANM is shown to provide good matches between the low-
frequency motions and the lowest PCs, thus confirming that it can predict fairly 
accurately the protein biological mechanisms. 

The results presented in this Chapter are very interesting as they suggest that 
even very complex entities, such as proteins, can be successfully modeled – and 
their behavior can be accurately analyzed – by means of simplified structural 
models, such as the ELMs. Despite being extremely complicated, protein 
dynamics and behavior can thus be analyzed by models that exploit purely 
Structural Mechanics concepts, without tackling the problem by using very 
byzantine approaches that include complex chemo-physical formulations. 
Obviously, this does not mean that complex models are not useful. For example, 
thinking about Molecular Dynamics (MD) simulations, it is clear that these are 
very sophisticated models where the Newton’s laws of motion are solved at the 
atomic scale, with the use of complex energetical potentials that require the 
knowledge of the chemo-physical interaction among all the atoms. Of course, MD 
simulations can reveal crucial information about the behavior of complex systems. 
However, their complexity can sometimes prevent the success of the analysis or 
the reliability of the results. Conversely, simplified yet powerful models, such as 
the ELMs, can shed light on the overall behavior of the system and can make the 
analysis and results interpretation much easier and accessible to the scientific 
community.  
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Chapter 3 

ELMs and Proteins: Force 
Application Patterns and 
Geometrical Non-Linearities 

In the previous Chapter, it has been shown that protein flexibility and 
mechanisms can be predicted by using simplified ELMs coupled with the 
Structural Mechanics concept of modal analysis. Low-frequency modes are often 
related to the conformational changes and their fluctuations are frequently in 
agreement with the experimental B-factors, which in turn are the experimental 
fingerprints of protein flexibility. Besides, in the last decades, some other works 
exploited the potential of the protein ELMs through the concept of force 
application. 

In the first Section of this Chapter, the novel results arising from novel force 
application patterns on the protein ELMs are reported, which are found to provide 
useful insight into protein flexibility. Then, in Section 3.2, the geometrical non-
linear analysis is also applied to the protein ELM, which is meant to investigate 
the possible role of geometrical non-linearities in the definition and 
characterization of the conformational change pathway. 

3.1 Force Application on Protein ELMs  

The fundamental assumption for the development of the first force 
application methodologies on protein ELMs relies on the linear response theory, 
that assumes that the protein structural change upon ligand-binding can be 
predicted by means of a linear deformation process [87]. Note that the concept of 
linearity has already been exploited in all the analyses reported above dealing with 
the use of modal analysis, since this aims at evaluating the mode shapes under the 
assumption of small displacements and linear elastic behavior. 

Based on the linear approach, Atilgan and Atilgan [88] developed a force 
application methodology called the Perturbation-Response Scanning (PRS). The 
PRS relies on the sequential application of directional forces (perturbations) on 
single residues and record the resulting changes in the protein configuration. The 



 

 59 

PRS starts from the fundamental equilibrium equation that relates the vector of 
forces acting on the structure . to the corresponding displacements 0 through the 
Hessian matrix ë: 
 

 . = ë0. (3.1) 
 
By calculating the pseudo-inverse of the Hessian matrix, e.g. from Eq. (2.13), one 
can obtain the displacements of the nodes for any given applied forces: 
 

 0 = ëÖlf.. (3.2) 
 

The PRS sequentially applies point forces, randomly oriented in the three-
dimensional space, at single residues and compute the corresponding 
displacements of the protein structure. Applying this methodology to the bacterial 
ferric binding protein (FBT), the researchers found that the residue-by-residue 
displacements between the open and closed forms are faithfully reproduced by 
perturbations applied on the majority of residues [88]. Subsequently, the PRS was 
applied to study a set of 25 proteins and it was found that, in most cases, there are 
single key residues that can be manipulated to accurately describe the whole 
conformational change. Conversely, in other cases, the transitions are achieved by 
perturbating several residues scattered throughout the protein chain [89]. The 
method was also successfully applied to investigate the allosteric mechanism of 
PDZ domains [90] and, more recently, to predict the closed-to-open transition of 
the GroEL subunit originating from ATP hydrolysis [86]. 

Another methodology based on force application and the linear response 
theory was developed by Eyal and Bahar [91]. The work aims at evaluating the 
anisotropic mechanical behavior of the protein elastic network in order to 
understand the response of proteins to external applied forces. This behavior can 
be experimentally analyzed through single-molecule manipulation techniques, 
such as Optical Tweezers (OT) and Atomic Force Microscopy (AFM). The force 
application methodology proposed by the authors relies on the calculation of the 
quantity 〈Œ$s〉, called effective spring constant or mechanical resistance, that 
quantifies the resistance of the protein network against pulling forces applied on 
residues i and j. The mathematical framework for the calculation of 〈Œ$s〉 is based 
on the normal modes extracted from the ANM Hessian and it was found that, 
despite the simplicity of the model, the results are able to capture the anisotropic 
mechanical response observed in single-molecule pulling experiments [91]. 

Based on the works described above, two methodologies based on force 
application patterns on the protein ELM have been proposed and will be shown in 
the remaining of this Section. The first is based on the pairwise pulling pattern 
shown by Eyal and Bahar [91], but aimed at defining two new metrics, called the 
structural compliance and structural stiffness, that are found to provide a faithful 
estimate of the protein flexibility upon comparison with the experimental B-
factors (see Section 3.1.1). The second approach is a further generalization of the 
previous method, as it relies on random forces applied on several surface residues 
or the entire protein structure, and it is shown to provide a good agreement with 
the protein flexibility extracted from the experimental B-factors (see Section 
3.1.2). 
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3.1.1 Pairwise force application: Structural compliance and 
stiffness as new metrics of protein flexibility 

The Structural Mechanics approach of force application on the protein ELM 
has been recently applied by Scaramozzino et al. [92] for the definition of new 
structural metrics that provide information about protein flexibility. The procedure 
is based on pairwise force application, i.e. a couple of equal and opposite forces 
are applied to each couplet of residues, as shown in Figure 3.1. 
 

 
Figure 3.1. Scheme for the pairwise force application. The figure shows a zoomed 
picture of the protein ELM, made up of nodes and connecting springs. For each couplet 
of residues i and j, two force vectors Fi and Fj are applied along the i-j direction to pull 
the residues apart probing the directional deformability. Adapted with permission from 
[92]. 
 

The forces are assumed to have unit magnitude and act along the i-j direction 
for each couplet of residues i and j. Based on the XYZ coordinates of these nodes, 
the 3 × 1 force vectors .4 and .ó can be formulated as follows: 
 

 
.4 = −

µ4,ó
pµ4,óp

, (3.3a) 

 
 

.ó =
µ4,ó
pµ4,óp

, (3.3b) 

 
being µ4,ó = {ûs − û$, üs − ü$, †s − †$}∞ the vector connecting residue i to residue j 
and pµ4,óp = ∏(ûs − û$)Q + (üs − ü$)Q + (†s − †$)Q their initial distance. The force 
vectors .4 and .ó are then inserted into the 3N × 1 global force vector . in Eq. 
(3.1). Based on the pairwise force application pattern, it follows that the vector . 
has only six non-zero components, as calculated from Eqs. (3.3). Once the 
Hessian matrix of the protein ELM is evaluated according to the ANM or the FE-
based methodology, its pseudo-inverse is calculated from Eq. (2.13). Equation 
(3.2) is then applied to obtain the structure displacements 0 due to the pairwise 
force application. 
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Based on the obtained displacements, two new structural metrics are then 
introduced to describe the deformability of the protein structure along the i-j 
direction, which have been called the structural compliance and the structural 
stiffness. Both are classical measures of the deformability and rigidity of civil and 
mechanical systems, but they are applied for the first time to the case of proteins 
by Scaramozzino et al. [92]. The former is defined as the total displacement along 
the force direction divided by the absolute magnitude of the applied force, while 
the latter can be simply evaluated as the inverse of compliance. Based on this 
definition, for the case under investigation one obtains the values of the pairwise 
compliance o$,s and stiffness —$,s related to nodes i and j: 
 

 
o$,s =

°0ó − 04¢
Ü
.ó

|.ó|
=

(0ó − 04)Üµ4,ó
∏(ûs − û$)Q + (üs − ü$)Q + (†s − †$)Q

, (3.4a) 

 
 

—$,s =
1
o$,s

=
∏(ûs − û$)Q + (üs − ü$)Q + (†s − †$)Q

(0ó − 04)Üµ4,ó
. (3.4b) 

 
Applying the pairwise force application pattern for each couplet of residues i 

and j, one obtains the complete description of the distribution of these structural 
metrics throughout the protein structure. For each residue i, a unique value of 
compliance o$ and stiffness —$ can then be defined as the average across all the i-j 
interactions, namely: 

 
o$ =

1
” − 1

L o$,s

Ä

sÅf,sÇ$

, (3.5a) 

 
 

—$ =
1

” − 1
L —$,s

Ä

sÅf,sÇ$

. (3.5b) 

 
The average procedure reported in Eqs. (3.5) is not the only possible to achieve a 
single value that provides information about the flexibility of the protein structure 
in the ith node, but it seems the most reasonable one. Of course, other average 
procedures are possible, that take into account the effective position of the ith 
residue within the protein structure or its chemical species. 

Remarkably, the compliance and stiffness distributions along the protein 
chain are found to exhibit a very good correlation with the experimental B-factors. 
In Figure 3.2, this comparison is shown for the case of HEW lysozyme (PDB: 
4ym8), modeled through the pfANM [32] by using a value of ™ equal to 3 from 
Eq. (2.15). Figure 3.2a shows the comparison of the experimental B-factors 
against the computed fluctuations obtained from the normal modes as from Eq. 
(2.14), leading to a Pearson correlation coefficient of 0.73. Instead, Figure 3.2b 
shows the comparison of the experimental B-factors against the compliance and 
stiffness distributions from Eqs. (3.5) that lead to correlation coefficients of 0.70 
and –0.69. As can be seen, despite the simplicity of the model and of the 
methodology for the derivation of these structural metrics, the results show a good 
agreement with the experimental data. This confirms that the proposed structural 
metrics are indeed able to describe fairly accurately the protein flexibility, as 
extracted from the crystallographic B-factors. 
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Figure 3.2. HEW lysozyme (PDB: 4ym8), modeled with pfANM (p = 3): (a) 
experimental B-factors vs. fluctuations computed from normal modes; (b) experimental 
B-factors vs. compliance and stiffness distribution computed from the pairwise force 
application pattern. 
 

As can be seen from Figure 3.2, the compliance profile shows a positive 
correlation with the B-factors distribution, meaning that peaks in the B-factors 
profile, i.e. peaks of protein flexibility, correspond to higher values in the 
compliance distribution. Conversely, the stiffness distribution exhibits a negative 
correlation with the B-factors, so that regions with greater B-factors tend to have 
lower stiffness values. 
 

 
 

Figure 3.3. HEW lysozyme (PDB: 4ym8), modeled with pfANM (p = 3): (a) compliance 
map; (b) stiffness map. 
 

Besides the evaluation of the linear distributions, the approach presented here 
based on the pairwise force application also allows the derivation of residue-
residue interaction information, through the evaluation of the pairwise compliance 
and stiffness values, i.e. o$,s and —$,s. These values can be plotted in map 
representations, as reported in Figure 3.3 for the case of HEW lysozyme analyzed 
above. Figure 3.3a shows the map of compliance values from Eq. (3.4a), while 
Figure 3.3b plots the stiffness values from Eq. (3.4b). These maps are useful to 
investigate the anisotropic distribution of the protein flexibility-rigidity based on 

20 40 60 80 100 120
Residue

-2

0

2

4

6

N
or

m
al

iz
ed

 v
al

ue
 [-

]

B-factors vs. Fluctuations

B-factors
Fluctuations,  = 0.73

20 40 60 80 100 120
Residue

-4

-2

0

2

4

6

N
or

m
al

iz
ed

 v
al

ue
 [-

]

B-factors vs. Compliance and Stiffness

B-factors
Compliance,  = 0.70
Stiffness,  = -0.69

20 40 60 80 100 120
Residue

20

40

60

80

100

120

R
es
id
ue

0

50

100

150

200

250

300

20 40 60 80 100 120
Residue

20

40

60

80

100

120

R
es
id
ue

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

(a) 

(b) 

(a) (b) 



 

 63 

the internal residue-residue interactions. High values of compliance and low 
values of stiffness mean high flexibility in the considered direction, whereas low 
compliance and high stiffness values denote high rigidity in that direction. 
Similarly to the maps of mechanical resistance obtained from Eyal and Bahar 
[91], the ones reported here can be used as well to predict the anisotropic response 
of proteins against external pulling forces.  

The analysis shown above for HEW lysozyme has been run for several 
protein structures, modeled by means of the pfANM using a value of ™ equal to 3, 
which is found to provide the best results. High-resolution structures have been 
considered from the PDB [14], and divided into two datasets. Dataset 1 contains 
single-chain proteins, while dataset 2 contains proteins with more than one 
polypeptide chain. The characteristics of the datasets used for the analysis are 
shown in Table 3.1. The former contains 921 single-chain protein structures, 
whereas the latter 149 multi-chain proteins. More details can be found in [92]. 
 

Table 3.1. Datasets characteristics. Used with permission from [92]. 
Dataset 1 2 

Number of chains [-] Single (1) Multiple (2-10) 
Resolution [Å] 0.0 – 1.3 0.0 – 1.1 

Sequence identity [%] 30 50 
Number of structures [-] 921 149 

Protein size (number of residues) [min – max] 101 – 1174 104 – 2484 
 

For each protein structure, the experimental B-factors available in the PDB 
record are compared to the fluctuations calculated from the pfANM normal modes 
from Eq. (2.14), and to the compliance and stiffness profiles defined above. The 
Pearson correlation coefficients are computed for each comparison and the results 
are shown in Figure 3.4 and 3.5 for dataset 1 and 2, respectively. 
 

 
Figure 3.4. Comparison of the fluctuation, compliance and stiffness correlations with the 
experimental B-factors for dataset 1. (a) Distribution of the correlation coefficients for 
fluctuations (grey histogram) and compliance (black histogram). (b) Distribution of the 
correlation coefficients for stiffness. Median values (M) and standard deviations (σ) are 
reported in the keys. Used with permission from [92]. 
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Figure 3.5. Comparison of the fluctuation, compliance and stiffness correlations with the 
experimental B-factors for dataset 2. (a) Distribution of the correlation coefficients for 
fluctuations (grey histogram) and compliance (black histogram). (b) Distribution of the 
correlation coefficients for stiffness. Median values (M) and standard deviations (σ) are 
reported in the keys. Used with permission from [92]. 
 

As can be seen from Figures 3.4a and 3.5a, the statistical distributions of the 
Pearson correlation coefficients resembles a log-normal distribution centered 
around 0.65. Also, for both dataset 1 and 2, the distributions of the correlation 
coefficients of the compliance metric are similar to the ones of the traditional 
fluctuations. This means that compliance based on pairwise force application is 
indeed a valid metric for the prediction of the experimental B-factors. Similarly, 
from Figures 3.4b and 3.5b, it is found that the statistical distribution of the 
correlation coefficients obtained by comparing the B-factors against stiffness 
values resembles a log-normal distribution centered around –0.65, confirming that 
the stiffness profile generally shows a good anti-correlation with the experimental 
B-factors. 

From the analysis performed on the extensive dataset shown in Table 3.1, it is 
also found that, in most cases, compliance and stiffness profiles outperform the 
traditional fluctuations in the correlation with experimental data. For example, in 
Figure 3.6, the case of the single-chain Human Complement Protein C8γ (PDB: 
1lf7) is shown, whereas Figure 3.7 reports the results from the multi-chain dimeric 
Clitocybe nebularis ricin B-like lectin (PDB: 3nbc). 

Figures 3.6a and 3.7a report the comparison between the B-factors and 
fluctuations, Figures 3.6b and 3.7b show the comparison with the compliance and 
stiffness metrics, while Figures 3.6c and 3.7c map the compliance, experimental 
B-factors and fluctuations onto the tertiary structure of the protein. As can be 
seen, in the first case, compliance and stiffness profiles show a correlation with 
the experimental data 15% higher than the one found with the usual fluctuations. 
In the second case, the improvement of the correlation is around 5–7%. In both 
cases, the compliance profile closely align to the experimental data, whereas the 
stiffness distribution is someway mirrored with respect to the experimental B-
factors. 

However, it must be also said that in some cases the compliance and stiffness 
metrics provide lower correlation coefficients than the ones obtained from the 
traditional fluctuations. However, as demonstrated from Figures 3.4–3.7, they can 
certainly be used as a novel valid metric to predict the experimental B-factors and 
then measure the protein flexibility. 
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Figure 3.6. Comparison of the fluctuation, compliance and stiffness correlations with the 
experimental B-factors for Human Complement Protein C8γ (PDB: 1lf7). (a) 
Fluctuations; (b) compliance and stiffness; (c) graphical versions of these values mapped 
on the structure – left, compliance; center, normalized B-factors; and right, normalized 
fluctuations. Coloring is spectral with red for higher values and dark blue for lower 
values. Used with permission from [92]. 
 

Traditionally, the uncertainty of the atom position in macromolecular 
structures, which is measured by the crystallographic B-factors, has been 
associated with the thermal fluctuations. These can be computed from the internal 
protein dynamics, e.g. as reported in Eqs. (2.7), (2.14) and (2.23). The pairwise 
force application approach presented here sheds a different light on the nature of 
the experimental B-factors. As a matter of fact, these can therefore be explained 
under a new perspective, as they are found to result from the intramolecular 
mechanical interactions arising between each couplet of residues. In this respect, 
the pairwise force application methodology seems the most rational choice to 
probe the residue-residue interaction and, as shown above, it has provided good 
results in measuring the protein flexibility. 

This mechanical perspective is rather new in the field of computational 
biology. Still, the pairwise force application method presented above has some 
limitations, as it focuses only on the internal residue-residue interactions 
neglecting the effect that the external environment can have on the protein 
flexibility. Moreover, B-factors should be the consequence of stochastic 
processes, that result from the intrinsic protein dynamics as well as from the 
interaction between the protein residues and external particles, e.g. water 
molecules, ions, etc. The latter are constantly jiggling in the protein environment 
and are likely to create continuous random collisions with the protein structure. 
For these reasons, an additional force application methodology was developed to 
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predict the protein flexibility and the experimental B-factors, by considering a 
random force pattern on the protein ELM, which is presented in the next Section. 
 

 
Figure 3.7. Comparison of the fluctuation, compliance and stiffness correlations with the 
experimental B-factors for Clitocybe nebularis ricin B-like lectin (PDB: 3nbc). (a) 
Fluctuations; (b) compliance and stiffness; (c) graphical versions of these values mapped 
on the structure – left, compliance; center, normalized B-factors; and right, normalized 
fluctuations. Coloring is spectral with red for higher values and dark blue for lower 
values. Used with permission from [92]. 

3.1.2 Random force bombardment on the protein ELM 

The random force application pattern is meant to simulate the effect of the 
bombardment process that results from the random collisions of external particles 
onto the protein structure [93]. As a matter of fact, water molecules, ions and 
other particles are always present in the environment where proteins exist and are 
constantly vibrating, generating continuous collisions with the protein structure. 
Therefore, the protein-environment interaction can have a not negligible influence 
on protein behavior and flexibility. 

Differently from the pairwise force application method presented above, 
where only two residues are pulled apart independently, this approach consists of 
applying random forces to the whole protein ELM. The randomness of the force is 
considered both in magnitude and directionality. Each node i of the protein 
structure is subjected to a 3 × 1 force vector .4. The three vector components, i.e. 
*$,1, *$,2 and *$,3, are randomly sampled from a uniform distribution between –1 
and +1: 
 

 *$,1	~	’(−1,1), (3.6a) 
 *$,2	~	’(−1,1), (3.6b) 
 *$,3	~	’(−1,1). (3.6c) 
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As a result, one obtains random force application patterns similar to the one 
shown in Figure 3.8. The figure reports the ELM of HEW lysozyme (PDB: 
4ym8), with random forces applied to all the Cα atoms. 
 

 
Figure 3.8. Random force application pattern on the HEW lysozyme (PDB: 4ym8) ELM. 
Red dots represent Cα atoms, black lines the elastic connections generated with a 
geometrical cutoff of 15 Å, and blue arrows the random forces. In this case, random 
forces are applied to each node. 
 

The N nodal random force vectors .4 are then grouped into the global 3N × 1 
force vector .÷. This vector is defined as .÷ since it refers to the sth random 
pattern. Based on the calculation of the Hessian matrix of the protein ELM and its 
pseudo-inverse, the application of the sth random pattern .÷ leads to the evaluation 
of the global 3N × 1 displacement vector 0÷ as follows: 
 

 0÷ = ëÖlf.÷. (3.7) 
 

From the global displacement vector 0÷, it is straightforward to evaluate the 
total absolute displacement related to the ith node as follows: 
 

 
!T$ = è!T§$lQ

Q + !T§$lf
Q + !T§$

Q. (3.8) 

 
being !T§$lQ, !T§$lf and !T§$ the three Cartesian components along the X, Y and 
Z axes of the displacements of the ith node. 

The procedure explained so far is repeated several times, thus generating 
several randomly sampled force vectors and evaluating the corresponding nodal 
displacements through Eqs. (3.7) and (3.8). In Figure 3.9 three different 
displacement profiles based on three different random force patterns are shown 
for the case of HEW lysozyme. The results refer to the pfANM of the protein 
structure, with a value of ™ equal to 3. By looking at Figure 3.9, it is interesting to 
observe that, although the specific displacement profiles are obviously different as 
they result from different force patterns (s = 1, 2, 3), they exhibit a certain 
similarity. This similarity should be due to the intrinsic protein flexibility, that 
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ultimately depends only on the three-dimensional structure and the features of the 
ELM. From this observation, it follows that the random force application pattern 
can provide useful information to unravel the flexibility characteristics of the 
protein structure [93]. 

Based on these considerations, the total nodal displacement !$ is defined as 
the average value of all the absolute displacements !T$ resulting from the different 
random force patterns .÷: 
 

 
!$ =

1
—
L!T$

◊

TÅf

. (3.9) 

 
being S the total number of force patterns applied to the ELM. Remarkably, it is 
found that the profile of absolute displacements found from the procedure 
reported in Eqs. (3.7), (3.8) and (3.9) shows good agreement with the 
experimental B-factors. This confirms the previous observation that, similarly to 
the pairwise force application methodology reported above, the random force 
bombardment is able to provide correct information about the flexibility of the 
protein structure. In Figure 3.10, the comparison between the experimental B-
factors and total average displacements resulting from S = 10000 random force 
patterns is shown for the pfANM of HEW lysozyme. As can be seen, a correlation 
coefficient of 0.73 is obtained, showing that the proposed random force 
application methodology can well predict the experimental flexibility. 
 

 
Figure 3.9. Nodal absolute displacements of the HEW lysozyme (PDB: 4ym8) ELM 
(pfANM, p = 3) under three different random force application patterns. 
 

 
Figure 3.10. Average displacements of the HEW lysozyme (PDB: 4ym8) ELM (pfANM, 
p = 3) from 10,000 random force application patterns compared to experimental B-
factors. 
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Interestingly, although the total number of random force patterns S should be 

as high as possible to have results that are accurate and that can be replicated in 
subsequent analyses, it is found that after almost one hundred runs the profile of 
average displacements from Eq. (3.9) matches the experimental B-factors 
basically with the same correlation coefficient that is obtained after 10000 runs. 
Figure 3.11 shows the convergence curve of the correlation coefficient depending 
on the total number of runs S. 
 

 
Figure 3.11. Convergence of the correlation coefficient between experimental B-factors 
and average displacements of the HEW lysozyme (PDB: 4ym8) ELM (pfANM, p = 3), 
based on variable total number S of random force application patterns. Blue line 
represents the convergence curve, while the orange line is the correlation coefficient 
(0.73) found after 10000 runs. 
 

The previous results allow to draw an interesting conclusions about the nature 
of the protein flexibility, that is reflected by the experimental B-factors. In the 
previous Chapter, we have seen that B-factors can fairly accurately be predicted 
from the fluctuations derived from the normal modes, meaning that the B-factors 
should reflect the intrinsic dynamics of the protein. Furthermore, in Section 3.1.1, 
we have also seen that a pairwise force application pattern, simulating the residue-
residue interactions, also leads to good correlations with the experimental B-
factors, meaning that these can also reflect the effect of the internal residue-
residue mechanical strength of the protein structure. Finally, in this Section, we 
find that a random force application pattern, that is meant to simulate the 
bombardment of the external particles on the protein structure, still provides good 
results in terms of B-factors prediction. Eventually, this suggests that the 
experimental B-factors can be described not only as the fingerprint of the internal 
protein dynamics and mechanical strength, but also as the result of the external 
collisions that characterize the protein-environment interaction. 

Based on the consideration that the effect of random forces due to the 
external collisions should be greater on the protein surface rather than on the 
interior core, one might wonder whether it is really necessary to apply forces all 
over the protein structure. To verify this hypothesis, an additional random force 
pattern is defined, where the random force vectors are applied only on the residues 
lying on the protein surface. For this purpose, a methodology to define the protein 
surface is needed. 

This is based on the boundary function, that is available in the MATLAB® 
environment. This function works based on the Delaunay triangulation of a set of 
points, and is dependent on a single parameter which is called the shrink factor. 
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The shrink factor is a scalar value between 0 and 1: setting the shrink factor to 0 
gives rise to the convex hull, while setting it to 1 gives rise to the most compact 
boundary that envelops the points. Points on the surface are then considered the 
external nodes of the protein, whereas points lying in the interior space are the 
core nodes. In Figure 3.12 the generation of the external surface of HEW 
lysozyme (PDB: 4ym8) is shown for three different values of the shrink factors, 
i.e. 0.0, 0.5 and 1.0. As can be seen, higher shrink factors lead to more shrunk 
surfaces, thus higher numbers of external nodes. For shrink factors equal to 0.0, 
0.5 and 1.0, one obtains 44, 83 and 109 external nodes, respectively, out of a total 
of 129 nodes for HEW lysozyme (Figure 3.12). 
 

 
 

Figure 3.12. Generation of external surface of HEW lysozyme (PDB: 4ym8), depending 
on the shrink factor: (a) shrink factor = 0.0; (b) shrink factor = 0.5; (c) shrink factor = 1.0. 
Red dots represent the 129 Cα atoms of the protein, blue surface represents the external 
surface generated by Delaunay triangulation with different shrink factors. 
 

Once the external surface is defined based on the boundary function and the 
selected shrink factor, the force vectors .4 are randomly generated from Eqs. (3.6) 
only for the nodes that lie on the external surface. As a consequence, the force 
vectors .4 are null for all the internal nodes. Based on this, the global force vector 
3N × 1  .÷ is generated for each random simulation s, and the corresponding 
nodal displacements 0÷ are computed as from Eq. (3.7). Equations (3.8) and (3.9) 
are then applied as explained above to find the average displacements of the 
protein residues, that results from 10000 runs. 
 

 
Figure 3.13. Experimental B-factors vs. average displacements of the HEW lysozyme 
(PDB: 4ym8) ELM (pfANM, p = 3), resulting from 10000 random force application only 
on the external nodes depending on the selected shrink factor. 
 

In Figure 3.13 the profile of experimental B-factors of HEW lysozyme is 
compared to the average displacements resulting from random forces applied only 
on the external surface, based on different selected shrink factors, i.e. 0.00, 0.25, 
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0.50, 0.75 and 1.00. Obviously, the results depend on the selected shrink factor, 
that in turn affects the generated surface. In this case, an optimal shrink factor of 
0.50 is found (Figure 3.12b), that leads to the maximum correlation coefficient 
with the experimental data of 0.75. Note that this result confirms the hypothesis 
above, that random forces only on the external surface, without applying any 
perturbation on the protein core, is sufficient to explain the experimental B-factors 
of the whole protein structure. 

