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Abstract—In this paper, authors explore radiation hardening 

techniques through the design of a test chip implemented in 16 

nm FinFET technology, along with architectural and redundancy 

design space exploration of its modules. Nine variants of matrix 

multiplication were taped-out and irradiated with neutrons. The 

results obtained from the neutron campaign revealed that the 

radiation hardened variants present superior resiliency when 

either local or global TMR schemes are employed. Furthermore, 

simulation-based fault injection was utilized to validate the 

measurements and to explore the effects of different 

implementation strategies on failure rates. We further show that 

the interplay between these different implementation strategies is 

not trivial to capture and that synthesis optimizations can 

effectively break assumptions about the effectiveness of 

redundancy schemes. 

I. INTRODUCTION 

NTEGRATED circuits (ICs) are prone to faults due to an 

extensive array of adverse environmental elements. 

Amongst those elements, highly energetic particles are of 

particular interest since their interaction with silicon is 

effectively capable of inducing faults in both memory and 

logic resources of an IC. The physics behind the phenomena is 

well studied, both at transistor [1] and circuit-level [2]. When 

combinational elements of a circuit are hit, transient and short-

lived perturbations are created. If perturbations reach a 

primary output of a circuit – often by being latched by a flip-

flop along the way – then the perturbation becomes an error. 

Sequential elements of a circuit are also threatened by the 

same particles. These elements can be directly affected as the 

information they carry is flipped from 0-to-1 (or vice versa) 

and remains corrupted until the element is overwritten with 

new information, which is called a single-event upset. 

There are numerous approaches to harden an integrated 

circuit against radiation-induced errors, each having different 

overheads and relative efficiency. Some strategies apply to 

both sequential and combinational cells, while others are 

targeted at one or the other. Radiation hardening by design is 

often employed since it does not rely on any foundry-level 

process options. Instead, the design is modified to leverage 

logical, electrical, and temporal masking. Mitigation strategies 

include cell upsizing [3][4], reliability-aware cell replacement 

[4], guard-gates [5], triple modular redundancy (TMR) [6], 

and many others [7]. 

For a given target circuit, designers can calculate how likely 

a fault is to become an error. Mitigation techniques are then 

utilized to bring this number down to acceptable levels, 

whichever level might be suited/recommended for the 

application domain being targeted. Mitigation techniques can 

be applied at different abstraction levels and stages of the 

design flow. In this paper, we study mitigation strategies that 

fall into three distinct categories: architectural, redundancy, 

and implementation. On the architectural side, we explore how 

the error rates of a matrix multiplication (MM) circuit change 

when parallelism and pipelining are employed. For 

redundancy, we consider different granularity levels of TMR, 

namely global and local. A test-chip was fabricated in a 16nm 

FinFET technology in order to investigate the effectiveness of 

architectural and redundancy strategies. Seven optimization 

options available in a commercial logic synthesis tool are 

considered during the implementation of the studied circuits. 

The optimization options are evaluated applying fault injection 

by simulation. 

When an IC is being designed, the circuit description goes 

through a series of transformations, some of which can have a 

significant impact on the error rate of the circuit being 

implemented. At the start of this transformation chain, we 

often employ logic synthesis to translate an RTL description 

of the circuit into a netlist. Further, the netlist goes through 

physical synthesis, in which steps such as placement, routing, 

clock tree synthesis, timing optimization, and signoff are 

performed.  

Several hardening approaches can be employed by 

analyzing and modifying the generated netlist that is the 

output of logic synthesis. Examples are cell replacement [4], 

cell sizing [8], use of a hardened standard-cell library, and use 

of the dual interlock cell (DICE) technique [8]. The design 

description can also be modified to incorporate a TMR 

strategy, parity bits, and error detection and correction 

(EDAC) blocks [10]. Combinations of the aforementioned 

techniques are also possible.  

However, strategies that modify or evaluate the actual 

synthesis behavior [11] are less frequently seen. There are 

approximate logic synthesis techniques available [12][13][14], 
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where the area penalty of a TMR scheme is reduced 

considerably through the logic simplification of the redundant 

blocks while making (some) input vectors unprotected. These 

approximations are a good fit for error-tolerant circuits, such 

as video/image processing circuits.  

In physical synthesis, the placement step is highly relevant 

for hardening as the cells’ spatial location affects masking. For 

instance, in [15], a careful analysis of the effect of placement 

with respect to multiple faults was performed. A placement 

engine that is fault-aware is proposed in [16], albeit presenting 

heavy overheads. An improved version is presented in [17]. 

In this paper, however, we focus on the effects of logic 

synthesis by studying how optimization decisions influence 

the error rate, i.e., how implementation strategies promote (or 

impede) fault propagation, often in non-obvious ways. 

