
20 March 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Evaluating Architectural, Redundancy, and Implementation Strategies for Radiation Hardening of FinFET Integrated
Circuits / Pagliarini, Samuel; Benites, Luis; Martins, Mayler; Rech, Paolo; Kastensmidt, Fernanda. - In: IEEE
TRANSACTIONS ON NUCLEAR SCIENCE. - ISSN 0018-9499. - 68:5(2021), pp. 1045-1053.
[10.1109/TNS.2021.3070643]

Original

Evaluating Architectural, Redundancy, and Implementation Strategies for Radiation Hardening of
FinFET Integrated Circuits

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/TNS.2021.3070643

Terms of use:

Publisher copyright

©2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2883396 since: 2021-04-05T10:15:44Z

IEEE

Abstract—In this paper, authors explore radiation hardening

techniques through the design of a test chip implemented in 16

nm FinFET technology, along with architectural and redundancy

design space exploration of its modules. Nine variants of matrix

multiplication were taped-out and irradiated with neutrons. The

results obtained from the neutron campaign revealed that the

radiation hardened variants present superior resiliency when

either local or global TMR schemes are employed. Furthermore,

simulation-based fault injection was utilized to validate the

measurements and to explore the effects of different

implementation strategies on failure rates. We further show that

the interplay between these different implementation strategies is

not trivial to capture and that synthesis optimizations can

effectively break assumptions about the effectiveness of

redundancy schemes.

I. INTRODUCTION

NTEGRATED circuits (ICs) are prone to faults due to an

extensive array of adverse environmental elements.

Amongst those elements, highly energetic particles are of

particular interest since their interaction with silicon is

effectively capable of inducing faults in both memory and

logic resources of an IC. The physics behind the phenomena is

well studied, both at transistor [1] and circuit-level [2]. When

combinational elements of a circuit are hit, transient and short-

lived perturbations are created. If perturbations reach a

primary output of a circuit – often by being latched by a flip-

flop along the way – then the perturbation becomes an error.

Sequential elements of a circuit are also threatened by the

same particles. These elements can be directly affected as the

information they carry is flipped from 0-to-1 (or vice versa)

and remains corrupted until the element is overwritten with

new information, which is called a single-event upset.

There are numerous approaches to harden an integrated

circuit against radiation-induced errors, each having different

overheads and relative efficiency. Some strategies apply to

both sequential and combinational cells, while others are

targeted at one or the other. Radiation hardening by design is

often employed since it does not rely on any foundry-level

process options. Instead, the design is modified to leverage

logical, electrical, and temporal masking. Mitigation strategies

include cell upsizing [3][4], reliability-aware cell replacement

[4], guard-gates [5], triple modular redundancy (TMR) [6],

and many others [7].

For a given target circuit, designers can calculate how likely

a fault is to become an error. Mitigation techniques are then

utilized to bring this number down to acceptable levels,

whichever level might be suited/recommended for the

application domain being targeted. Mitigation techniques can

be applied at different abstraction levels and stages of the

design flow. In this paper, we study mitigation strategies that

fall into three distinct categories: architectural, redundancy,

and implementation. On the architectural side, we explore how

the error rates of a matrix multiplication (MM) circuit change

when parallelism and pipelining are employed. For

redundancy, we consider different granularity levels of TMR,

namely global and local. A test-chip was fabricated in a 16nm

FinFET technology in order to investigate the effectiveness of

architectural and redundancy strategies. Seven optimization

options available in a commercial logic synthesis tool are

considered during the implementation of the studied circuits.

The optimization options are evaluated applying fault injection

by simulation.

When an IC is being designed, the circuit description goes

through a series of transformations, some of which can have a

significant impact on the error rate of the circuit being

implemented. At the start of this transformation chain, we

often employ logic synthesis to translate an RTL description

of the circuit into a netlist. Further, the netlist goes through

physical synthesis, in which steps such as placement, routing,

clock tree synthesis, timing optimization, and signoff are

performed.

Several hardening approaches can be employed by

analyzing and modifying the generated netlist that is the

output of logic synthesis. Examples are cell replacement [4],

cell sizing [8], use of a hardened standard-cell library, and use

of the dual interlock cell (DICE) technique [8]. The design

description can also be modified to incorporate a TMR

strategy, parity bits, and error detection and correction

(EDAC) blocks [10]. Combinations of the aforementioned

techniques are also possible.

However, strategies that modify or evaluate the actual

synthesis behavior [11] are less frequently seen. There are

approximate logic synthesis techniques available [12][13][14],

Evaluating Architectural, Redundancy, and

Implementation Strategies for Radiation

Hardening of FinFET Integrated Circuits

Samuel Pagliarini, Member, IEEE, Luis Benites, Mayler Martins, Member, IEEE, Paolo Rech, Senior

Member, IEEE, and Fernanda Kastensmidt, Member, IEEE

I

Manuscript submitted 04/Sep/2020.

S. Pagliarini is with Tallinn University of Technology (Tallinn, Estonia).

He was previously with Carnegie Mellon University (Pittsburgh - PA,
USA).

L. Benites, P. Rech, and F. Kastensmidt are with Universidade Federal

do Rio Grande do Sul (Porto Alegre, Brazil). P. Rech is also with
Politecnico di Torino (Torino, Italy).

M. Martins is with Siemens EDA, a part of Siemens Digital Industries

Software (Fremont – CA, USA). He was previously with Carnegie Mellon

University (Pittsburgh - PA, USA).

where the area penalty of a TMR scheme is reduced

considerably through the logic simplification of the redundant

blocks while making (some) input vectors unprotected. These

approximations are a good fit for error-tolerant circuits, such

as video/image processing circuits.