To further verify that the random bombardment only on the external surface 
of the protein is strongly related to the experimental B-factors, one might also 
wonder what happens if the random bombardment is applied only on the protein 
internal nodes. This should simulate an unrealistic phenomenon, the protein being 
punched on its core whereas no perturbations are found on the external surface. 
By repeating the procedure reported above applying forces only on the internal 
nodes, the average displacements of the protein residues show no meaningful 
correlation with the experimental B-factors, as shown in Figure 3.14. This 
confirms that the random bombardment methodology is meaningful to predict 
protein flexibility as long as forces are applied on the protein surface. 
 

 
Figure 3.14. Experimental B-factors vs. average displacements of the HEW lysozyme 
(PDB: 4ym8) ELM (pfANM, p = 3), resulting from 10000 random force application only 
on the internal nodes depending on the selected shrink factor. 
 

The results found above in terms of correlation coefficients with the 
experimental B-factors for HEW lysozyme are summarized in Figure 3.15. Figure 
3.15a shows the correlation coefficient obtained with the pfANM mode-based 
fluctuations (orange line, % = 0.73), with the average displacements resulting from 
random bombardment on all the residues (yellow line, % = 0.73), and with the 
average displacements resulting from random forces applied only on the external 
surface (blue line, % depends on the shrink factor). The numbers reported close to 
the markers of the blue line, represent the fraction of the external nodes out of the 
total protein residues, which obviously increases as the shrink factor increases. As 
can be seen, applying forces on the whole protein structure leads to good 
agreement with experimental data, similarly to that obtained considering the 
traditional mode-based fluctuations. Applying the random forces only on the 
external surface can in turn lead to greater correlation coefficients, depending on 
the selected shrink factor. In the case of HEW lysozyme, a shrink factor of 0.50, 
that results in perturbing only the 64% of the protein residues, leads to a 
correlation with experimental data of 0.75. 
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In Figure 3.15b, the correlations found with the average displacements 
resulting from random forces applied only on the internal nodes are reported. In 
this case, the numbers reported close to the markers, represent the fraction of the 
internal nodes out of the total protein residues. As already reported above, random 
perturbations on the protein core lead to poor correlation coefficients, therefore 
they do not explain the experimental flexibility, i.e. the experimental B-factors. 
 

 
 

Figure 3.15. Experimental B-factors vs. fluctuations and average displacements of the 
HEW lysozyme (PDB: 4ym8) ELM (pfANM, p = 3) due to random force application. 
Orange lines refer to the mode-based fluctuations, yellow lines refer to the average 
displacements resulting from random forces applied on all the protein residues, blue lines 
refer to the average displacements from random forces applied only on (a) external nodes 
or (b) internal nodes. In both cases, the numbers reported close to the blue markers 
represent the fraction of (a) external or (b) internal nodes, depending on the selected 
shrink factor. 
 

The analysis based on the random bombardment on the protein ELM 
presented above for the single case of HEW lysozyme has been carried out for a 
large dataset of highly refined protein structures extracted from the PDB [14]. The 
dataset is the same dataset 1 containing single-chain proteins that has been 
reported in Table 3.1 and considered for the pairwise force application presented 
in Section 3.1.1. Based on the analysis presented in this Section, the experimental 
B-factors of more than 900 proteins are compared to the mode-based fluctuations, 
the average displacements resulting from random forces applied on the whole 
ELM, and the average displacements resulting from random forces applied only 
on the external surface. For each protein, different external surfaces are generated 
based on various values of the shrink factor, namely 0.0, 0.1, 0.2, …, 0.9, 1.0. The 
optimal value of the shrink factor giving rise to the highest correlation with the 
experimental data is then considered for further comments. 
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Figure 3.16. Comparison of the fluctuation and force-based average displacements 
correlations with the experimental B-factors for dataset 1. (a) Distribution of the 
correlation coefficients for fluctuations (blue histogram), average displacements resulting 
from forces applied on all the nodes (red histogram), and average displacements resulting 
from forces applied only on the external nodes (orange histogram). Median values (M) 
and standard deviations (σ) are reported in the keys. (b) Distribution of the optimal shrink 
factors for the external force application pattern [93].  
 

Similarly to Figures 3.4 and 3.5, Figure 3.16a reports the histogram of the 
correlation coefficients obtained from the comparison with experimental B-factors 
based on normal mode fluctuations (blue bars), random forces applied on all the 
nodes (red bars), and random forces applied only on external nodes (orange bars). 
The three distributions are comparable, which means that the random force 
application pattern is indeed able to describe the protein flexibility and can be 
used as an additional method, besides the traditional mode-based fluctuations, to 
predict the experimental B-factors. Figure 3.16b also reports the statistical 
distribution of the optimal shrink factors, that provide the best agreements with 
the experimental B-factors, when perturbing only the external surface. Based on 
the shape of this distribution, it can be inferred how the optimal shrink factor 
strongly depends on the specific protein and can assume each value between 0.0 
and 1.0.  

From the extensive analysis carried out on dataset 1, for various cases it is 
found that the average displacements based on the random force bombardment 
show enhanced correlation with the experimental B-factors, with respect to the 
traditional fluctuations. As an example, Figure 3.17 reports the case of the yeast 
Ent2 ENTH domain (PDB: 4gzc). By using a pfANM with p = 3, one obtains a 
correlation with traditional fluctuations of 0.63, whereas a correlation coefficient 
of 0.73 is found with the average displacements based on random force 
bombardment on the entire structure as well as only on the external nodes. In this 
case the optimal shrink factor is found to be equal to 1.0, corresponding to the 
perturbation of the 69% of total nodes. 
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Figure 3.17. (a) Experimental B-factors vs. fluctuations and average displacements of the 
yeast Ent2 ENTH domain (PDB: 4gzc) ELM (pfANM, p = 3) due to random force 
application. Orange lines refer to the mode-based fluctuations, yellow lines refer to the 
average displacements resulting from random forces applied on all the protein residues, 
blue lines refer to the average displacements from random forces applied only on the 
external nodes. The numbers reported close to the blue markers represent the fraction of 
external nodes depending on the selected shrink factor. (b) External surface generated for 
the optimal shrink factor, equal to 1.0. (c) Experimental B-factors vs. fluctuations (% = 
0.63) and average displacements resulting from 10000 random force applications on the 
whole structure (% = 0.73) and only on the external nodes with the optimal shrink factor 
(% = 0.73). 
 

Similarly to what already found in the analysis on dataset 1 for the pairwise 
force application pattern, it was found also in this case that for certain proteins the 
mode-based fluctuations correlate to the experimental B-factors slightly better or 
comparably than the average displacements resulting from the random force 
pattern. This seems to be very dependent on the protein structure and in turn on 
the geometrical and mechanical characteristics of the ELM. In any case, from the 
analysis performed here, it can be concluded that experimental B-factors cannot 
only be explained as the result of the vibrational fluctuations that arise from the 
intrinsic dynamics (Section 2.2) or the result of the pairwise mechanical 
interactions among the protein residues (Section 3.1.1), but also as the results of 
the random bombardment on the protein structure. This bombardment reflects the 
collisions of external particles on the protein structures, thus simulating the 
protein-environment interaction. This explains why perturbing only the external 
surface leads to more accurate results in terms of protein flexibility predictions. 
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3.2 Protein Conformational Changes and Geometrical 
Non-linearities 

In the previous Sections of this Chapter, we have seen that applying various 
force patterns on the ELM can accurately explain the experimental B-factors and 
the protein flexibility, that ultimately affects the biological behavior. Note that 
both the pairwise and random force application approaches were developed within 
the framework of linear structural analysis, as they rely on the linear matrix 
relationships from Eqs. (3.1) and (3.2). This is reasonable for B-factors prediction, 
as these are the results of small-amplitude displacements around the equilibrium 
position. 

In the previous Chapter, we have also seen that the protein biological 
mechanism is usually driven by the protein flexibility and often carried out 
through conformational changes. From the works of the Atilgan’s group [88–90] 
and Liu et al. [86], which exploit the PRS methodology, it has already been shown 
that force applications based on the linear response theory provide a good estimate 
of the conformational change directionality. The ELMs were also used in the last 
decades not only to predict the directionality of the protein conformational 
changes, but also to evaluate the pathway of the conformational transitions that 
occur between two known crystal structures. Based on the minimization of the 
elastic energy of the deformed spring network, Kim et al. [94,95] proposed a 
numerical method to generate feasible pathways of the protein transition, that 
interpolates the two end conformations while avoiding steric clashes in the 
intermediate states. Few years later, Maragakis and Karplus [96] proposed a 
plastic network model (PNM) to generate the large-amplitude transition pathway 
of Escherichia Coli adenylate kinase. The results revealed the presence of hinges 
that contribute to the protein mechanism and pronounced curvilinear motions. 

Linear response theories based on Eqs. (3.1) and (3.2) imply that both the 
displacement field and mechanical behavior of the system remain linear as the 
deformation proceeds. The linearity of the displacement field implies that, given 
the initial direction of motion, the direction remains the same while the transition 
proceeds. Although this is often reasonable for the first steps of the transition, the 
displacement linearity usually gets lost as the protein begins to follow curvilinear 
pathways. Conversely, the linearity in the mechanical behavior implies that, given 
the initial displacements obtained for small forces, the displacements increase 
proportionally as the magnitude of the external perturbations increases. This 
aspect is supposed to play an important role in the analysis of protein 
conformational changes, as these can often imply large-scale motions. Moreover, 
from Structural Mechanics, it is well-know that the ELMs are usually prone to 
exhibit non-linearities in the structural response due to the effect of geometrical 
non-linearities (Figure 1.3) [6]. As a matter of fact, the presence of non-linear 
effects in the relaxation dynamics of the protein ENMs has been already 
suggested by Togashi et al. [97,98]. For this reason, in this Section, the possible 
role of the ELM geometrical non-linearities in the protein conformational changes 
is investigated. 
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3.2.1 Geometrical non-linearities: Equilibrium on the 
undeformed and deformed conformations 

To investigate the possible presence of geometrical non-linearities in the 
protein conformational transition, known the two end crystal conformations, one 
of the possible strategies consists of applying the equilibrium equations in the 
undeformed and deformed conformations and comparing the results, as shown in 
Scaramozzino et al. [99]. 

As explained in Section 2.3.1, known the initial conformation ; and final 
conformation ¥, the superimposition procedure yields the evaluation of the 
displacements of the conformational change ≤≤, as from Eq. (2.27). Note that 
these represents the total linear displacements that lead the starting configuration 
to match the final one, but do not represent the actual displacements that the 
protein undergoes within the transition pathway, since this can be curvilinear. 
However, known the total displacements and assuming that the linear response 
theory is valid for the large-scale motion (linearity in the displacement field and 
mechanical behavior), Eq. (3.1) can be used to relate the nodal displacements to 
the nodal forces. Note that using Eq. (3.1) for the equilibrium implicitly means 
considering the equilibrium in the initial undeformed configuration, i.e. ;. By 
substituting the total conformational change vector ≤≤ in Eq. (3.1), one obtains 
the forces . needed to guarantee the equilibrium in the undeformed configuration: 
 

 . = ë	≤≤, (3.10) 
 
being ë the Hessian matrix of the ELM. 

Conversely, if configurations ; and ¥ are the result of a large-scale 
conformational transition, the effect of geometrical non-linearities can be revealed 
by applying the equilibrium equations in the final deformed configuration	¥. 
These equations can be expressed in compact form as: 

 
 . = ÿ(≤≤), (3.11) 

 
where ÿ represents the system of non-linear equations relating the displacements 
to the equilibrating nodal forces. The non-linear system reported in Eq. (3.11) can 
be written analytically by considering the equilibrium conditions in the final 
deformed configuration, through the following steps: (1) the elongation of each 
connection of the ELM is computed based on the effective positions of the nodes 
in the initial and final configuration (kinematic equations); (2) the internal force 
within each connection is computed based on the stiffness value of the connection 
and calculated elongation (constitutive equations); (3) the total force on each node 
is finally computed by equilibrating all the internal forces acting on the node 
deriving from the deformed connections, with reference to the final deformed 
configuration (equilibrium equations) [99]. It is clear that, if the linearity 
hypothesis holds true, the two force fields that guarantee the equilibrium obtained 
from Eqs. (3.10) and (3.11) should match. Conversely, the higher the deviation of 
the force values (in terms of both magnitude and directionality), the greater the 
possible effect of geometrical non-linearities. 

Two examples are analyzed here. The first one is related to HIV-1 protease, 
whose biological activity is pivotal for the replication of the AIDS virus. Two 
crystal structures are considered, namely the open form (PDB: 1hhp) and the 
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closed form (1ajx). Note that HIV-1 protease is a dimer, made up of two chains of 
99 amino acids each. However, for simplicity, the single monomer is analyzed 
here. The two monomers are reported in Figure 3.18a, after the superimposition. 
Figure 3.18b shows the profile of the conformational change displacements, as 
evaluated from Eq. (2.27). As can be seen, the monomer exhibits a maximum 
displacement of 4 Å near the central portion of the protein and 2 Å close to the C-
terminus. The other regions of the proteins exhibit rather small displacements. 

 

         
 

Figure 3.18. HIV-1 protease conformational change: (a) Open form in red (PDB: 1hhp) 
and closed form in green (PDB: 1ajx) after superimposition; (b) Profile of the absolute 
displacements. 
 

Figure 3.19 shows the comparison between the forces evaluated through the 
linear relationship in Eq. (3.10) and the non-linear system in Eq. (3.11), for the 
open-to-closed conformational change, i.e. taking the open form as the initial 
structure. Figure 3.20 shows the same comparison for the closed-to-open 
transition, i.e. taking the closed form as reference. The calculations are carried out 
by considering the ELM of the HIV-1 protease monomer, with the geometrical 
cutoff limit of 15 Å, with spring constants that do not depend on the residue-
residue distance, i.e. with a value of ™ equal to 0 from Eq. (2.15). 

 

 
 

Figure 3.19. HIV-1 protease open-to-closed conformational change: (a) comparison 
between absolute values of nodal forces (linear vs. non-linear analysis); (b) comparison 
between directionality of nodal forces; (c) ratio between absolute values of nodal forces. 

 
Figures 3.19a and 3.20a show the comparison of the absolute values of nodal 

forces, Figures 3.19b and 3.20b show the difference in directionality (measuring 
the cosine of the angle between the nodal vectors) and Figures 3.19c and 3.20c 
show the ratio between the absolute values of the forces. From these figures, it is 
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evident that the profiles of the forces calculated via the equilibrium in the 
undeformed structure (linear analysis) or deformed configuration (non-linear 
analysis) share many common features for most parts of the protein chain. 
However, for both the open-to-closed and closed-to-open transition, in the regions 
where the protein exhibits the highest displacements of the conformational change 
(Figure 3.18b), the forces show differences both in directionality (Figures 3.19b 
and 3.20b) and magnitude (Figures 3.19c and 3.20c). This seems to confirm that 
geometrical non-linearities can affect the structural response of the protein ELM 
when investigating conformational changes. 

 

 
 

Figure 3.20. HIV-1 protease closed-to-open conformational change: (a) comparison 
between absolute values of nodal forces (linear vs. non-linear analysis); (b) comparison 
between directionality of nodal forces; (c) ratio between absolute values of nodal forces. 

 
The example of HIV-1 protease treated above is informative because it 

exhibits a rather localized conformational change and involves quite small 
displacements, being the maximum value around 4 Å (Figure 3.18). Nevertheless, 
from the analysis carried out above it is found that, in the regions where the 
proteins undergoes the maximum displacements, the forces experiences by the 
ELM are potentially affected by the geometrical non-linearities. In most cases, 
proteins exhibit conformational changes which are more collective, i.e. more 
atoms participate to the transition in a concerted way, and the absolute 
displacements are greater than the ones found in the HIV-1 protease. For example, 
Figure 3.21 reports the case of LAO-binding protein, already seen in Section 2.3. 
As can be seen from the displacements in Figure 3.21b, the conformational 
change is rather collective and the maximum displacement is around 10 Å. 

 

  
 
Figure 3.21. LAO-binding protein conformational change: (a) Open form in red (PDB: 
2loa) and closed form in green (PDB: 1lst) after superimposition; (b) Profile of the 
absolute displacements. 
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Figures 3.22 and 3.23 show the results for the open-to-closed and closed-to-

open conformational change, respectively. As can be seen, in this case, the forces 
that provide the equilibrium of the ELM are remarkably different (both in 
magnitude and directionality) whether they are calculated from the linear response 
theory from Eq. (3.10) or whether one applies the equilibrium on the final 
deformed configuration from Eq. (3.11). This suggests that, for large-scale 
collective conformational changes, the linear response theory is appropriate for 
analyzing the first steps of the conformational transition, but  it might not be 
enough for the whole transition pathway, as the presence of geometrical non-
linearities might play an important role [99]. 
 

 
 

Figure 3.22. LAO-binding protein open-to-closed conformational change: (a) comparison 
between absolute values of nodal forces (linear vs. non-linear analysis); (b) comparison 
between directionality of nodal forces; (c) ratio between absolute values of nodal forces. 
 

 
 

Figure 3.23. LAO-binding protein closed-to-open conformational change: (a) comparison 
between absolute values of nodal forces (linear vs. non-linear analysis); (b) comparison 
between directionality of nodal forces; (c) ratio between absolute values of nodal forces. 

3.2.2 Geometrical non-linear analysis throughout the protein 
transition pathway 

Based on the results of Section 3.2.1, it is found that the linear response 
theory might not be enough for the entire conformational transition pathway. 
However, as mentioned at the beginning of Section 3.2, this might be due to the 
non-linearity of the displacement field, non-linearity of the structural response, or 
both. The former basically means that proteins might exhibit curvilinear 
pathways, which in turn is known to be true for several cases, e.g. [96]. 
Conversely, the latter implies that there is a non-linear relationship between the 
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increase of external perturbations (forces) and corresponding structural 
modifications (displacements). To further investigate this aspect, the geometrical 
non-linear analysis can be applied in all the intermediate states of the 
conformational transition, i.e. in a step-by-step fashion, to seek the equilibrium 
between the acting forces and corresponding nodal displacements at each step. In 
this way, from the assessment of the force evolution throughout the transition 
pathways, one can estimate whether the linear response theory is not adequate for 
the entire conformational change just because of the tortuosity of the pathway or 
because of the underlying ELM geometrical non-linearities. 

To carry out this analysis, one needs to have the information about the 
transition pathway, in order to further apply the non-linear equilibrium equations 
from: 

 
 .´ = ÿ(0´), (3.12) 

 
being .´ and 0´ the force and displacement vectors at each intermediate step k, 
and ÿ the non-linear system already reported in Eq. (3.11). The approach from 
Kim et al. [94,95] has been used here to generate the intermediate states of the 
protein ELM, given the two known configurations, and thus the nodal 
displacement vector at each step 0´. 

The step-by-step geometrical non-linear analysis has been applied to the 
conformational change of LAO-binding protein (Figure 3.21), by using an ELM 
with cutoff of 15 Å and no distance-dependence for the spring constant. Known 
the open (PDB: 2lao) and closed form (PDB: 1lst), the interpolation based on 
elastic energy minimization is applied according to Kim et al. [94,95] to find the 
intermediate configurations, and thus the displacements at each step 0´. 

Based on the obtained pathway, the analysis of the displacement evolution 
has been first carried out, as reported in Figure 3.24a. At each subsequent steps k 
and k+1, the incremental vector 0´,´Ÿï is evaluated as the difference of the XYZ 
coordinates of the intermediate conformation at step k+1 and those at step k. For 
each node i, the normalized cosine between vectors 0´,´Ÿï and 09,ï is then 
evaluated as follows: 
 

 
cos V⁄,$ =

°0´,´Ÿï¢$ ∙ °09,ï¢$

è°0´,´Ÿï¢$ ∙ °0´,´Ÿï¢$è°09,ï¢$ ∙ °09,ï¢$

, (3.13) 

 
being 09,ï the incremental displacement vector at the first step of the transition 
pathway. The cosine defined in Eq. (3.13) provides a simple estimate of the non-
linearity in the transition pathway. If cos V⁄,$ is equal or proximal to 1 for each 
step k, it means that the ith residue follows a straight line between the two end 
conformations. Conversely, cos V⁄,$ different from 1 implies that the ith residue is 
undergoing a curvilinear pathway within the transition. A mean value of cos V⁄,$ 
can be ultimately defined for each residue i to provide a unique numerical 
estimate of the average non-linearity of the transition pathway at each position of 
the protein chain: 
 

 
cos V$ =

1
100

Lcos V⁄,$

¤¤

⁄ÅP

, (3.14) 
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being 100 the total number of conformations considered in the transition pathway. 
Figure 3.25a shows the values of the mean cosine for the LAO-binding protein 
open-to-closed conformational change. As can be seen, in several residues the 
mean cosine exhibits values sensibly lower than 1, which confirms that the 
transition involves curvilinear pathways for various portion of the protein. 

Besides the non-linearity in the displacement field, it is interesting to 
investigate whether the non-linearity affects the structural response as well. To do 
so, the scheme reported in Figure 3.24b is followed. The figure shows a generical 
non-linear force-displacement curve. Applied to the case under investigation, the 
displacement on the X-axis represents the absolute value of the change of 
coordinates that each residue exhibits during the transition, whereas the force on 
the Y-axis is the absolute value of the nodal force calculated from Eq. (3.12). By 
tracing curves like the one reported in Figure 3.24b for each residue i, one can 
evaluate the tangential stiffness ã—⁄,$ at each step k as: 

 
 

ã—⁄,$ =
°*⁄,⁄Ÿf¢$
°!⁄,⁄Ÿf¢$

, (3.15) 

 
being *⁄,⁄Ÿf and !⁄,⁄Ÿf the increment of absolute force and absolute displacement 
between steps k and k+1. 
 

 

 
Figure 3.24. Scheme for the evaluation of non-linearities in the protein conformational 
transitions: (a) non-linearity of the displacement field; (b) the non-linearity of the 
structural response. 

(a) 

(b) 
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At this point, the relative tangential stiffness can be defined as the ratio of the 

tangential stiffness at each step k and the one at the beginning of the transition (k 
= 0): 
 

 
{ã—⁄,$ =

ã—⁄,$
ã—P,$

. (3.16) 

 
It is clear that, if {ã—⁄,$ is equal to 1 for the entire transition, the force-
displacement curve for the ith residue is completely linear. Conversely, values of 
{ã—⁄,$ different from 1 are the fingerprints of non-linearities in the structural 
response of the ELM during the transition. Similarly to Eqs. (3.13) and (3.14), the 
mean value of {ã—⁄,$ across all the steps can be defined, which has been called 
the non-linearity index ”‹∑$: 
 

 
”‹∑$ =

1
100

L{ã—⁄,$

¤¤

⁄ÅP

. (3.17) 

 
Figure 3.25b shows the non-linearity index for the LAO-binding protein 

open-to-closed conformational transition. As can be seen, values different from 1 
(both greater and lower) are found throughout the protein structure, meaning that 
the force-displacement curves of these residues exhibit non-linear features. 
Ultimately, this confirms that geometrical non-linearities occur and can play a role 
during the conformational transition, inducing both the pathway to be curvilinear 
at certain locations (Figure 3.25a) and the structural response to exhibit non-
linearities in the force-displacements curves (Figure 3.25b). 

 

 
Figure 3.25. Non-linearities in the LAO-binding protein open-to-closed conformational 
change: (a) non-linearity in the displacement field; (b) non-linearity in the structural 
response. 
 

Figure 3.26 shows the same analysis (mean cosine and non-linearity index) 
for the closed-to-open conformational change of LAO-binding protein. Again, 
Figure 3.26a confirms that the pathway is not completely linear in various 
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portions of the proteins and Figure 3.26b demonstrates that non-linearities occur 
in the force-displacement curves of several protein residues. 
 

 
Figure 3.26. Non-linearities in the LAO-binding protein closed-to-open conformational 
change: (a) non-linearity in the displacement field; (b) non-linearity in the structural 
response. 

3.3 Conclusions 

In this Chapter, the subject of force application on the protein ELMs has been 
addressed under novel perspectives. Specifically, in Section 3.1 two different 
force patterns have been proposed to predict the experimental B-factors, i.e. 
protein flexibility. B-factors can be seen as the result of small-amplitude 
displacements of the protein residues around the equilibrium position. For this 
reason, the force application patterns were developed within the framework of 
linear response theory, i.e. linear structural analysis. 

The first pattern is based on pairwise pulling forces applied iteratively on the 
residue-residue couplets to probe the distribution of the mechanical resistance 
within the protein ELM. Two novel structural metrics, namely the structural 
compliance and stiffness, have been defined based on the pairwise force pattern 
and they were found to accurately match with the experimental B-factors. These 
results shed new light on the nature of the experimental B-factors: these are then 
not only seen as the result of the dynamic fluctuations, but also as the result of the 
inter-molecular mechanical interactions among the protein residues. The second 
force application pattern considers random collisions of external particles (water 
molecules, ions, etc.), simulated via random force bombardment on the protein 
ELM. By applying random forces on the ELM, it is found that the resulting 
average displacements are well correlated with the experimental B-factors. 
Moreover, it was found that the application of random forces only on the external 
protein surface enhances the good correlation with the experimental flexibility. 
This second force pattern implies that the B-factors can also be described as the 
result of the protein-environment interaction, the protein being randomly 
perturbated by the external particles and undergoing internal deformations. 

Future improvements of these methodologies will mainly address at least two 
points. Exploit the force application patterns to predict the entire anisotropic part 
of the B-factors, and not only the isotropic values as done in these analyses. Add 
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the layer of external water molecules in the protein ELM, as it is believed to affect 
the ELM behavior, especially when forces are applied on the external surface. 

The force application patterns shown above are based on the linear response 
theory since the goal was to simulate small-amplitude protein displacements. 
However, when proteins undergo conformational transition, that might be highly 
collective and large-scale, one might wonder whether the linear response theory is 
sufficient to describe the structural behavior of the protein ELM throughout the 
transition. As a matter of fact, from Structural Mechanics, we know that spatial 
ELMs are usually likely to exhibit geometrical non-linearities. For this reason, in 
Section 3.2, the possible role of geometrical non-linearities was investigated. 

Firstly, given the two known end conformations, equilibrium equations were 
applied on the undeformed (initial) or deformed (final) structure and the results in 
terms of force fields were compared. From the comparison, it was found that the 
force fields only match if the involved displacements are very small; conversely, 
when the displacements are rather high, the forces that equilibrate the structures 
often differ both in magnitude and directionality. This suggests that non-linearities 
can indeed be significant within the protein transition. Secondly, to understand 
whether these non-linearities are only the results of the curvilinear transition 
pathways (non-linearity of the displacement field) or also the results of a non-
linear structural response (non-linearity of the force-displacement curve), the 
geometrical non-linear analysis has been applied in a step-by-step fashion to the 
whole transition pathway. Specifically, equilibrium equations have been applied 
to all the intermediate configurations and the evolution of the force values has 
been analyzed with respect to the increasing displacements. From the results, it 
was found that for collective and large-scale conformational changes, e.g. LAO-
binding protein, non-linearities can occur both in the displacement field 
(curvilinear pathways) and structural response (non-linear force-displacement 
curves for various residues). 

