
14 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Hybrid WSN-RFID cooperative positioning based on extended kalman filter / Xiong, Zhoubing; Francesco, Sottile;
CACERES DURAN, MAURICIO ANDRES; Spirito, Maurizio Aniello; Garello, Roberto. - STAMPA. - (2011), pp. 990-993.
(Intervento presentato al  convegno 2011 IEEE-APS Topical Conference on Antennas and Propagation in Wireless
Communications (APWC) tenutosi a Torino nel September 2011) [10.1109/APWC.2011.6046820].

Original

Hybrid WSN-RFID cooperative positioning based on extended kalman filter

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/APWC.2011.6046820

Terms of use:

Publisher copyright

©2011 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2498239 since: 2021-03-22T12:13:40Z

Institute of Electrical and Electronics Engineers Inc.



Hybrid WSN-RFID Cooperative Positioning
Based on Extended Kalman Filter

Z. Xiong∗, F. Sottile†, M. A. Caceres†, M. A. Spirito† and R. Garello∗

Abstract—In this paper we propose a novel hybrid
and cooperative positioning approach based on extended
Kalman filter (EKF) to localize mobile targets in indoors.
The algorithm fuses both received signal strength (RSS)
measurements performed by nodes of a wireless sensor
network (WSN) and proximity information from radio
frequency identification (RFID) devices. Simulation results
prove that the proposed cooperative approach outper-
forms the non-cooperative version of the algorithm. ∗
†

I. INTRODUCTION

Cooperative indoor localization is a research topic
that has received great attention over the last years
[1]. Many WSN-based localization approaches, for cost
reasons, are based on RSS measurements as this type of
measurement is simple to implement also in cheap de-
vices. In addition, almost all communication standards
provide a RSS indicator for each packet received by the
radio chip.

Since the indoor environment is harsh from the
radio frequency propagation point of view, the resulting
RSS-based positioning accuracy is heavily affected.
In order to improve the final performance, this paper
extends the hybrid (WSN-RFID) localization approach
presented in [2] by including the cooperative feature,
which is the main novelty of this paper. In particular,
the proposed algorithm supposes that unknown targets
cooperate among them by exchanging positioning data.
Moreover, an additional variance on WSN-based RSS
measurements performed between unknown targets is
introduced which takes into account the uncertainty
deriving from the mobile position estimates.

The reminder of this paper is organized as fol-
lows. Section II introduces both positioning scenario
and measurement models. Section III describes the
hybrid-cooperative EKF algorithm. Simulation results
are shown in section IV and, finally, section V con-
cludes the paper.

II. SCENARIO DESCRIPTION

A. Localization Environment

We refer to a realistic positioning scenario depicted
in Fig. 1 of size 50×50 m, where A = 9 fixed WSN
anchors, R = 8 fixed RFID readers and M = 4 mobile
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targets are deployed. As it can be observed, WSN
anchor nodes are placed according to a grid shape
in order to maximize both positioning accuracy and
availability, while the RFID readers are placed in each
of the four main entrances and around the center of the
environment.

The four mobile targets, which we want to localize
and track, move along different trajectories represented
by dotted lines in Fig. 1. Each mobile target is equipped
with both a WSN node and a RFID tag. On one
hand, the mobile target uses the WSN node to perform
RSS measurements with respect to its WSN neighbors,
which could be either fixed anchors or other mobile
WSN targets (note that the WSN connectivity is calcu-
lated according to the communication radius, RWSN = 30

m). On the other hand, the RFID tag attached to each
mobile target is used to know whether the target is
inside or outside the RFID readers’ interrogation area
modeled with a circle of radius RRFID = 6m.
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Figure 1. Hybrid WSN-RFID scenario.

B. Measurement Model

This section presents the adopted models for both
WSN and RFID measurements.