Neutron testing was performed at the Los Alamos Neutron 

Science Center (LANSCE) facility with the intent to 

investigate architectural and redundancy strategies. All the 

mitigations implemented at architectural, logical redundancy, 

and synthesis levels were evaluated by simulation-based fault 

injection in order to explore design space trade-offs.  

This paper is organized as follows: in Section II, we present 

the test chip specification and architectures that were 

implemented in silicon. In Section III, we discuss 

implementation strategies and their trade-offs. Our results are 

given in Section IV and Section V. A discussion follows on 

Section VI. Finally, our conclusions are drawn in Section VII. 

II. TEST-CHIP SPECIFICATION AND 

ARCHITECTURAL/REDUNDANCY STRATEGIES 

In this section, we present the specifications of the test chip 

and the architectural choices to allow multiple 

implementations to be tested. 

A. Test Chip Specification 

An IC was designed to perform matrix multiplication using 

three different architectures and three different strategies for 

redundancy. Therefore, nine unique modules were 

implemented. The circuits were described in Verilog language 

and synthesized using Cadence Genus and Innovus tools 

following a typical standard cell-based flow.  

The nine MM variants were all taped out in the same 16nm 

FinFET die. A serialized interface is utilized to control which 

MM variant is currently active. Output signals of the modules 

are multiplexed to keep the pin count reasonably under 

control. A 175MHz clock is generated externally and 

delivered to the chip via a dedicated pin.  

Input signals (operands of the multiplication) are common 

for all MM modules and come from embedded memories. Six 

ROMs were utilized for this purpose, three for operand A and 

three for operand B of the matrix multiplication M = A x B. 

Each ROM has 64 addresses of 8 bits each. Pre-initialized 

ROMs were employed, so the multiplication result is known 

and easy to verify externally.  

B. Architectural and Redundancy Strategies 

On the architectural side, a designer can reason about 

pipelining strategies and parallelism for accelerating a given 

computation. These strategies generally increase throughput 

and frequency at the expense of area resources, but that is 

often a worthwhile trade-off in IC design. 

Our first case studied circuit performs matrix multiplication 

of 6x6 input matrices of 8-bit vectors. Our design space 

exploration led to three architecturally different versions that 

were generated using a High-Level Synthesis (HLS) tool from 

Xilinx [18]. HLS, also known as behavioral or algorithmic 

synthesis, is a method that has as input a high level/functional 

description of a design and compiles it into an RTL 

implementation that is later synthesized to the gate level using 

a logic synthesis tool. The high level description is often done 

in C/C++/SystemC, and the behavior is usually untimed. One 

of the main advantages of HLS is the automatic scheduling 

and loop optimizations performed. The scheduling creates a 

finite state machine and can inherently pipeline the design, 

selecting the best number of stages. The loop optimization in 

HLS checks for logic dependencies and unroll loops when 

possible, where parallelism can be increased to obtain a 

reduced latency, or parallel units can be merged to reduce 

area.  

The first MM version was generated without employing any 

HLS optimization directives and resulted in a non-pipelined 

version with a latency of 733 clock cycles (v0). Alternatively, 

two optimized versions were also generated considering 

different pipelining choices. The second version has a 21-stage 

pipeline and presents a latency of 112 clock cycles (v3). The 

third version exhibits a 7-stage pipeline that corresponds to a 

latency of 133 clock cycles per multiplication (v6).  

Each one of the three architecturally different versions was 

hardened by the use of a TMR technique. In this work, two 

variants of the TMR approach were considered according to 

the granularity level employed when generating redundant 

structures: coarse grain and fine grain. The coarse grain TMR 

(global) is the same as conventional modular TMR, where a 

module is considered as the entire design, and the modules' 

outputs are voted out. On the other hand, fine-grain TMR 

(local) replicates sub-modules instead of the whole design. 

One case is the replication of sequential cells, while the 

combinational paths remain the same. 

Moreover, a single voter is placed at the output of every 

triplicated sequential cell. For this purpose, we have utilized a 

tool previously developed in [19] to generate the TMR 

variants automatically. Table I presents a summary of the 

three architectures, each one having three variants.  

III. IMPLEMENTATION STRATEGIES AND EVALUATION 

METHODOLOGY 

In this section, we present the logic synthesis optimizations 

typically chosen to trade-off area, power and maximum 

frequency of operation. Logic synthesis is the process that 

translates an RTL description into a mapped netlist. The 

process is understandably heavily influenced by the standard 

cell library composition and design constraints [11][20]. 

However, specific optimizations enabled by the user also 

affect the final result.  