These analyses tell us that, in order to fully comprehend and describe protein 
transitions throughout their entire pathway, geometrical non-linearities should be 
taken into account when making use of ELMs. However, in this Chapter, the non-
linear analysis was carried out under static conditions, i.e. without considering the 
dynamical features of the ELM. This aspect, i.e. coupling the static non-linear 
equilibrium equations with the dynamic equations, should be addressed in future 
works to have a complete comprehension of the dynamic (non-linear) 
conformational changes of the protein ELM. A further investigation might also 
include the calculation of stresses and strains developed within the protein 
structure and see how these are related to biophysical stimuli coming from the 
surrounding environment. To do this, one might use the ELMs or continuum 
models such as the ones developed by Bathe [51], where the protein is treated as 
an elastic continuum solid. 
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Chapter 4 

ELMs and Diagrid Tall Buildings: 
Introduction and Matrix-Based 
Method for the Structural Analysis 

In the previous Chapters, the ELMs were extensively used to investigate the 
flexibility and biological behavior of the protein structures. Conversely, in this 
and the following Chapter, we will move to a completely different research field, 
which is the field of tall buildings. In particular, the focus of these Chapters will 
be about a new structural system which is emerging in recent years for tall 
building design and construction: the diagrids. The diagrid is a tubular structural 
system placed over the exterior of the building which is composed by an assembly 
of inclined bars. For this reason, the diagrids can be analyzed via the fundamental 
equations and characteristics of the ELMs. 

In the first Section of this Chapter, a brief overview of the diagrid structural 
system will be provided. Moreover, a review of the most recent research works 
about the diagrid preliminary design and structural analysis will be reported. This 
Section is largely derived from the open-access recent review paper by 
Scaramozzino et al. [100]. In the remaining part of the Chapter, a dedicated 
matrix-based method (MBM) will be described, which has been developed in 
recent years based on the Elastic Lattice modeling, in order to carry out a 
simplified structural analysis of diagrid systems. 

4.1 Overview of the Diagrid Structural Systems 

The evolution of tall buildings has experienced a remarkable development in 
the last century. The first buildings reaching a few tens of stories were built in the 
United States in the late 19th century, mostly in the cities of New York and 
Chicago. At the beginning of the 20th century, the race for the realization of the 
tallest skyscrapers led to the completion of the 102-story tall Empire State 
Building in 1931 (Figure 4.1a) [100]. Although at that time the height of those 
buildings was worthy of note, their realization was not achieved by means of 
significant technological innovations. They usually employed the same steel 



 

 86 

frames which were adopted for shorter buildings, leading to excessive material 
usage and rather over‐designed solutions [101]. Bracings were employed to 
withstand lateral loads arising from wind pressures and earthquake actions. It was 
already recognized that lateral actions usually govern the design solutions in tall 
buildings. In fact, as the building becomes taller, the lateral drifts turn out to be 
more critical, and there is greater demand for suitable structural systems to carry 
lateral forces. This leads to a dramatic increase of material consumption with the 
increase in the number of stories, which is usually referred to as the “premium for 
height” [101,102]. 

Due to aesthetic and constructability considerations, the bracings were 
usually embedded within the interior core of the building. Although their shear 
resistance, based on the axial deformation of the diagonals, was beneficial in 
resisting the lateral actions, their placement within the interior of the building 
prevented their effective employment in withstanding the overturning moment. 
Therefore, new solutions exploiting bracings on the external perimeter of the 
building were developed. One of the first examples was the 100-story tall John 
Hancock Center built in Chicago in 1970 (Figure 4.1b). The John Hancock is an 
example of braced tube, where the mega-diagonals spanning over several stories 
are effective in resisting the shear and bending moment deriving from lateral 
actions. The braced tube was a variation of the typical framed tube, where closely 
spaced perimeter columns were in charge of providing the necessary lateral 
stiffness. The adoption of mega-diagonals on the external surface offered higher 
lateral stiffness, while reducing some detrimental phenomena of the framed tube, 
such as the shear-lag effect. With this new solution, a greater number of stories 
and an overall enhanced structural performance could be achieved, leading also to 
important advantages from a material consumption perspective. 
 

 
 

Figure 4.1. Different structural systems for 20th century tall buildings: (a) moment 
resisting frame (Empire State Building, New York, NY, USA); (b) braced tube (John 
Hancock Center, Chicago, IL, USA) [100]. 
 

Based on the structural behavior of the braced tube, where vertical columns 
and external bracings were designed to carry gravity and lateral loads 
respectively, it was realized that the external mega-diagonals were able to resist 
vertical and horizontal loads simultaneously, without the need for conventional 
vertical columns. This led to the realization of the diagrid (“diagonal” + “grid”) 
structural system. 

The idea of removing vertical columns and considering only inclined 
diagonals was not new. As a matter of fact, the first diagrid structure was realized 
before the construction of the John Hancock braced tube, in the 1920s, by the 

(a) (b) 
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Russian architect Vladimir Shukhov, for the realization of a broadcasting tower in 
Moscow [103]. The external pattern, made up of a triangular tessellation, allowed 
the reduction of the wind load while reaching a stable stiff configuration. The first 
application of a diagrid system in building design occurred in the 1960s, with the 
completion of the 13-story tall IBM Building (Pittsburgh, USA). The steel diagrid 
exoskeleton was integrated with the glazing system, and assisted in the overall 
stability of the building [96]. 

However, it was not until the early 21st century that diagrid systems started to 
be thoroughly applied in the design and construction of tall buildings. The first 
examples are the Hearst Tower in New York (Figure 4.2a) and the 30 St. Mary 
Axe (also known as Swiss Re Tower or The Gherkin) in London (Figure 4.2b), 
both by Sir Norman Foster. These buildings reached 180 m and provided the first 
references for the suitability of diagrid systems in tall building design. Thanks to 
the stiff diagrid façades, which create a pleasant diamond-like pattern, the Hearst 
Tower was realized using 20% less steel than an equivalent conventional moment 
frame structure [104]. The aerodynamic form of the Swiss Re Tower, obtained 
through an external free-form diagrid envelope, allowed the reduction of wind 
actions on the building, and led to column-free flexible internal spaces [105]. 
These two examples already showed the valuable features of diagrids for tall 
buildings: enhanced structural performance, saving of material consumption 
compared to traditional solutions, and significant aesthetic potential. 

Many diagrid structures were realized worldwide in the following years, 
where various forms and shapes were adopted for the external diagrid façades. 
Among others, examples worthy of note are the Guangzhou Financial Center, the 
CCTV Tower and the Poly International Plaza in China, the Tornado Tower 
(Figure 4.2c) in Qatar, the Capital Gate in Arab Emirates, and the Bow Tower in 
Canada [103]. Nowadays, most of the built diagrid structures are made of steel, 
mostly due to the easier and faster construction, simpler joints and less expensive 
formworks [103]. However, concrete and composite diagrids are also 
experiencing an increasing popularity, as they allow the realization of even more 
complex-shaped diagrid patterns, e.g. the O-14 Building in Dubai. 
 

 
 

Figure 4.2. Examples of diagrid systems in tall buildings: (a) Hearst Tower (New York, 
USA); (b) Swiss Re Tower (London, UK), from https://larryspeck.com/; (c) Tornado 
Tower (Doha, Qatar), from http://www.asergeev.com/. 
 

The significant use of diagrid systems in recent tall buildings is mainly due to 
the following reasons: high lateral stiffness (thus low lateral deformability), which 
allowed to reach the lateral deflection limit target using a lower amount of 
structural material compared to other conventional systems; architectural 

(a) (b) (c) 
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flexibility, allowing a more rational use of the interior space with fewer columns; 
modularity, which led to the realization of complex-shaped structures of various 
forms. 

These three points arise from the successful use of the triangular module 
coupled with the inherent structural performance of the tubular structure 
[106,107]. The triangular element, which is made up of two inclined diagonals 
and a ring beam, is the basic component of the diagrid façade. The diagonals carry 
the vertical and lateral loads mostly by axial forces (compression or tension). For 
this reason, they are usually pinned at the panel nodes, as reflected in Figure 4.3a. 
Since the inclined diagonals often extend over multiple stories, the external floor 
beams of the intermediate stories are often supported by the diagonals, which 
consequently induces slight shear and bending stresses on them. However, in 
preliminary design stages, these are usually neglected when compared to the high 
axial stresses arising from the vertical and lateral loads on the building. 

In Figure 4.3b, the three-dimensional view of the tubular diagrid structure is 
shown, as reported in [108]. Usually, the tube-in-tube configuration is found in 
real diagrid buildings, where an internal (concrete or steel braced) core is coupled 
with the external diagrid tube. In preliminary design stages, the diagrid is usually 
designed to carry the lateral actions alone, while the internal core is designed only 
for gravity loads. Hence, it is the combination of the axial resisting mechanism of 
the triangular element (Figure 4.3a), characterized by modularity and arrangement 
flexibility, coupled with the structural efficiency of the tubular configuration 
(Figure 4.3b), that has ultimately led to the success of the diagrids in recent times. 
 

 
 

Figure 4.3. Fundamental diagrid geometrical features: (a) diagrid module and basic 
triangular element, used with permission from Asadi and Adeli [107]; (b) diagrid tubular 
configuration, used with permission from Angelucci and Mollaioli [108]. 

4.1.1 Simplified approaches for the preliminary design of 
diagrids 

The first simplified stiffness-based approach to the preliminary design of 
diagrid systems was proposed by Moon et al. in 2007 [109]. It is based on the 
evaluation of the shear and bending stiffness of the diagrid modules, aimed at 
limiting the lateral deflection of the structure. The building is treated as a vertical 
cantilever beam, fixed on the ground and subjected to lateral loads. Accordingly, 
the building undergoes horizontal displacements, which depend on the stiffness of 
the diagrid tubular structure. For the sake of the preliminary design, the 
contribution of the internal cores to the lateral stiffness of the building is 
neglected, as they are only designed to carry gravity loads. 

(a) (b) 



 

 89 

The elementary diagrid module is depicted in Figure 4.4. The diagrid module 
covers a height h with two triangular elements. The diagonals have a length Ld, 
and their inclination with respect to the horizontal plane is θ. Depending on the 
loading direction, each façade can act either as a web or a flange. Vi and Mi are the 
shear force and bending moment acting on the level of the ith module. These are 
carried by the web and flange diagonals, respectively. Diagonals are assumed to 
be pinned at their end, thus carrying only axial force, and remain in the linear 
elastic regime. In this way, the cross-sectional areas of the web and flange 
members are the only factors that need to be obtained in order to accomplish the 
preliminary design. 

 

 
Figure 4.4. Scheme of the elementary diagrid module for the definition of the stiffness-
based approach to the diagrid preliminary design. Used with permission from Moon et al. 
[109]. 

 
The shear stiffness KT,i and bending stiffness KB,i of the ith diagrid module link 

the shear force Vi and bending moment Mi to the module displacement ∆ui and 
rotation ∆βi, respectively. By applying compatibility, constitutive and equilibrium 
equations, KT,i and KB,i are obtained as follows: 
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where Nw and Nf are the total number of diagonals in the web and flange façade, 
respectively, Ad,w,i and Ad,f,i the cross-sectional area of the web and flange 
members, E the elastic modulus of the diagonals and B the web dimension. The 
displacement ∆ui and rotation ∆βi are equal to the product of the module height h 
and the shear and bending deformation, γ and χ, respectively. Specifying the 
desired values of shear and bending deformation, γ* and χ*, the member 
dimensions can be easily obtained as [109]: 
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  Since the horizontal load can act in either direction, the maximum value of 
the cross-sectional areas from Eqs. (4.2a) and (4.2b) should be assigned to each 
diagonal, which can act as either a web or flange member. The desired values of 
γ* and χ* are specified based on the desired deformation mode of the building. 
Assuming that the building sway mechanism is equivalent to the deformation of a 
cantilever beam, the lateral deflection at the top of the building u(H) can be 
written as follows: 

 
 

Â(ß) = å∗ß +
‰∗ßQ

2
, (4.3) 

 
where γ*H and χ*H2/2 are the shear and bending contribution, respectively. In 
order to assess the relative contribution of bending versus shear deformation, 
Moon et al. [109] introduce a non-dimensional parameter s, given by the ratio of 
the bending to the shear contribution, i.e.: 
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Combining Eqs. (4.3) and (4.4), and considering that the top lateral displacement 
is usually specified as a fraction of the total building height, i.e. u(H) = H/α (α 
usually being 500), one obtains the following relations between γ*, χ* and s: 
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Substituting Eqs. (4.5a) and (4.5b) into Eqs. (4.2a) and (4.2b), the member sizes 
can be obtained for the different values of the parameters. 

Adopting different s values leads to different preliminary sizing for the 
external diagonals. When s is extremely low, the shear deformation mode of the 
structure prevails over the bending mode, and this leads to excessive material 
usage in the flange members to limit the bending deflection. Conversely, when s 
is high, the bending deformation prevails, and the obtained cross-sectional areas 
are mainly governed by the web façades to limit the shear deformability. 
Therefore, an optimal value of s is shown to exist, sopt, which balances the need to 
limit both shear and bending deformability [109]. In this case, the member sizes at 
the higher stories are usually governed by the shear deformation, while the ones at 
the lower stories are mostly controlled by the bending deformation. The sopt 
depends on the building aspect ratio (H/B) and leads to the most efficient 
solutions that comply with the target maximum displacement while employing the 
minimum amount of material. For diagrid structures taller than 40 stories, with 
H/B greater than 5 and diagonal angles between 60° and 70°, the empirical 
equation sopt = H/B − 3 is proposed [109]. 

The other fundamental parameter that plays a key role in the preliminary 
design of diagrids is the diagonal inclination. Investigating a set of 20- to 60-story 
tall buildings, Moon et al. [109] show that, for diagrid structures with aspect ratios 
of about 7, the optimal angle is between 65° and 75°, whereas for diagrids with 
aspect ratios of about 5 the optimal angle is lower, at around 10°. This is due to 
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the competition between shear and bending stiffnesses in governing the 
deformation mode, and their dependence on the diagonal angle. Shear rigidity is 
maximum when the diagonal inclination is about 35°, while bending rigidity 
achieves its maximum value when the elements are vertical, i.e. θ = 90°. The 
optimal value for maximizing both shear and bending rigidity lies between these 
two. Since shear mechanism prevails in shorter buildings and bending prevails in 
taller ones, it is expected that, as the aspect ratio increases, the building behaves 
more like a bending beam, and the optimal angle thus increases [109]. This 
consideration has been strongly exploited in the analysis and design of diagrid 
systems, by considering various angle-based strategies and patterns for optimizing 
the diagrid performance, as will be shown in the next Chapter. 

The same stiffness-based approach reported in the previous paragraphs is also 
applied by Moon to braced tubes in [110]. In this case, the shear force is carried 
by the external mega-diagonals, while the bending moment is carried by the 
perimeter vertical columns. Analyses based on 40- to 100-story tall braced tubes 
show that the optimal angle in this case is close to 45°, and is less dependent on 
the building aspect ratio. This is due to the negligible involvement of external 
diagonals in carrying bending moment. For braced tubes with an aspect ratio 
greater than 6, Moon suggests a different empirical equation for the optimal s 
value, i.e. sopt = (H/B)/2 − 1  [110]. It has to be noted that, in the same paper, the 
same analysis has been applied to diagrids with a broader range of heights than 
previously analyzed, i.e. from 40 to 100 stories. As a result, the author proposes a 
new empirical equation for the sopt for diagrid structures with aspect ratios greater 
than 6, i.e. sopt = H/B − 2. 

In the cases investigated by Moon [109,110], it is found that the stiffness 
requirements drive the preliminary design, and the strength criteria are usually 
fulfilled. Only a few members in the leeward façade of the building are found to 
fail when the maximum allowable displacement is increased, i.e. α < 500. 
However, thanks to the high rigidity of the diagonalized façades, which make the 
diagrid structure highly efficient, strength requirements may be of paramount 
importance, and in specific cases, they might even govern the design criteria, as 
suggested by Montuori et al. in [111]. In this paper, a simplified strength-based 
methodology for the preliminary design of diagrid tubes is provided. Figure 4.5 
shows the adopted scheme for the development of the strength-based approach. 
Both gravity and lateral loads are applied to the building. 

Assuming that the internal core occupies 25% of the floor area, the diagrid 
carries 37.5% of the gravity load at the level of the mth module, Qm (Figure 4.5a). 
This vertical loading condition generates a uniform compression state in all the nk 
diagonals of the module, Nm,k,Q = 0.375Qmsinθ/2nk. Conversely, the lateral loads 
generate the bending moment Mm and shear force Vm at the module level. The 
former induces a uniform compression state in the diagonals of the leeward 
flange, a uniform tension state in the windward flange and a linear distribution of 
tension–compression axial forces in the webs, depending on the distance di of the 
ith diagonal from the center of the floor (Figure 4.5b). This leads to the expression 
of the axial force Nm,k,M = ± Mmdksinθ/2Σdi. Conversely, the shear force induces 
only tension–compression stresses in the web diagonals, therefore Nm,k,V = ± Vm 
cosαkcosθ/2Σcosαi, α being the direction of the horizontal force with respect to the 
orientation of the diagrid module (Figure 4.5c). 
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Figure 4.5. Scheme of the elementary diagrid module for the definition of the strength-
based approach to the diagrid preliminary design, under: (a) gravity loads; (b) overturning 
moment; (c) shear force. Used with permission from Montuori et al. [111]. 

 
Considering all the loading conditions, one obtains the total axial force in the 

generic diagonal, as Nm,k = Nm,k,Q + Nm,k,M + Nm,k,V. This value is finally used to 
define the member size, based on the tensile strength and the buckling 
compressive resistance of the diagonal. In the same paper, the authors also 
propose an analytical formulation, based on the Euler–Bernoulli and Timoshenko 
beam theories, to obtain an alternative optimal s value for the stiffness-based 
approach, i.e. sopt = 0.19H2/tanθL2. 

The strength- and stiffness-based approaches are simultaneously applied in 
the preliminary design of a rectangular, 100-story tall diagrid tube, considering 
three different diagonal angles (64°, 69° and 79°), under both gravity and wind 
loads. The results show that, on the broad side of the building, strength 
requirements always prevail at the upper modules, whereas stiffness criteria drive 
the design of the lower modules. Conversely, on the shorter side, strength prevails 
over stiffness for the entire height of the building with θ = 64°, and stiffness 
prevails for θ = 79°, while in the case of 69° (which is close to the optimal angle 
inclination) the stiffness- and strength-based approaches provide almost the same 
result [111]. 

After carrying out the structural analyses on the designed buildings, it is found 
that the stiffness-based methodology leads to very efficient structures as regards 
the top lateral deflection, which is very close to the target value. However, this 
approach usually leads to unsatisfactory results in terms of the inter-story drift of 
the upper modules, as well as in terms of member strength demand-to-capacity 
ratio (DCR). In fact, besides the case of θ = 79°, where only 0.3% of the diagonals 
fail the strength requirements, 26% and 23% of them exhibit DCR greater than 1, 
for θ = 64° and 69°, respectively. On the contrary, adopting the strength-based 
design, the fraction of elements with DCR greater than 1 is 0%, 0.5% and 0.3%, 
for θ = 64°, 69° and 79°, respectively. However, with this approach, 
unsatisfactory results are obtained in terms of lateral deformability, especially in 
the case of 69° and 79° [111]. Therefore, stiffness-based approaches might lead to 
unsatisfactory strength results, while strength criteria might fail stiffness 
requirements. A compromise should then be found depending on the specific 
building characteristics. In both cases, large inter-story drifts are usually found at 
the upper modules. 
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Further investigation regarding the suitability of stiffness- and strength-based 
criteria for the preliminary design is subsequently developed for a broader range 
of diagrid structures [112,113]. In [112], Mele investigates the effect of both 
approaches on 90-story tall diagrid tubes, with diagonal angles of 60°, 70° and 
80°. The results are in line with the previous findings. For smaller diagonal 
angles, strength usually drives the design, while the stiffness-based approach leads 
to inadequate DCR values. For greater angles, the stiffness-based design prevails, 
while strength criteria lead to excessive lateral deflections. In the range of the 
optimal angle, both criteria concur in defining the member sizes. 

More recently, the effect of both slenderness and diagonal angle has been 
taken into account simultaneously for the preliminary design [113]. Diagrids with 
aspect ratios ranging from 2 to 8, and diagonal angles from 50° to 80°, are 
considered. It is found that, for those with an aspect ratio from 2 to 4, the design is 
mainly governed by strength requirements, independently of the diagrid angle, 
and the “premium for height” is mostly linear with the increase of slenderness. 
Conversely, for aspect ratios greater than 6, the design is mainly driven by 
stiffness, and the weight increases more than linearly with the slenderness. Aspect 
ratios around 5 are found to be the threshold, where stiffness- and strength-based 
designs provide comparable solutions [113]. Based on these results, it is 
concluded that, due to the extreme rigidity of the diagrid tubular system, it is not 
always possible to know a priori whether stiffness- or strength-based criteria 
should be considered for the preliminary design. Both approaches are necessary 
and unavoidable, and none of them should be used without the other [111]. The 
geometrical diagrid parameters, e.g. building aspect ratio and diagonal angle, 
drive the prevalence of one over the other. 

In any case, simplified approaches for the preliminary design represent an 
effective way to quickly define and assess the structural characteristics and 
performance of the diagrid. 

4.1.2 Methods for the structural analysis of diagrid systems 

In the academic literature, the most common procedure to deal with the 
structural analysis of diagrid systems is the Finite Element Method (FEM). 
However, simplified methodologies have also been developed for a quick 
evaluation of the diagrid overall structural behavior. 

Mele et al. [114] have proposed a hand-based method for the evaluation of the 
axial stress in the diagrid members. The method is based on the analysis of the 
internal forces arising in the basic triangular element due to gravity and vertical 
loads, taking also into account the effect of the horizontal and vertical curvatures 
of the diagrid façade. Although it does not allow the direct calculation of the 
displacements of the structure, this methodology has proven effective in the 
computation of the axial forces in the diagonals. It is applied to three real case 
studies, the Swiss Re Building (London), the Hearst Headquarters (New York) 
and West Tower (Guangzhou), and the axial stresses arising from hand-
calculations show a very good correspondence with FEM results. Design 
considerations regarding the optimal diagonal inclination for the investigated 
cases are also provided. 

More recently, Liu and Ma have developed a simplified methodology, called 
the modular method (MM), to perform the structural analysis of diagrid tubes with 
an arbitrary polygonal shape [115]. So far, most of the research has been focused 
on rectangular diagrids, having vertical façades acting as webs or flanges (Figures 
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4.4 and 4.5); however, little attention has been paid to diagrids with polygonal 
shapes. 

The modular method relies on the modularization of the diagrid and the 
calculation of the lateral stiffness of the diagrid modules in order to compute the 
total lateral deflection. The lateral displacement ui of the ith module can be 
obtained by superimposing the contribution of the shear displacement uV,i and 
bending displacement uM,i. Based on the evaluation of the shear and bending 
rigidity of the ith module, KV,i and KM,i, the two contributions can be computed as 
follows: 
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where Vi and Mi are the shear force and bending moment at the level of the ith 
module, respectively, and h the height of the module. The key to the MM is the 
calculation of the shear and bending rigidities, KV,i and KM,i, which is based on the 
usual assumptions for diagrid tubes: the diagonals are only subjected to axial 
stress and remain in the linear elastic regime; the building floors behave as rigid 
bodies without any internal deformation; the intra-module floors are neglected for 
the calculation of the modular rigidities. 

Shear rigidity is defined as the total shear force FV required for unitary 
horizontal displacement of the module ∆v (Figure 4.6a), and bending rigidity is 
defined as the bending moment M required for unitary floor rotation ∆β (Figure 
4.6b). Applying independently unitary floor displacements and rotations, and 
computing the total shear force and bending moment, leads to the direct 
evaluation of KV,i and KM,i. The calculation of the shear force and bending moment 
is based on the geometrical compatibility equations, the constitutive relations of 
the diagonals, and finally the equilibrium equations at the level of the floor. This 
finally allows one to obtain the following formulations for KV and KM: 

 
 

MË =
Ie cosQ V sin V sin å	

ℎ
LcosQ ÁS

Ä

SÅf

+
Ie sin§ V cosQ å sin å	

ℎ
LsinQ ÁS

Ä

SÅf

, (4.7a) 

 
M' =

Ie sin§ V sin§ å	
ℎ

LgS
Q

Ä

SÅf

, (4.7b) 

 
where E and A are the Young modulus and cross-sectional areas of the diagonals, 
θ the angle between the diagonal and the main ring beam in the façade, γ the angle 
between the ring beam plane and the façade, N the number of total diagonals in 
the module, α the angle between the ring beam and shear direction, and Bd is the 
distance between the diagonal d and the neutral axis in the main ring beam plane 
[115]. Note that Eqs. (4.7a) and (4.7b) resemble Eqs. (4.1a) and (4.1b), but they 
also include the effect of not-vertical façades (γ angle) and polygonal planar 
shapes (α angle). Making use of Equations (4.7a) and (4.7b) for each module, 
together with the application of Equations (4.6a) and (4.6b), one can finally 
evaluate the lateral deformation of the diagrid building under horizontal loads. 

The MM is verified against FEM calculations, analyzing square, hexagonal 
and octagonal diagrid tubes with vertical and inclined façades under different 
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horizontal loading conditions. The variations, in terms of top displacement, from 
the FEM results are always within 10%, which verifies the proposed 
methodology. Based on the evaluation of the shear and bending rigidities, the MM 
is also employed to define the analytical framework for the preliminary design of 
diagrids [115]. 
 

 
Figure 4.6. Scheme for the calculation of (a) shear rigidity and (b) bending rigidity, 
according to the modular method (MM). Used with permission from Liu and Ma [115]. 

 
Subsequently, a new method has been developed for the structural analysis of 

diagrids by Scaramozzino [116] and subsequently published by Lacidogna et al. 
[117], which has been called the matrix-based method (MBM). This methodology 
is grounded on the matrix calculus applied to the ELMs. This strategy drastically 
reduces the degrees of freedom (DOFs) of the diagrid structure with respect to the 
FE calculations, while capturing the overall building behavior. The method will 
be thoroughly described in the following Section. 

4.2 Matrix-based Method (MBM) for the Structural 
Analysis of Diagrid Systems 

The matrix-based method (MBM) shown in this Section has been recently 
developed for the structural analysis of diagrid systems in [116,117]. It is based 
on the direct calculation of the stiffness matrix of the structure with respect to the 
DOFs of the floors. In order to focus on the global behavior of the building and 
coherently with the other studies in the literature [109,114,115], the floors are 
considered as rigid bodies in the three-dimensional space. Their motion can then 
be described by means of six DOFs, i.e. three displacements and three rotations. 
Therefore, for the most general case of a three-dimensional diagrid structure 
counting N floors, the MBM yields the consideration of a total of 6N DOFs. 

The hypotheses behind the formulation of the MBM, that allows to reduce the 
computational cost of the structural problem, are the same considered by the 
previous researchers: the external diagonals are only subjected to the axial stress 
and remain within the linear elastic regime; the floors are considered as rigid 
bodies with no internal deformation; the floors included within the triangular 
module of the diagrid (the green ones in Figure 4.3a) are neglected. As a 
consequence of the last assumption, the total number of floors N only refers to the 
ones lying at the end of the pinned diagonals (the red ones in Figure 4.3a). 

