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Abstract: Industry standards pertaining to Human-Robot Collaboration (HRC) impose strict safety
requirements to protect human operators from danger. When a robot is equipped with dangerous
tools, moves at a high speed or carries heavy loads, the current safety legislation requires the
continuous on-line monitoring of the robot’s speed and a suitable separation distance from human
workers. The present paper proposes to make a virtue out of necessity by extending the scope of
on-line monitoring to predicting failures and safe stops. This has been done by implementing a
platform, based on open access tools and technologies, to monitor the parameters of a robot during the
execution of collaborative tasks. An automatic machine learning (ML) tool on the edge of the network
can help to perform the on-line predictions of possible outages of collaborative robots, especially
as a consequence of human-robot interactions. By exploiting the on-line monitoring system , it is
possible to increase the reliability of collaborative work, by eliminating any unplanned downtimes
during execution of the tasks, by maximising trust in safe interactions and by increasing the robot’s
lifetime. The proposed framework demonstrates a data management technique in industrial robots
considered as a physical cyber-system. Using an assembly case study, the parameters of a robot have
been collected and fed to an automatic ML model in order to identify the most significant reliability
factors and to predict the necessity of safe stops of the robot. Moreover, the data acquired from the
case study have been used to monitor the manipulator’ joints; to predict cobot autonomy and to
provide predictive maintenance notifications and alerts to the end-users and vendors.

Keywords: on-line monitoring; collaborative robots; human robot collaboration; machine learning

1. Introduction

Revolution of Industry 4.0 (I4.0) introduces new tools and technologies that can be in-
tegrated with the ones that are already exploited by factories. Several of them have already
been deployed in different manufacturing sectors to improve productivity and to satisfy
the expectations of consumers expectations for customisation. One such I4.0 enabling
technology is the collaborative robot (cobot) which is widely deployed in industry [1,2].
A cobot allows the skills of a robot, such as precision and strength , to be combined with
human dexterity and problem solving abilities [3] on a human-robot collaborative (HRC)
workstation. Cobots are designed to interact with humans directly and physically within
a shared workspace [4]. HRC applications that are designed on the basis of reliability
and safety standards increase human trust in collaboration and improve the quality and
working conditions of employees. In HRC, humans and robots share the same workspace.
Cobots are specifically made to halt before any involuntary contact may harm the human
coworker can cause harm. However, frequent halts induce accelerated wear and tear of the
robot and increase the probability of mechanical failures. Furthermore, cobots should be
light weight in order to minimise their inertia and allow them to stop suddenly. Therefore,
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joints have lower strength compared to standard industrial robots. Accordingly, scheduled
maintenance is no longer an appropriate strategy as it cannot account for the number and
severity of the forced halts of a robot. Continuous monitoring of the state of health of such
robots would be preferable. During monitoring, the system generates useful knowledge
and information, such as data about the robot’s sensors and event logs, which are stored
in historic logging databases and can be recalled to perform analytics. The smart data
analytics of collected data, using machine learning techniques, offers an opportunity to
monitor the health condition of industrial robots, to predict the mobile autonomy and
to perform predictive maintenance, if necessary. The Internet of Things (IoT) is another
emerging tool that is used for I4.0: connected devices with embedded systems that are able
to interact and communicate with each other or with centralised devices. The integration
of the IoT in a decision making system could improve the performance of the human-robot
interaction . This is the reason why the industrial internet of things (IIoT) extension refers
to its industrial application, that is to interconnect industrial machines and devices, robots,
sensors and instruments that are centralised to collect, exchange and analyze data. The IIoT
offers the possibility of achieving the complete design of physical cyber-systems through
the integration of data processing technologies, intelligent software and sensors. On-line
monitoring systems, and predictive maintenance models can be built on the basis of a large
set of historical data. Several steps are involved in such a process: preprocessing of the col-
lected data; extracting features from sensor data or feeding sensor data directly to machine
learning models; training the predictive models; generating decision support models that
will be able to evaluate a new data sent to the system; deploying developed models and
integrating them with the system. The on-line visualisation of the health status of a robot
and alerts about predicted failures will improve the human robot interaction. However,
the applications of such models can go far beyond HRC. The concepts of machine learning
(ML) tools used for predictive maintenance applications utilizing data available data on
the internet have been discussed in recent studies, such as in [5], and a condition-based
monitoring system, using ML tools, has been successfully deployed for a smart railway
applications [6].