In physical synthesis, the placement step is highly relevant

for hardening as the cells’ spatial location affects masking. For

instance, in [15], a careful analysis of the effect of placement

with respect to multiple faults was performed. A placement

engine that is fault-aware is proposed in [16], albeit presenting

heavy overheads. An improved version is presented in [17].

In this paper, however, we focus on the effects of logic

synthesis by studying how optimization decisions influence

the error rate, i.e., how implementation strategies promote (or

impede) fault propagation, often in non-obvious ways.

Neutron testing was performed at the Los Alamos Neutron

Science Center (LANSCE) facility with the intent to

investigate architectural and redundancy strategies. All the

mitigations implemented at architectural, logical redundancy,

and synthesis levels were evaluated by simulation-based fault

injection in order to explore design space trade-offs.

This paper is organized as follows: in Section II, we present

the test chip specification and architectures that were

implemented in silicon. In Section III, we discuss

implementation strategies and their trade-offs. Our results are

given in Section IV and Section V. A discussion follows on

Section VI. Finally, our conclusions are drawn in Section VII.

II. TEST-CHIP SPECIFICATION AND

ARCHITECTURAL/REDUNDANCY STRATEGIES

In this section, we present the specifications of the test chip

and the architectural choices to allow multiple

implementations to be tested.

A. Test Chip Specification

An IC was designed to perform matrix multiplication using

three different architectures and three different strategies for

redundancy. Therefore, nine unique modules were

implemented. The circuits were described in Verilog language

and synthesized using Cadence Genus and Innovus tools

following a typical standard cell-based flow.

The nine MM variants were all taped out in the same 16nm

FinFET die. A serialized interface is utilized to control which

MM variant is currently active. Output signals of the modules

are multiplexed to keep the pin count reasonably under

control. A 175MHz clock is generated externally and

delivered to the chip via a dedicated pin.

Input signals (operands of the multiplication) are common

for all MM modules and come from embedded memories. Six

ROMs were utilized for this purpose, three for operand A and

three for operand B of the matrix multiplication M = A x B.

Each ROM has 64 addresses of 8 bits each. Pre-initialized

ROMs were employed, so the multiplication result is known

and easy to verify externally.

B. Architectural and Redundancy Strategies

On the architectural side, a designer can reason about

pipelining strategies and parallelism for accelerating a given

computation. These strategies generally increase throughput

and frequency at the expense of area resources, but that is

often a worthwhile trade-off in IC design.

Our first case studied circuit performs matrix multiplication

of 6x6 input matrices of 8-bit vectors. Our design space

exploration led to three architecturally different versions that

were generated using a High-Level Synthesis (HLS) tool from

Xilinx [18]. HLS, also known as behavioral or algorithmic

synthesis, is a method that has as input a high level/functional

description of a design and compiles it into an RTL

implementation that is later synthesized to the gate level using

a logic synthesis tool. The high level description is often done

in C/C++/SystemC, and the behavior is usually untimed. One

of the main advantages of HLS is the automatic scheduling

and loop optimizations performed. The scheduling creates a

finite state machine and can inherently pipeline the design,

selecting the best number of stages. The loop optimization in

HLS checks for logic dependencies and unroll loops when

possible, where parallelism can be increased to obtain a

reduced latency, or parallel units can be merged to reduce

area.

The first MM version was generated without employing any

HLS optimization directives and resulted in a non-pipelined

version with a latency of 733 clock cycles (v0). Alternatively,

two optimized versions were also generated considering

different pipelining choices. The second version has a 21-stage

pipeline and presents a latency of 112 clock cycles (v3). The

third version exhibits a 7-stage pipeline that corresponds to a

latency of 133 clock cycles per multiplication (v6).

Each one of the three architecturally different versions was

hardened by the use of a TMR technique. In this work, two

variants of the TMR approach were considered according to

the granularity level employed when generating redundant

structures: coarse grain and fine grain. The coarse grain TMR

(global) is the same as conventional modular TMR, where a

module is considered as the entire design, and the modules'

outputs are voted out. On the other hand, fine-grain TMR

(local) replicates sub-modules instead of the whole design.

One case is the replication of sequential cells, while the

combinational paths remain the same.

Moreover, a single voter is placed at the output of every

triplicated sequential cell. For this purpose, we have utilized a

tool previously developed in [19] to generate the TMR

variants automatically. Table I presents a summary of the

three architectures, each one having three variants.

III. IMPLEMENTATION STRATEGIES AND EVALUATION

METHODOLOGY

In this section, we present the logic synthesis optimizations

typically chosen to trade-off area, power and maximum

frequency of operation. Logic synthesis is the process that

translates an RTL description into a mapped netlist. The

process is understandably heavily influenced by the standard

cell library composition and design constraints [11][20].

However, specific optimizations enabled by the user also

affect the final result.

A. Logic synthesis optimizations

In our study, we have explored a total of seven

optimizations available in Genus, which are listed below:

1. Clock gating (opt_cg)

2. Ungrouping (opt_ung)

3. Datapath analytical (opt_dpa)

4. Bubble pushing (opt_bubp)

5. Tighten max transition (opt_maxt)

6. Retiming for delay (opt_retd)

7. Retiming for area (opt_reta)

Optimizations from 1 to 5 are enabled by different attributes

and their settings (given in parenthesis), namely

lp_insert_clock_gating (true), auto_ungroup (both),

dp_analytical_opt (extreme), lbr_seq_in_out_phase_opto

(true), and max_transition (100ps). The retiming optimizations

are executed with the commands retime –min_delay and

retime –min_area.