Based on these hypotheses, the general structural problem in the linear elastic 
regime can be formulated by means of the following matrix relationship: 
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	 . = /0, (4.8) 

 
being . and 0 the 6N × 1 generalized force and displacement vector, respectively, 
and / the 6N × 6N stiffness matrix of the entire diagrid structure. . contains the 
forces and moments applied to the floor centroids, while 0 contains the 
corresponding displacements and rotations. Equation (4.8) can be further 
expanded by distinguishing the translational and rotational DOFs of the floors as 
follows: 
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, (4.9) 

 
being .Í, .Î and .Ï the floor forces along the axes X, Y and Z, respectively, and 
0Í, 0Î and 0Ï the corresponding displacements, 6Ï the in-plane torque moments 
acting around the vertical axis Z and ÃÏ the corresponding torsional rotations, 6Í 
and 6Î the out-of-plane moments acting along the horizontal axes X and Y and 
ÃÍ and ÃÎ the corresponding out-of-plane rotations. Figure 4.7a reports the 
convention adopted for the axes, displacements and rotations in the three-
dimensional reference system. 
 

 
Figure 4.7. Conventions for three-dimensional diagrid structure: (a) displacements and 
rotations of the floors; (b) floors and modules numbering and subscripts of diagonal 
coordinates. Used with permission from Lacidogna et al. [117]. 

 
In Eq. (4.9), the 6N × 6N stiffness matrix / is represented through the 

partitioning based on the translational and rotational DOFs of the system. In this 
way, it can be written as a 6 × 6 matrix made up of N × N sub-matrices /±,, 
where ± and  represent one of the entries of the force and displacement vector, 
respectively. For example, /.Í0Í represents the N × N stiffness matrix that relates 
the horizontal forces along the X direction with the corresponding horizontal 
displacements. The thirty-six matrices reported in Eq. (4.9) constitute all the 
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combination between the forces and moments acting on the floors and the 
corresponding translational and rotational DOFs. 

As reported in [116,117], the MBM relies on the direct calculation of the 
stiffness matrix / in Eq. (4.9), by means of the displacement method. This is 
applied in the following way to compute each element i-j of the generic sub-
matrix /±,: (1) a unitary displacement or a unitary rotation (depending on ) is 
applied to the jth  floor; (2) based on the imposed displacements, the deformations 
and the axial forces of the diagonals included within the deformed modules are 
computed, through the kinematic and constitutive relationships; (3) the total 
reactive force or the total reactive moments (depending on ±) at the ith  floor is 
evaluated, through equilibrium equations. By means of this procedure, one is able 
to analytically compute all the stiffness coefficients in each sub-matrix in Eq. 
(4.9), and finally evaluate the whole stiffness matrix of the diagrid structure. Note 
that, due to the property of symmetry of the stiffness matrices, / is symmetric, 
therefore only twenty-one sub-matrices need to be actually calculated, out of the 
thirty-six reported in Eq. (4.9). 

Equation (4.9) can be presented in a simplified way to separate the DOFs that 
generate horizontal displacements of the floors, i.e. 0Í, 0Î and ÃÏ, and the ones 
generating vertical displacements, i.e. ÃÍ, ÃÎ and 0Ï: 

 
 Ò

.ë

.Ú
Û = d

/ëë /ëÚ
/Úë /ÚÚ

k Ò
0ë
0Ú
Û, (4.10) 

 
being .ë the 3N × 1 vector of generalized horizontal forces (.Í, .Î and 6Ï) and 
0ë the generalized horizontal displacements (0Í, 0Î and ÃÏ), .Ú the 3N × 1 
vector of generalized vertical forces (6Í, 6Î and .Ï) and 0Ú the generalized 
horizontal displacements (ÃÍ, ÃÎ and 0Ï). 

Based on this partitioning, the stiffness matrix is a formal 2 × 2 matrix, where 
the four sub-matrices are 3N × 3N stiffness sub-matrices relating the horizontal 
and vertical DOFs to the generalized horizontal and vertical force vectors. Based 
on the symmetry of the stiffness matrix, it follows that /Úë = /ëÚ

∞. In the 
following paragraphs, the analytical equations for the computation of the stiffness 
coefficients of /ëë, /ÚÚ	and /ëÚ will be reported. 

4.2.1 Direct calculation of the stiffness coefficients 

As mentioned above, the coefficients within each stiffness matrix are directly 
computed through the displacement method, which relies on the application of 
unitary displacements/rotations, subsequent evaluation of the axial stresses in the 
deformed diagonals and final calculation of the total equilibrium forces/moments 
acting at the level of the floor centroids [117]. 

4.2.1.1 Calculation of the KHH sub-matrix 

Based on the partitioning of the stiffness matrix presented in Eqs. (4.9) and 
(4.10), /ëë contains nine sub-matrices which relate the horizontal forces .Í and 
.Î and torque moments 6Ï to the corresponding horizontal displacements 0Í and 
0Î and torsional rotations ÃÏ. Due to the symmetry of the matrix /ëë, only six 
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sub-matrices need to be calculated, e.g. /.Í0Í, /.Î0Î,	/.Í0Î, /6ÏÃÏ, /.ÍÃÏ, 
/.ÎÃÏ. 

Based on the methodology explained above, the generic i-j element of /.Í0Í 
is calculated by applying an unitary displacement along the X axis on the jth floor, 
while keeping all the other floors fixed, and computing the total reactive force 
along the X direction at the ith floor. Consequently, it is easy to show that /.Í0Í is 
a tri-diagonal matrix, whit values different from zero only for i = j – 1, j and j + 1. 
Note that this holds true for all the thirty-six matrices in Eq. (4.8). Eventually, one 
obtains: 
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°MÙı&ı¢sŸf,s = −LIS,seS,s

∆ûS,s
Q

‹S,s
§

Hˆ

SÅf

, (4.11c) 

   
being IS,s, eS,s and ‹S,s the Young’s Modulus, cross-sectional area and length of 
the dth diagonal in the jth module, ∆ûS,s the difference of the X-coordinates of the 
diagonal end nodes referred to the jth module. See Figure 4.7b and [116,117] for 
more details about the numberings of the floors and diagrid modules. Similarly to 
Eqs. (4.11), the stiffness coefficients of /.Î0Î can be obtained as: 
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being ∆üS,s the difference of the Y-coordinates of the dth diagonal end nodes 
referred to the jth module. 

The stiffness coefficients of the out-of-diagonal sub-matrix /.Í0Î can be 
obtained by applying displacements along the Y direction and computing the total 
reacting force along the X direction, obtaining: 
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Note that for symmetric buildings, it follows that /.Í0Î is completely null. 
The calculation of /6ÏÃÏ, /.ÍÃÏ and /.ÎÃÏ is a bit more complicated, from 

an analytical point of view, as the MBM relies on the application of unitary 
torsional rotations ÃÏ and consequent calculation of torque moments 6Ï and 
horizontal forces .Í and .Î. Accordingly, one obtains the following expressions 
for the coefficients of /6ÏÃÏ: 
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being û(,s and ü(,s the X and Y coordinate of the centroid of the jth floor, while 
ûS,s,s and üS,s,s are the X and Y coordinate of the end nodes of the dth diagonal 
contained within the jth module and referring to the jth floor (see Figure 4.7b). 
Similarly, the analytical expression of the coefficients of /.ÍÃÏ and /.ÎÃÏ is 
obtained as follows: 
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The application of Eqs. (4.11)-(4.16) finally allows the direct computation of the 
whole /ëë matrix in Eq. (4.10). 

4.2.1.2 Calculation of the KVV sub-matrix 

According to Eqs. (4.9) and (4.10), the stiffness matrix /ÚÚ contains nine 
sub-matrices that relate the out-of-plane moments 6Í and 6Î and vertical forces 
.Ï to the corresponding out-of-plane rotations ÃÍ and ÃÎ and vertical 
displacements 0Ï. Due to the symmetry of the matrix /ÚÚ, only six sub-matrices 
need to be calculated, e.g. /6ÍÃÍ, /6ÎÃÎ,	/6ÍÃÎ, /.Ï0Ï, /6Í0Ï, /6Î0Ï. 

By applying the same methodology explained above, the stiffness coefficients 
of  /6ÍÃÍ can be obtained as: 
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being  ∆†S,s the difference of the X-coordinates of the diagonal end nodes referred 
to the jth module and the other terms have the same meaning explained in Section 
4.2.1.1. Similarly, to Eqs. (4.17), the stiffness coefficients of /6ÎÃÎ can be 
obtained as: 
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The stiffness coefficients of the out-of-diagonal sub-matrix /6ÍÃÎ can be 
obtained by applying rotations along the Y direction and computing the total 
reacting moments along the X direction, obtaining: 
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Finally, by applying unitary vertical displacements 0Ï and computing the 

resulting vertical forces and .Ï and out-of-plane moments 6Í and 6Î, one 
directly obtains the following expressions for the coefficients of /.Ï0Ï, /6Í0Ï and 
/6Î0Ï: 
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˘M'˙&¸˚sŸf,s

= −LIS,seS,s
∆†S,s

Q

‹S,s
§ °üS,s,sŸf − ü(,sŸf¢

Hˆ

SÅf

, (4.22c) 

 
The application of Eqs. (4.17)-(4.22) finally allows the direct computation of the 
whole /ÚÚ matrix in Eq. (4.10). 

4.2.1.3 Calculation of the KHV sub-matrix 

Finally, the stiffness matrix /ëÚ contains the nine sub-matrices that relate the 
horizontal forces .Í and .Î and torque moments 6Ï to the out-of-plane rotations 
ÃÍ and ÃÎ and vertical displacements 0Ï. Due to the fact that this matrix is not on 
the diagonal of the global stiffness matrix, it is not necessarily symmetric, 
therefore all the nine sub-matrices need to be calculated, i.e. /.ÍÃÍ, /.ÍÃÎ, 
/.Í0Ï,	/.ÎÃÍ, 	/.ÎÃÎ, /.Î0Ï,	/6ÏÃÍ, 	/6ÏÃÎ, /6Ï0Ï. 

By applying the same methodology explained above, the stiffness coefficients 
of these sub-matrices can be obtained as: 

 
 

°MÙı˝ı¢slf,s = L IS,slfeS,slf
∆ûS,slf∆†S,slf

‹S,slf
§ °ûS,slf,s − û(,s¢

Hˆ˜¯

SÅf

, (4.23a) 

 
°MÙı˝ı¢s,s = −L IS,slfeS,slf

∆ûS,slf∆†S,slf
‹S,slf

§ °ûS,slf,s − û(,s¢

Hˆ˜¯

SÅf

−LIS,seS,s
∆ûS,s∆†S,s
‹S,s

§ °ûS,s,s − û(,s¢

Hˆ

SÅf

, 
(4.23b) 

 
°MÙı˝ı¢sŸf,s = LIS,seS,s

∆ûS,s∆†S,s
‹S,s

§ °ûS,s,s − û(,s¢

Hˆ

SÅf

, (4.23c) 

 
 

˘MÙı˝˙˚slf,s
= LIS,slfeS,slf

∆ûS,slf∆†S,slf
‹S,slf

§ °üS,slf,s − ü(,s¢

Hˆ˜¯

SÅf

, (4.24a) 

 
˘MÙı˝˙˚s,s

= −LIS,slfeS,slf
∆ûS,slf∆†S,slf

‹S,slf
§ °üS,slf,s − ü(,s¢

Hˆ˜¯

SÅf

−LIS,seS,s
∆ûS,s∆†S,s
‹S,s

§ °üS,s,s − ü(,s¢

Hˆ

SÅf

, 
(4.24b) 

 
˘MÙı˝˙˚sŸf,s

= LIS,seS,s
∆ûS,s∆†S,s
‹S,s

§ °üS,s,s − ü(,s¢

Hˆ

SÅf

, (4.24c) 

 
 

°MÙı!†¢slf,s = L IS,slfeS,slf
∆ûS,slf∆†S,slf

‹S,slf
§

Hˆ˜¯

SÅf

, (4.25a) 

 
°MÙı!†¢s,s = −LIS,slfeS,slf

∆ûS,slf∆†S,slf
‹S,slf

§ −LIS,seS,s
∆ûS,s∆†S,s
‹S,s

§

Hˆ

SÅf

Hˆ˜¯

SÅf

, (4.25b) 

 
°MÙı!†¢sŸf,s = LIS,seS,s

∆ûS,s∆†S,s
‹S,s

§

Hˆ

SÅf

, (4.25c) 

 
 

˘MÙ̇ ˝ı˚slf,s
= L IS,slfeS,slf

∆üS,slf∆†S,slf
‹S,slf

§ °ûS,slf,s − û(,s¢

Hˆ˜¯

SÅf

, (4.26a) 
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˘MÙ̇ ˝ı˚s,s

= −L IS,slfeS,slf
∆üS,slf∆†S,slf

‹S,slf
§ °ûS,slf,s − û(,s¢

Hˆ˜¯

SÅf

−LIS,seS,s
∆üS,s∆†S,s
‹S,s

§ °ûS,s,s − û(,s¢

Hˆ

SÅf

, 
(4.26b) 

 
˘MÙ̇ ˝ı˚sŸf,s

= LIS,seS,s
∆üS,s∆†S,s
‹S,s

§ °ûS,s,s − û(,s¢

Hˆ

SÅf

, (4.26c) 

 
 

˘MÙ̇ ˝˙˚slf,s
= L IS,slfeS,slf

∆üS,slf∆†S,slf
‹S,slf

§ °üS,slf,s − ü(,s¢

Hˆ˜¯

SÅf

, (4.27a) 

 
˘MÙ̇ ˝˙˚s,s

= −L IS,slfeS,slf
∆üS,slf∆†S,slf

‹S,slf
§ °üS,slf,s − ü(,s¢

Hˆ˜¯

SÅf

−LIS,seS,s
∆üS,s∆†S,s
‹S,s

§ °üS,s,s − ü(,s¢

Hˆ

SÅf

, 
(4.27b) 

 
˘MÙ̇ ˝˙˚sŸf,s

= LIS,seS,s
∆üS,s∆†S,s
‹S,s

§ °üS,s,s − ü(,s¢

Hˆ

SÅf

, (4.27c) 

 
 

˘MÙ̇ !†˚slf,s
= L IS,slfeS,slf

∆üS,slf∆†S,slf
‹S,slf

§

Hˆ˜¯

SÅf

, (4.28a) 

 
˘MÙ̇ !†˚s,s

= −LIS,slfeS,slf
∆üS,slf∆†S,slf

‹S,slf
§ −LIS,seS,s

∆üS,s∆†S,s
‹S,s

§

Hˆ

SÅf

Hˆ˜¯

SÅf

, (4.28b) 

 
˘MÙ̇ !†˚sŸf,s

= LIS,seS,s
∆üS,s∆†S,s
‹S,s

§

Hˆ

SÅf

, (4.28c) 

 
 

°M'¸˝ı¢slf,s = L IS,slfeS,slf
∆†S,slf
‹S,slf

§ ¶°ûS,slf,s − û(,s¢°ûS,slf,slf

Hˆ˜¯

SÅf

− û(,slf¢∆üS,slf
− °üS,slf,slf − ü(,slf¢°ûS,slf,s − û(,s¢∆ûS,slf®, 

(4.29a) 

 
°M'¸˝ı¢s,s = L IS,slfeS,slf

∆†S,slf
‹S,slf

§ Æ°ûS,slf,s − û(,s¢°üS,slf,s − ü(,s¢∆ûS,slf

Hˆ˜¯

SÅf

− °ûS,slf,s − û(,s¢
Q
∆üS,slfØ

+LIS,seS,s
∆†S,s
‹S,s

§ Æ°ûS,s,s − û(,s¢°üS,s,s − ü(,s¢∆ûS,s

Hˆ

SÅf

− °ûS,s,s − û(,s¢
Q
∆üS,sØ, 

(4.29b) 

 
°M'¸˝ı¢sŸf,s = LIS,seS,s

∆†S,s
‹S,s

§ ¶°ûS,s,s − û(,s¢°ûS,s,sŸf − û(,sŸf¢∆üS,s

Hˆ˜¯

SÅf

− °üS,s,sŸf − ü(,sŸf¢°ûS,s,s − û(,s¢∆ûS,s®, 
(4.29c) 

 
 

˘M'¸˝˙˚slf,s
= L IS,slfeS,slf

∆†S,slf
‹S,slf

§ ¶°üS,slf,s − ü(,s¢°ûS,slf,slf

Hˆ˜¯

SÅf

− û(,slf¢∆üS,slf
− °üS,slf,slf − ü(,slf¢°üS,slf,s − ü(,s¢∆ûS,slf®, 

(4.30a) 
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˘M'¸˝˙˚s,s

= L IS,slfeS,slf
∆†S,slf
‹S,slf

§ Æ°üS,slf,s − ü(,s¢
Q
∆ûS,slf

Hˆ˜¯

SÅf

− °ûS,slf,s − û(,s¢°üS,slf,s − ü(,s¢∆üS,slfØ

+LIS,seS,s
∆†S,s
‹S,s

§ Æ°üS,s,s − ü(,s¢
Q
∆ûS,s

Hˆ

SÅf

− °ûS,s,s − û(,s¢°üS,s,s − ü(,s¢∆üS,sØ, 

(4.30b) 

 
˘M'¸˝˙˚sŸf,s

= LIS,seS,s
∆†S,s
‹S,s

§ ¶°üS,s,s − ü(,s¢°ûS,s,sŸf − û(,sŸf¢∆üS,s

Hˆ˜¯

SÅf

− °üS,s,sŸf − ü(,sŸf¢°üS,s,s − ü(,s¢∆ûS,s®, 
(4.30c) 

 
 

°M'¸!†¢slf,s = LIS,slfeS,slf
∆†S,slf
‹S,slf

§ ¶°ûS,slf,slf − û(,slf¢∆üS,slf

Hˆ˜¯

SÅf

− °üS,slf,slf − ü(,slf¢∆ûS,slf®, 

(4.31a) 

 
°M'¸!†¢s,s = LIS,slfeS,slf

∆†S,slf
‹S,slf

§ ¶°üS,slf,s − ü(,s¢∆ûS,slf

Hˆ˜¯

SÅf

− °ûS,slf,s − û(,s¢∆üS,slf®

+LIS,seS,s
∆†S,s
‹S,s

§ ¶°üS,s,s − ü(,s¢∆ûS,s − °ûS,s,s − û(,s¢∆üS,s®

Hˆ

SÅf

, 

(4.31b) 

 
°M'¸!†¢sŸf,s = L IS,seS,s

∆†S,s
‹S,s

§ ¶°ûS,s,sŸf − û(,sŸf¢∆üS,s

Hˆ˜¯

SÅf

− °üS,s,sŸf − ü(,sŸf¢∆ûS,s®, 
(4.31c) 

 
The application of Eqs. (4.23)-(4.31) finally allows the direct computation of the 
whole /ëÚ matrix in Eq. (4.10) Eventually, remembering that /Úë is the 
transpose of /ëÚ, one obtains the whole stiffness matrix of the diagrid structure / 
in Eqs. (4.8), that allows to solve the structural analysis. 

4.2.2 MBM for the structural analysis and insertion into the 
General Algorithm 

Once the coefficients of the diagrid stiffness matrix are computed based on 
the equations presented in Section 4.2.1, the matrix relationships reported in Eqs. 
(4.8) and (4.9) can be simply inverted to obtain all the displacements and rotations 
of the floors under the given external forces and moments acting at the level of the 
floor centroids: 

 
	 0 = /lï.. (4.32) 

 
Ultimately, these allow to evaluate the flexibility of the diagrid structure, in terms 
of both lateral and vertical displacements, as well as torsional and bending 
rotations. Based on the obtained displacements and rotations of each floor, the 
final step of the linear structural analysis yields the calculation of the axial force 
”S,s in the generic dth diagonal lying within the jth diagrid module, as follows: 
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	 ”S,s =
IS,seS,s
‹S,s

Q ˛¶!1,s − !1,sŸf®∆ûS,s + ¶!2,s − !2,sŸf®∆üS,s − ¶!3,s − !3,sŸf®∆†S,s

+ "3,s¶−°üS,s,s − ü(,s¢∆ûS,s + °ûS,s,s − û(,s¢∆üS,s®

− "3,sŸf¶−°üS,s,sŸf − ü(,sŸf¢∆ûS,s
+ °ûS,s,sŸf − û(,sŸf¢∆üS,s® − "1,s°ûS,s,s − û(,s¢∆†S,s
+ "1,sŸf°ûS,s,sŸf − û(,sŸf¢∆†S,s − "2,s°üS,s,s − ü(,s¢∆†S,s
+ "2,sŸf°üS,s,sŸf − ü(,sŸf¢∆†S,sˇ, 

(4.33) 

 
where the symbols have the same meaning provided in the previous Section. Note 
that the axial force in the diagonal is generated by the three displacements and 
three rotations of the jth and (j + 1)th floors (Figure 4.7b). 

By applying the methodology developed in Section 4.2.1 for the calculation 
of the diagrid stiffness matrix and the Eqs. (4.32) and (4.33) to solve the structural 
problem, the structural analysis of the diagrid tall building can be ultimately 
carried out. In [116,117], the MBM has been applied to perform the structural 
analysis of the Swiss Re Tower (Figure 4.2b). Lateral and vertical loads have been 
considered, as well as torque moments acting at the level of the floors. The results 
that arise from the MBM, in terms of both floor displacement and rotations and 
axial forces in the diagonals, have been compared to the ones deriving from FE 
calculations, carried out on the commercial code LUSAS [72]. The comparison 
showed that the MBM is indeed able to perform the structural analysis under the 
above mentioned hypotheses, being the results from the MBM completely 
matching the ones arising from FE calculations [116,117]. Note that the Swiss Re 
Tower is a freeform diagrid, having a curvature both on the horizontal and vertical 
plane (Figure 4.3b). Therefore, the MBM has proven to be effective in 
investigating diagrid buildings with generic geometries. 

Despite the other methods presented in the literature for the analysis of 
diagrids, which aim at calculating the lateral shear and bending rigidity of the 
diagrid tube [102,108], the MBM allows also to obtain information about the 
vertical and torsional flexibility of the diagrid structure. This is due to the fact that 
all the six generalized displacements have been taken into account during the 
development of the model, as reported in Eq. (4.9). Moreover, despite the MBM is 
more simplified than complete FE models, it focuses on the global behavior of the 
structure neglecting the local deformability, therefore it allows to obtain a faster 
assessment of the overall structural behavior, without the need to insert detailed 
information. This is particularly beneficial for the preliminary design stages, 
where the designer is interested on the global structural response, rather than on 
the local structural issues that are usually addressed in subsequent design stages. 

4.2.2.1 The General Algorithm 

One of the main reasons why the MBM has been developed in this form, i.e. 
based on matrix calculus, is that it is also suitable to be inserted into the so-called 
General Algorithm (GA) for the investigation of the force distribution among 
different resisting elements within a complex tall building. The GA has been 
firstly developed as a semi-analytical approach by Carpinteri and Carpinteri in 
1985 [6,118], for the analysis of the lateral loading distribution between the 
elements of a three-dimensional civil structure, such as frames and shear walls. 

The GA formulation takes into account an N-story building that has M 
vertical bracings, each defined by an arbitrary position in the floor plan. Since the 
floor slabs are considered to be infinitely rigid in their own planes, the DOFs are 
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represented by the transverse displacements of the single floors: the translations	! 
and " in the directions X and Y, respectively, and the torsional rotation # for each 
story. In the same way, the external load applied to the origin of the reference 
system is expressed by a 3N-vector ., in which 2N shearing forces $Í and $Î and 
N torque moments ¨Ï are included (Figure 4.8a): 
 
	

.4 = %
$4
¨Ï,4

& = '
$Í,4
$Î,4
¨Ï,4

(. (4.34) 

 
Within the local reference system of the ith resisting element, i.e. Xi*Yi*Zi*, 

the 3N-load vector .4∗ and the 3N-displacement vector 04
∗describe the amount of 

external load carried by the ith element and its transverse displacements, 
respectively. The loading vector .4∗ can be reduced to .4, which refers to the 
global reference system XYZ (Figure 4.8b), by means of the following 
expressions valid for each bracing [118]: 

 
	 $4∗ = ò4$4, (4.35a) 
	 ¨Ï,4

∗ = ¨Ï,4 −)4 ∧ $4 × ,Ï. (4.35b) 
 
In matrix form: 
 
	

-
$Í,4∗

$Î,4∗

¨Ï,4
∗
. = d

ò4 9
−,Ï ∧ )4 /k '

$Í,4
$Î,4
¨Ï,4

(, (4.36) 

 
where ò4 represents the orthogonal rotation matrix from the global system XY to 
the local system Xi*Yi*, )4 is the coordinate vector of the origin of the local 
system in the global one, ,Ï is the unit vector associated with the direction Z and 
/ is the identity matrix. 

The orthogonal matrix ò4, extended to consider all the floors, can be 
represented by means of the angle "$ between the Y and Yi* axes: 

 
	 ò4 = d

[01Ê"$] [Êx_"$]
−[Êx_"$] [01Ê"$]

k, (4.37) 

 
where each term is a diagonal N × N submatrix. Taking into account all the floors, 
Eq. (4.36) can be rewritten in the following form: 
 
	 .4

∗ = ;4.4, (4.38) 
 
where the 3N × 3N submatrix ;4 gathers the information about the reciprocal 
rotation between the local and global reference systems and the location of the ith 
resisting element in the global system XY: 

 
	 ;4 = d

ò4 9
−,Ï ∧ )4 /k. (4.39) 
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Figure 4.8. (a) Internal loadings Si transmitted to the ith bracing in the global reference 
system; (b) global and local reference systems. Used with permission from Carpinteri [6]. 
 

The component −,Ï ∧ )4 is obtained from Eq. (4.35b) exploiting the fact that 
the scalar triple product is invariant under any cyclic permutation of its factors [6]. 
For the sake of simplicity, to take into account the N floors of the structure, this 
vector product can be written as a 2N × N matrix ≤4 composed of two diagonal 
submatrices containing the coordinates (xi, yi) of the origin of the local system 
Xi*Yi* (Figure 4.8b): 
 
	

−,Ï ∧ )4 = 2
3̅ 5 ̅ ,6
0 0 1
û$ ü$ 0

2 = −[−ü$ û$] = −≤4
∞. (4.40) 

 
Thus, the final expression for ;4 is: 
 
	

;4 = d
ò4 9
−≤4

∞ /
k. (4.41) 

 
In the same way, the vector 04

∗, constituted by 2N translations !$
∗, "$∗ and N 

rotations #$∗, can be connected to the corresponding 04, which is referred to the 
global reference system, by means of the orthogonal matrix ò4: 

 
	 Ò74

∗

84∗
Û = ò4 Ò

74
84
Û, (4.42a) 

	 94∗ = 94. (4.42b) 
 

Taking into account all the floors, Eqs. (4.42) can be rewritten in the following 
form by means of the compact 3N × 3N matrix ¥4: 
 
	 04

∗ = ¥404, (4.43) 
 
where the matrix ¥4 is similar to ;4, the term ≤4∞ being reduced to a null matrix: 
 
	 ¥4 = Æò4 9

9 /Ø. (4.44) 

(a) (b) 
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A relation between .4∗ and 04

∗ is considered known through the condensed 
stiffness matrix /4

∗, referred to the local reference system of the ith resisting 
element: 

 
	 .4

∗ = /4
∗04

∗. (4.45) 
 

Substituting Eqs. (4.38) and (4.43) into Eq. (4.45), the load vector .4 turns out to 
be connected to the displacement vector 04	through a product of matrices, which 
identifies the stiffness matrix /4 of the ith bracing in the global reference system 
XY: 
 
	 .4 = °;4

lï/4
∗¥4¢04 = /404. (4.46) 

 
Due to the presence of in-plane rigid slabs connecting the vertical resisting 

elements, the transverse displacements of each element can be computed 
considering only three generalized displacements, !, " and #, per floor.  This step, 
extended to consider all the floors, is performed through the matrix ∞4 that takes 
into account the location of each bracing in the plan by means of the coordinates 
(xi, yi) and therefore the matrix ≤4: 

 
	 04 = Æ/ ≤4

9 / Ø 0 = ∞40, (4.47) 

 
where 0 is the floor displacement vector, that is, the displacement vector 
associated with the origin of the global reference system. The substitution of Eq. 
(4.47) into Eq. (4.46) allows the identification of the stiffness matrix of the ith 
bracing, in reference to the global reference system XYZ and to the generalized 
floor displacements, !, " and #: 

 
	 .4 = (/4∞4)0 = /ƒ6660. (4.48) 

 
For the global equilibrium, the external load . applied to the structure is 

equal to the sum of the M vectors .4. In this way, a relationship between the 
external load and the floor displacements is obtained and the global stiffness 
matrix of the structure is computed. By means of this matrix, once the external 
load is defined, the displacements of the structure are acquired, from which the 
information regarding each single bracing can be deduced: 
 
	

. =L.4

6

4Åï

= :L/ƒ666
6

4Åï

;0 = /∂0, (4.49) 

 
and therefore: 
 
	 0 = /∂lï.. (4.50) 

 
Recalling Eq. (4.48) and comparing it with Eq. (4.50), an equation connecting 

the vectors . and .4 allows the definition of the amount of the external load 
carried by the ith vertical stiffening element: 
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	 0 = /∂lï. = /ƒ666

lï.4, (4.51) 
 

from which we obtain: 
 
	 .4 = /ƒ666/∂lï. = µ4.. (4.52) 

 
The load distribution matrix µ4, shown in Eq. (4.52), demonstrates that each 
bracing is subjecting to a load .4 that is given by the external load . pre-
multiplied by the own stiffness matrix and the inverse of the global stiffness 
matrix. Once the generalized displacement vector 0 is known, recalling Eqs. 
(4.43), (4.45) and (4.47), the displacements and the forces related to the ith bracing 
in its local coordinate system can be ultimately computed. Consequently, since the 
loads applied to each element are clearly identified, a preliminary assessment can 
easily be performed [6]. 