A. Logic synthesis optimizations 

In our study, we have explored a total of seven 

optimizations available in Genus, which are listed below: 



1. Clock gating (opt_cg) 

2. Ungrouping (opt_ung) 

3. Datapath analytical (opt_dpa) 

4. Bubble pushing (opt_bubp) 

5. Tighten max transition (opt_maxt) 

6. Retiming for delay (opt_retd) 

7. Retiming for area (opt_reta) 

Optimizations from 1 to 5 are enabled by different attributes 

and their settings (given in parenthesis), namely 

lp_insert_clock_gating (true), auto_ungroup (both), 

dp_analytical_opt (extreme), lbr_seq_in_out_phase_opto  

(true), and max_transition (100ps). The retiming optimizations 

are executed with the commands retime –min_delay and 

retime –min_area. 

Many of these optimizations are not enabled by default in a 

reference synthesis flow but are often employed by IC 

designers in order to optimize certain aspects of a block (or 

chip). Next, we discuss each technique briefly. 

Clock gating is typically employed for power saving 

reasons. It consists of adding logic that prevents flip-flops 

from seeing clock toggles unless a specific enable signal is 

asserted. Synthesis tools can infer enable signals automatically 

from RTL. Ungrouping, when allowed, implies that the 

synthesis engine may flatten the design hierarchy and consider 

optimizations that traverse boundaries. This optimization has 

implications for verification and impacts runtime 

considerably, but typically brings area savings. Datapath 

analytical enables aggressive datapath optimization that 

knowingly trades area for timing improvement – this type of 

specific strategy is often proprietary, and the user of the 

synthesis tool is not in control of their specific usage. When 

bubble pushing is enabled, inverters are pushed in and out of 

flip-flops by switching between the use of 𝑄/𝑄 or 𝐷/𝐷 pins. 

This technique is also called (output) inversion of sequential 

cells. Tightening max transitions forces buffering as signals 

are prevented from having slow transitions, even for paths 

where this behaviour would cause no timing violation. This 

artificial tightening helps with issues of crosstalk and to 

achieve timing closure. Retiming changes the boundaries of 

sequential and combinational logic by moving cells from one 

stage of logic to another. Retiming can be targeted for delay – 

which is the typical use case. Retiming can also target area 

savings, but never at the expense of delay, i.e., delay remains 

the primary optimization target.  

In most experiments reported later on, one and only one 

optimization is enabled at a time. When two optimizations are 

considered concurrently, we utilize a plus sign and label them 

“opt_abc + opt_xyz”. For all cases, the synthesis effort was 

kept high for fairness. 

B. Fault injection methodology:  

Next, we detail our methodology for injecting faults, which 

is the approach we have followed for: a) cross validation of 

the architectural/redundancy strategies under neutrons, and b) 

evaluating the many synthesis optimizations. We will use this 

fault injection approach and terminology on the remainder of 

this paper. 

First, we clarify that all faults are injected at gate level and 

only single faults are injected. The studied circuits are reset 

every time a computation is finished, thus preventing the 

accumulation of faults. All circuits are synthesized with (and 

only with) reset-capable flip-flops, thus guaranteeing that a 

reset flushes any lingering fault or error.  

For each injected fault, we observe the outputs of the circuit 

for the entire duration of the computation taking place, which 

may span many clock cycles. If, at any given clock cycle, any 

output differs from the expected, we say this scenario leads to 

a ‘fail’. If no output differs from the expected at the end of the 

computation, we say this scenario leads to a ‘pass’. 

Fault injection targets are random, i.e., gates are selected 

randomly. Fault injection campaigns targeting combinational 

logic and sequential logic are always executed separately for 

clarity, so in any given campaign all targets are of the same 

type. Only one fault is injected per computation and the fault 

injection time is also random. For instance, for the MM v0 

circuit, there is one fault every 733 cycles, where the injection 

can occur in a random cycle between 1 and 733. Input patterns 

for data signals are randomized (i.e., clock and reset are not 

randomized). However, for experiments that compare two 

variants of the same circuit, we guarantee that the random 

input patterns are the same for the different variants.  

IV. RESULTS FOR THE NEUTRON TEST CAMPAIGN 

The IC containing the 9 MM modules was fabricated in a 

commercial 16nm FinFET technology. The die size is 1.8mm 

x 1.8mm due to packaging restrictions – the actual MM 

circuitry takes only a fraction of the available area. Area and 

cell count for each MM variant are detailed in Table I. The 

nominal voltage of the core of the IC is 0.8V, the intermediate 

voltage is 1.8V for ESD structures and IO ring, while the 

output voltage is 3.3V. The maximum frequency of the 

slowest MM variant on the worst/worst corner is 1.26 GHz. 

This value was then adopted during timing closure for the 

entire chip. 