Many of these optimizations are not enabled by default in a

reference synthesis flow but are often employed by IC

designers in order to optimize certain aspects of a block (or

chip). Next, we discuss each technique briefly.

Clock gating is typically employed for power saving

reasons. It consists of adding logic that prevents flip-flops

from seeing clock toggles unless a specific enable signal is

asserted. Synthesis tools can infer enable signals automatically

from RTL. Ungrouping, when allowed, implies that the

synthesis engine may flatten the design hierarchy and consider

optimizations that traverse boundaries. This optimization has

implications for verification and impacts runtime

considerably, but typically brings area savings. Datapath

analytical enables aggressive datapath optimization that

knowingly trades area for timing improvement – this type of

specific strategy is often proprietary, and the user of the

synthesis tool is not in control of their specific usage. When

bubble pushing is enabled, inverters are pushed in and out of

flip-flops by switching between the use of 𝑄/𝑄 or 𝐷/𝐷 pins.

This technique is also called (output) inversion of sequential

cells. Tightening max transitions forces buffering as signals

are prevented from having slow transitions, even for paths

where this behaviour would cause no timing violation. This

artificial tightening helps with issues of crosstalk and to

achieve timing closure. Retiming changes the boundaries of

sequential and combinational logic by moving cells from one

stage of logic to another. Retiming can be targeted for delay –

which is the typical use case. Retiming can also target area

savings, but never at the expense of delay, i.e., delay remains

the primary optimization target.

In most experiments reported later on, one and only one

optimization is enabled at a time. When two optimizations are

considered concurrently, we utilize a plus sign and label them

“opt_abc + opt_xyz”. For all cases, the synthesis effort was

kept high for fairness.

B. Fault injection methodology:

Next, we detail our methodology for injecting faults, which

is the approach we have followed for: a) cross validation of

the architectural/redundancy strategies under neutrons, and b)

evaluating the many synthesis optimizations. We will use this

fault injection approach and terminology on the remainder of

this paper.

First, we clarify that all faults are injected at gate level and

only single faults are injected. The studied circuits are reset

every time a computation is finished, thus preventing the

accumulation of faults. All circuits are synthesized with (and

only with) reset-capable flip-flops, thus guaranteeing that a

reset flushes any lingering fault or error.

For each injected fault, we observe the outputs of the circuit

for the entire duration of the computation taking place, which

may span many clock cycles. If, at any given clock cycle, any

output differs from the expected, we say this scenario leads to

a ‘fail’. If no output differs from the expected at the end of the

computation, we say this scenario leads to a ‘pass’.

Fault injection targets are random, i.e., gates are selected

randomly. Fault injection campaigns targeting combinational

logic and sequential logic are always executed separately for

clarity, so in any given campaign all targets are of the same

type. Only one fault is injected per computation and the fault

injection time is also random. For instance, for the MM v0

circuit, there is one fault every 733 cycles, where the injection

can occur in a random cycle between 1 and 733. Input patterns

for data signals are randomized (i.e., clock and reset are not

randomized). However, for experiments that compare two

variants of the same circuit, we guarantee that the random

input patterns are the same for the different variants.

IV. RESULTS FOR THE NEUTRON TEST CAMPAIGN

The IC containing the 9 MM modules was fabricated in a

commercial 16nm FinFET technology. The die size is 1.8mm

x 1.8mm due to packaging restrictions – the actual MM

circuitry takes only a fraction of the available area. Area and

cell count for each MM variant are detailed in Table I. The

nominal voltage of the core of the IC is 0.8V, the intermediate

voltage is 1.8V for ESD structures and IO ring, while the

output voltage is 3.3V. The maximum frequency of the

slowest MM variant on the worst/worst corner is 1.26 GHz.

This value was then adopted during timing closure for the

entire chip.

The fabricated chip was mounted on the PCB detailed in

Fig. 1 and radiated with neutrons at LANSCE. The board

utilizes an 8-bit microcontroller (seen on the left), three

voltage regulators for 3.3V, 1.8V and 0.8V (bottom), a

controllable oscillator that provides a 17-170 MHz clock, the

socket where the fabricated chip sits (upper right), pin headers

for exposing chip internals for debug, and a range of

decoupling capacitors for power distribution. The

microcontroller is purposefully placed 5 cm away from the

socket to avoid being affected by radiation and cause false

positives. The microcontroller can communicate with a host

computer through a USB to serial cable, using the RS232

TABLE I
CHARACTERISTICS OF THE MATRIX MULTIPLICATION MODULES

MM

Version
TMR?

Cell

count
Area (um2)

v0 No 670 253.0

v1 Local 2054 782.2

v2 Global 2212 880.8

v3 No 13674 5076.4

v4 Local 42559 15841.9

v5 Global 44035 17170.4

v6 No 2391 981.2

v7 Local 7253 2956.9

v8 Global 7717 3325.4

standard. A simple protocol was implemented to allow the

user to send multiply commands remotely. The

microcontroller is also in charge of sampling the results

generated by the chip under test. In order to check the results

in real-time, all possible multiplication results are stored in a

ROM-based look-up table. The chip can also be reset on

demand (e.g., after finding an error).

The campaign lasted for a period of seven consecutive days.

The software running on the microcontroller kept alternating

between MM modules, continuously monitoring the outputs

for erroneous bits. The error count for the overall campaign is

given in Table II.

While the results are logical and in line with circuit size (i.e,

v0 is the smallest version and also has the smallest number of

errors) and redundancy strategies (i.e., no errors in TMR-

protected versions), the error count is rather too low for

drawing meaningful cross-sections. We highlight that in the

last 36h of beam time, our setup was modified to activate only

the largest of the hardened versions (v5), in an attempt to see

an error in a TMR-protected variant. Still, no errors were

detected for this variant. We proceed to further study the

circuits in detail through simulation-based fault injection.