Hence, this paper has focused on developing a framework using I4.0 enabling tech-
nologies to improve reliability and safety in HRC applications. The proposed framework
allows a cobot’s condition to be monitored continuously during HRC. The monitoring
deploys IoT connectivity, a data acquisition system, physical cyber-systems and ML tools to
perform analytics. The paper is divided as follows: the relevant equipment parametersare
first identified, and a description of the data acquisition framework is then given, an appli-
cation to an assembly case study in which all the necessary data are collected is presented,
and finally the analysis results of the considered case study are presented and discussed.

2. Research Hypothesis

In order to determine the relevant parameters that have to be monitored, it is worth
analysing the most common industrial cobot applications at present in use. TTraditional
robotic applications in fact exclude the access of humans to the work area and therefore
limit the range of applications to production processes [7]. On the other hand, as cobots are
designed to work with humans in the same shared workspace, several new applications
are emerging [8].

The general requirements for collaborative robot system applications, based on ISO
10218-1:2011 [9] and ISO 10218-2:2011 [10] are described in ISO 15066:2016 Robots and
robotic devices—Collaborative robots [11].

According to the ISO technical specifications, reliable safety, control and monitoring is
whenever HRC processes involve heavy loads, high speeds, forces or temperatures, in a
hazardous environment.

The different papers published over the last decade related to human-robot applica-
tions in the assembly, handling and welding domains as taken from the Scopus database,
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are listed in Figure 1. Following keywords are utilized: human robot together with collabo-
ration assembly, welding and/or handling on the search engine of the Scopus database [12].

Figure 1. Recent publications of human-robot collaborative (HRC) applications in the three aforementioned domains.

Despite not claiming to be exhaustive, the chart clearly shows that most HRC applica-
tions are deployed in assembly fields [13]. Handling and process production is the second
most important field that deploys collaborative robots, followed at a distance by welding.
Welding applications are more complex, as they require more physical parameters in order
to be precise, accurate and monitored. Table 1 offers an overview of the more studied
industrial applications of cobots.

The table also shows issues that could occur in HRC applications and identifies
important measuring parameters to build more reliable collaborative applications.

2.1. HRC Assembly

Human robot collaborative assembly is the action of joining two or more compo-
nents together. Numerous HRC applications are already present in industry, and new
solutions are continuously being proposed. Some HRC applications, with parameters
being measured during collaboration in different fields, are reported in Table 1. The table
also highlights the corresponding parameters necessary to monitor certain tasks. In HRC
assembly, a cobot and a human can help each other during the execution of tasks. The
monitoring of the physical, state, and process parameters of a cobot plays an important role
in obtaining safer and more reliable collaboration. The authors of research papers [14,15]
discussed the implementation of HRC assembly in manufacturing, and proposed industrial-
like solutions. The importance of such parameters and variables as the load, end-effector
force/torque, payload, robot and temperature of the robot and joints and robot speed were
identified and classified in these researches according to the tasks of the cobots in the HRC
assembly. The measurment of the performance , monitoring and prediction of the above
mentioned parameters are employed in the computation of the key performance indicators
(KPI)s of cobots [16–18].

2.2. HRC Handling

Handling is another widely used process in industry, for example in food manufactur-
ing and logistics material handling. Handling involves different processes,such as grasping,
packaging, glueing, palletising, surface polishing, and so forth. Cobots are used in collabo-
rative handling applications are used for such processes as picking and placing, product
testing, assembly, loading/unloading, injection and moulding as supportive devices to in-
crease the safety of human operators and to reduce repetitive strain and accidental injuries.
For example, the integration of cobots in a plastic polymer production line that produces
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noxious gases protects the employees in the production line from toxic gases and sharp
profiles. In such processes, the physical parameters of the cobots such as the accuracy of
the end-effector and the temperature ranges of the robot are monitored to provide safer
collaboration [19,20].