The fabricated chip was mounted on the PCB detailed in 

Fig. 1 and radiated with neutrons at LANSCE. The board 

utilizes an 8-bit microcontroller (seen on the left), three 

voltage regulators for 3.3V, 1.8V and 0.8V (bottom), a 

controllable oscillator that provides a 17-170 MHz clock, the 

socket where the fabricated chip sits (upper right), pin headers 

for exposing chip internals for debug, and a range of 

decoupling capacitors for power distribution. The 

microcontroller is purposefully placed 5 cm away from the 

socket to avoid being affected by radiation and cause false 

positives. The microcontroller can communicate with a host 

computer through a USB to serial cable, using the RS232 

TABLE I 
CHARACTERISTICS OF THE MATRIX MULTIPLICATION MODULES 

MM 

Version 
TMR? 

Cell 

count 
Area (um2) 

v0 No 670 253.0 

v1 Local 2054 782.2 

v2 Global 2212 880.8 

v3 No 13674 5076.4 

v4 Local 42559 15841.9 

v5 Global 44035 17170.4 

v6 No 2391 981.2 

v7 Local 7253 2956.9 

v8 Global 7717 3325.4 

 

 



standard. A simple protocol was implemented to allow the 

user to send multiply commands remotely. The 

microcontroller is also in charge of sampling the results 

generated by the chip under test. In order to check the results 

in real-time, all possible multiplication results are stored in a 

ROM-based look-up table. The chip can also be reset on 

demand (e.g., after finding an error). 

The campaign lasted for a period of seven consecutive days. 

The software running on the microcontroller kept alternating 

between MM modules, continuously monitoring the outputs 

for erroneous bits. The error count for the overall campaign is 

given in Table II.  

While the results are logical and in line with circuit size (i.e, 

v0 is the smallest version and also has the smallest number of 

errors) and redundancy strategies (i.e., no errors in TMR-

protected versions), the error count is rather too low for 

drawing meaningful cross-sections. We highlight that in the 

last 36h of beam time, our setup was modified to activate only 

the largest of the hardened versions (v5), in an attempt to see 

an error in a TMR-protected variant. Still, no errors were 

detected for this variant. We proceed to further study the 

circuits in detail through simulation-based fault injection. 

A. Validation against Fault Injection Campaign  

Our first aim was to validate that the results presented in 

Table II match with simulation-based fault injection. In order 

to perform this crosscheck, however, we first established how 

many faults have to be injected into the circuit to gain a 

reasonable insight into its reliability (i.e., how often faults 

become errors vs. how often faults are masked). For this 

purpose, we took the same MM v0 netlist that was utilized in 

the tapeout and proceeded to inject faults on it.  

 
(a) 

 

 
(b) 

 

Fig. 1.  (a) Schematic of the PCB. (b) PCB being utilized during bring-up 

tests in the lab. The same PCB was later utilized during the neutron 

campaign. 

TABLE II 

ERRORS DETECTED DURING NEUTRON CAMPAIGN 

MM 

version 

Pipeline 

stages TMR? Errors  

v0 N/A No 2 

v1 N/A Local 0 

v2 N/A Global 0 

v3 21 No 27 

v4 21 Local 0 

v5 21 Global 0 

v6 7 No 14 

v7 7 Local 0 

v8 7 Global 0 

 

 

 
(a)   

 
(b) 

Fig. 2. Fail rate trend for the MM v0 circuit. A total of 1000 faults is 
injected in order to obtain a stable trend. The dashed line represents a 

logarithmic trendline. 
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Initially, for the analysis of the MM v0 circuit, we selected 

only flip-flops as targets and executed a fault injection 

campaign according to the methodology previously described. 

In Fig. 2, we plot the fail rate trend for this campaign. When 

100 faults are accounted for in Fig. 2 (a), the fail rate does not 

appear to stabilize, meaning that it is possible we have not 

injected enough faults to see the circuit’s fail rate saturate. 

When 1K faults are accounted for in Fig. 2 (b), a noticeably 

more stable profile appears that indeed captures the circuit’s 

architectural vulnerability factor. Erring on the side of caution, 

we then performed 10K injections on each MM variant. Still, 

only sequential elements were considered as targets. The 

results are given in Table III. Not surprisingly, all TMR-

protected variants have registered no errors. 

Non-protected variants (v0, v3, and v6) have error rates 

that, at first glance, do not support the number of errors 

reported in Table II. However, it must be noted that the 

studied circuits have different sizes and architectures, and that 

the values reported in Table III ought to be derated over area 

for a fairer comparison. We later introduce a figure of merit 

(FoM) that considers this aspect and that can be used to 

compare same-architecture circuits. 

 In Table IV, we again perform fault injection, but this time 

focusing only on the combinational cells of the MM variants. 