1) WSN Measurements Modeling: We model RSS
measurements by using the well known log-normal
shadowing path loss model [3]. In particular, this model
assumes that the received power P̃ (expressed in dBm)
is a function of the distance between the transmitter and
receiver (denoted with d) and corrupted by an additive
Gaussian noise as follows:

P̃ (d) = P0 − 10α log10 (d/d0) +Xσ. (1)

where P0 is the mean power received at the refer-
ence distance d0 (typically 1 meter), α is the path
loss exponent, which depends on the environment, and
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Xσ ∼ N
(
0,σ2

dB

)
is the noise contribution which models

the shadowing effect. In order to apply this model, the
channel model parameters (α, P0,σdB) should be known
or estimated, for instance, by performing a preliminary
experiment campaign as in [4].

2) RFID Measurements Modeling: Since RSS mea-
surements provided by RFID are not reliable for posi-
tioning purposes, we use the RFID detection informa-
tion as proximity data.

In order to integrate RFID measurements into the
localization algorithm we use the distance based model
presented in [2]. According to this model, when the
mobile target is detected by a reader, the RFID tar-
get produces a constant distance measurement d̃T =

RRFID/2 and it is assumed to be Gaussian distributed,
d̃T ∼ N

(
RRFID/2,σ

2
RFID

)
where σ2

RFID = R2
RFID/4.

III. HYBRID COOPERATIVE EKF ALGORITHM

A. Overview of EKF

Extended Kalman filter (EKF) provides an efficient
recursive solution for non-linear discrete filtering prob-
lems with low complexity [5], and it is widely used in
positioning and tracking applications.

Usually, a dynamic system can be modeled by using
the following two discrete equations:

xk = f (xk−1,mk−1) , (2)
zk = h (xk,nk) . (3)

In particular, equation (2) represents the state transition
equation, where xk and xk−1 are the state vectors at the
estimation time k and k− 1, respectively. f is the state
transition function, possibly nonlinear, and mk−1 is the
process noise at time k − 1 which is assumed to be
Gaussian distributed, mk−1 ∼ N (0,Qk−1).

Equation (3) represents the observation equation,
where zk is the measurement vector at time k and h

is the observation function which relates the measure-
ments zk with the state xk at time k. Finally, nk is the
measurement noise which is assumed to be Gaussian
distributed, nk ∼ N (0,Rk).

EKF is a kind of Bayesian filtering, which involves
two stages namely ‘prediction’ and ‘correction’. More
in detail, the EKF first draws the priori estimate, de-
noted with x̂k|k−1, and then corrects it to the posteriori
estimate, denoted with x̂k|k, by using the measure-
ments zk.

The complete EKF procedure can be expressed by
the following equations:

x̂k|k−1 = f
(
x̂k−1|k−1,mk−1

)
, (4)

Pk|k−1 = AkPk−1|k−1A
T
k +Qk−1. (5)

Kk = Pk|k−1H
T
k

(
HkPk|k−1H

T
k +Rk

)−1
, (6)

ỹk = zk − h
(
x̂k|k−1,nk

)
, (7)

x̂k|k = x̂k|k−1 +Kkỹk, (8)

Pk|k = (In −KkHk)Pk|k−1. (9)

where Ak = ∂f
∂x

∣∣
x̂k−1|k−1

is the Jacobian matrix of
the transition function f evaluated around the previous
posteriori state estimate, x̂k−1|k−1, and Hk = ∂h

∂x

∣∣
x̂k|k−1

is the Jacobian matrix of the observation function h

evaluated around the priori state estimate, x̂k|k−1.
Equations (4) and (5), are used in the prediction

phase, in which the priori state state x̂k|k−1 and the
error covariance matrix Pk|k−1 are estimated. After that,
equations from (6) to (9), are used in the correction
phase, during which the posteriori state x̂k|k and the
error covariance matrix Pk|k are updated by using the
optimal Kalman gain Kk and the innovation vector ỹk.

B. Hybrid-cooperative EKF

The design of the proposed algorithm, named hybrid-
cooperative EKF (hcEKF), can be subdivided into three
parts: state modeling, hybridization and cooperation.