The GA shown above allows to quickly evaluate the distribution of lateral 
forces among the resisting elements as well as to analyze the lateral deflections 
and torsional rotations of a three-dimensional building made up of several bracing 
systems, such as frames and shear walls. Based on the formulation initially 
proposed by Carpinteri and Carpinteri [118], the GA was further enriched by 
inserting open-section shear walls [119], whose behavior obeys the Vlasov’s 
theory [120], the warping deformation being important for the torsional flexibility 
of these sections [121]. The GA was also used to analyze the structural behavior 
of shear walls of different heights [122], as well as unconventionally shaped 
structures, such as twisted and tapered towers [123]. It led to the comprehension 
of secondary effects in tall buildings under lateral loads [124] and was also used 
to extract the dynamical features of tall buildings [125]. Ultimately, the GA was 
also employed to investigate real case studies, such as the Intesa Sanpaolo Tower 
and the Piedmont Region Headquarters Tower, both in Turin [126–128]. 

4.2.2.2 Insertion of the MBM into the GA 

Although the MBM has been initially developed to perform the structural 
analysis of diagrid systems considered as the only resisting element of the tall 
building, it can be also been used within the GA environment to study the 
distribution of forces between the diagrid and other resisting elements as well as 
to calculate the transverse displacements of the building. However, in order for 
the MBM to be suitable for insertion into the GA, some additional considerations 
need to be applied. 

As shown above, the MBM allows to compute the 6N × 6N stiffness matrix of 
the diagrid structure, as reported in Eqs. (4.8) and (4.9), since it considers six 
DOFs per floor. Therefore, in order to make the model compatible with the GA 
framework, it is sufficient to neglect the presence of vertical forces and to 
condense the contribution given by the out-of-plane rotations [117]. As shown 
above, Eq. (4.9) can be rewritten by separating the contributions of the horizontal 
displacements and torsional rotations 0ë from those referring to the out-of-plane 
rotations and vertical displacements 0Ú, as reported in Eq. (4.10). This equation 
can be expanded into two matrix equations as: 

 
	 .ë = /ëë0ë + /ëÚ0Ú, (4.53a) 
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	 .Ú = /Úë0ë + /ÚÚ0Ú. (4.53b) 
 
In agreement with the GA framework, the building is only subjected to horizontal 
forces and torque moments, i.e. .ë ≠ 0 and .Ú = 0. Therefore, due to the fact the 
vector of vertical forces and out-of-plane moments is identically null, from Eq. 
(4.53b) it follows that the vector of vertical displacements and out-of-plane 
rotations can be obtained as: 
 
	 0Ú = −/ÚÚ

lï/Úë0ë. (4.54) 
 
Inserting Eq. (4.54) into Eq. (4.53a), we finally obtain the direct relationship 
between the vector of horizontal forces and torque moments .ë and the 
corresponding lateral displacements and torsional rotations 0ë as follows: 
 
	 .ë = °/ëë − /ëÚ/ÚÚ

lï/Úë¢0ë = /Öëë0ë. (4.55) 
 
The matrix /Öëë has dimensions 3N × 3N and it is calculated based on all the 
stiffness contributions of the diagrid structure, from the partitioning reported in 
Eq. (4.10). Note that Eq. (4.55) is equivalent to Eq. (4.45), as the matrix /Öëë 
represents the diagrid stiffness matrix in its local reference system referred to 
lateral loads. Therefore, this matrix can be directly inserted into the GA 
environment to evaluate the stiffness interaction between the external diagrid and 
other resisting elements, such as frames, shear walls, etc. 

As an example, an external steel diagrid tube is considered for a 63-meter tall 
building, coupled with an internal concrete core, as shown in Figure 4.9 [117].  

 

 
 
 

Figure 4.9. Diagrid system coupled with central core: (a) top view; (b) side view. Used 
with permission from Lacidogna et al. [117]. 

 
The plan of the building is shown in Figure 4.9a: it is made up of a 20 m ×	20 

m square diagrid system and a 5 m × 5 m central concrete core. The diagrid is 
composed by 18 modules and 18 floors with an inter-story height equal to 3.5 m 

(a) (b) 
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(Figure 4.9b). The concrete core is 40 cm thick and is characterized by a Young’s 
Modulus of 30 GPa. Whereas, all the diagrid diagonals are made of steel (E = 210 
GPa) and 508 × 25.0 mm CHS sections are assigned (A = 380 cm2). According to 
the described geometry, the diagonal inclination is equal to 35°. The structure is 
subjected to horizontal floor forces which are constant along the elevation and 
equal to 1000 kN. These are applied with an eccentricity of 10 m with respect to 
the centroid of the building, in order to consider torque moments as well [117]. 

In Figure 4.10 the horizontal displacements and torque rotations of the 
buildings are shown, according to the GA theory as well as to FEM results. The 
maximum relative difference among the results are 3.0% and 0.9% for the top 
horizontal displacement and the top torque rotation respectively, thus confirming 
the validity of the MBM associated to the GA. Moreover, shear values as well as 
bending and torque moments acting on the structure floors are shown in Figure 
4.11 [117]. 

 

 
Figure 4.10. Diagrid system coupled with central core: (a) horizontal displacements; (b) 
torque rotations. Used with permission from Lacidogna et al. [117]. 

 

 
Figure 4.11. Diagrid system coupled with central core: (a) shear; (b) bending moment; 
(c) torque moment. Used with permission from Lacidogna et al. [117]. 
 

It is interesting to observe how these static features distribute between the two 
resistant elements. About the 70% of the base shear is absorbed by the diagrid, 
whereas about the 30% is withstood by the concrete core, although a remarkable 

(a) (b) 

(a) (b) (c) 
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oscillating trend is noticeable along the elevation of the building. In the same way, 
about the 60% of the base bending moment is absorbed by the diagrid and the 
40% by the central core. The oscillation is mainly due to the fact that the diagrid 
exhibits a significant variation of its flexural stiffness along the height of the 
building. Indeed, the resistance to the out-of-plane rotations of the diagrid is not 
uniform since, as can be noticed from Figure 19b referring to the vertical façades, 
the lever arm of the most external diagonals changes for different floors. This 
strongly affects the variation of the diagrid lateral stiffness. In turn, such 
oscillation has an impact on the distribution of the lateral actions, especially when 
the diagrid is coupled to the central concrete core, which conversely exhibits a 
uniform lateral stiffness. Regarding the torque moments produced by the 
eccentricity of the horizontal forces, they are withstood by the diagrid for the 
91%, whereas the concrete core absorbs only the 9%. From the reported example, 
it is clear that the MBM, as far as subject to some restrictive hypotheses, may 
become a powerful tool to analyze complex spatial structures [117]. 

Note that, in the previous analysis, the diagonals of the external diagrid tube 
spanned over one single story. Therefore, the total number of building floors N 
corresponds to the number of floors considered for the diagrid. Otherwise, in the 
common cases where the diagrid diagonals span over multiple floors, the total 
number of building floors is usually greater than the number of floors at the end of 
the pinned diagonals, which are the only one used to compute the diagrid stiffness 
matrix. However, within the GA framework, all the building floors are always 
taken into account. This issue can be simply tackled by expanding the diagrid 
stiffness matrix /Öëë, before the insertion into the GA, and by filling all the rows 
and columns that are associated with the intra-module floors with zeros. In this 
way, the expanded matrix /Öëë can be finally inserted into the GA to study the 
interaction between the diagrid and other elements, also in the cases where the 
diagonals span over multiple floors. 

By following this approach, the MBM was recently used within the GA to 
study the behavior of a 40-story tall building made up of an external diagrid tube, 
with different diagonal inclinations, and an internal (closed- or open-section) 
shear wall [129]. The building’s geometry is shown in Figure 4.12. The typical 
floor is a 25 m × 25 m square plan and the inter-story height is equal to 4 m, 
leading to a total building height of 160 m and an aspect ratio equal to 6.4. The 
diagrid tube is present on the exterior of the structure, made up of steel diagonals, 
having the same inclination and cross-sectional area (0.1 m2) along the height of 
the structure. A 9 m × 9 m square shear wall, made up of concrete and 0.80 m 
thick, is placed at the center of the floor. In order to study the influence of the 
shear wall type on the structural response, both closed- and open-section shear 
walls are considered (Figure 4.12a). Moreover, six different diagrid geometries 
are studied, considering six different diagonal inclinations (Figure 4.12b). In 
conclusion, given the overall geometry of the building, twelve structures are 
analyzed by means of the GA, changing the shear wall type and inclination of the 
diagonals. As for the loading conditions, the structure is subjected to 100 kN 
horizontal forces along the X direction and 1000 kNm torque moments, 
distributed along the height of building [129]. 
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Figure 4.12. Building geometry: (a) floor plans, (b) lateral views. Used with permission 
from Lacidogna et al. [129]. 

 
In Figures 4.13 and 4.14, the lateral displacements and torsional rotations 

obtained by the GA are shown, for the case of diagrids coupled with closed- and 
open-section shear wall, respectively. As can be clearly seen in the figures, both 
the lateral displacements and torsional rotations are affected by the inclination of 
the external diagonals. This aspect will be deeply addressed in the following 
Chapter. 

 

 
Figure 4.13. Diagrid tube coupled with closed-section shear wall: (a) lateral 
displacements, (b) torsional rotations. Used with permission from Lacidogna et al. [129]. 

 
 

 

(a) 

(b) 

(a) (b) 
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Figure 4.14. Diagrid tube coupled with open-section shear wall: (a) lateral displacements, 
(b) torsional rotations. Used with permission from Lacidogna et al. [129]. 

 
In Figure 4.15, the stiffness contribution of the diagrid system and the central 

shear wall is shown, both regarding the lateral (Figure 4.15a) and torsional (Figure 
4.15b) stiffness. In order to obtain such values, the horizontal and torque actions 
have been applied to the separate models, i.e. the diagrid, the closed- and open-
section shear walls, and the displacements at the top of each structure have been 
measured. Defining the global lateral (torsional) stiffness as the ratio between the 
total horizontal force (torque moment) at the base and the displacement (rotation) 
at the top of the structure, the relative stiffness between the diagrids and the shear 
walls could be simply evaluated as the ratio between the calculated stiffness 
values [129]. 

As shown in Figure 4.15a, the lateral stiffness of the diagrid is always higher 
than the shear walls’ ones with the exception of scheme (1) from Figure 4.12, 
where the diagrid is found to be more flexible. The difference between the two 
shear walls (red and blue curve) is just due to the reduction of the moment of 
inertia due to the opening in the open-section shear wall [129]. 

 

 
Figure 4.15. Relative stiffness of diagrid and shear wall: (a) lateral stiffness, (b) torsional 
stiffness. Used with permission from Lacidogna et al. [129]. 
 

As regards the relative torsional stiffness, it can be observed from Figure 
4.15b (red curve) that the diagrid schemes (1) and (2) are more rigid than the 
closed-section shear wall, schemes (3) and (4) exhibit basically the same stiffness, 
whereas schemes (5) and (6) are much more flexible. Contrariwise, as far as the 
stiffness comparison with the open-section shear wall is concerned (blue curve), 
each diagrid scheme is much more rigid than the shear wall, and this is due to the 

(a) (b) 

(a) (b) 
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significant reduction of torsional rigidity of the open-section shear wall because of 
the opening. It is worth noting that, even if the diagrid schemes (5) and (6) are 
found to be approximately 10 times more rigid than the open-section shear wall, 
the torsional deformations (Fig. 4.14b) are significantly affected by the shear wall, 
since they show the inflection point due to the warping effect [129]. The influence 
of the diagonal inclination on both lateral and torsional flexibility of the diagrid 
tube will be thoroughly discussed in the following Chapter. 

4.3 Conclusions 

In this Chapter, the diagrid system, which is emerging in recent decades as an 
innovative solution for the design and construction of tall buildings, has been 
presented and analyzed by means of the Elastic Lattice modeling. In particular, 
after a brief overview about the main diagrid features and the most recent 
approaches suggested in the literature for the preliminary design and structural 
analysis, a matrix-based method (MBM) has been proposed for a quick analysis of 
the diagrid behavior. Based on the six DOFs of the rigid floors and consequent 
calculation of the diagrid stiffness matrix by means of the displacements method, 
the MBM has been shown to be effective in performing the structural analysis of 
generic diagrid tubes and allowing the evaluation of both the lateral and torsional 
flexibility of the diagrid structure. 

Moreover, the MBM has been shown to be suitable for insertion into the 
General Algorithm (GA), which represents a semi-analytical methodology, based 
on matrix calculus, for the structural analysis of tall buildings made up of various 
resisting elements. In particular, based on the condensation of the diagrid stiffness 
matrix, this has been inserted into the GA environment in order to investigate the 
interaction between the diagrid and central cores. 

The calculations shown in this Chapter refer to the linear structural analysis 
of the tall building, where floor forces and moments are applied to the system and 
the corresponding floor displacements and rotations are computed through the 
generalized Hooke’s law. However, the MBM might be suitable for further 
developments, such as dynamic and non-linear structural analyses. The former 
needs the definition of the mass matrix 6 of the building, which involves the 
knowledge of the mass and inertia characteristics of the floors. The latter involves 
writing the equilibrium equations in the deformed configuration, which can be 
implemented in two ways. Either by re-writing the linear system reported in Eq. 
(4.8), that relates the floor forces and moments to the corresponding 
displacements and rotations, via non-linear equations thus following the same 
approach presented in the previous Chapter regarding the non-linear analysis of 
protein conformational changes (see Eqs. (3.10) and (3.11)), or by computing the 
geometrical stiffness matrix /< of the diagrid system, that takes into account the 
influence of large displacements [6]. These extensions of the MBM will be 
addressed in future research efforts. 

Despite the use of simplified models within the framework of linear structural 
analysis, these can still allow the designer to obtain pivotal information regarding 
the diagrid behavior, which can be crucial for preliminary design stages and 
optimization purposes. As a matter of fact, in this Chapter we have briefly 
mentioned that the geometrical features of the diagrid, especially the diagonal 
inclination, might play an important role in defining its structural behavior, and 
finally its structural efficiency. This subject will be the major focus of the 
following Chapter, where the MBM will be deeply exploited, due to its capability 
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to provide a fast yet valuable description of the diagrid structural response, to 
investigate the influence of the diagrid geometry on its behavior and obtain the 
optimal diagrid solutions. 
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Chapter 5 

ELMs and Diagrid Tall Buildings: 
Influence of the Diagrid Geometry 
on the Structural Behavior and 
Multi-Response Optimization 

In the previous Chapter, we have described the diagrid systems, that are 
recently finding broad use worldwide for the design and construction of tall 
buildings due to their inherent structural efficiency and aesthetic potential. It has 
also been shown that the structural analysis of these tubular structures can be 
carried out by means of simplified methodologies, such as the matrix-based 
method (MBM) presented above, which rely on the Elastic Lattice modeling. 

As already mentioned in the previous Chapter, the great structural efficiency 
of the diagrid is due to the fact that it combines together the advantages of the 
tubular structure with the basic triangular element. The former allows to reach 
high stiffness performances of the tall building, while the latter exploits the 
structural mechanism mostly prevailed by axial stresses. Moreover, the diagrid 
being composed by an assembly of triangular elements placed all over the exterior 
of the building, their arrangement can be properly changed in order to enhance the 
structural response. In this way, the diagrid performance can be further increased 
by means of optimization procedures. 

This will be the focus of the present Chapter, which aims at describing the 
influence of the diagrid geometry on the structural performance and proposes a 
new methodology for the diagrid optimization. Specifically, in the first part of the 
Chapter, a brief literature overview of the research works about diagrid 
optimization is carried out. This is mostly taken by the recent review paper by 
Scaramozzino et al. [100]. Then, the influence of the diagrid geometrical 
characteristics on the structural response of the building is investigated. The 
analysis is carried out by means of the MBM, investigating both the lateral and 
torsional flexibility of the structure. Finally, a multi-response optimization will be 
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presented by making use, for the first time in this field, of the desirability function 
approach. 

5.1 Literature Overview on Diagrid Optimization 

Besides the great stiffness of the diagonalized façades and their capacity to 
realize complex-shaped systems, one of the main successful aspects of diagrids is 
the possibility they offer of reaching high structural performance standards, 
thanks to the optimization of the geometrical features. In the last decade, various 
researchers have thoroughly investigated the structural behavior of diagrids upon 
changing the external diagonal pattern in order to reach the optimal solutions. 

Moon et al. [109] showed for the first time that there exists a diagonal angle 
capable of satisfying the stiffness requirements with the minimum amount of 
employed material. The optimal angle results from the need to limit both shear 
and bending deformation, and it is found to increase as the aspect ratio of the 
building increases. As already mentioned in the previous Chapter, for 60-story tall 
diagrids with an aspect ratio of about 7, the optimal angle is in the range 65°–75°, 
while it decreases of about 10° for aspect ratios close to 5 [109]. Approximately 
the same results were found in [110] for a set of 40- to 100-story tall diagrids. 

Under lateral actions, shear forces and bending moments have different trends 
along the building’s elevation. For example, if we consider a uniform horizontal 
load, the shear force is zero at the top of the building and increases linearly 
towards the base, while the bending moment increases quadratically. This means 
that the need to resist shear and bending actions is different in different parts of 
the structure. Shear force prevails in the upper portion, while bending moment 
drives the design of the lower part. 
 

 
Figure 5.1. Different diagonal angle patterns: (a) varying-angle with steeper diagonals at 
the base; (b) uniform-angle; (c) varying-angle with steeper angle at the top, used with 
permission from Moon [110]; (d) varying-angle with straight diagonals; (e) varying-angle 
with curved diagonals, used with permission from Zhao and Zhang [130]. 

 
Based on this consideration, Moon investigated diagrid buildings with 

different patterns of diagonal angles [110]. Figure 5.1a shows a varying-angle 
diagrid with steeper angles at the base, Figure 5.1b a uniform-angle diagrid, and 
Figure 5.1c a varying-angle diagrid with steeper angles at the top. Steeper 
diagonals are more suitable for carrying bending moment, while shallower 
diagonals are more appropriate for carrying shear force. Therefore, the solution in 
Figure 5.1a should enhance the structural performance of the diagrid. Conversely, 
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the solution with steeper diagonals at the top behaves against structural logic, and 
is only considered for the sake of completeness, as it is not supposed to provide 
any beneficial effect. 

Based on the results, it was found that, for shorter buildings with aspect ratios 
lower than 7, the uniform-angle configuration provides the most efficient design 
in terms of material consumption. Shorter buildings behave like shear beams, and 
while the steeper diagonals at the base enhance the bending stiffness, the negative 
effect of the reduced shear rigidity causes the varying-angle diagrids to lose 
efficiency. Contrariwise, for taller buildings with aspect ratios greater than 7, the 
bending behavior prevails. The reduced shear rigidity at the base due to the 
steeper diagonals is balanced by the significant increase in bending stiffness. 
Therefore, in this case, the varying-angle configuration was found to provide the 
most efficient solution [110]. The same results were found in another paper by 
Moon [131], where the author also took into account the “speed” of variation of 
the diagonal angles along the height of the building, with smooth or more radical 
changes. 

In the solutions provided by Moon with variable angles, the diagonals do not 
remain straight across their length over the full height of the building, because of 
their changing direction at the interface of two diagrid modules with different 
angles. To overcome this, Zhang et al. [132] proposed a different strategy for the 
generation of varying-angle diagrid tubes. As shown in Figure 5.1d, a graphic 
approach was suggested to generate a varying-angle pattern with straight 
diagonals that extend over the full height of the building. This pattern is governed 
by two fundamental parameters, the top angle θ1 and the bottom angle θ2. The 
stiffness- and strength-based design criteria were applied to a set of 30- to 75-
story tall, varying-angle diagrids with straight diagonals, with aspect ratios 
ranging from 3.6 to 9. Several θ1–θ2 combinations were considered to investigate 
the optimal solutions under gravity and wind loads. Based on the results, the 
following empirical formulas were suggested for the optimal values of θ1 and θ2, 
depending on the building’s aspect ratio H/B: 
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As H/B increases, the optimal bottom angle θ2,opt increases, while the optimal top 
angle θ1,opt decreases. A critical value of the aspect ratio, (H/B)crit, was found, 
which defines the interface between the efficiency of uniform- versus varying-
angle diagrids, meaning that below (H/B)crit, uniform-angle diagrids are more 
efficient, while above this value varying-angle structures provide the most 
economical solutions. In this paper, (H/B)crit was found to be 4.5–5, smaller than 
the value of 7 previously suggested by Moon [110,131]. This is mainly due to the 
different definition of the diagonal pattern. For aspect ratios less than (H/B)crit, the 
bottom angle rather than the top angle drives the design. Conversely, for greater 
aspect ratios, the top angle becomes one of the determining factors [132]. 

In a following paper, Zhao and Zhang [130] proposed an additional diagrid 
configuration, where the varying-angle solution is obtained with curved diagonals 
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(Figure 5.1e). In the same paper, they also considered seismic loads in the 
evaluation of the optimal diagrid pattern. It was found that, for varying-angle 
straight diagonals, the optimal bottom angle θ2,opt is not affected by the load type, 
thus Eq. (5.1b) holds true also for seismic loads. However, the optimal top angle 
θ1,opt is always close to the lower limit for seismic loads, i.e. θ1,opt = arcsin(1/√3), 
thus correcting Eq. (5.1a). In the case of diagrids with curved diagonals, the 
authors proposed the following equations for the optimal angles, which are valid 
for both wind and seismic loads: 

 
	

Vf,RJ= = 0.8 fi
ß/g
8
fl

f
G
VQ,RJ= , (5.2a) 

	 VQ,RJ= = arctan(ß/g), (5.2b) 
 

H/B being in the range 3.6–9. With these values, the optimal top angle θ1,opt lies in 
the range 50°–70°, greater than the top angles in diagrids with straight diagonals 
(35°–45°). Thus, the lesser difference between θ1,opt and θ2,opt in this case results in 
a small curvature of the diagonals [130]. 

Further developments in the external diagrid patterns were carried out by 
Montuori et al. [133]. In addition to the consideration of uniform- and varying-
angle (VA) solutions, the authors also proposed diagrid patterns with variable-
density (VD) in the diagonal layout (Figure 5.2a). FE calculations were performed 
on a 90-story tall building with an aspect ratio of 6.62, under gravity and wind 
loads, and the structural responses were analyzed in terms of top lateral deflection, 
inter-story drifts and diagonal DCR. For each solution, an efficiency parameter 
was proposed as 1/Dtopw, Dtop and w being the lateral displacement and the 
employed steel weight per total floor area, respectively. The lower the lateral 
displacement and the amount of steel, the greater the efficiency of the investigated 
solution. The obtained efficiency parameters are shown in Figure 5.2b for all the 
considered solutions. From the results, it was found that the 80° and VA3 
solutions result in lower efficiency in the investigated case, whereas VA1 is the 
most efficient one. Uniform-angle solutions with 60° and 70°, as well as the 
variable patterns VA2, VD1 and VD2, show similar efficiency values [133]. 
 

 
Figure 5.2. (a) Different geometrical patterns from Montuori et al. [133]: uniform-angle 
patterns (60°, 70°, 80°), varying-angle patterns according to Moon approach (VA1, VA2) 
[110,131], varying-angle pattern according to Zhang approach (VA3) [132], variable-
density patterns (VD1, VD2). (b) Efficiency parameters for the investigated solutions. 
Used with permission from Montuori et al. [133]. 

 
Additional analyses regarding different pattern configurations can be also 

found in the work of Angelucci and Mollaioli [108]. After exploring the 
effectiveness of stiffness-based approaches for a 351-m tall diagrid with optimal 
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(69°) and non-optimal (82°) diagonal angles, in order to evaluate whether 
common approaches lead to optimized member sizes, the authors proposed 
additional variable-density (VD) patterns for the diagonal arrangement (Figure 
5.3). Two VD strategies were suggested for the non-optimal (82°) diagrid tube in 
order to meet the stiffness requirements: a localized pattern, resembling one-
outrigger-like (Figure 5.3a) or two-outrigger-like (Figure 5.3b) schemes; and a 
more uniform VD pattern, which provides additional distributed stiffness over the 
building elevation (Figure 5.3c,d). The outcomes from FE calculations showed 
that the local density increments (Figure 5.3a,b) are not efficient strategies for 
meeting the stiffness and strength requirements. Conversely, the solutions 
involving a more uniform VD pattern (Figure 5.3c,d), where the diagonal 
concentration rarefies towards the top of the building, turn out to be appropriate 
solutions for limiting the lateral displacements, while obtaining notable material 
savings [108]. 
 

 
Figure 5.3. Variable-density (VD) patterns proposed by Angelucci and Mollaioli [108]: 
(a-b) concentrated outrigger-like VD pattern; (c-d) distributed VD pattern. Used with 
permission from Angelucci and Mollaioli [108]. 