A total of 100K faults1 were injected per circuit. As expected, 

all variants now present at least some fail scenarios. All TMR-

protected versions have output voters that are not themselves 

protected, and we made sure that voters were also targeted in 

our campaign. As a general trend, the non-protected variants 

 
1 We have performed the same trend analysis shown in Fig. 2 for 

combinational logic, but omit it from the paper. The trend stabilizes before 

10K samples. 

v0, v3, and v6 still present much higher error rates than their 

protected counterparts. 

V. RESULTS FOR THE SYNTHESIS OPTIMIZATION 

EXPLORATION 

We are also interested in analyzing how implementation 

decisions influence the resiliency of circuits. More 

specifically, in this section, we investigate how logical 

synthesis and related optimizations promote changes in the 

circuit’s structure that translate to changes in its resiliency. 

The circuits analysed include a 32-bit arithmetic logic unit 

(ALU), an AES crypto module [20], a PID industrial 

controller [22], a floating-point unit obtained from [23], and 

the MM v8 module previously utilized in our tapeout. For all 

circuits reported in this section, the technology (16nm) and 

standard cell library of choice (3rd party, commercial library) 

is the same utilized in our tapeout. Synthesis scripts also 

match, except for the optimizations that were purposefully 

turned on or off across the experiments. 

1) 32-bit Arithmetic Logic Unit 

  We synthesized a relatively small 32-bit ALU that performs 

only sum and multiplication operations. The synthesis of the 

baseline ALU – when none of the studied optimizations is 

enabled – results in a circuit with 1503 cells that occupies 

745um2 of area, burns 1.80uW of leakage power, and 2.51mW 

of dynamic power when running at 1GHz. Next, we enabled 

the studied optimizations one by one and proceeded to 

measure the number of instances, area, leakage and dynamic 

power. For the sake of comparison, clock frequency was not 

changed for each variant, even for retimed variants that could 

benefit from it. The normalized results are shown in Fig. 3, 

where no opt stands for no optimization performed. 

TABLE III 
FAULT INJECTION CAMPAIGN FOR THE MATRIX MULTIPLICATION MODULES, 

TARGETING SEQUENTIAL ELEMENTS ONLY 

MM 

version 
TMR? Pass Fail Fail rate (%) 

v0 No 4167 5833 58.33 

v1 Global 10000 0 0.00 

v2 Local 10000 0 0.00 

v3 No 8633 1367 13.67 

v4 Global 10000 0 0.00 

v5 Local 10000 0 0.00 

v6 No 4802 5198 51.98 

v7 Global 10000 0 0.00 

v8 Local 10000 0 0.00 

 

 

 
Fig. 3. Profile of the studied implementation variants for the ALU 
circuit. All values are normalized with respect to the baseline 

implementation. 
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TABLE IV 

FAULT INJECTION CAMPAIGN FOR THE MATRIX MULTIPLICATION MODULES, 
TARGETING COMBINATIONAL ELEMENTS ONLY 

MM 

version 
TMR? Pass Fail Fail rate (%) 

v0 No 75642 24358 24.35 

v1 Local 97845 2155 2.15 

v2 Global 97909 2091 2.09 

v3 No 92557 7443 7.77 

v4 Local 99809 191 0.19 

v5 Global 99812 188 0.18 

v6 No 71017 28983 28.98 

v7 Local 99086 914 0.91 

v8 Global 99837 163 0.16 

 

 



 For this specific ALU circuit, optimizations opt_cg, 

opt_ung, and opt_retd stand out. The first two clearly enable 

synthesis to generate more optimized circuits that are 

approximately 7% smaller and 3-7% more power efficient. 

Our observation is that clock gating logic brings small 

improvements because it makes use of integrated clock gating 

cells that otherwise are ignored by the synthesis. Even if 

counterintuitive, the use of clock gating integrated cells 

reduces area in this experiment. On the other hand, opt_retd 

increased all measured circuit characteristics by 26-42% (see 

data callouts in Fig. 3). One of the reasons for such increase is 

that retiming (both opt_retd and opt_reta) may, when deemed 

advantageous, clone flip-flops to reduce load on certain circuit 

nodes. For the studied circuit, it was verified that the number 

of flip-flops increases significantly, from 128 to 194, when 

opt_retd is applied. This, in turn, increases the area and power 

consumption considerably. 

We have also studied pairs of optimizations to see if the 

results would change promptly (with respect to applying one 

optimization at a time). For most pairs, surprisingly, the 

changes in circuitry were minimal and could not be discerned 

from inherent “noise” that exists in the synthesis process. The 

pair opt_cg + opt_retd, however, stands out as it always 

produced a result that is a middle point between opt_cg and 

opt_retd – it has both the increased frequency enabled by 

retiming as well as the power savings of clock gating. For this 

reason, we also consider this pair of optimizations in Fig. 3. 