A. Validation against Fault Injection Campaign

Our first aim was to validate that the results presented in

Table II match with simulation-based fault injection. In order

to perform this crosscheck, however, we first established how

many faults have to be injected into the circuit to gain a

reasonable insight into its reliability (i.e., how often faults

become errors vs. how often faults are masked). For this

purpose, we took the same MM v0 netlist that was utilized in

the tapeout and proceeded to inject faults on it.

(a)

(b)

Fig. 1. (a) Schematic of the PCB. (b) PCB being utilized during bring-up

tests in the lab. The same PCB was later utilized during the neutron

campaign.

TABLE II

ERRORS DETECTED DURING NEUTRON CAMPAIGN

MM

version

Pipeline

stages TMR? Errors

v0 N/A No 2

v1 N/A Local 0

v2 N/A Global 0

v3 21 No 27

v4 21 Local 0

v5 21 Global 0

v6 7 No 14

v7 7 Local 0

v8 7 Global 0

(a)

(b)

Fig. 2. Fail rate trend for the MM v0 circuit. A total of 1000 faults is
injected in order to obtain a stable trend. The dashed line represents a

logarithmic trendline.

0 10 20 30 40 50 60 70 80 90 100

0

0.1

0.2

0.3

0.4

0.5

0.6

Injected faults

Fa
il

 r
at

e

0 100 200 300 400 500 600 700 800 900 1000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Injected faults

Fa
il

 r
at

e

Initially, for the analysis of the MM v0 circuit, we selected

only flip-flops as targets and executed a fault injection

campaign according to the methodology previously described.

In Fig. 2, we plot the fail rate trend for this campaign. When

100 faults are accounted for in Fig. 2 (a), the fail rate does not

appear to stabilize, meaning that it is possible we have not

injected enough faults to see the circuit’s fail rate saturate.

When 1K faults are accounted for in Fig. 2 (b), a noticeably

more stable profile appears that indeed captures the circuit’s

architectural vulnerability factor. Erring on the side of caution,

we then performed 10K injections on each MM variant. Still,

only sequential elements were considered as targets. The

results are given in Table III. Not surprisingly, all TMR-

protected variants have registered no errors.

Non-protected variants (v0, v3, and v6) have error rates

that, at first glance, do not support the number of errors

reported in Table II. However, it must be noted that the

studied circuits have different sizes and architectures, and that

the values reported in Table III ought to be derated over area

for a fairer comparison. We later introduce a figure of merit

(FoM) that considers this aspect and that can be used to

compare same-architecture circuits.

 In Table IV, we again perform fault injection, but this time

focusing only on the combinational cells of the MM variants.

A total of 100K faults1 were injected per circuit. As expected,

all variants now present at least some fail scenarios. All TMR-

protected versions have output voters that are not themselves

protected, and we made sure that voters were also targeted in

our campaign. As a general trend, the non-protected variants

1 We have performed the same trend analysis shown in Fig. 2 for

combinational logic, but omit it from the paper. The trend stabilizes before

10K samples.

v0, v3, and v6 still present much higher error rates than their

protected counterparts.

V. RESULTS FOR THE SYNTHESIS OPTIMIZATION

EXPLORATION

We are also interested in analyzing how implementation

decisions influence the resiliency of circuits. More

specifically, in this section, we investigate how logical

synthesis and related optimizations promote changes in the

circuit’s structure that translate to changes in its resiliency.

The circuits analysed include a 32-bit arithmetic logic unit

(ALU), an AES crypto module [20], a PID industrial

controller [22], a floating-point unit obtained from [23], and

the MM v8 module previously utilized in our tapeout. For all

circuits reported in this section, the technology (16nm) and

standard cell library of choice (3rd party, commercial library)

is the same utilized in our tapeout. Synthesis scripts also

match, except for the optimizations that were purposefully

turned on or off across the experiments.

1) 32-bit Arithmetic Logic Unit

 We synthesized a relatively small 32-bit ALU that performs

only sum and multiplication operations. The synthesis of the

baseline ALU – when none of the studied optimizations is

enabled – results in a circuit with 1503 cells that occupies

745um2 of area, burns 1.80uW of leakage power, and 2.51mW

of dynamic power when running at 1GHz. Next, we enabled

the studied optimizations one by one and proceeded to

measure the number of instances, area, leakage and dynamic

power. For the sake of comparison, clock frequency was not

changed for each variant, even for retimed variants that could

benefit from it. The normalized results are shown in Fig. 3,

where no opt stands for no optimization performed.

TABLE III
FAULT INJECTION CAMPAIGN FOR THE MATRIX MULTIPLICATION MODULES,

TARGETING SEQUENTIAL ELEMENTS ONLY

MM

version
TMR? Pass Fail Fail rate (%)

v0 No 4167 5833 58.33

v1 Global 10000 0 0.00

v2 Local 10000 0 0.00

v3 No 8633 1367 13.67

v4 Global 10000 0 0.00

v5 Local 10000 0 0.00

v6 No 4802 5198 51.98

v7 Global 10000 0 0.00

v8 Local 10000 0 0.00

Fig. 3. Profile of the studied implementation variants for the ALU
circuit. All values are normalized with respect to the baseline

implementation.