2.3. HRC Welding

Welding is another widely used process in industry. In this direction, walk through
programming has been proposed [21] for welding robots. Vision system interaction [22]
in welding and augmented reality-based approaches have also been proposed [23]. Most
of the proposed approaches implement cobots as assistant devices. As a result of the
complexity and uncertainty of the welding process, effective practical applications, using
collaborative robots, are still limited. Welding robots are currently programmed by means
of lead-through or offline. Intelligent technologies, such as vision sensing, automatic
programming, guiding and tracking, and real-time monitoring of the welding process ,
were adopted in [24] to cope with geometrical uncertainties in the weld trajectory. Thus,
as shown in Table 1 such parameters as end-effector force, payload, robot temperature,
joint speed, joint orientation and position are significant for the success of the welding
operation and are likely to be monitored.

Table 1. Human-robot interaction (HRC) applications.

HRC Applications Deployed Tasks Important Parameters for HRC

Assembly HRC assembly in a shared workspace [25] End-effector force;
Manual guidance collaborative assembly [14] Payload monitoring;

HRC integrated automotive assembly [15] Robot Temperature; Joint Speed;
Handling Hazardous material handling [26] End-effector force;

Aseptic bottling using AR [27] Joint position and orientation;
Collaborative surface polishing, sanding [28,29] Robot Force; Joint Speed;
Collaborative robot injection and moulding [30] Speed and separation monitoring

Welding Virtual reality HRC welding [21] Torque/force sensors; Temperatures;
HRC Welding Cell [22] Position and orientation accuracy;

Spot welding manual guidance using AR [23] Robot Temperature; Joint Speed;

3. Methods

The proposed on-line monitoring system tracks the physical conditions of the cobot
while performing HRC processes. The framework of the online monitoring system is
outlined in Figure 2. Basically, the system is composed of several integrated parts: col-
laborative robot , that communicates with gateway using real time data exchange (RTDE)
and MODBUS protocols; data acquisition , which is the gateway to cloud communication;
database server, which stores the data necessary for prediction purposes and to feed the
on-line monitoring dashboard; data preprocessing which extracts meaningful features from
the dataset and transfers them to the ML models; machine learning models, which are
exploited to predict the future behaviour of any parts subject to failure; application layer ,
which is deployed to allow the interactions with human operators under safe conditions.
Overall, the monitoring system alerts a human operator whenever a cobot displays im-
proper or erratic behaviour. The operator can access the dashboard remotely. For example,
if the temperature of one of the joints is higher than expected, the operator can access
the dashboard of the cobot to find out which working situation has led to the anomaly.
Moreover, a cobot system can be integrated with additional sensors to detect gas or ambient
pollution and then inform the human operator about the hazard. The present paper focuses
on the integration of data acquisition and machine learning in a cobot monitoring system;
networking communication and the application layer with management indicators have
already been discussed in [18,31,32].
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Figure 2. On-line monitoring framework.

3.1. Data Acquisition

The development of a data acquisition system for robots is an important part of a
monitoring system. Data collection and data storage offer the possibility of executing
deeper analyses about the connected devices and of assessing the status of the connected
devices. The data collected from robots can be either physical data or event data. The former
parameters that are measured by installed sensors, such as temperature, speed, vibrations,
force, voltage, and current. Event data refer to the working status of a robot, and to
hardware or software failures, breakdowns and so forth.