 While Fig. 3 would give a designer enough information 

to pick the best design point for the studied circuit, it does not 

give away any information on the circuit reliability – or how it 

shifts from one version to another. We resorted to fault 

injection once again to analyze if the circuit variants present 

different fail rates. The result is summarized in Fig. 4, where 

we differentiate sequential from combinational logic in order 

to better understand the effects of the chosen optimizations. 

On the leftmost portion of Fig. 4, we have the baseline circuit 

for which no optimizations were enabled (no opt).  

It is important to note that the ALU circuit is an ideal 

candidate for this investigation: it is a small single cycle 

circuit with virtually no control path. This circuit was chosen 

precisely because it allows for direct correlation between any 

optimization choice and changes in reliability. Since the ALU 

circuit is so simplistic, any flip-flop injected with a fault leads 

to an error at the circuit output (i.e., there is no masking, so the 

pass bars are zeros, thus not shown). This type of circuit 

allows us to conclude that opt_retd brings changes that break 

this assumption quickly; now, masking does take place. This 

result is evidence that certain synthesis optimization 

strategies can disrupt architectural design choices. As 

previously mentioned, cloning of flip-flops takes place during 

opt_retd, which creates a scenario in which faults do not 

translate into errors since newly-created shadow flip-flops do 

not always have an active path to drive a primary output. This 

specific optimization reduces the fail rate by ~33% for the 

ALU circuit, which is explained by the fact that also ~33% of 

the flip-flops in the circuit are clones (66 out of 194). 

 Regarding combinational logic, we have observed fail rates 

in the range of 18-31%, whereas the baseline circuit displays a 

fail rate of 29.9%. The optimization with the highest pass rate 

is clock gating (opt_cg). By definition, opt_cg targets 

sequential logic. However, faults in combinational gates are 

more frequently masked since gated flip-flops cannot latch an 

error if the enable signal is not asserted at the time of the fault 

injection. 

Conversely, the optimization with the lowest pass rate is 

retiming for area (opt_reta). We conjecture that retiming for 

area promotes changes in the circuit where distinct paths have 

more cells in common with one another. The cells that are 

“shared” between distinct paths become critical nodes that 

reach primary outputs in many ways, thus reducing the 

probability that injected faults are logically masked. In 

summary, when the studied circuit is synthesized with 

opt_reta, it is more likely that errors will occur than when the 

same circuit is synthesized with opt_cg only. However, when 

we take into account that the opt_cg version is smaller (see 

Fig. 3), the relative disparity between both versions is even 

more pronounced. This degree of disparity between commonly 

employed strategies is not specific to the ALU circuit. We 

have seen similar trends for other circuits, including a PID 

industrial controller, especially for strategies that affect the 

sequential elements of the circuit. In particular, the PID 

contains similar dataflow structures that are present in the 

ALU, but the PID controller has twice more flops than s ALU 

and effectively has more control logic than datapath logic. 

Nevertheless, we suppress the results for the PID controller, as 

they are very similar: the number of flip flops changes by ~50 

TABLE V 

CHARACTERISTICS OF DIFFERENT IMPLEMENTATIONS OF THE AES CIRCUIT  

Version 
Cell 

count 
Flops 

Area 

(um2) 

no opt 10633 693 3716.30 

opt_cg 10512 693 3646.06 

opt_ung 10420 597 3533.72 

opt_dpa 10675 693 3715.58 

opt_bubp 10618 693 3662.34 

opt_maxt 10625 693 3721.96 

opt_retd 10867 814 3858.87 

opt_reta 10890 782 3813.35 

opt_bubp + opt_reta 11198 782 3855.29 

opt_cg + opt_retd 10552 698 3657.00 

 

 
Fig. 4. Pass rates for sequential logic and combinational logic of 

different implementations of the ALU circuit. 
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when opt_reta is applied, opt_cg and opt_ung also produce 

small reductions in area. 

2) AES Crypto Engine 

For the AES crypto engine, we performed a nearly identical 

experiment where we synthesized many versions of the same 

circuit for a 1GHz frequency while enabling one optimization 

at a time. The results for each of these runs are given in Table 

V, where we bold the highest recorded values for the number 

of cells, the number of flops, and area. We highlight that this 

circuit is about one order of magnitude larger than the 

previously utilized ALU. It is clear that opt_retd, here, also 

leads to the highest area overhead as it adds more than 100 

flip-flops that were not part of the original design. Conversely, 

opt_ung has the opposite effect, actually reducing the number 

of flops in the design from 693 to 597 and, consequently, the 

overall area.  