1.30

1.29

1.421.26

0.9 1 1.1 1.2 1.3 1.4 1.5

Dynamic power Leakage power Area Instance count

TABLE IV

FAULT INJECTION CAMPAIGN FOR THE MATRIX MULTIPLICATION MODULES,
TARGETING COMBINATIONAL ELEMENTS ONLY

MM

version
TMR? Pass Fail Fail rate (%)

v0 No 75642 24358 24.35

v1 Local 97845 2155 2.15

v2 Global 97909 2091 2.09

v3 No 92557 7443 7.77

v4 Local 99809 191 0.19

v5 Global 99812 188 0.18

v6 No 71017 28983 28.98

v7 Local 99086 914 0.91

v8 Global 99837 163 0.16

 For this specific ALU circuit, optimizations opt_cg,

opt_ung, and opt_retd stand out. The first two clearly enable

synthesis to generate more optimized circuits that are

approximately 7% smaller and 3-7% more power efficient.

Our observation is that clock gating logic brings small

improvements because it makes use of integrated clock gating

cells that otherwise are ignored by the synthesis. Even if

counterintuitive, the use of clock gating integrated cells

reduces area in this experiment. On the other hand, opt_retd

increased all measured circuit characteristics by 26-42% (see

data callouts in Fig. 3). One of the reasons for such increase is

that retiming (both opt_retd and opt_reta) may, when deemed

advantageous, clone flip-flops to reduce load on certain circuit

nodes. For the studied circuit, it was verified that the number

of flip-flops increases significantly, from 128 to 194, when

opt_retd is applied. This, in turn, increases the area and power

consumption considerably.

We have also studied pairs of optimizations to see if the

results would change promptly (with respect to applying one

optimization at a time). For most pairs, surprisingly, the

changes in circuitry were minimal and could not be discerned

from inherent “noise” that exists in the synthesis process. The

pair opt_cg + opt_retd, however, stands out as it always

produced a result that is a middle point between opt_cg and

opt_retd – it has both the increased frequency enabled by

retiming as well as the power savings of clock gating. For this

reason, we also consider this pair of optimizations in Fig. 3.

 While Fig. 3 would give a designer enough information

to pick the best design point for the studied circuit, it does not

give away any information on the circuit reliability – or how it

shifts from one version to another. We resorted to fault

injection once again to analyze if the circuit variants present

different fail rates. The result is summarized in Fig. 4, where

we differentiate sequential from combinational logic in order

to better understand the effects of the chosen optimizations.

On the leftmost portion of Fig. 4, we have the baseline circuit

for which no optimizations were enabled (no opt).

It is important to note that the ALU circuit is an ideal

candidate for this investigation: it is a small single cycle

circuit with virtually no control path. This circuit was chosen

precisely because it allows for direct correlation between any

optimization choice and changes in reliability. Since the ALU

circuit is so simplistic, any flip-flop injected with a fault leads

to an error at the circuit output (i.e., there is no masking, so the

pass bars are zeros, thus not shown). This type of circuit

allows us to conclude that opt_retd brings changes that break

this assumption quickly; now, masking does take place. This

result is evidence that certain synthesis optimization

strategies can disrupt architectural design choices. As

previously mentioned, cloning of flip-flops takes place during

opt_retd, which creates a scenario in which faults do not

translate into errors since newly-created shadow flip-flops do

not always have an active path to drive a primary output. This

specific optimization reduces the fail rate by ~33% for the

ALU circuit, which is explained by the fact that also ~33% of

the flip-flops in the circuit are clones (66 out of 194).

 Regarding combinational logic, we have observed fail rates

in the range of 18-31%, whereas the baseline circuit displays a

fail rate of 29.9%. The optimization with the highest pass rate

is clock gating (opt_cg). By definition, opt_cg targets

sequential logic. However, faults in combinational gates are

more frequently masked since gated flip-flops cannot latch an

error if the enable signal is not asserted at the time of the fault

injection.

Conversely, the optimization with the lowest pass rate is

retiming for area (opt_reta). We conjecture that retiming for

area promotes changes in the circuit where distinct paths have

more cells in common with one another. The cells that are

“shared” between distinct paths become critical nodes that

reach primary outputs in many ways, thus reducing the

probability that injected faults are logically masked. In

summary, when the studied circuit is synthesized with

opt_reta, it is more likely that errors will occur than when the

same circuit is synthesized with opt_cg only. However, when

we take into account that the opt_cg version is smaller (see

Fig. 3), the relative disparity between both versions is even

more pronounced. This degree of disparity between commonly

employed strategies is not specific to the ALU circuit. We

have seen similar trends for other circuits, including a PID

industrial controller, especially for strategies that affect the

sequential elements of the circuit. In particular, the PID

contains similar dataflow structures that are present in the

ALU, but the PID controller has twice more flops than s ALU

and effectively has more control logic than datapath logic.

Nevertheless, we suppress the results for the PID controller, as

they are very similar: the number of flip flops changes by ~50

TABLE V

CHARACTERISTICS OF DIFFERENT IMPLEMENTATIONS OF THE AES CIRCUIT

Version
Cell

count
Flops

Area

(um2)

no opt 10633 693 3716.30

opt_cg 10512 693 3646.06

opt_ung 10420 597 3533.72

opt_dpa 10675 693 3715.58

opt_bubp 10618 693 3662.34

opt_maxt 10625 693 3721.96

opt_retd 10867 814 3858.87

opt_reta 10890 782 3813.35

opt_bubp + opt_reta 11198 782 3855.29

opt_cg + opt_retd 10552 698 3657.00

Fig. 4. Pass rates for sequential logic and combinational logic of

different implementations of the ALU circuit.

0
.3
3
4

0
.3
9
7

0.
70
1

0.
81
9

0
.7
2
4

0.
71
6

0.
69
9

0
.7
0
2

0
.7
2
0

0.
68
6

0
.7
1
0 0.
78
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
PA

SS
 R

A
TI

O

pass ratio, sequential elements pass ratio, combinational elements

when opt_reta is applied, opt_cg and opt_ung also produce

small reductions in area.