 
The previous work of Montuori et al. [133] was subsequently developed by 

Tomei et al. [134], who proposed additional diagonal patterns for the 90-story tall 
diagrid building (Figure 5.4a). Besides considering the usual uniform- and 
varying-angle patterns, the authors also suggested a double-density pattern (DD) 
(where the diagonal layout is doubled and mirrored over the diagrid façade), a 
variable-density pattern (VD) (generated by starting from the DD pattern with 
further topology optimization), and a diagrid-like pattern (ISO) (where the 
diagonals follow the principal stress lines obtained from the equivalent building 
cantilever). Stiffness- and strength-based preliminary designs were carried out, 
together with optimization procedures based on Genetic Algorithms through the 
use of commercial software. The optimization procedure aimed at minimizing the 
unit structural weight of the building, while complying with the stiffness and 
strength requirements. This was achieved by formulating an objective function 
(OF) to be minimized, and specifying the constraints of the optimization problem, 
as thoroughly described in [113,134]. 
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Figure 5.4. (a) Geometrical patterns for the 90-story tall diagrid building considered by 
Tomei et al. [134]: uniform-angle patterns (60°, 70°, 80°), varying-angle pattern 
according to Zhang approach (VA) [132], double-density pattern (DD), variable-density 
pattern (VD), stress lines pattern (ISO). (b) Unit structural weight (blue bars) and 
complexity index (red curve) for the investigated diagrid patterns. VA_IDR, VD_1, 
VD_15, ISO_15, ISO_9, ISO_5, ISO_5* refer to additional subsets of the corresponding 
patterns, as reported in [134]. Used with permission from Tomei et al. [134]. 
 

The results were analyzed in terms of unit structural weight, diagonal cross-
section distribution along the elevation, deformed configuration, lateral 
displacements, inter-story drifts and diagonal DCR, highlighting the most efficient 
solutions from the structural viewpoint. The authors also proposed a complexity 
index, which accounts for the “constructability” of the diagrid structure. This was 
defined by taking into account five main metrics, i.e., the total number of nodes, 
the number of different cross-sections, the number of diagonal splices necessary 
for transportation purposes, the total number of diagonals and the number of 
different diagonal lengths. The results of the complexity index, together with the 
obtained structural weight, are shown in Figure 5.4b for each geometrical pattern. 
Graphs like the one reported in Figure 5.4b can be extremely useful for evaluating 
both the structural efficiency and constructability of the investigated diagrid 
solutions [134]. 

The analyses above, for the assessment of diagrid performance, have taken 
into account only square and rectangular buildings. To consider also different plan 
shapes, Mirniazmandan et al. [135] recently investigated the simultaneous effect 
of diagonal inclination and planar shape on the top lateral displacement and 
diagrid weight. A total of 64 parametric models of a 180-m tall building, with 
various cross-sectional shapes, were generated by randomly increasing the 
number of sides of both the base and top plans. Five diagonal angles were also 
considered, in the 33°–81° range. By means of Genetic Algorithms coupled with 
FE structural analyses, the authors found out that the diagonal angle of 63° 
provides the least amount of top lateral deflection, while reducing the required 
structural material. Furthermore, it was found that increasing the sides of the base 
and top plans leads to the most efficient solutions in terms of lateral displacement, 
although the increase of structural performance is not as evident as when changing 
the diagonal inclination. 

Finally, all the analyses presented so far have mainly dealt with tubular 
structures with vertical façades. In a very recent paper, Ardekani et al. [136] 
investigated the influence of the plan shape, together with the convexity and 
concavity of the diagrid surface. Based on FE calculations for a set of 40-story tall 
buildings, the outcomes showed that, compared to rectangular diagrids, other 
polygonal forms might lead to beneficial material savings while meeting the 
stiffness requirements. Furthermore, with respect to the normal models, the 
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buildings with convex and concave façades achieve better results in terms of 
structural performance. 

As can be easily recognized from the studies reported in this Section, one of 
the main aspects that has caused the notable proliferation of the diagrid in recent 
years is related to the versatility of its external diagonal layout. A rational and 
optimized diagonal pattern allows to achieve remarkable structural performance, 
together with beneficial material savings. The application of expeditious FE 
calculations, as well as simplified methodologies such as the ones reported in the 
previous Chapter, together with optimization techniques, can help engineers and 
designers to achieve high-performance structures in the preliminary stages of tall 
building design. 

The main approach from the optimization studies reported above has relied on 
the definition of the optimal diagrid geometry based on the lateral deflection and 
amount of employed material. In particular, the building is usually constrained to 
reach the target lateral deflection (typically, H/500), and the optimal solution is 
chosen as the one that minimizes the use of structural material. This is an example 
of two-response optimization procedure, where one response (lateral deflection) is 
used as a constraint and the other (structural mass) is employed as the objective 
function to be minimized. The best solution is the one that allows to achieve the 
target lateral displacement, while minimizing the amount of material. 

However, besides the lateral flexibility and amount of employed material, 
other response variables might be equally important for the definition of the 
optimal solution. One has already been suggested by Tomei et al. [134], who have 
taken into account the construction complexity of the structure by means of the 
complexity index (CI). This is informative of the actual capability to realize the 
structure without too much effort, i.e. low number of nodes, diagonals with the 
same length and cross-section, etc. Another response variable that might be 
important is related to the torsional behavior of the structure. As a matter of fact, 
the diagrid tube is rather rigid under torque actions, as it is placed on the exterior 
of the building. However, the torsional flexibility depends on the shear rigidity of 
the diagrid modules, which in turn is strongly dependent on the diagonal 
inclination [109]. Therefore, in the optimization process of the diagrid building, 
multiple response variables should be taken into account simultaneously: a 
diagonal pattern that is optimal for the minimization of the material consumption 
and lateral deformability might be too complex from a construction perspective 
and lead to high torsional rotations. For this reason, a multi-response optimization 
procedure should be carried out, in order to find the diagrid solution that offers the 
best compromise to minimize both the response variables. 

This aspect will be addressed in the following Sections of this Chapter. In 
Section 5.2 the influence of the diagrid geometry will be investigated on the 
structural behavior. In particular, both the lateral and torsional flexibility will be 
analyzed for variable diagonal inclinations and floor plane shapes. Then, in 
Section 5.3, the multi-response optimization will be carried out, in order to find 
the optimal diagrid geometry that minimizes both the lateral and torsional 
flexibility, the use of structural material and the construction complexity. This 
will be performed by making use, for the first time in this field, of the desirability 
function approach, initially developed for the quality assessment of industrial 
processes and products. 
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5.2 Influence of the Diagrid Geometry on the Structural 
Behavior 

In the previous Chapter, when studying the interaction between an external 
diagrid tube and an internal open- or closed-section shear wall, we have already 
appreciated that the diagonal inclination affects both the lateral flexibility and the 
torsional deformation of the structure [129]. In this Section, the influence of 
diagrid geometry on both the lateral and torsional flexibility will be thoroughly 
addressed. For this purpose, various diagrid buildings, having different aspect 
ratios, diagonal inclinations and floor plan shapes, have been analyzed, as recently 
reported by Lacidogna et al. in [137]. 

5.2.1 Influence of the diagonal inclination and floor plan shape on 
the lateral and torsional flexibility 

Specifically, 126-, 168-, 210- and 252-meter tall buildings have been 
considered with four different floor shapes and six diagonal inclinations, as 
reported in Figure 5.5. Figure 5.5a shows the four different building heights, that 
correspond to 36, 48, 60 and 72 stories, respectively, given an inter-story height of 
3.5 m. Figure 5.5b reports the four investigated floor plan shapes, namely square, 
hexagon, octagon and circle, generated by keeping a constant floor area of 900 
m2. Finally, Figure 5.5c highlights the six uniform-angle patterns, by changing the 
number of intra-module floors, which in turn modifies the diagonal inclination. 
The number of intra-module floors vary from 1 to 12, so that the diagonal 
inclination varies between 35° and 84°, with slight changes among the floor 
shapes [137]. 

The external diagrid tubes are composed of twenty-four steel diagonals per 
module. In order not to consider the influence of the variable diagonal 
arrangement as well as their varying cross-sectional areas at this stage, a uniform-
angle pattern has been considered with the diagonals having the same dimension 
along the height of the building. The case of varying diagonal dimensions has 
been investigated in [137] and found not to affect the main conclusions of the 
analysis. 

The buildings have been considered to be subjected to horizontal and torque 
loading conditions. Initially, the loads have been kept constant along the height of 
the building. However, the case of linearly variable loads has also been considered 
and has been found not to affect the main outcomes. The top lateral displacements 
and torsional rotations have been evaluated by means of the MBM for each 
diagrid geometry, and analyzed to investigate the influence on the global 
structural response. The reader can refer to [137] for more details. 

Figures 5.6–5.9 report the results for the 36-, 48-, 60- and 72-story building, 
respectively. In particular, Figures 5.6a–5.9a and 5.6b–5.9b show the computed 
top lateral deflection with respect to the number of intra-module floors and 
diagonal angle, respectively. Similarly, Figures 5.6c–5.9c and 5.6d–5.9d show the 
variation of the top torsional rotation with respect to the number of intra-module 
floors and diagonal angle. 
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Figure 5.5. Geometry of the generated diagrid buildings: (a) four different total heights; 
(b) four different floor plan shapes; (c) six different diagonal inclinations. Used with 
permission from Lacidogna et al. [137]. 
 

As can be observed from Figure 5.6, the optimal solution to minimize the 
lateral displacements of the 36-story building corresponds to the configuration 
with three intra-module floors for each floor plan shape (Figure 5.6a). 
Correspondingly, the optimal diagonal inclination to minimize the lateral 
deflection stands in the range 64°–67°  (Figure 5.6b). By examining Figure 5.6a, it 
is evident how the solutions related to two and four intra-module floors are not far 
from the optimal condition, leading to lateral displacements just 10% higher than 
the minimum ones. However, increasing the diagonal inclination, the total amount 
of employed material decreases. A balance between the need to limit the lateral 
displacement and reduce the amount of employed material is then needed, when 
selecting the optimal structural solution in the preliminary design stages. 

In the optimal diagonal configuration (three intra-module floors), no 
significant differences can be observed when changing the plan shape. The 
absolute minimum displacement corresponds to the square shape (60 mm) while 
the highest arises from the circular one (63 mm), which is just 5% higher. The 
influence of the specific plan shape is otherwise important far from the optimal 
diagonal configuration, e.g. when considering one intra-module floor or more than 
six floors included within the diagonal module. In this case, as shown in Figures 
5.6a and 5.6b, changing the floor plan geometry can lead to not negligible 
differences in terms of lateral flexibility (up to 30% difference) [137]. 

Different conclusions can be drawn when looking at the torsional flexibility 
of the building. In fact, the optimal solution to minimize torsional rotations 
corresponds to one intra-module floor, which is related to the shallowest diagonal 



 

 126 

inclination (Figures 5.6c and 5.6d). This is due to the fact that torsional rigidity is 
related to the shear rigidity of the diagonal modules, and the latter has already 
been shown to achieve the highest value for low diagonal inclinations, close to 
35° [109]. Note that, although the configuration associated with one intra-module 
floor is optimal to reduce torsional rotations, it exhibits lateral displacements 
much higher than the optimal ones. The results of the calculations also show that 
the optimal floor plan geometry to withstand torque actions corresponds to the 
circular shape. In fact, among the structures with the optimal diagonal inclination 
(one intra-module floor), the circular building exhibits the lowest torsional 
rotations (2.7 × 10–5 rad), the other ones providing higher values (up to 26% 
higher for the square building) [137]. 

 

 
Figure 5.6. Displacements and rotations for the 36-story building: (a–b) lateral 
displacements; (c–d) torsional rotations. Used with permission from Lacidogna et al. 
[137]. 

 
The results obtained for the 48-story tall diagrid buildings are shown in 

Figure 5.7. In this case, the optimal solution to minimize lateral displacements is 
found to be associated to four intra-module floors for the square floor plan 
geometry and three intra-module floors for the other plan shapes (hexagonal, 
octagonal and circular). Accordingly, the optimal diagonal inclination is found to 
lie in the range 64°–70° (Figure 5.7b). The case of the square building 
demonstrates that, by increasing the aspect ratio of the building, higher diagonal 
inclinations are expected in order to minimize the lateral displacement. Again, as 
in the case of the 36-story building, the influence of the specific plan geometry is 
significant only in the region which is far from the optimal solution, e.g. for one, 
six or twelve intra-module floors (Figure 5.7a), and it leads to negligible 
differences in the region of the optimal diagonal inclination (3.5% difference). As 
far as the torsional behavior is concerned, in line with the outcomes of the 36-
story building, the optimal solution to reduce torsional rotations corresponds to 



 

 127 

the configuration with one intra-module floor and the circular plan shape (Figures 
5.7c and 5.7d) [137]. 

 

 
Figure 5.7. Displacements and rotations for the 48-story building: (a–b) lateral 
displacements; (c–d) torsional rotations. Used with permission from Lacidogna et al. 
[137]. 

 
In Figure 5.8, the results are displayed which are related to the 60-story tall 

diagrid buildings. In this case, the configurations associated to four intra-module 
floors are found to be the optimal ones in order to minimize lateral displacements 
for all the floor plan geometries. Again, the influence of the specific plan shape is 
not negligible only when considering one or more than six intra-module floors 
(Figure 5.8a). In this case, the diagonal inclination associated to the minimum 
lateral displacements is found to lay in the range 70°–72° (Figure 5.8b). As can be 
seen, increasing the aspect ratio of the building leads to higher values of the 
optimal diagonal angle. Analyzing the results related to the torsional flexibility, 
the optimal solution to minimize the torsional rotations involves again only one 
intra-module floor and the circular floor geometry (Figure 5.8c and 5.8d) [137]. 

Finally, the results arising from the analysis of the 72-story tall buildings are 
shown in Figure 5.9. In this case, the same outcomes observed for the 60-story 
structures are found: the best configurations which minimize the lateral 
displacements imply four intra-module floors for all the plan geometries (Figure 
5.9a), the optimal diagonal angle lies in the range 70°–72° (Figure 5.9b) and the 
differences among the different floor plan shapes are not negligible just for one, 
six or twelve intra-module floors (Figure 5.9a). Again, as far as the torsional 
behavior is concerned, the one intra-module floor circular building is the most 
capable one to withstand torque actions, since it provides the lowest torsional 
deformability (Figure 5.9c and 5.9d) [137]. 
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Figure 5.8. Displacements and rotations for the 60-story building: (a–b) lateral 
displacements; (c–d) torsional rotations. Used with permission from Lacidogna et al. 
[137]. 

 

 
Figure 5.9. Displacements and rotations for the 72-story building: (a–b) lateral 
displacements; (c–d) torsional rotations. Used with permission from Lacidogna et al. 
[137]. 
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5.2.2 Influence of the building aspect ratio on the optimal 
diagonal inclination and floor plan shape 

As described above, the total height of the building has an influence mostly 
on defining the optimal structural configurations to minimize lateral 
displacements. In fact, by increasing the total height of the building, the number 
of intra-module floors which leads to the minimum lateral displacements increases 
from three to four, for each plan shape. As a consequence, the optimal range for 
the diagonal inclination increases from 64°–67° to 70°–72°. This is due to the fact 
that both shear and bending rigidity compete to define the lateral stiffness of the 
building. As shown by Moon et al. [109], the shear rigidity of the diagrid modules 
reaches the highest value for a diagonal inclination of about 35° and it decreases 
significantly for higher diagonal angles; contrariwise, bending rigidity is 
maximum if the diagonal angle is 90° and decreases for lower inclinations. By the 
competition of shear and bending rigidity, the optimal solution is usually found 
between these two values, depending on the building aspect ratio. Since shear 
behavior prevails for lower buildings and bending behavior for taller buildings, 
increasing the total high of the building leads to an increasing predominance of 
bending over shear deformation mode. Therefore, by increasing the height of the 
building, the diagonal inclination which provides the lowest lateral displacement 
exhibits higher values (Figures 5.6b–5.9b). Contrariwise, no competition between 
shear and bending rigidity occurs when dealing with the torsional behavior 
because, as mentioned above, this is governed only by the shear rigidity of the 
diagrid modules. For this reason, the diagonal inclination which leads to the 
lowest torsional rotations is always found to be the shallowest one, in the range 
35°–38° [137]. 

With regards to the influence of the floor plan geometry on the structural 
response, this is usually found to be very small when the diagonal inclination lies 
in the optimal range. Although the differences are usually lower than 5%, it is 
interesting to note that the configurations which lead to the minimum lateral dis- 
placements are always associated to the square buildings. At first sight, this result 
seems in contrast with the findings of Mirniazmandan et al. [135], where the 
buildings with square geometry were not included in the list of the most 
performant solutions for the limitation of the lateral displacements. However, this 
difference mainly arises from the different choice of keeping distinct geometrical 
parameters constant when changing the floor plan shapes. As a matter of fact, in 
the present work, we choose to keep the total floor area constant (this being one 
fundamental parameter for architectural purposes), whereas Mirniazmandan et al. 
[135] decided to keep the total external perimeter constant in their calculations. 
Choosing different geometrical parameters to be constant leads to different results 
in terms of floor dimensions. For example, by taking the circle geometry as the 
reference, considering the external perimeter constant leads to obtain a square 
geometry which is 12% smaller than it would be in the case of considering the 
total floor area constant. Since the base dimensions play a key role in governing 
the stiffness of the building, as they strongly affect the bending rigidity, this 
difference is the one which makes our results deviate from the ones of 
Mirniazmandan et al. [135]. Anyway, from both this analysis and the one of 
Mirniazmandan et al. [135], it is evident how the geometrical characteristic which 
mainly affects the lateral flexibility of the diagrid is the diagonal inclination, 
whereas the influence of the plan shape geometry is less evident. 
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Conversely, far from the optimal number of intra-module floors, the 
differences between the different floor plan shapes is found to be significant; for a 
number of intra-module floors lower than the optimum ones the optimal geometry 
is usually associated to the circular plan shape, whereas for higher numbers of 
intra-module floors the square plan geometry is the one providing the highest 
stiffness of the building (Figures 5.6a-5.9a). The hexagonal and octagonal plan 
geometries always exhibit structural responses in between [137]. 

Regardless the total height of the building, the optimal configuration which 
leads to the highest torsional stiffness is always associated to the circular plan 
geometry with the lowest inclination of the diagonals (one intra-module floor). As 
already remarked above, this is due to the torsional mechanism of the diagrid 
structure, which only involves the shear rigidity of the diagonal modules, and not 
their bending rigidity as in the case of lateral deformability. So far, all the 
researchers have focused their attention only on the limitation of the lateral 
displacements, not considering the torsional rotations [108,109,111,113,114,132–
135,138]. Sometimes, torque actions can be particularly severe, e.g. in the case of 
a strong asymmetry in the resisting elements placed in the interior of the building 
which leads to a not negligible eccentricity between the mass and stiffness 
centroids of the floors. In these cases, the torsional rotations induced by these 
actions should be properly taken into account. 

5.2.3 The need for a multi-response optimization technique 

Unfortunately, in the analysis reported above, it has been shown that a unique 
diagonal inclination which minimizes the lateral displacement and the torsional 
rotation simultaneously does not exist. Therefore, when adopting the diagonal 
inclination that minimizes the lateral displacements, attention should be paid to 
the corresponding torsional rotations, as they might create problems to the façade 
elements as well [137]. Moreover, by changing the diagonal inclination, the total 
amount of structural weight obviously varies, and this is another object to be 
minimized in order to limit the material consumption. Furthermore, Tomei et al. 
[134] have recently shown that different diagrid patterns are associated with 
different levels of construction complexity. Based on the chosen diagonal 
arrangement, one can evaluate the total number of nodes, number of different 
diagonal cross-sections, etc. In order for the structure to be easily and quickly 
realized, the construction complexity of the diagrid should be minimized as well. 

Summarizing, we are dealing with a problem where multiple responses need 
to be simultaneously minimized, namely the lateral deflection, torsional rotation, 
structural mass and construction complexity. The optimal structure should be stiff 
(both under lateral and torque actions in order to comply with safety and 
serviceability requirements), light (to limit the amount of employed material as 
well as to reduce the seismic loads), and easily constructible (to speed up the 
construction process). Therefore, a multi-response optimization technique is 
needed to solve this problem. 

In the next Section of this Chapter, the application of the desirability function 
approach will be presented for this purpose. It is a widely used approach for the 
quality assessment of industrial products and processes, and it is applied here for 
the first time to the case of tall building structural optimization. The desirability 
function approach will be applied to find the optimal diagrid solution that allows 
to obtain the most desirable values of the different response variables. Here, the 
lateral deflection, torsional rotation, structural mass and construction complexity 
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are considered as the four response variables. Obviously, this is not a unique 
choice, since other responses can be considered as well, such as the maximum 
inter-story drift, the maximum acceleration under seismic loading conditions, the 
fundamental frequency of vibration, etc. However, these four selected responses 
are believed to represent fairly complete information about the structural solution 
under investigation, as they are informative both of the structural behavior (lateral 
deflection and torsional rotation), material consumption (structural mass) and 
easiness of the construction process (construction complexity). 

5.3 Multi-Response Diagrid Optimization based on the 
Desirability Function Approach 

In this Section, the multi-response optimization of the diagrid structure will 
be carried out by means of the desirability function approach. Firstly proposed by 
Harrington in 1965 [139] and further developed by Derringer and Suich in 1980 
[140], the desirability function is nowadays a widely used methodology for the 
assessment of the optimal solutions in several fields, ranging from industrial 
engineering to biology. This function is based on the idea that the quality of a 
product or process that has many features is completely unacceptable if one of 
them is outside of a “desirable” limit [141]. The goal of the desirability function is 
to associate the highest desirability value to the product or process that exhibits 
the response variables that simultaneously have the best fitness with the target 
value or the target interval. This is achieved by converting the multiple responses 
into a single one, combining the individual responses into a composite function, 
which immediately leads to the identification of the optimal solution [141]. 

In the most general case, the Derringer’s approach leads to the evaluation of 
an individual desirability function di(yi) for each response variable yi(x), being x 
the set of parameters that characterizes the response variable yi. The individual 
desirability always takes values between 0 and 1, where 0 corresponds to a 
completely undesirable response and 1 stands for the most desirable response. The 
other solutions exhibit individual desirability values that lie in between these two, 
indicating more or less desirable responses. 

The shape of the individual desirability function di(yi) can take various forms 
and depends on whether the goal is to maximize or minimize the response in a 
certain interval, or whether the response should reach a target value within the 
interval. The desirable interval is usually indicated as (Li – Ui), where Li is the 
lower acceptable limit and Ui is the upper acceptable limit. Note that, in certain 
cases, Li, Ui or both can be equal to infinity, representing a not finite interval. 
Finally, the target value within the interval (Li – Ui) is usually indicated as Ti. 

If the response variable has to be maximized within the interval (Li – Ui), the 
individual desirability function di(yi) usually takes the following form: 
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where the exponent ri represents the weight that is associated to the importance of 
the response variable yi(x) to reach the maximum value. From Eq. (5.3), it follows 
that when the response yi(x) exhibits values higher than the upper limit Ui its 
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desirability is equal to 1, when it exhibits values less than the lower limit Li its 
desirability is equal to 0. In between, the desirability function is an increasing 
function, whose trend depends on the value of ri. If ri is equal to 1, the trend is 
linear, whereas the trend is non-linear for ri values different from 1. Figure 5.10a 
shows the trend of di(yi) when Eq. (5.3) is applied. 

Conversely, when the response variable yi(x) needs to be minimized, the 
individual desirability function can take the following form: 
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and its trend is reported in Figure 5.10b. 

Finally, when a target value Ti is the most desirable response for yi(x), di(yi) is 
usually given by: 
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being ri,1 and ri,2 the two exponent weights for the two sub-intervals (Li – Ti) and 
(Ti – Ui). Equation (5.5) is graphically reported in Figure 5.10c. 
 

 
 

Figure 5.10. Graphical representation of the individual desirability functions di(yi) for 
different optimization criteria. The response yi is most desirable if it reaches (a) the upper 
value Ui, (b) the lower value Li, (c) a specified target value Ti. Continuous lines are 
obtained with ri equal to 1, dashed lines with ri less than 1 and dotted lines with ri higher 
than 1. 

 
By observing the individual desirability functions shown in Figure 5.10, it 

can be noted that low values of the weight parameters indicate that the response 
does not require to be strictly near the target value, reaching satisfactory 
desirability levels for a wide range of responses. In contrast, a choice of larger 

(a) (b) (c) 
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weight exponents implies that the desirability is very low unless the response gets 
very close to the target [141]. 

Once all the n individual desirability functions di(yi) are evaluated for all the n 
response variables yi, the methodology yields the definition of the overall 
desirability (OD) to find out the best joint responses, by using the following 
equation: 

 
	

Kj(û) = [Hf(üf) ∙ HQ(üQ) ∙ … ∙ HH(üH)]
f
H = ÀLH$(ü$)

H

$Åf

Õ

f
H

. (5.6) 

 
When OD reaches a value different from zero, all the variables which are being 
simultaneously optimized can be considered to have a desirable value. On the 
other hand, if one of the responses is completely undesirable, i.e. di(yi) = 0, OD 
will be zero. The optimization procedure implies to maximize OD in order to 
obtain the optimal solution [141]. 

In the next sub-sections, the desirability function approach will be applied to 
the case of uniform-angle (Section 5.3.1) and varying-angle (Section 5.3.2) 
diagrid buildings. In both cases, as mentioned above, the response variables are 
the top lateral deflection under uniform lateral loads, the top torsional rotation 
under uniform torque moments, the structural mass of the external diagrid and the 
construction complexity, measured by the complexity index (CI) as suggested by 
Tomei et al. [134]. Therefore, referring to Eq. (5.6), in our problem n is equal to 4. 
Moreover, since all the responses need to be minimized to reach the optimal 
diagrid solution, Eq. (5.4) is used for the calculation of the individual desirability 
functions. Since the aim here is just to pick up the optimal solution out of a range 
of considered structures, the upper and lower limits of the intervals, i.e. Ui and Li, 
are simply the maximum and minimum values of the responses obtained among 
the various solutions. Therefore, with these additional considerations, the 
desirability approach for the diagrid optimization yields the following equations 
for the individual desirability functions: 
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being x the set of input parameters affecting the solution (diagonal inclination, 
floor shape, etc.), yi(x) the response variable (top lateral deflection !(x), top 
torsional rotation "(x), structural mass M(x) and construction complexity CI(x)), 
di(yi) the resulting individual desirability value of the ith response variable, ri the 
weight parameter for the ith response variable, whereas max

1
ü$(û) and min

1
ü$(û) 

represent the maximum and minimum values of the ith response variable among 
all the considered solutions. 

Based on Eq. (5.7), it is clear that the solutions that exhibit the maximum 
values of the responses have an individual desirability of 0, while those that 
exhibit the minimum values lead to individual desirability of 1. The individual 
desirability functions are finally combined together into the overall desirability 
(OD), via the following equation: 
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Kj(û) = ÀLH$(ü$)
O
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Õ

f
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= [H(!(û)) ∙ H("(û)) ∙ H(≥(û)) ∙ H(o∑(û))]
f
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Eventually, the analysis of the OD with respect to the input parameters x allows to 
evaluate the optimal diagrid solution that minimizes simultaneously the four 
response variables. 

5.3.1 Multi-response optimization of uniform-angle diagrids 

The desirability function approach is applied here to find the optimal 
geometry among the uniform-angle diagrids considered in Section 5.2. This 
Section mostly derives from the work recently reported by Lacidogna et al. in 
[142]. In particular, 126-, 168-, 210- and 252-meter tall buildings are investigated, 
with four different floor shapes and six different diagonal inclinations (Figure 
5.5). For each building height, twenty-four different geometries are then generated 
by changing the diagonal angle and floor plan shape, as reported in Table 5.1. 