1) State Modeling: Since the final positioning accu-
racy and complexity strongly depend on the modeling
of the system dynamics, a suitable state model is
important to be chosen. In this work, we applied the
PV (Position-Velocity) model [6] which is often used
in scenarios with mobility.

The PV model supposes that the target moves with
constant velocity within the interval #tk between two
consecutive time steps k and k − 1. The corresponding
state vector is composed of both position and velocity
components, xk = [pk,vk]

T , where pk = [xk, yk]

and vk = [ẋk, ẏk] are position and velocity vectors,
respectively, represented in the 2D Cartesian coordinate
system (the extension to the 3D case is straightforward).

According to the PV model, the state transition
function f is a linear function of the state:

xk = f (xk−1,mk−1) = xk−1+vk−1 ·#tk+mk−1, (10)

In this case, the process noise mk−1 models the
unknown random accelerations that affect the target
maneuvers. The acceleration components are modeled
with zero mean and variances [σ2

ẍ,σ
2
ÿ], uncorrelated

with time. Consequently, the covariance matrix Qk−1
can be expressed as:

Qk−1 =

[
#t2kI2
#tkI2

]
diag

(
σ2
ẍ,σ

2
ÿ

) [ #t2kI2
#tkI2

]T

. (11)

where I2 is a 2 × 2 identity matrix and diag(σ2
ẍ,σ

2
ÿ) is

a 2× 2 diagonal matrix.
2) Hybridization: This section presents the hybrid-

ization part which consists in fusing the measurements
from WSN and RFID. We denote with A = {1, 2, ... A},
M = {1, 2, ...M} and R = {1, 2, ... R} the sets of fixed
WSN anchors, WSN mobiles and fixed RFID readers,
respectively, deployed in the environment. Moreover,
we denote with Am

k ⊆ A, Mm
k ⊆ M and Rm

k ⊆ R the
sets of WSN anchors, WSN mobiles and RFID readers,
respectively, connected to a generic mobile node m at
time k.
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Given the mobile node m ∈ M, its hybrid observa-
tion vector can be written as:

zmk =
[
P̃Am

k
P̃Mm

k
d̃Rm

k

]T
, (12)

where P̃Am
k

and P̃Mm
k

are the sets of RSS measure-
ments performed by the mobile node m w.r.t the con-
nected WSN anchors and WSN mobile nodes, respec-
tively, while d̃Rm

k
is the set of RFID-based distances

(i.e. RFID proximity information).
The observation function related to the mobile node

m can be written as follows:

h (xm
k ) =




h
Am

k
k (xm

k )

h
Mm

k
k (xm

k )

h
Rm

k
k (xm

k )



 . (13)

where h
Am

k
k (xm

k ), hMm
k

k (xm
k ), hRm

k
k (xm

k ) are the observa-
tion functions which refer to the sets of connected WSN
anchors, WSN mobiles and RFID readers, respectively,
at time k.

Let pi
k, i ∈ Am

k , be the position coordinates of the
WSN anchor i connected to the mobile node m at time
k. The corresponding observation function related to a
generic connected WSN anchor node i is given by:

hm,i
k = P0 − 10α log10

(
dist

(
pm
k ,pi

k

)
/d0

)
+Xσ, (14)

where dist(pm
k ,pi

k) is the Euclidean distance between
the current position of the mobile node m and the
connected anchor node i, calculated as:

dist
(
pm
k ,pi

k

)
=

√
(xm

k − xi
k)

2 + (ym
k − yi

k)
2, (15)

The corresponding contribution to the global Jacobian
matrix Hm

k is obtained by partially differentiating (14)
around the priori state estimate x̂m

k|k−1:

Hm,i
k =

−10α
(
p̂m
k|k−1 − pi

k

)

ln (10) dist2
(
p̂m
k|k−1,p

i
k

) . (16)

Note that Hm,i
k is a vector row composed of two

elements which refer to the position components while
the speed components are zero because these are inde-
pendent from the measurements.