2) AES Crypto Engine

For the AES crypto engine, we performed a nearly identical

experiment where we synthesized many versions of the same

circuit for a 1GHz frequency while enabling one optimization

at a time. The results for each of these runs are given in Table

V, where we bold the highest recorded values for the number

of cells, the number of flops, and area. We highlight that this

circuit is about one order of magnitude larger than the

previously utilized ALU. It is clear that opt_retd, here, also

leads to the highest area overhead as it adds more than 100

flip-flops that were not part of the original design. Conversely,

opt_ung has the opposite effect, actually reducing the number

of flops in the design from 693 to 597 and, consequently, the

overall area.

Regarding combinations of optimizations, most pairs we

studied revealed results that were barely discernible. In theory,

two optimizations could present a linear superposition

property. In practice, once one optimization is performed, it

prevents others, most likely because they affect the same

elements in the circuit. Nevertheless, we show the results for

the opt_cg + opt_retd combination, as well as for the

opt_bubp + opt_reta pair. This last one, in particular,

increases the cell count by 5.3% and the circuit area by 3.7%.

Next, we performed a fault injection campaign utilizing the

many variants of the AES circuit. Each variant was injected

with 100K faults at random locations and at random times.

The simulation testbench was carefully crafted such that faults

are only injected when the circuit is actively computing, i.e.,

after reset and load operations already took place, but one of

the encryption rounds is still being executed. We have also

controlled the seed of simulation to make sure that identical

(but randomized) input vectors are applied to all variants. The

results of the campaign are shown in Fig. 5. Bars are utilized

to display the combinational and sequential pass ratios.

We have previously alluded that the effectiveness of a given

optimization should be a function of the area overhead as well

as a function of the fail rate. In order to account for these two

quantities at the same time, we have developed two figures of

merit: fails per flop and fails by area. The former is calculated

by dividing the number of injected faults that led to fail

scenarios by the number of flops in the design. The latter is

calculated by diving by the circuit area instead. Both metrics

are drawn as green lines in Fig. 5. The lower the FoM, the

better.

 When analyzing the results for the fails per flop FoM line

in Fig. 5, it becomes clear that opt_retd is the better candidate

(even if it has the third highest pass ratio at 0.601). The second

best candidate is opt_cg, even if this optimization leads to a

pass ratio of 0.65. Regarding the fails by area FoM, the best

candidate is also associated with opt_retd, while the second

best candidate is opt_bubp + opt_reta. It should be evident

from the assessment above that the use of retiming is

beneficial for the reliability of a circuit. However, the AES

circuit is extremely regular, and it is conceivable that other

circuits would not show the same trend. In order to investigate

this hypothesis, we have performed an identical fault injection

campaign into a single-precision floating-point unit. The

results are shown in Fig. 6 and reveal that opt_retd is the best

candidate when assessing fails by area. Regarding fails per

Fig. 5. Pass ratio for sequential logic and combinational logic of different implementations of the AES circuit. Figures of Merit for the fail rates per flop and

by area are drawn as green lines.

0

2

4

6

8

10

12

14

16

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fo
M

PA
SS

 R
A

TI
O

Pass ratio, sequential elements Pass ratio, combinational elements FoM (fails per flop) FoM (fails by area)

Fig. 6. Pass ratio for sequential and combinational logic of different
implementations of a floating point unit. FoM for the fail rates per flop

and by area are drawn as green lines. For clarity, optimizations with small

changes are not shown.

0

10

20

30

40

50

60

70

80

90

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fo
M

PA
SS

 R
A

TI
O

Pass ratio, sequential elements Pass ratio, combinational elements

FoM (fails per flop) FoM (fails by area)

flop, then opt_ung becomes the best candidate, while retiming

strategies appear to be detrimental to reliability. In fact,

opt_reta is an extreme case for this circuit. Here, the number

of flip flops decreases by approximately 300 but every flop

becomes more susceptible to faults: the pass rate drops from

83% to 72%. Therefore, in practice, circuits have to be

analyzed individually, and no one-size-fits-all recipe seems

to exist for reliability improvement.

3) Matrix multiplication (MM v8)

The one question we have not answered is whether the MM

variants that are hardened can also be broken by the synthesis

optimizations studied in this paper. First, we clarify that we

disable flip-flop redundancy removal that the synthesis tool

does by default: this is crucial; otherwise, any TMR scheme is

optimized away. Next, we have synthesized the MM variants

while enabling different synthesis optimizations. We made use

of the exactly same tapeout netlists as an input to the synthesis

tool, which was asked to rework them with the selected

optimizations now enabled. Our interest is in showing whether

a result like the one highlighted in Fig. 4 also happens for

MM.

In order to do so, we have identified how many

combinational cells, when injected with faults, are able to

generate errors at the circuit output. We term these cells

unique fault sites and we do not distinguish how often an

injected fault at a site is able to turn into an error – one time is

already sufficient. This result is shown in Fig. 7 for MM v8

variants. We highlight that this circuit has 58 outputs and that

there are 61 unique fault sites for the baseline version of it.

These are all related to voter logic that is often implemented

by one MAJ cell. On the other hand, all variants that

implement some form of logic restructuring led to hundreds of

unique fault sites. Therefore, most of these sites are not

related to voter logic. A normalized result is also plotted in

Fig. 7. First, we divided the number of unique fault sites in

each circuit variant by its number of instances. The value

obtained for the baseline is set as the reference; all other

values are normalized by it. From the plot, it is possible to

appreciate that the variants have 5-6x more unique fault sites,

even when instance counts are taken into account during

normalization.