 
Table 5.1. Twenty-four diagrid structures with different diagonal inclination and floor 

plan shape. Used with permission from [142]. 
Number of intra-module floors 

1 2 3 4 6 12 
Floor shape 

Square S1 S2 S3 S4 S6 S12 
Hexagon H1 H2 H3 H4 H6 H12 
Octagon O1 O2 O3 O4 O6 O12 
Circle C1 C2 C3 C4 C6 C12 

 
The geometrical features of the diagrid buildings are the same considered 

above [137], with the only difference that here a tapered distribution of the 
diagonal cross-sections is considered: the steel diagonals at the ground module 
have a cross-section of 1000 cm2, the ones at the upper module a cross-section of 
100 cm2, and the cross-sections of those in the intermediate modules follow a 
linear interpolation between the two. As reported above, the buildings are 
subjected to uniform lateral loads and torque moments, and the MBM is used to 
compute the top lateral deflection ! and torsional rotation " for each geometry û. 
The diagrid mass M is evaluated for each geometrical pattern based on the 
specific arrangement and unit density of the steel diagonals. The construction 
complexity is assessed via the complexity index CI defined by Tomei et al. [134]. 

The CI is computed based on five metrics, i.e. N1, N2, N3, N4 and N5. These 
are related to the construction complexity of the structure and are defined in [134] 
as follows: N1 is the weighted number of nodes, i.e. the number of joints of the 
pattern multiplied by a numerical coefficient, differently attributed on the basis of 
the joint connectivity (number of connecting members); N2 is the number of 
different cross-sections utilized for the diagonals in the pattern; N3 represents the 
number of splices required for the diagonals in the pattern, calculated assuming a 
maximum member length of 12 m; N4 is the number of diagonals of the pattern; 
N5 is the number of different lengths of diagonal members in the pattern. 

In this work, the same definition of the five metrics above is applied, with one 
minor difference regarding N1. Instead of considering the weighted number of 
nodes based on the joint connectivity, due to the fact that we do not necessarily 
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know the connectivity degree of the nodes that connect the diagonals to the beams 
of the intra-module floors, the total number of diagrid panel nodes has been 
considered, i.e. only the nodes connecting the external diagonals [142]. After the 
five metrics Nj have been computed for the diagrid geometries, each metric is 
normalized to the maximum value among all the different geometries. Finally, the 
sum of the normalized parameters gives the CI of each geometry [134], i.e.: 
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It is clear that high values of the five metrics involve greater values of the CI, 
meaning higher construction complexity. 

Based on the presented methodology, Table 5.2 reports the results obtained 
for the twenty-four geometries of the 168-meter tall building (Figure 5.5), in terms 
of computed lateral displacement !, torsional rotation ", structural mass M and 
construction complexity index CI. 

 
Table 5.2. Response variables (!, ", M, CI) for the twenty-four diagrid geometries of the 

168-meter tall building (minimum values are in bold). Adapted from [142]. 
Diagrid 

geometry 
0	

(cm)  
Ã (10–5 

rad) 
M 

(ton) 
N1 
(-) 

N2 
(-) 

N3 

(-) 
N4 

(-) 
N5 
(-) 

CI 
(-) 

S1 28.1 3.8 3016 576 48 0 1152 1 4.00 
S2 10.5 5.3 2126 288 24 0 576 1 2.50 
S3 8.6 8.8 1916 192 16 0 384 1 2.00 
S4 8.7 13.8 1837 144 12 288 288 1 2.75 
S6 11.0 28.9 1778 96 8 192 192 1 2.17 
S12 29.0 124.2 1742 48 4 288 96 1 2.25 
H1 25.3 3.3 2876 576 48 0 1152 1 4.00 
H2 10.3 4.9 2077 288 24 0 576 1 2.50 
H3 8.8 8.5 1892 192 16 0 384 1 2.00 
H4 9.2 13.5 1823 144 12 288 288 1 2.75 
H6 11.9 28.6 1772 96 8 192 192 1 2.17 
H12 32.8 123.9 1740 48 4 288 96 1 2.25 
O1 24.0 3.1 2837 576 48 0 1152 1 4.00 
O2 10.0 4.8 2063 288 24 0 576 1 2.50 
O3 8.7 8.4 1885 192 16 0 384 1 2.00 
O4 9.2 13.4 1819 144 12 288 288 1 2.75 
O6 12.2 28.5 1770 96 8 192 192 1 2.17 
O12 34.0 123.7 1740 48 4 288 96 1 2.25 
C1 23.0 3.0 2790 576 48 0 1152 1 4.00 
C2 10.0 4.8 2047 288 24 0 576 1 2.50 
C3 8.8 8.4 1877 192 16 0 384 1 2.00 
C4 9.4 13.6 1814 144 12 288 288 1 2.75 
C6 12.6 29.0 1768 96 8 192 192 1 2.17 
C12 35.8 126.3 1739 48 4 288 96 1 2.25 
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The second column of Table 5.2 shows the obtained lateral deflection at the 

top of the building due to the lateral load. As can be seen, the top lateral deflection 
is strongly dependent on the number of intra-module floors, i.e. on the diagonal 
inclination. The influence of the floor shape is less important, as already reported 
in Section 5.2. Based on the obtained results, it is found that the geometrical 
solutions that minimize the lateral displacements are always the ones with three 
intra-module floors (S3, H3, O3, C3), that correspond to a diagonal inclination of 
64°–67°. Among these, the stiffest solution that minimizes the lateral deflection 
corresponds to the S3. Conversely, the solutions with twelve intra-modules floors 
(S12, H12, O12, C12), i.e. diagonal angles of 83°–84°, are the ones providing the 
highest lateral deflection. Among these, the most flexible one is C12. For this 
reason, as will be seen below, the geometrical solution S3 will have the highest 
individual desirability value with respect to the lateral displacement (H(!(—3)) = 
1), whereas the solution C12 will exhibit a null individual desirability value 
(H(!(o12)) = 0). The other solutions will be assigned an individual desirability 
lying between these values according to Eq. (5.7). 

Similarly, the third column of Table 5.2 reports the computed torsional 
rotation at the top of the building due to the external torque moments, as obtained 
from the MBM. From the results, it can be inferred that the lowest torsional 
rotation is always provided by the geometrical solutions with the lowest number 
of intra-module floors (S1, H1, O1, C1), thus corresponding to the shallowest 
diagonal inclination (35°–38°). Among these, the stiffest solution is the circular 
diagrid tube C1, which provides the highest torsional rigidity. Conversely, the 
highest torsional rotations are obtained for the diagrid structures with the highest 
number of intra-module floors (S12, H12, O12, C12), the maximum one obtained 
with the solution C12. Accordingly, we will obtain the highest individual 
desirability value for the solution C1 (H("(o1)) = 1) and the lowest value for the 
geometry C12 (H("(o12)) = 0). Again, the other solutions will exhibit desirability 
values in between, according to Eq. (5.7). 

From the results obtained in these first two columns, it can be inferred that 
the different flexibilities (lateral and torsional) are minimized by different 
geometrical solutions. As already discussed in Section 5.2, the lateral deflection is 
usually minimized by intermediate values of the diagonal angle, due to the 
competition between shear and bending rigidity. Conversely, the torsional rigidity 
of the building only depends on the shear rigidity of the diagrid module, therefore 
it is maximum for very shallow diagonals. These considerations make the choice 
of the optimal geometry difficult, as one should limit both the lateral and torsional 
flexibility of the structure. To this purpose, the desirability function approach 
seems an effective yet simple way to tackle this problem. 

The fourth column of Table 5.2 reports the total steel mass of the external 
diagrid tube, which is directly calculated based on the steel density and the actual 
diagrid geometry. The solutions with higher numbers of intra-module floors (S12, 
H12, O12, C12) involve the lowest amount of employed material. This is simply 
due to the fact that, when the diagonal inclination is very steep, the density of the 
diagonals in the pattern gets remarkably lower (Figure 5.5c). Based on the mass 
response, the highest individual desirability score is assigned to the solution C12 
(H(≥(o12)) = 1), whereas the lowest one to the solution S1 (H(≥(—1)) = 0). 

Finally, the last columns of Table 5.2 report the five metrics N1, N2, N3, N4 
and N5 that are used to calculate the complexity index. Note that, although in the 
previous cases the variation of the first three responses (!, ", M) among the 
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different floor shapes was not so evident, in this case, the five metrics N1, N2, N3, 
N4 and N5 do not vary at all with respect to the floor shape, being only dependent 
on the diagonal inclination. N1 represents the total number of diagrid nodes, 
therefore it is minimum for the solutions S12, H12, O12 and C12, while it is 
maximum for S1, H1, O1 and C1. Similarly, N2 is the number of different 
diagonal cross-sections used in the pattern, thus in this case it corresponds to the 
number of diagrid modules, as each module has its own cross-sectional area. 
Therefore, it is minimum for S12, H12, O12 and C12, while it is maximum for S1, 
H1, O1 and C1. N3 takes into account the maximum diagonal length of 12 meters 
for transportability issues, and it is found to be minimum for all the solutions with 
one, two and three intra-module floors, while it is higher for steeper diagonals. N4 
is the total number of diagonals in the pattern, thus it is minimum for S12, H12, 
O12 and C12, while it is maximum for S1, H1, O1 and C1. Finally, N5 takes into 
account the different lengths of the diagonals in the pattern. In this case, it is equal 
to one for each solution, as each pattern has all the diagonals with the same 
length, being uniform-angle solutions. 

Based on the evaluation of N1, N2, N3, N4 and N5, Eq. (5.9) is applied to 
compute the CI of each geometrical solution, obtaining the results reported in the 
last column of Table 5.2. According to what already reported above, no variation 
is found for this response variable across the different floor shapes. Conversely, it 
can be seen that the diagrid solutions that minimize the CI are the ones with three 
intra-module floors (H(o∑(—3)) = H(o∑(ß3)) = H(o∑(K3)) = H(o∑(o3)) = 1), 
whereas the ones that maximize the construction complexity are the ones with one 
intra-module floor (H(o∑(—1)) = H(o∑(ß1)) = H(o∑(K1)) = H(o∑(o1)) = 0). The 
other geometrical solutions exhibit CIs that lie in between these values. 

Based on the response variables reported in Table 5.2, Eq. (5.7) has been 
applied to calculate the individual desirability value for each geometrical solution 
referred to each response variable. The results are shown in Table 5.3, calculated 
by adopting a unit value of the exponent ri for all the responses, i.e. #& = #̋  = #' = 
#() = 1. The obtained individual desirability values are also represented in 
graphical form in Figure 5.11a. As can be seen, the influence of the floor shape is 
negligible, whereas the diagonal inclination has a strong influence on the 
individual desirability values for each given floor shape. 

Finally, the individual desirability values are combined together to obtain the 
OD according to Eq. (5.8). The results are reported in the last column of Table 5.3 
and are represented graphically in Figure 5.11b. As can be seen from the obtained 
OD values, the most desirable solution (ODmax = 95.94%) is C3, thus the circular 
diagrid building with three intra-module floors, corresponding to a diagonal 
inclination of 67°. This result arises from the fact that the solution C3 is indeed 
one of the best performing with respect to all the four response variables. As a 
matter of fact, this geometrical solution allows to reach very low lateral 
deflections (H(!(o3)) = 99.32%) and torsional rotations (H("(o3)) = 95.62%), it 
is also highly desirable with respect to the minimization of the structural weight 
(H(≥(o3)) = 89.19%) and it is one of the best structures from a construction 
complexity perspective (H(o∑(o3)) = 100.00%). 

Note that the other solutions with three intra-module floors and different floor 
shapes, i.e. S3, H3 and O3, provide similar values of OD: OD(S3) = 95.21%, 
OD(H3) = 95.62% and OD(O3) = 95.86%. This confirms what already reported 
above, i.e. the influence of the floor shape on the optimal diagrid geometry is less 
important. This can also be seen from Figure 5.11b, where the OD graph shows a 
similar trend for the different floor shapes. Moreover, Figure 5.12 reports a 
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surface representation of the OD values with respect to the diagonal inclinations 
and floor shapes. From the figure, it is evident that most of the OD variation 
occurs with respect to the diagonal inclination, whereas the surface is almost 
cylindrical in the direction of the floor shape axis. 

 
Table 5.3. Individual and overall desirability values for the four response variables (#$ = 

1). Adapted from [142]. 
Diagrid 

geometry 
 (0) 

(-) 

 (Ã) 
(-) 

 (6) 
(-) 

 (≤/) 
(-) 

Q» 
(-) 

S1 0.2840 0.9941 0.0000 0.0000 0.0000 
S2 0.9292 0.9817 0.6975 0.7500 0.8311 
S3 1.0000 0.9535 0.8618 1.0000 0.9521 
S4 0.9958 0.9123 0.9237 0.6250 0.8510 
S6 0.9124 0.7899 0.9696 0.9167 0.8946 
S12 0.2490 0.0176 0.9979 0.8750 0.2486 
H1 0.3839 0.9981 0.1096 0.0000 0.0000 
H2 0.9375 0.9845 0.7359 0.7500 0.8448 
H3 0.9931 0.9560 0.8806 1.0000 0.9562 
H4 0.9799 0.9147 0.9348 0.6250 0.8507 
H6 0.8776 0.7922 0.9747 0.9167 0.8878 
H12 0.1078 0.0193 0.9992 0.8750 0.2065 
O1 0.4338 0.9992 0.1404 0.0000 0.0000 
O2 0.9477 0.9853 0.7465 0.7500 0.8503 
O3 0.9964 0.9568 0.8858 1.0000 0.9586 
O4 0.9791 0.9155 0.9378 0.6250 0.8514 
O6 0.8689 0.7931 0.9761 0.9167 0.8861 
O12 0.0650 0.0210 0.9996 0.8750 0.1859 
C1 0.4686 1.0000 0.1771 0.0000 0.0000 
C2 0.9504 0.9855 0.7590 0.7500 0.8545 
C3 0.9932 0.9562 0.8919 1.0000 0.9594 
C4 0.9721 0.9140 0.9413 0.6250 0.8503 
C6 0.8533 0.7889 0.9777 0.9167 0.8813 
C12 0.0000 0.0000 1.0000 0.8750 0.0000 

 
The OD drops to lower values for different numbers of intra-module floors. 

The solutions with one intra-module floor (S1, H1, O1, C1) have always an OD 
equal to 0, due to the fact that, despite their high torsional rigidity (H(") ~ 99–
100%), they are quite flexible under lateral loads (H(!) ~ 28–47%), quite heavy 
(H(≥) ~ 0–18%) and very complex (H(o∑) = 0%). The solutions with two intra-
module floors (S2, H2, O2, C2) show ODs in the range 83–85%: their lateral and 
torsional rigidity is quite high (H(!) ~ 92–95%, H(") ~ 98–99%), but they are still 
not so light (H(≥) ~ 70–76%) and easily constructible (H(o∑)	= 75%). The 
solutions with four intra-module floors (S4, H4, O4, C4) provide ODs around 
85%: they exhibit a great lateral rigidity (H(!) ~ 97–99%), a good torsional 
behavior (H(") ~ 91%), quite low values of structural weight (H(≥) ~ 92–94%), 
but they are still quite complex (H(o∑) = 62%). The solutions with six floors per 
module (S6, H6, O6, C6) show ODs in the range 88–89%: they show a lower 
lateral and torsional rigidity (H(!) ~ 85–91%, H(") ~ 79%), although their mass 
and complexity responses show satisfactory desirability values (H(≥) ~ 97–98%, 
H(o∑) = 92%). Finally, the solutions with twelve intra-module floors lead to low 
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ODs in the range 0–24%: despite their low structural weight and satisfactory 
complexity (H(≥) ~ 100%, H(o∑) = 87%), they are extremely flexible under 
lateral and torque actions (H(!) ~ 0–25%, H(") ~ 0–2%). 

 

 
Figure 5.11. (a) Individual desirability values for the four response variables (#$ = 1) and 

(b) OD values. Used with permission from [142]. 
 

 
Figure 5.12. Surface representation of the OD with respect to the diagrid geometrical 
parameters (diagonal angle and floor shape). OD values are reported in the vertical axis 
and represented by means of color shades. Used with permission from [142]. 

 
Therefore, based on the results reported in Table 5.3 and Figures 5.11 and 

5.12, the optimal diagrid solutions that simultaneously minimize the lateral and 
torsional flexibility, as well as the diagrid structural weight and the construction 
complexity can be selected. This approach, based on the desirability function, 
seems to be a powerful yet simple tool to select the optimal geometry of the 
diagrid among a set of geometrical solutions and based on different responses. 

The previous analysis is quite arbitrary as the condition #& = #̋  = #' = #() = 1 
was chosen. This implicitly means assigning the four response variables the same 
importance in the definition of the optimal diagrid geometry. For this reason, a 
parametric analysis has also been carried out by considering #& ≠ #̋  ≠ #' ≠ #() ≠ 
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1, in order to investigate how the optimal diagrid geometry is influenced by the 
different weights assigned to the different response variables (!, ", M, CI). 

In order to carry out the sensitivity analysis based on the weights ri, eight 
values of ri have been considered for each variable, namely 0.25, 0.50, 0.75, 1.00, 
1.25, 1.50, 1.75, 2.00. Then, we obtain 84 = 4096 combinations of exponents, as 
synthetically shown in Table 5.4. Based on the response variables obtained in 
Table 5.2, for each combination of exponents #&, #̋ , #' and #(), the same analysis 
presented above can be carried out by applying Eqs. (5.7) and (5.8). Eventually, 
the optimal geometry can be found out, based on the maximum value of the 
obtained OD values. 
 
Table 5.4. The possible combinations by considering eight different exponents ri for each 

response variable. Used with permission from [142]. 
Combination n0 [-] nÃ[-] n6 [-] n≤/ [-] 

1 0.25 0.25 0.25 0.25 
2 0.25 0.25 0.25 0.50 
3 0.25 0.25 0.25 0.75 
… … … … … 

1755 1.00 1.00 1.00 0.75 
1756 1.00 1.00 1.00 1.00 
1757 1.00 1.00 1.00 1.25 
… … … … … 

4094 2.00 2.00 2.00 1.50 
4095 2.00 2.00 2.00 1.75 
4096 2.00 2.00 2.00 2.00 

 
Figure 5.13 reports the obtained optimal geometry, expressed as relative 

frequency of occurrence out of the 4096 simulations. From the outcomes, it was 
obtained that the solution C3, which was assessed as the optimal geometry in the 
previous analysis (with #& = #̋  = #' = #() = 1), is found as the optimal one for 
3072 exponent combinations (75.00% of the total cases). It was also found that, in 
1000 simulations (24.41% of the total), the optimal geometry is the solution O3, 
which is the octagonal diagrid with three intra-module floors. This should not 
surprise as we have already seen in the previous analysis (with #& = #̋  = #' = #() 
= 1) that the solution O3 (OD(O3) = 95.86%) was not so different from the C3 
(OD(C3) = 95.94%). Therefore, out of 4096 combinations of exponents, 4072 
cases (99.41% of the total) provided O3 or C3 as the optimal diagrid geometry, 
based on their lateral and torsional flexibility, structural mass and construction 
complexity. The remaining 24 combinations (0.59% of the total) assigned the 
optimal geometry to the solution S6 (14 cases – 0.34%) and O6 (10 cases – 
0.25%), which correspond to the square and octagonal geometry with six intra-
module floors, respectively. However, these rare cases were found to correspond 
to highly unbalanced exponents, where the top lateral deflection and torsional 
rotation, i.e. the structural responses, were much underweighted with respect to 
the diagrid mass and construction complexity, i.e. the geometrical responses. 

In conclusion, the sensitivity analysis carried out here demonstrates that, for 
the investigated 168-meter tall diagrid building, the optimal diagonal inclination 
should always correspond to three intra-module floors in order to minimize both 
the lateral deflection, torsional rotation, structural weight and construction 
complexity. The floor shape seems to be less important, as already shown in 
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Section 5.2, although a slight bias towards curved floor shapes, i.e. circular and 
octagonal, has been obtained. 

 

 
Figure 5.13. Optimal diagrid geometry based on 4096 simulations with different 
exponents of the individual desirability values. Used with permission from [142]. 

 
Based on the analysis carried out for the 168-meter tall building, the optimal 

diagrid geometry has also been investigated for the other buildings with different 
heights considered in Section 5.2, i.e. 126-, 210- and 252-meter tall structures. 
Figures 5.14a, 5.15a and 5.16a show the OD surface for the three buildings, 
obtained by applying Eqs. (5.7) and (5.8) and by considering #& = #̋  = #' = #() = 
1. In both cases, the optimal diagrid geometry is found to be associated with the 
solution C3, with OD(C3) values of 96.04% for the 126-, 95.68% for the 210- and 
95.52% for the 252-meter building. Also in these cases, the influence of the 
specific floor shape is found to be almost negligible, the diagonal inclination 
being the main parameter affecting the variation of the individual and overall 
desirability values. 

The sensitivity analysis by varying the exponents ri has been carried out as 
well, and the results are shown in Figures 5.14b, 5.15b and 5.16b for the three 
building heights. Similarly to Figure 5.13, these graphs report the obtained 
optimal diagrid geometry expressed as relative frequency of occurrence out of the 
4096 combinations from Table 5.4. The results are similar to what already found 
for the 168-meter building investigated above. 
 

  
 

Figure 5.14. Results for the 126-meter tall building: (a) surface representation of the OD 
obtained with #& = #" = #' = #() = 1; (b) optimal diagrid geometry based on 4096 
simulations with different exponents ri. Used with permission from [142]. 
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Specifically, for the 126-meter tall building (Figure 5.14b), the C3 solution is 

found to be the optimal one for 3240 combinations of the exponents ri (79.10% of 
the total), the O3 solution is the optimal one for 760 cases (18.55% of the total), 
whereas the S3, S6, O6 and H6 geometries are assigned the highest overall 
desirability in 72 (1.76%), 12 (0.29%), 10 (0.25%) and 2 cases (0.05%), 
respectively. As can be seen, in 99.41% of the combinations the optimal solutions 
still refer to three intra-module floors, with a preference towards more curved 
floor shapes, whereas the solutions with six intra-module floors are to be preferred 
only in 0.59% of the cases. Similarly to what already reported above, these few 
cases usually refer to very unbalanced combinations of the weight exponents, 
where the importance of the construction complexity and diagrid mass largely 
prevails over the minimization of the lateral and torsional deformability. 

As for the 210-meter tall building, the results are shown in Figure 5.15b. 
Again, the C3 solution is found to be the most desirable one for 3209 
combinations (78.34% of the total), the O3 solution is the optimal one for 840 
cases (20.51% of the total), whereas the S6 and O6 geometries are assigned the 
highest overall desirability in 34 (0.83%) and 13 combinations (0.32%), 
respectively. In this case, 98.85% of the combinations lead to the optimal 
solutions with three intra-module floors, again with a preference towards more 
curved floor shapes, whereas the solutions with six intra-module floors are to be 
preferred only in 1.15% of the cases. 
 

  
 

Figure 5.15. Results for the 210-meter tall building: (a) surface representation of the OD 
obtained with #& = #" = #' = #() = 1; (b) optimal diagrid geometry based on 4096 
simulations with different exponents ri. Used with permission from [142]. 
 

Finally, Figure 5.16b shows the outcomes related to the 252-meter tall 
building. Once again, the C3 solution is found to be the most desirable one for 
3436 combinations (83.89% of the total), the O3 solution is the optimal one for 
544 cases (13.28% of the total), whereas the S6 and O6 geometries are assigned 
the highest overall desirability in 88 (2.15%) and 28 combinations (0.68%), 
respectively. In this case, 97.17% of the combinations lead to the optimal 
solutions with three intra-module floors, whereas the solutions with six intra-
module floors are to be preferred only in 2.83% of the cases. 
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Figure 5.16. Results for the 252-meter tall building: (a) surface representation of the OD 
obtained with #& = #" = #' = #() = 1; (b) optimal diagrid geometry based on 4096 
simulations with different exponents ri. Used with permission from [142]. 
 

From the results shown above, it is evident how the optimal geometry is only 
slightly affected by the specific set of weight exponent for the different response 
variables. Moreover, for the investigated buildings, having aspect ratios in the 
range 4.1–8.4, the optimal geometry is also found to be slightly affected by the 
building height, being the solution C3 always the prevailing one. From previous 
studies [110,131], we know that for higher aspect ratios the bending behavior 
prevails over the shear deformation mode, thus the diagonal angle that minimizes 
the lateral diagrid deflection increases with the building height. In this case the 
optimal diagonal inclination does not increase as we need to minimize multiple 
responses simultaneously, not only the lateral deflection. 

As already shown by Lacidogna et al. in [137], increasing the building height 
leads to greater diagonal inclinations needed to minimize the lateral displacement. 
However, higher diagonal inclinations also lead to higher torsional rotations, thus 
worsening the torsional behavior. The CI also varies when modifying the diagonal 
inclination: specifically, it is found to increase when moving from the solution 
with three intra-module floors to the one with four intra-module floors. Therefore, 
although the solutions with four intra-module floors might be better candidates to 
minimize the lateral deflections and the structural mass for higher buildings [137], 
their higher torsional flexibility and construction complexity prevent their 
suitability as optimal geometries. 

In conclusion, due to its inherent simplicity and its ability to consider the 
simultaneous optimization of several responses, the desirability function approach 
is a good candidate to assist the designer through the preliminary design stages in 
assessing the optimal diagrid geometries. In the next Section, the methodology 
will be further exploited to find the optimal diagrid geometry when varying-angle 
diagonal patterns are considered. 

5.3.2 Multi-response optimization of varying-angle diagrids 

In this Section, the multi-response optimization based on the desirability 
function approach will be carried out on the same 168-meter tall building 
considered above, by generating a wider population of varying-angle diagrids. 
Specifically, the same four floor plan shapes have been considered, namely the 
square, hexagonal, octagonal and circular floor shape. For each of these, several 
varying-angle diagonal patterns have been generated for the external diagrid 
system. 
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To do so, the 48 stories of the building have been subdivided into different 
combinations of diagrid modules. In this analysis, the basic triangular module can 
span over from one to six floors, i.e. 1, 2, 3, 4, 5 and 6. Therefore, several 
combinations of diagonal arrangements are possible to cover the total 48 stories, 
e.g. 48 modules made up of only one intra-module floor, 8 modules made up of 
six intra-module floors, 4 modules made up of five intra-module floors plus 7 
modules made up of four intra-module floors, etc. 

It is obvious that, in order to cover the total 48 stories of the building, the 
total number of modules for each basic triangular element cannot be greater than 
the total number of the building stories divided by the number of floors contained 
within the triangular unit. For example, for the one intra-module triangular unit, 
no more than 48/1 = 48 modules can be present in order to cover the entire 
building façade. Therefore, the one intra-module unit can occur in the varying-
angle diagonal pattern 0, 1, 2, …, 48 times, but not more. Therefore, the one intra-
module floors unit has 49 possibilities of occurrence within each varying-angle 
diagrid patterns. For the two intra-module triangular unit, the total number of 
allowable modules is 48/2 = 24, then it can occur for a total of 25 times within 
each diagrid pattern. Applying the same procedure to all the triangular units, i.e. 1, 
2, 3, 4, 5 and 6 intra-module floors, it is found out that they have 49, 25, 17, 13, 
10 and 9 possibilities of occurrence, respectively. This leads us to a total number 
of combinations which is equal to the product of these numbers, namely 49 × 25 × 
17 × 13 × 10 × 9 = 24365250 possible combinations. These are in turn 24365250 
potential varying-angle diagrid patterns that can be generated for the 168-meter 
48-story diagrid building. 

However, not all of these combinations are feasible, as they should obey the 
following constraint equation: 
 
	

” =L≥s

h

sÅf

z. (5.10) 

 
being N the total number of the building floors (N = 48), j the number of intra-
module floors for the considered triangular unit (j = 1, 2, …, 6), and Mj the 
number of modules for the triangular units with j intra-module floors. Moreover, 
based on the considerations reported in Section 5.1, the case where steeper 
diagonals are placed within the base of the building and shallower diagonals are 
towards the top (Figure 5.1a) has only been considered here, as the opposite 
situation (Figure 5.1c) is not supposed to provide any beneficial effect to the 
building performance. Based on these considerations and Eq. (5.10), the 
24365250 potential combinations are reduced to 7760, which is still a high 
number of geometrical solutions. 