Regarding combinations of optimizations, most pairs we 

studied revealed results that were barely discernible. In theory, 

two optimizations could present a linear superposition 

property. In practice, once one optimization is performed, it 

prevents others, most likely because they affect the same 

elements in the circuit. Nevertheless, we show the results for 

the opt_cg + opt_retd combination, as well as for the 

opt_bubp + opt_reta pair. This last one, in particular, 

increases the cell count by 5.3% and the circuit area by 3.7%. 

Next, we performed a fault injection campaign utilizing the 

many variants of the AES circuit. Each variant was injected 

with 100K faults at random locations and at random times. 

The simulation testbench was carefully crafted such that faults 

are only injected when the circuit is actively computing, i.e., 

after reset and load operations already took place, but one of 

the encryption rounds is still being executed. We have also 

controlled the seed of simulation to make sure that identical 

(but randomized) input vectors are applied to all variants. The 

results of the campaign are shown in Fig. 5. Bars are utilized 

to display the combinational and sequential pass ratios. 

We have previously alluded that the effectiveness of a given 

optimization should be a function of the area overhead as well 

as a function of the fail rate. In order to account for these two 

quantities at the same time, we have developed two figures of 

merit: fails per flop and fails by area. The former is calculated 

by dividing the number of injected faults that led to fail 

scenarios by the number of flops in the design. The latter is 

calculated by diving by the circuit area instead. Both metrics 

are drawn as green lines in Fig. 5. The lower the FoM, the 

better.  

 When analyzing the results for the fails per flop FoM line 

in Fig. 5, it becomes clear that opt_retd is the better candidate 

(even if it has the third highest pass ratio at 0.601). The second 

best candidate is opt_cg, even if this optimization leads to a 

pass ratio of 0.65. Regarding the fails by area FoM, the best 

candidate is also associated with opt_retd, while the second 

best candidate is opt_bubp + opt_reta. It should be evident 

from the assessment above that the use of retiming is 

beneficial for the reliability of a circuit. However, the AES 

circuit is extremely regular, and it is conceivable that other 

circuits would not show the same trend. In order to investigate 

this hypothesis, we have performed an identical fault injection 

campaign into a single-precision floating-point unit. The 

results are shown in Fig. 6 and reveal that opt_retd is the best 

candidate when assessing fails by area. Regarding fails per 

 
Fig. 5. Pass ratio for sequential logic and combinational logic of different implementations of the AES circuit. Figures of Merit for the fail rates per flop and 

by area are drawn as green lines. 
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Fig. 6. Pass ratio for sequential and combinational logic of different 
implementations of a floating point unit. FoM for the fail rates per flop 

and by area are drawn as green lines. For clarity, optimizations with small 

changes are not shown. 
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flop, then opt_ung becomes the best candidate, while retiming 

strategies appear to be detrimental to reliability. In fact, 

opt_reta is an extreme case for this circuit. Here, the number 

of flip flops decreases by approximately 300 but every flop 

becomes more susceptible to faults: the pass rate drops from 

83% to 72%. Therefore, in practice, circuits have to be 

analyzed individually, and no one-size-fits-all recipe seems 

to exist for reliability improvement. 

3) Matrix multiplication (MM v8) 

The one question we have not answered is whether the MM 

variants that are hardened can also be broken by the synthesis 

optimizations studied in this paper. First, we clarify that we 

disable flip-flop redundancy removal that the synthesis tool 

does by default: this is crucial; otherwise, any TMR scheme is 

optimized away. Next, we have synthesized the MM variants 

while enabling different synthesis optimizations. We made use 

of the exactly same tapeout netlists as an input to the synthesis 

tool, which was asked to rework them with the selected 

optimizations now enabled. Our interest is in showing whether 

a result like the one highlighted in Fig. 4 also happens for 

MM.  

In order to do so, we have identified how many 

combinational cells, when injected with faults, are able to 

generate errors at the circuit output. We term these cells 

unique fault sites and we do not distinguish how often an 

injected fault at a site is able to turn into an error – one time is 

already sufficient. This result is shown in Fig. 7 for MM v8 

variants. We highlight that this circuit has 58 outputs and that 

there are 61 unique fault sites for the baseline version of it. 

These are all related to voter logic that is often implemented 

by one MAJ cell. On the other hand, all variants that 

implement some form of logic restructuring led to hundreds of 

unique fault sites. Therefore, most of these sites are not 

related to voter logic. A normalized result is also plotted in 

Fig. 7. First, we divided the number of unique fault sites in 

each circuit variant by its number of instances. The value 

obtained for the baseline is set as the reference; all other 

values are normalized by it. From the plot, it is possible to 

appreciate that the variants have 5-6x more unique fault sites, 

even when instance counts are taken into account during 

normalization. 