We have also performed a similar analysis for sequential

logic. As expected, the no opt variant has zero fault sites as

TMR works as expected. The opt_bubp variant does not

change the number of flops of this circuit, thus the number of

faults sites remained zero. The retiming variants, i.e., opt_retd

and opt_reta, both led to the creation of a single fault site. In

summary, retiming strategies can create fault scenarios in

TMR-protected circuits that were not originally present. This

can happen in both sequential and combinational logic.

Finally, in Table VI, we show the required execution times

for the fault injection campaigns for the ALU and FPU

circuits. These campaigns were executed on an Intel(R)

Xeon(R) Gold 5122 CPU @ 3.60GHz with 20 concurrent

threads; thus, the execution times are relatively modest even

for 100K faults per variant and grow approximately linearly

with circuit size.

VI. DISCUSSION

In all the results presented in this paper, the same synthesis

engine was utilized. It is possible, if not likely, that a tool from

a different vendor could have led to different results. In a

future work, we will make use of a “dynamic pipelining”

strategy that is offered by another vendor. While this strategy

is meant for use in datapaths, we believe it would have similar

consequences to any TMR-protected logic. Furthermore, we

cannot ignore the fact that synthesis tools are proprietary and

that we do not have full access to their inner workings. It is

therefore hard to separate noise from signal in some of our

experiments. Nevertheless, for those experiments were

counterintuitive results appear, we provide supporting

arguments based on our collective experience in IC design.

In [11], the authors study the effect of synthesis on a

reliability metric termed error propagation probability (EPP in

their paper). Their results suggest that combinational logic

becomes more susceptible to errors with an increase in

synthesis effort. Here, we set the effort to high in all cases and

proceed to selectively turn optimizations on and off. This

makes a direct comparison very difficult.

 Perhaps the most important takeaway message of this study

is that the changes in circuit structure that are promoted by

retiming appear relatively tame and constrained. Since

simulation-based fault injection can target gates individually

and precisely, it becomes possible to analyze the effects in a

decoupled fashion. This same analysis would be order of

TABLE VI
EXECUTION TIMES FOR FAULT INJECTION CAMPAIGNS

Circuit Time (s) Circuit Time (s)

ALU (no opt) 671 FPU (no opt) 5555

ALU (opt_cg) 676 FPU (opt_cg) 5498

ALU (opt_ung) 670 FPU (opt_ung) 5495

ALU (opt_dpa) 669 FPU (opt_dpa) 4118

ALU (opt_bubp) 663 FPU (opt_bubp) 5551

ALU (opt_maxt) 668 FPU (opt_maxt) 5495

ALU (opt_retd) 677 FPU (opt_retd) 5407

ALU (opt_reta) 679 FPU (opt_reta) 5507

Fig. 7. Number of unique fault sites for variants of the MM v8 circuit

(primary vertical axis). Unique fault sites per instance, normalized by the

baseline (secondary vertical axis). Each variant was injected with 100K

faults targeting combinational logic only.

61

276

338
356

322

349

1 6.15 5.78 6.14 5.52 6.09
0

1

2

3

4

5

6

7

0

50

100

150

200

250

300

350

400

baseline opt_bubp opt_retd opt_reta opt_bubp
+

opt_retd

opt_bubp
+

opt_reta

U
n

iq
u

e
 f

au
lt

 s
it

e
s

p
e

r
in

st
an

ce
 (

n
o

rm
al

iz
e

d
)

U
n

iq
u

e
 f

au
lt

 s
it

e
s

Unique fault sites Normalized

magnitudes harder in a neutron campaign. For instance,

among the MM v8 circuit variants shown in Fig. 7, the error

rate differs by a tenth of a percent. This is due to the fact that

only 3-4% of the gates in the circuit get to become unique

fault sites. Once again, this result would be relatively hard to

show with accelerated particle testing where individual gates

cannot be easily targeted at will.

It is worth noting that we cannot apply the FoM to

compare/validate simulation to test data. This is because the

circuits are implemented with different architectures and the

FoM does not consider masking. Nevertheless, by looking at

data in Table II w.r.t. Table III and IV, we can see that there is

little agreement and the number of observed events might be

too low to draw meaningful simulation to test data

comparisons.

VII. CONCLUSION

Designing ICs is a challenging task, where engineers are

asked to explore a vast optimization surface in order to reach

the best trade-offs for area, power, and timing. When we

consider reliability as part of this optimization problem,

designers are now asked to further explore different strategies

for architecture, redundancy schemes, and implementation

options. In this paper, we have shown different approaches to

account for each strategy. A thorough simulation-based fault

injection campaign enabled us to compare different strategies

in a matter of a few hours (see Table VI), a comparison that is

not trivial to perform even in an accelerated test environment.

While TMR-based schemes are highly effective and are often

employed, we have shown that it is necessary to make sure

that the redundancy strategy is not disturbed during synthesis

runs. We have shown that retiming strategies can effectively

increase the number of unique fault sites by as many as 6

times.

ACKNOWLEDGEMENTS

This work was supported in part by DARPA contract HR0011-16-C-

0038 – Circuit Realization at Faster Timescales (CRAFT). This work

was also supported in part by the EC through the European Social

Fund in the context of the project “ICT programme” and by the

European Union's Horizon 2020 research and innovation programme

under the Marie Sklodowska-Curie grant agreement No 886202. The

authors would also like to acknowledge LANSCE for the valuable

beam time.