Similarly, let pj
k, j ∈Mm

k , be the position coordinates
of the WSN mobile j connected to the mobile node m at
time k. The corresponding observation function related
to a generic connected WSN mobile node j is:

hm,j
k = P0 − 10α log10

(
dist

(
pm
k ,pj

k

)
/d0

)
+Xσ, (17)

It is worth observing that pj
k is the position of a

mobile neighbor which is not perfectly known. In fact,
node m can receive the current position estimate from
node j. Therefore, similar to (16), the corresponding
contribution to Hm

k can be expressed as:

Hm,j
k =

−10α
(
p̂m
k|k−1 − p̂j

k−1|k−1

)

ln (10) dist2
(
p̂m
k|k−1, p̂

j
k−1|k−1

) . (18)

where p̂j
k−1|k−1 is the posteriori position estimate

broadcast by the node j at time k−1. Since p̂j
k−1|k−1 is

affected by error, its contribution can be compensated
by increasing the corresponding RSS uncertainty in the
Rm

k matrix as explained in the next subsection.
Finally, let pl

k, l ∈ Rm
k , be the position coordinates of

the RFID reader l connected to the mobile node m at
time k. Since the RFID-based proximity information
is translated into a distance (see section II-B2), the
corresponding observation function is given by the
Euclidean distance:

hm,l
k = dist

(
pm
k ,pl

k

)
+ nRFID, (19)

The corresponding contribution to the global Jacobian
matrix Hm

k is obtained by partially differentiating (19)
around the priori state estimate x̂m

k|k−1:

Hm,l
k =

p̂m
k|k−1 − pl

k

dist
(
p̂m
k|k−1,p

l
k

) . (20)

Note that in the above equations, the subscript k used
in pi

k and pl
k can be omitted as both WSN anchors and

RFID readers have fixed positions.
3) Cooperation: The proposed algorithm adopts a

cooperative approach. In fact, unknown mobile targets
cooperate among them in order to improve their final
position accuracy. It is worth noting from (12) that the
unknown mobile target m uses not only information
from the fixed nodes (i.e. both WSN anchors and
RFID readers whose positions are perfectly known) but
also RSS measurements from the neighboring unknown
mobile targets, P̃Mm

k
. Since the positions of the mobile

neighbors are not perfectly known, the target m uses
their position estimates sent over the air, (see (18)),
which of course are affected by their position uncer-
tainties. Therefore, in order to properly take as input
these positioning data, the target node m, apart from
the intrinsic uncertainty on the RSS measurements σ2

dB,
should take into account also additional uncertainties
due to these neighbors’ position estimates.

Let emj
d,k be the distance error between nodes m

and j deriving only from the position error of node
j, denoted with ejp,k. We assume that |emj

d,k| ≈ |ejp,k|
and emj

d,k is Gaussian distributed with zero mean and
whose variance can be upper bounded by using the state
covariance matrix Pj

k|k provided by the EKF running
on node j:

Var
(
emj
d,k

)
≈ Var

(
|ejp,k|

)
≤ tr

(
Pj

k|k

)
, (21)

where Pj
k|k is the sub matrix of Pj

k|k which refers only
to the position components.

Taking into account the distance error of the mobile
target j introduced in (18), the RSS model can be
rewritten as:

P̃mj
k = P0 − 10α log10

(
d̂mj
k + emj

d,k

d0

)
+Xσ

= P0 − 10α log10

(
d̂mj
k /d0

)
+Xσ +Xmj

σ,k , (22)

where d̂mj
k is the Euclidean distance calculated between

the current posteriori estimated positions of nodes m
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and j and Xmj
σ,k = −10α log10(1 + emj

d,k/d̂
mj
k ) is the

additional RSS noise contribution.
We denote with Xmj

σ,k = Xσ +Xmj
σ,k the new additive

noise on the RSS measurement w.r.t. the mobile node j.
The final objective is to calculate the variance of Xmj

σ,k ,
needed as input to the covariance matrix Rm

k of the ob-
servation vector. Since the variance calculation of Xmj

σ,k

is not an easy task, we use the following approximation
log10(1+x) ≈ x valid around x = 0 (i.e. for small values
of |emj

d,k/d̂
mj
k |). Consequently, Xmj

σ,k ≈ Xσ−10αemj
d,k/d̂

mj
k .