Therefore, for each floor plan shape, 7760 varying-angle diagrid patterns 
have been generated based on the combinations of the different triangular units as 
reported above. Three examples of these varying-angle combinations are shown in 
Figure 5.17 for the square floor shape. Finally, considering the four different floor 
shapes, this leads us to a total of 7760 × 4 = 31040 structures, with different floor 
shape and diagonal inclination, among which we need to select the optimal 
geometry based on the desirability function approach.  
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Figure 5.17. Three different varying-angle diagrid generated from the combination of the 
basic triangular units for the square plan shape: (a) combination #88: M1 = M2 = M4 = M5 
= M6 = 0, M3 = 16; (b) combination #872: M1 = 1, M2 = 2, M3 = 13, M4 = 1, M5 = M6 = 0; 
(b) combination #1004: M1 = 1, M2 = 5, M3 = 3, M4 = 3, M5 = 2, M6 = 1. 

 
Once all the 31040 structures have been generated as reported above, the four 

response variables, i.e. top lateral deflection, top torsional rotation, diagrid mass 
and complexity index, have been obtained as explained in the previous Section. 
The results are shown in Figure 5.18. Figure 5.18a reports the trends of the values 
obtained for each diagrid geometry, while Figure 5.18b shows the distributions of 
the four responses across the generated diagrid structures. 

 
Figure 5.18. Results for the 168-meter tall building with 31040 varying-angle 
geometries: (a) top lateral displacement, top torsional rotation, steel mass and complexity 
index obtained for each of the 31040 diagrid geometries; (b) distribution of the four 
response variables across the population of diagrid geometries. The red star refers to the 
optimal geometry (#15608), which has been obtained from the desirability approach with 
#& = #" = #' = #() = 1. 
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The first observation that can be made by scrutinizing Figure 5.18a is that the 

floor plan shape plays a minor role on the results. The 31040 diagrid structures are 
listed consequently according to the square, hexagonal, octagonal and circular 
shape, meaning that diagrid structures from 1 to 7760 refer to the square shape, 
from 7761 to 15520 to the hexagon, from 15521 to 23280 to the octagon, while 
from 23281 to 31040 to the circle. From Figure 5.18a, it is evident that all the four 
response variables exhibit a repetitive pattern according to the floor shapes, with 
just minor differences among them. Conversely, the results are quite diverse by 
changing the diagonal pattern within the same floor shape group. 

As for the top lateral deflection, it can be observed that the statistical 
distribution resembles an exponential distribution, with many structures leading to 
similar small displacements and few solutions leading to very high displacements. 
Notably, the solutions that generate very high lateral displacements (about four 
times the minimum ones) are the ones with the shallowest diagonal inclinations, 
e.g. M1 = 48 and Mj = 0 for j = 2, 3, 4, 5, 6. As we already observed in Section 5.1, 
these geometries are usually found to exhibit unsatisfactory results in terms of 
lateral deflections. 

Conversely, the other three response variables, namely the torsional rotation, 
the diagrid mass and complexity index, show more uniform distributions, which 
actually resemble Gaussian-like distributions (Figure 5.18b). This means that for 
these response variables we usually find few geometrical solutions that lead to the 
minimum (most desirable) responses, few geometries that lead to the highest 
(least desirable) values, whereas most of the diagrid structures collocate 
themselves in between the extreme values. 

If these three response variables are individually observed and by considering 
that increasing the number of the diagrid geometry combination there is a bias 
towards shallower diagonals (higher M1 and M2) in the diagrid pattern, we can 
infer that the torsional rotation decreases, while the diagrid mass and the 
complexity index increase. This is reasonable, since in the previous Sections it has 
already been shown that the torsional rotations are minimized for shallower 
diagonal inclinations, whereas the diagrid mass and construction complexity 
usually are lower for the geometrical solutions with steeper diagonals. 

Once the results for the four response variables are obtained for each diagrid 
geometry, the desirability analysis can be carried out, in the same way as reported 
in the previous Section. As already done above, initially the four exponent 
weights #&, #̋ , #' and #() have been set to 1, whereas a sensitivity analysis has 
been carried out subsequently in order to investigate their influence on the 
obtained optimal geometry. 

The results of the desirability analysis, obtained with #& = #̋  = #' = #() = 1, 
are shown in Figure 5.19. Specifically, Figure 5.19a reports the trend of the OD 
values with the diagrid geometry, Figure 5.19b shows the statistical distribution of 
the OD values across the population of the geometries and Figure 5.19c reports 
the optimal structure, i.e. the one with the highest OD. This is found to correspond 
to the combination #15608, that is the octagonal diagrid with uniform angle and 
three intra-module floors, i.e. M3 = 16 and Mj = 0 for j ≠ 3. 

From the analysis, it is found that the highest OD is equal to 90.2%. Un both 
Figures 5.18 and 5.19, the optimal solution (#15608) is marked with a red star, in 
order to show its position within the four response variables distribution. The OD 
value of the optimal geometrical solution (#15608) arises from quite high 
individual desirability values for the four individual responses. As a matter of fact, 
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the individual desirability values for structure #15608 are as follows: H(!) = 
91.9%, H(") = 79.5%, H(≥)	= 90.6% and H(o∑)= 100%. These results suggest 
that this structure is fairly rigid under both lateral and torque actions, it is among 
the lightest ones and it is the least complex from a construction perspective. By 
combining these individual desirability values together by means of Eq. (5.8), this 
structure is then found to be the optimal one. 
 

  
 

Figure 5.19. Optimal geometry for the 168-meter varying-angle diagrids based on the 
desirability function, obtained with #& = #" = #' = #() = 1: (a) OD values obtained for 
each geometry; (b) distribution of the OD across the population of diagrid geometries. 
The red star refers to the optimal geometry (#15608), which is shown in panel (c). 

 
Few considerations need to be made at this point. First, it should be noted 

that, although this is obtained as the optimal structure based on the desirability 
function, the solution #15608 is not the one that minimizes the top lateral 
deflection, the top torsional rotation and the structural mass individually. 

In fact, the structure that leads to the minimum lateral displacement, i.e. H(!) 
= 100%,  is found to be #5164, which corresponds to the square diagrid with M1 = 
11, M2 = 2, M3 = 4, M4 = 4, M5 = 1, M6 = 0. However, this solution is 
unsatisfactory for the other response variables, as it leads to H(") = 77.2%, 
H(≥)	= 37.4% and H(o∑) = 34.0%, finally leading to OD = 56.0%. Conversely, 
the structure that minimizes the torsional flexibility, i.e. H(") = 100%,  is found 
to be #31040, which corresponds to the circular diagrid with M1 = 48, M2 = M3 = 
M4 = M5 = M6 = 0. However, this solution is unsatisfactory for the other response 
variables, as it leads to H(!) = 23.8%, H(≥)	= 18.4% and H(o∑) = 9.4%, finally 
leading to OD = 25.4%. Eventually, the structure that leads to the minimum 
diagrid mass, i.e. H(≥) = 100%,  is found to be #23281, which corresponds to the 
circular diagrid with M1 = M2 = M3 = M4 = M5 = 0, M6 = 8. However, this solution 
is unsatisfactory for the other response variables, as it leads to H(!") = 73.5%, 
H(")	= 0% and H(o∑) = 92.4%, finally leading to OD = 0%, since it is the worst 
one from a torsional flexibility perspective. 

Secondly, it can be noted from Figure 5.19a that the influence of the floor 
plan shape plays a minor role, as the OD values show the same repetitive trend 
already observed in Figure 5.18a. This leads us to observe that structures #88, 
#7848 and #23368 are also very good candidates for the optimal diagrid 
geometry. As a matter of fact, these structures correspond to the same diagonal 
pattern of the optimal geometry #15608 (Figure 5.19c), but they are associated 
with the square, hexagonal and circular plan shape. From the desirability analyses, 
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for these structures an OD of 89.3%, 89.9% and 90.2% has been obtained, 
respectively. These values are very close to the maximum OD, which has been 
found for #15608 (OD = 90.21%). In particular, the OD associated to structure 
#23368 (circular shape) is basically coincident with the maximum OD, with a 
minor different only at the second digit (OD = 90.20%). This consideration 
suggests us that, if we only rely on the maximum value of OD, the optimal shape 
is the octagon with uniform-angle pattern composed of triangular units made up of 
three intra-module floors. However, the other plan shapes with the same diagonal 
pattern, i.e. structures #88, #7848 and #23368, can still be very good candidate for 
the optimal geometry (especially structure #23368). As reported in Table 5.5, the 
similarity among the solutions is reflected in the similar individual desirability 
values and, in turn, in the final OD. 
 

Table 5.5. Individual and overall desirability values for structures with uniform-angle 
patterns composed of three intra-module floor triangular units (ri = 1). 

Structure Shape  (0) [-]  (Ã)[-]  (6) [-]  (≤/) [-] OD [-] 
#88 Square 0.9239 0.7795 0.8813 1.000 0.8926 

#7848 Hexagon 0.9150 0.7916 0.9005 1.000 0.8987 
#15608 Octagon 0.9192 0.7953 0.9058 1.000 0.9021 
#23368 Circle 0.9152 0.7927 0.9126 1.000 0.9020 

 
Third, a consideration also needs to be done on the shape of the OD 

distribution shown in Figure 5.19b. This can be derived as the product of the 
partial distributions shown in Figure 5.18b, and eventually it resembles a skewed 
Gaussian-like or log-normal distribution. It is worth observing that the highest OD 
values (right tail of the distribution) are reached only by a small fraction of the 
considered structures. Similarly, a very low number of geometries leads to 
completely unsatisfactory solutions, i.e. with very low OD values (left tail of the 
distribution). Finally, most of the geometrical solutions collocate themselves in 
the middle of the distribution, whose mean and median values are 58.87% and 
59.84%, respectively. This means that, although few structures allow to reach the 
highest desirability values, plenty of geometrical solutions lie within an average 
range, where the OD lies around its mean value. 

Finally, it has to be noted that all the four top optimal solutions, which are 
reported in Table 5.5, refer to the uniform-angle diagonal pattern, with elementary 
triangular units having three intra-module floors, i.e. M3 = 16 and Mj = 0 for j ≠ 3. 
Therefore, out of the 31040 geometrical solutions that have been considered here 
(most of which are actual varying-angle diagrids), it is found out that the optimal 
geometry still is biased towards the uniform-angle pattern. Obviously, this 
outcome arises from the specific 168-meter building, which has an aspect ratio of 
about 5.5, and depends on the selected four response variables. It is quite clear 
that, if the same methodology were to be applied to a different building and if 
different response variables were to be considered, the uniform-angle solution 
could also be outperformed by certain varying-angle ones. 

As reminded above, the analysis shown so far in this Section has been carried 
out by assuming the same importance for the four response variables, namely #& = 
#̋  = #' = #() = 1. A sensitivity analysis has then been carried out to investigate 
the influence of such parameters on the obtained optimal geometry, as already 
reported in the previous Section. Based on the set of weight exponents shown in 
Table 5.4, 4096 simulations have been performed by varying each ri in the range 
0.25 – 2.00. For each of the 4096 simulations, the optimal geometry has been 
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selected as the one exhibiting the highest value of the OD. The results are shown 
in Figure 5.20, which reports the relative frequency of occurrence of the obtained 
optimal geometry, out of the 4096 different set of exponent combinations. 
 

 
Figure 5.20. Optimal diagrid geometry based on 4096 simulations with different 
exponents ri. 

 
The outcomes reveal that in 1969 (48.07% of the total) and 1943 (47.44%) 

cases, the optimal geometries are the structures #23368 and #15608, respectively. 
These correspond to the circular and octagonal uniform-angle diagrid pattern (M3 
= 16) already discussed above. Therefore, out of the 4096 simulations, these 
diagrid patterns are found to be optimal ones for 3912 cases (95.51% of the total). 

In the remaining 184 simulations (4.49% of the total), the optimal structures 
are found to be (in decreasing order of occurrence): #23936 in 96 cases (2.33% of 
the total), which corresponds to the uniform-angle circular diagrid with M2 = 24 
and Mj = 0 for j ≠ 2); #16116 in 26 cases (0.63%), which corresponds to the 
varying-angle octagonal diagrid with M2 = 12, M3 = 8 and Mj = 0 for j ≠ 2, 3; 
#23910 in 22 cases (0.54%), which corresponds to the varying-angle circular 
diagrid with M2 = 15, M3 = 6 and Mj = 0 for j ≠ 2, 3; #16056 in 17 cases (0.42%), 
which corresponds to the varying-angle octagonal diagrid with M2 = 9, M3 = 10 
and Mj = 0 for j ≠ 2, 3; #23927 in 11 cases (0.27%), which corresponds to the 
varying-angle circular diagrid with M2 = 18, M3 = 4 and Mj = 0 for j ≠ 2, 3; 
#23876 in 6 cases (0.15%), which corresponds to the varying-angle circular 
diagrid with M2 = 12, M3 = 8 and Mj = 0 for j ≠ 2, 3; and finally, #16056 in 6 
cases (0.15%), which corresponds to the varying-angle octagonal diagrid with M2 
= 15, M3 = 6 and Mj = 0 for j ≠ 2, 3. 

As can be seen, in 4008 cases (97.85% of the total), the desirability function 
approach leads to uniform-angle diagrid patterns as the optimal geometries 
(#15608, #23368 and #23936), with a strong preference towards three intra-
module floors (corresponding to diagonal inclinations of about 67°). In the 
remaining 88 cases (2.15%), the optimal pattern corresponds to actual varying-
angle diagrid patterns, that use a mixture of different triangular units having two 
and three intra-module floors. Note that, despite we have seen that the influence 
of the floor plan shapes is minor, all the optimal structures involve octagonal and 
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circular diagrids. This has already been shown in Table 5.5 where, although the 
numerical difference between the OD values is almost negligible, it is clear that 
there is a slight preference towards floor shapes having higher curvatures. 

5.4 Conclusions 

In this Chapter, the optimization of the diagrid geometry has been addressed. 
After a brief overview of the research works that have been published in the last 
decades about this intriguing subject, the Chapter has presented the analyses 
aimed at investigating the influence of the diagrid geometry on the structural 
performance and at suggesting a novel methodology to carry out the multi-
response optimization. 

In the existing literature, the optimization procedures were usually carried out 
by assessing the lateral deformability of the building, which is generally required 
to meet the maximum displacement of H/500, and finding the diagrid geometry 
that leads to the lowest amount of structural material. No research work focused 
on the influence of diagrid geometry on the torsional response. Moreover, most of 
the studies focused on square diagrid buildings. To fill this research gap, the 
analyses reported in Section 5.2 had the primary objective of studying the 
influence of both diagonal inclination and floor plan shape on both the lateral and 
torsional deformability of the diagrid. From the outcomes, it became clear that the 
geometrical solutions that minimize the lateral deflection of the building are not 
the most desirable ones for the limitation of torsional rotations, and vice versa. 

Hence, needing a methodology that allows to minimize at the same time 
multiple response variables, such as the lateral and torsional flexibility, the 
material usage, the construction complexity of the building, etc., the industrial 
engineering-based desirability function approach has been introduced in Section 
5.3. This method is widely used worldwide for the quality assessment of various 
products and processes in several fields. It seems to be a simple yet proper choice 
for the subject of diagrid optimization. The desirability function approach has then 
been applied for the optimization of uniform- and varying-angle diagrid 
geometries, showing interesting outcomes and a certain numerical robustness.  

The analyses carried out in the Chapter have made use of the desirability 
approach to find the optimal diagrid solution that simultaneously minimizes the 
lateral displacements under horizontal loads, the torsional rotation under torque 
actions, the steel diagrid mass and the constructional complexity, evaluated 
through a complexity index (CI). It is clear that neither the selected variable 
geometrical characteristics nor the selected set of response variables are unique. 
The methodology presented above can in fact involve not only the variation of the 
diagonal inclination and floor shape, but also the total floor area, the twisting and 
titling angle of the building, etc. Moreover, it can be applied to consider other 
(and more numerous) response variables that involve aspects related to other 
fields, such as architecture, economics, sustainability, energy, in-door 
environment, aesthetic, etc. This will surely be beneficial for designers and 
researchers across various disciplines interested in finding the optimal diagrid 
shape in the preliminary design stages. The method might also be coupled with 
conventional optimization processes used in the structural engineering field, such 
as Genetic Algorithm, Particle Swarm Optimization, etc. Finally, the integration 
of the proposed method to topology optimization approaches might provide 
excellent outcomes in terms of enhancement of the structural response and 
material savings. 
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Chapter 6 

Conclusions 

In this Thesis, the Elastic Lattice Models (ELMs) were deeply exploited in 
two different fields of application, namely proteins and diagrid tall buildings. 
Proteins are nanoscopic biological systems whose activity is pivotal for a variety 
of physiological processes. Conversely, diagrids are macroscopic structural 
systems used in recent years worldwide for the realization of tall buildings. 
Proteins and diagrids have nothing in common, except one thing that is 
highlighted in this Thesis: the behavior of both can be efficiently investigated 
through the ELMs. As a matter of fact, it has been shown that the application of 
ELMs to the field of proteins allows to obtain extremely useful information 
regarding their flexibility, dynamics as well as their biological mechanisms. 
Similarly, the application of the ELMs to the field of diagrid systems allows to 
perform the structural analysis, investigate their behavior within complex tall 
buildings as well as to carry out optimization processes in a computationally 
efficient way. 

The goal of this Thesis has therefore been to exploit a somewhat simple 
structural system, such as the ELM, to investigate a variety of complex behaviors 
from a purely Structural Mechanics perspective. After a short Introduction about 
the general features and structural analyses about the ELMs, this Thesis dedicates 
two Chapters to the application of the ELMs to the field of proteins (Chapters 2 
and 3) and two Chapters to the application of the ELMs to the field of diagrid tall 
buildings (Chapters 4 and 5). 

Specifically, in Chapter 2, the ELMs were deeply exploited to analyze the 
protein dynamics and biological mechanisms. A recently developed finite-
element-based ELM was presented for the purpose of investigating the low-
frequency protein vibrations. These vibrations were found to occur in the THz 
frequency range and involve large portions of the macromolecule. Moreover, 
these were found to correlate fairly accurately with the biological mechanism. The 
FE-based ELM was also shown to provide a good accordance with the 
experimental protein flexibility, as measured from the crystallographic B-factors, 
as well as to be theoretically consistent with the famous Anisotropic Network 
Model (ANM). The proposed FE-based ELM is believed to represent a simple yet 
powerful tool for the investigation of the protein global vibrations and biological 
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mechanisms, easily accessible to the engineering community, as it was developed 
by following a pure Structural Mechanics approach. 

In the same Chapter, space was also given to discuss the astonishing 
correlation that was observed between the low-frequency protein vibrations, 
evaluated by simplified ELMs, and the protein conformational changes, which are 
the fingerprints of the biological mechanism. Moreover, the low-frequency modes 
were also found to correlate accurately with the Principal Components (PCs) 
extracted from the sets of experimental crystal structures, meaning that these 
vibrations are able to represent the dynamic ensemble of the protein. Based on the 
observations that the protein low-frequency modes extracted from coarse-grained 
ELMs correctly describe the protein biological mechanism, a further coarse-
grained ELM was developed for the prediction of the large-scale global motions. 
This novel method was still grounded on the Elastic Lattice Modeling, but it 
reduced the protein motion to a sum of translations and rotations of rigid blocks 
(the domains), accommodated by the deformation of flexible parts (the hinges). 
For this reason, the method has been called the hinge-domain Anisotropic 
Network Model (hdANM). Besides the fact that the hdANM allows to increase 
the computational efficiency with respect to other approaches such as the ANM, 
RTB, FE-based ELM, etc., it was shown to capture the fundamental 
conformational changes of the protein as well as the PCs extracted from the 
experimental crystal structure ensemble. Hence, the hdANM was shown to 
correctly describe the biological mechanisms as well as the global protein 
flexibility. The method is currently being improved by generating an extrapolation 
of the linear modes in order to follow the large-scale curvilinear pathways. The 
preliminary results (not shown in this Thesis) suggest that the hdANM is indeed 
able to provide more realistic motions for the protein biological mechanism. 

The results presented in this Chapter are believed to be very interesting as 
they imply that very complex entities, such as proteins, can be successfully 
modeled and their behavior can be accurately analyzed by means of simplified 
structural models, such as the ELMs. Despite being extremely complicated, 
protein dynamics and biological behavior can thus be analyzed via models that 
exploit pure Structural Mechanics concepts, without tackling the problem by 
using complicated formulations that include complex chemo-physical features. 
Therefore, simplified models such as the ELMs can shed an important light on the 
overall behavior of the protein system and make the analysis and results 
interpretation much easier and accessible to the scientific community. 

In Chapter 3, we still discussed the use of the ELMs to the field of proteins, 
but from a force application perspective. In particular, two novel force application 
patterns were presented in the first part of the Chapter, where external forces were 
applied to the protein ELM, either via couplets of opposite forces or via random 
force perturbations. From the results of linear static analysis calculations, it was 
shown that the small-scale displacements resulting from the external force 
perturbations exhibit a good correlation with the experimental B-factors, which 
are the fingerprints of the protein internal flexibility. These outcomes suggested 
that the protein flexibility does not only arise from the intrinsic protein vibrations, 
as shown in Chapter 2, but also from the residue-residue mechanical interactions 
(pairwise force application pattern) and from the external random collisions due to 
the external environment (random force application pattern). The results of these 
analyses are very encouraging, as they indicate that simply applying point forces 
on the protein ELM can provide good estimates of the protein flexibility and, in 
turn, of the protein behavior. 
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In the second part of this Chapter, attention was paid to the possible role of 
geometrical non-linearities of the ELM within the protein conformational 
changes. As a matter of fact, it is well-known from Structural Mechanics that 
spatial truss systems such as the ELMs are usually sensible to geometrical non-
linearities when they exhibit fairly large displacements. Conformational changes 
in proteins usually show large deformations, therefore the application of linear 
static analysis might not be enough, as the influence of geometrical non-linearities 
might play an important role on the equilibrating forces. In the first place, given 
the two known end conformations of the protein conformational change, such role 
was investigated by comparing the force fields obtained from the equilibrium 
equations on the undeformed (initial) and deformed (final) conformations. From 
the comparison, as expected, it was found that the force fields only match if the 
involved displacements were very small. Conversely, when the displacements 
were rather great, the forces that equilibrate the structures often differed both in 
magnitude and directionality. This suggested that non-linearities can indeed be 
significant within the protein conformational change. Secondly, to understand 
whether these non-linearities were only the result of the curvilinear transition 
pathways (non-linearity of the displacement field) or also the result of a non-linear 
structural response (non-linearity of the force-displacement curve), the 
geometrical non-linear analysis was applied in a step-by-step fashion to the whole 
transition pathway. The previous equilibrium equations were applied to all the 
intermediate configurations and the evolution of the force field was analyzed with 
respect to the increasing displacements. From the outcomes, it was found that 
non-linearities could definitely occur both in the displacement field (curvilinear 
pathways) and structural response (non-linear force-displacement curves for 
various residues). These analyses ultimately tell us that, in order to fully 
comprehend and describe protein transitions throughout their entire pathway, 
geometrical non-linearities should also be taken into account when making use of 
the ELMs. Further developments of this work are left for future research efforts. 

In Chapter 4 we switched the focus of this research, as the ELMs were used 
for the analysis of the diagrid structural system for tall buildings. In particular, a 
matrix-based method (MBM) was proposed for the structural analysis of generic 
three-dimensional diagrid systems. The MBM was developed based on the Elastic 
Lattice Modeling of the diagrid structural system and grounded on matrix 
calculus. The MBM was proven to be effective to carry out the structural analysis 
as it reduced the degrees of freedom (DOFs) of the structure compared to detailed 
FE calculations. As a matter of fact, within the MBM framework, only six DOFs 
were considered for each floor. The outcomes of the MBM allowed to obtain 
quick yet complete information on the overall flexibility of the diagrid structure, 
both under lateral, vertical and torsional actions. Furthermore, the MBM was 
developed in such a way that it could be inserted within the General Algorithm 
(GA), a semi-analytical formulation developed to investigate the force distribution 
among several resisting elements in tall buildings. The MBM, coupled with the 
GA, allowed to study the interaction between an external diagrid tube and internal 
concrete cores, under both lateral and torque actions. 

The analyses shown in this Chapter are believed to be very useful to obtain a 
quick estimate of the diagrid overall structural response, which is particularly 
useful in the preliminary design stages. Moreover, the MBM could be further 
developed in order to investigate the dynamic and the non-linear behavior of the 
diagrid tubes. The former could be implemented by taking also into account the 
mass characteristics of the building. The latter by considering the contribution of 



 

 154 

the geometric non-linearities to the deformation process, i.e. by means of the 
geometrical stiffness matrix. This will be the subject of further research studies in 
the future. 

In Chapter 5, the outcomes of the ELM-based structural analysis of the 
diagrid systems were used to carry out a novel optimization procedure to select 
the optimal diagrid geometry. In particular, in the first part of the Chapter, the 
MBM was used to investigate the influence of the diagrid geometry (diagonal 
inclination, floor plan shape, building aspect ratio) on both the lateral and 
torsional flexibility. From the results, it became pretty clear that the geometries 
that minimize the lateral displacements did not lead to minimum torsional 
rotations, and vice versa. Moreover, other than the lateral and torsional flexibility 
of the building, other responses should be minimized as well. Examples are the 
total mass of the diagrid structure as well as its construction. Therefore, there 
came the need to exploit a multi-response optimization procedure, where several 
responses were simultaneously minimized in order to find the most desirable 
structure. This was addressed by making use, for the first time in this research 
field, of the desirability function approach. 

Firstly developed for the optimization of products and processes in industrial 
engineering, the desirability function approach was thoroughly exploited in the 
second part of this Chapter to select the optimal diagrid geometry. In particular, 
for a set of uniform- and varying-angle diagrid structures, the desirability function 
approach yielded the individuation of the most desirable structure in order to 
minimize both the lateral and torsional flexibility (for safety and serviceability 
purposes), the amount of structural mass (for sustainability and economic issues), 
and the complexity of the diagrid structure (for the purpose of construction 
easiness). Based on the results of the desirability calculations, which arose from 
the outcomes of the MBM-based structural analyses, the optimal diagrid 
structures were selected among a large set of solutions. The approach described in 
this Chapter will surely be beneficial for designers and researchers across various 
disciplines interested in finding the optimal diagrid shape in the preliminary 
design stages. Further research studies are also planned, in order to couple the 
desirability function approach with conventional optimization processes used in 
the structural engineering field, such as Genetic Algorithms, Particle Swarm 
Optimizations, etc. 

In conclusion, as might have been appreciated throughout the reading of the 
previous Chapters, the focus of this Thesis has been directed onto the application 
of the same methodological framework, i.e. the ELM, to address different 
problems rather than addressing a very specific issue alone. To do so, the ELMs 
have shown their great versatility, as they allowed to tackle a variety of topics and 
explain a wide range of behaviors. It is also worthy of note that, as mentioned at 
the beginning of the Introduction, the ELMs can be seen as the structural systems 
that most simply exploit the generalized Hooke’s law. This law is maybe one of 
the simplest yet most used concepts in Structural Mechanics, and this Thesis has 
exploited it to the greatest extend. Ultimately, in this Thesis, we have shown that 
the complexity of various systems can be tackled by cleverly using the right 
structural approaches, though simplified. 
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