REFERENCES

[1] P. E. Dodd and L. W. Massengill, "Basic mechanisms and modeling

of single-event upset in digital microelectronics," in IEEE Trans. on

Nuclear Science, vol. 50, no. 3, pp. 583-602, June 2003.
[2] R. C. Baumann, "Radiation-induced soft errors in advanced

semiconductor technologies," in IEEE Trans. on Device and

Materials Reliability, vol. 5, no. 3, pp. 305-316, Sept. 2005.
[3] Quming Zhou and K. Mohanram, "Gate sizing to radiation harden

combinational logic," in IEEE Trans. on Computer-Aided Design of

Integrated Circuits and Systems, vol. 25, no. 1, pp. 155-166, Jan.
2006.

[4] D. B. Limbrick, N. N. Mahatme, W. H. Robinson and B. L. Bhuva,

"Reliability-Aware Synthesis of Combinational Logic With Minimal
Performance Penalty," in IEEE Trans. on Nuclear Science, vol. 60,

no. 4, pp. 2776-2781, Aug. 2013.

[5] A. Balasubramanian, B. L. Bhuva, J. D. Black and L. W. Massengill,
"RHBD techniques for mitigating effects of single-event hits using

guard-gates," in IEEE Trans. on Nuclear Science, vol. 52, no. 6, pp.
2531-2535, Dec. 2005.

[6] P. K. Samudrala, J. Ramos and S. Katkoori, "Selective triple Modular

redundancy (STMR) based single-event upset (SEU) tolerant
synthesis for FPGAs," in IEEE Transactions on Nuclear Science, vol.

51, no. 5, pp. 2957-2969, Oct. 2004.

[7] R. C. Lacoe, "Improving Integrated Circuit Performance Through the
Application of Hardness-by-Design Methodology," in IEEE

Transactions on Nuclear Science, vol. 55, no. 4, pp. 1903-1925, Aug.

2008, doi: 10.1109/TNS.2008.2000480.
[8] S. N. Pagliarini et al. "Exploring the feasibility of selective hardening

for combinational logic," in Microelectronics Reliability, vol. 52, no

9-10, pp. 1843-1847, 2012.
[9] T. Calin, M. Nicolaidis, R. Velazco, "Upset Hardened Memory

Design for Submicron CMOS Technology," in IEEE Trans. Nucl.

Science, Vol. 43, No. 6, pp. 2874-2878, December 1996.
[10] M. Portolan and R. Leveugle, "A highly flexible hardened RTL

processor core based on LEON2," in IEEE Transactions on Nuclear

Science, vol. 53, no. 4, pp. 2069-2075, 2006.
[11] D. B. Limbrick, S. Yue, W. H. Robinson and B. L. Bhuva, "Impact of

Synthesis Constraints on Error Propagation Probability of Digital

Circuits," 2011 IEEE International Symposium on Defect and Fault
Tolerance in VLSI and Nanotechnology Systems, Vancouver, BC,

2011, pp. 103-111.

[12] D. Shin and S. K. Gupta, "Approximate logic synthesis for error
tolerant applications," 2010 Design, Automation & Test in Europe

Conference & Exhibition (DATE 2010), Dresden, Germany, 2010,
pp. 957-960, doi: 10.1109/DATE.2010.5456913.

[13] I. A. C. Gomes, et al. "Exploring the use of approximate TMR to

mask transient faults in logic with low area overhead,"
in Microelectronics Reliability, vol. 55, no. 9-10, pp. 2072-2076,

2015.

[14] I. Albandes, et al. "Building ATMR circuits using approximate
library and heuristic approaches," in Microelectronics

Reliability, vol. 97, pp. 24-30, 2019.

[15] L. Entrena et al., "Constrained Placement Methodology for Reducing
SER Under Single-Event-Induced Charge Sharing Effects," in IEEE

Trans. on Nuclear Science, vol. 59, no. 4, pp. 811-817, Aug. 2012.

[16] S. N. Pagliarini and D. Pradhan, "A placement strategy for reducing

the effects of multiple faults in digital circuits," 2014 IEEE 20th

International On-Line Testing Symposium (IOLTS), Platja d'Aro,

Girona, 2014, pp. 69-74, doi: 10.1109/IOLTS.2014.6873674.
[17] M. I. Bandan, S. Pagliarini, J. Mathew and D. Pradhan, "Improved

Multiple Faults-Aware Placement Strategy: Reducing the Overheads

and Error Rates in Digital Circuits," in IEEE Transactions on
Reliability, vol. 66, no. 1, pp. 233-244, March 2017, doi:

10.1109/TR.2016.2643010.

[18] Xilinx, “Vivado High-Level Synthesis”. [Online] Available:
https://www.xilinx.com/products/design-tools/vivado/integration/esl-

design.html

[19] L. A. C. Benites and F. L. Kastensmidt, "Automated design flow for
applying triple modular redundancy (TMR) in complex digital

circuits," IEEE 19th Latin-American Test Symposium (LATS 2018),

March 2018.
[20] S. Pagliarini, M. Martins and L. Pileggi, "Virtual characterization for

exhaustive DFM evaluation of logic cell libraries," 2017 18th

International Symposium on Quality Electronic Design (ISQED),
Santa Clara, CA, 2017, pp. 93-98, doi:

10.1109/ISQED.2017.7918299.

[21] R. Usselmann, “AES (Rijndael) IP Core”. [Online] Available:
https://opencores.org/project,aes_core. Accessed on: Dec. 5, 2020.

[22] T. Zhu, "PID controller". [Online] Available:

https://opencores.org/projects/pid_controller. Accessed on: Dec. 5,
2020.

[23] R. Usselmann, "Floating Point Unit". [Online] Available:

https://opencores.org/projects/fpu. Accessed on: Dec. 5, 2020.

https://opencores.org/project,aes_core
https://opencores.org/projects/pid_controller
https://opencores.org/projects/fpu