From the above approximation and assumptions, we
have that E(Xmj

σ,k ) = 0, therefore, the variance of Xmj
σ,k

can be calculated as:

σ2
Xmj

σ,k
= E(Xmj2

σ,k ) ≈ σ2
dB + 100α2Var(emj

d,k)/d̂
mj2

k

≤ σ2
dB + 100α2tr(Pj

k|k)/d̂
mj2

k . (23)

Finally, the measurement noise covariance matrix for
mobile m is given by:

Rm
k = diag( ... σ2

dB,i ...︸ ︷︷ ︸
i∈Am

k

... σ2
Xmj

σ,k
...

︸ ︷︷ ︸
j∈Mm

k

... σ2
RFID,l ...︸ ︷︷ ︸

l∈Rm
k

). (24)

The designed hcEKF procedure is reported in pseudo
code form in Alg. 1.

Algorithm 1 Hybrid-cooperative EKF (hcEKF)
1: Require: hybrid measurements from WSN and RFID{

zmk =
[
P̃Am

k
P̃Mm

k
d̃Rm

k

]T}M

m=1

, ∀k ∈ [1,K]

2: Initialization
set k = 0 and initial state

{
x̂m
0|0,P

m
0|0

}M

m=1
3: for k =1 to K do {time slot index}
4: for m =1 to M do {mobile index}
5: calculate noise covariance Rm

k using (24)
6: predict x̂m

k|k−1 and Pm
k|k−1

7: compute ỹm
k and Km

k

8: update state x̂m
k|k using (8)

9: update the covariance matrix Pm
k|k using (9)

10: communicate p̂m
k|k, and tr(Pm

k|k) to neighbors
11: end for
12: end for

IV. SIMULATION RESULTS

During simulations, we used the log-normal model
parameters extrapolated from a real experiment [4],
where P0 = −49 dBm, d0 = 1 m, α = 3, σdB = 6 dB.
In total we tested four different versions of the EKF
algorithm, namely hybrid-cooperative EKF (hcEKF),
cooperative EKF (cEKF) based only on WSN, hybrid
EKF (hEKF) without cooperations and a simple EKF
(EKF) based only on WSN without cooperation. The
positioning accuracy, evaluated after 100 Monte Carlo
simulation runs, is displayed in Fig. 2 in terms of
cumulative distribution functions of the localization
error.

As it can be observed, the proposed hcEKF al-
gorithm, which includes both cooperation and RFID
hybridization, outperforms the other three ones. In
addition, we can observe that the cEKF is slightly better

than hEKF. Thus, we can conclude that the proposed
cooperation approach based only on WSN provides an
improvement larger than the contribution provided by
the hybridization only. Finally, the RFID hybridization
algorithm (hEKF) without cooperation outperforms the
simple EKF using only WSN measurements without
cooperation, which confirms the results reported in [2].
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Figure 2. Positioning performance.

V. CONCLUSIONS AND FUTURE WORKS

This paper presented an application of the EKF to
the tracking problem in indoors. The proposed solu-
tion adopts the hybridization of measurements from
both WSN and RFID devices. Moreover, it uses the
cooperation among mobile targets to improve the final
positioning accuracy. In fact, the designed hcEKF al-
gorithm takes into account the position estimates from
mobile nodes and their uncertainties. Simulation results
show that the proposed algorithm outperforms the non
cooperative one. Future work will include the validation
of the simulation results through prototyping and real-
life testing.
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