We have also performed a similar analysis for sequential 

logic. As expected, the no opt variant has zero fault sites as 

TMR works as expected. The opt_bubp variant does not 

change the number of flops of this circuit, thus the number of 

faults sites remained zero. The retiming variants, i.e., opt_retd 

and opt_reta, both led to the creation of a single fault site. In 

summary, retiming strategies can create fault scenarios in 

TMR-protected circuits that were not originally present. This 

can happen in both sequential and combinational logic. 

Finally, in Table VI, we show the required execution times 

for the fault injection campaigns for the ALU and FPU 

circuits. These campaigns were executed on an Intel(R) 

Xeon(R) Gold 5122 CPU @ 3.60GHz with 20 concurrent 

threads; thus, the execution times are relatively modest even 

for 100K faults per variant and grow approximately linearly 

with circuit size.  

VI. DISCUSSION 

In all the results presented in this paper, the same synthesis 

engine was utilized. It is possible, if not likely, that a tool from 

a different vendor could have led to different results. In a 

future work, we will make use of a “dynamic pipelining” 

strategy that is offered by another vendor. While this strategy 

is meant for use in datapaths, we believe it would have similar 

consequences to any TMR-protected logic. Furthermore, we 

cannot ignore the fact that synthesis tools are proprietary and 

that we do not have full access to their inner workings. It is 

therefore hard to separate noise from signal in some of our 

experiments. Nevertheless, for those experiments were 

counterintuitive results appear, we provide supporting 

arguments based on our collective experience in IC design.  

In [11], the authors study the effect of synthesis on a 

reliability metric termed error propagation probability (EPP in 

their paper). Their results suggest that combinational logic 

becomes more susceptible to errors with an increase in 

synthesis effort. Here, we set the effort to high in all cases and 

proceed to selectively turn optimizations on and off. This 

makes a direct comparison very difficult.  

 Perhaps the most important takeaway message of this study 

is that the changes in circuit structure that are promoted by 

retiming appear relatively tame and constrained. Since 

simulation-based fault injection can target gates individually 

and precisely, it becomes possible to analyze the effects in a 

decoupled fashion. This same analysis would be order of 

TABLE VI 
EXECUTION TIMES FOR FAULT INJECTION CAMPAIGNS 

Circuit Time (s) Circuit Time (s) 

ALU (no opt) 671 FPU (no opt) 5555 

ALU (opt_cg) 676 FPU (opt_cg) 5498 

ALU (opt_ung) 670 FPU (opt_ung) 5495 

ALU (opt_dpa) 669 FPU (opt_dpa) 4118 

ALU (opt_bubp) 663 FPU (opt_bubp) 5551 

ALU (opt_maxt) 668 FPU (opt_maxt) 5495 

ALU (opt_retd) 677 FPU (opt_retd) 5407 

ALU (opt_reta) 679 FPU (opt_reta) 5507 

 

 
Fig. 7. Number of unique fault sites for variants of the MM v8 circuit 

(primary vertical axis). Unique fault sites per instance, normalized by the 

baseline (secondary vertical axis). Each variant was injected with 100K 

faults targeting combinational logic only. 
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magnitudes harder in a neutron campaign. For instance, 

among the MM v8 circuit variants shown in Fig. 7, the error 

rate differs by a tenth of a percent. This is due to the fact that 

only 3-4% of the gates in the circuit get to become unique 

fault sites. Once again, this result would be relatively hard to 

show with accelerated particle testing where individual gates 

cannot be easily targeted at will. 

It is worth noting that we cannot apply the FoM to 

compare/validate simulation to test data. This is because the 

circuits are implemented with different architectures and the 

FoM does not consider masking. Nevertheless, by looking at 

data in Table II w.r.t. Table III and IV, we can see that there is 

little agreement and the number of observed events might be 

too low to draw meaningful simulation to test data 

comparisons. 

VII. CONCLUSION 

Designing ICs is a challenging task, where engineers are 

asked to explore a vast optimization surface in order to reach 

the best trade-offs for area, power, and timing. When we 

consider reliability as part of this optimization problem, 

designers are now asked to further explore different strategies 

for architecture, redundancy schemes, and implementation 

options. In this paper, we have shown different approaches to 

account for each strategy. A thorough simulation-based fault 

injection campaign enabled us to compare different strategies 

in a matter of a few hours (see Table VI), a comparison that is 

not trivial to perform even in an accelerated test environment. 

While TMR-based schemes are highly effective and are often 

employed, we have shown that it is necessary to make sure 

that the redundancy strategy is not disturbed during synthesis 

runs. We have shown that retiming strategies can effectively 

increase the number of unique fault sites by as many as 6 

times. 
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