The architecture of the here presented system is composed of a collaborative robotic
manipulator (Universal Robots UR3), provided with a wireless TCP/IP connection to
a gateway, in order to access an Internet network over a range of around 100 m. The
communication with a robotic manipulator and gateway is established using RTDE that
uses TCP/IP communication on the port 30004 and robot generates output messages
on 125 Hz and Modbus TCP protocols in port 502. In the system, The RTDE protocol
acquires UR3 status data such as POWER OFF/ON, Emergency Stop, Protective Stop,
status of programme, that is, running, paused or stopped, and other parameters necessary
for monitoring [33]. In Modbus communication, the robot controller acts as a server
(Slave), gateway is client (Master) that can establish connections to the robot and send
standard Modbus requests to it. The server is available at the IP address of the robot
controller [34]. The robot Modbus communication interface can be used to communicate to
other robots, programmable logic controller (PLC)’s, Human-Machine Interface (HMI)’s or
inputs and outputs (IO) devices (when the IO device is functioning as a Modbus server).
In our system, the client sends a request to read specific registers that are available in the
internal memory of the robot, and the robot responds by providing the requested value.
The general purpose 16-bit registers present in the robot controller can contain certain
discrete variables such as the tool state, tool centre point (TCP) state, joint angle, joint
velocity, current, voltage, joint temperature. The system supports the Message Queuing
Telemetry Transport (MQTT) protocol. MQTT is Publish/Subscribe Model which consists
of three main components: publishers, subscribers, and a broker. Publishers are the
lightweight sensors and devices that connect to the broker to send their data and go back
to sleep whenever possible. Subscribers are applications or devices that are interested in a
certain topic, or sensory data, so they connect to brokers to be informed whenever new
data is received. The brokers classify sensory data in topics and send them to subscribers
interested in those topics only. A device can behave as a publisher and a subscriber at
the same time by publishing to specific topics and subscribing to others, the term MQTT
client is used to distinguish publishers/subscribers from brokers. Node-Red is a flow
based open source programming tool built upon Node.js that is used to connect hardware
devices, API’s and other online services belonging to the realm of Internet of Things (IoT).
Node-Red provides a browser-based flow editor which can be used to create JavaScript
functions in the form of interconnected blocks that together construct a flow. One of the
biggest advantages of Node-Red is its ability to run at the edge of the network in the cloud
and locally on a standard personal computer (PC). In the proposed framework Node-Red
is ran on the standard PC and the editor is accessible via any web browser on the local
network. The Node-Red dashboard is an add on module of Node-Red that is used to create
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and present on-line data graphical user interface(UI) on a web browser. The dashboard
package allows the addition of many UI components such as buttons, sliders, leds and
gauges. After representing all communication tools and protocols, data acquisition and
transmission occur as follows: the robotic arm is connected to the PC(gateway) with
RTDE and MODBUS protocols over Wi-Fi. On the PC, there are Node-Red nodes that
read and transmit all necessary data to the server using MQTT broker. On the same PC,
the Node-Red Dashboard Nodes offers the data in a graphical user interface accessible
through a web browser in a real-time manner. Node-red dashboard allows the data to
be presented in various forms such as charts, text fields and gauges, commands are also
triggered from the GUI using sliders, switches, text fields and buttons. Additional details
about communication protocols and KPI computations of the cobot on the dashboard are
given in the aforementioned papers [18,31].

3.2. Data Preprocessing

The preprocessing of data helps enhanc the quality of the data and to extract meaning-
ful insights. The data acquired from machines are normally fuzzy, biased and noisy. The
preprocessing of raw data can improve the efficiency and accuracy of the ML workflows.
This is why data cleaning, data integration, and feature transformation and selection are
required before data can be used.

Data cleaning involves such operations as improving bad data, reducing the unnec-
essary elements of data, and filtering out some incorrect data that do not belong to the
data set. The authors of [35] proposed different techniques such as the classic maximum
likelihood procedures, like Expectation-Maximization or Multiple-Imputation for the treat-
ment of missing and noisy data. Other authors proposed advanced ensemble missing data
techniques (MDTs) [36] to improve prediction model and authors of [37] evaluate four
MDTs techniques: listwise deletion(LD), mean imputation(MI), similar response pattern
imputation(SRPI) and full information maximum likelihood(FMIL). The majority of au-
thors agree to suggest using FMIL if there is enough data to afford; MI and SRPI when there
is a scarcity of data. Not to use LD if data is suspect missing completely at random(MCAR).

Feature scaling which is also known as data standardisation, is another pre-processing
step. It refers to the standardisation of the range of features in a data set, which means
adjusting the values of numerical columns measured on different scales to a formal common
scale, without changing the ranges of the values or losing information. Data normalisation
means re-scaling the dimensions of data and avoiding over-weighting values. It helps
to improve the overall quality of a data set [38]. Scaling intervals of [0,1] and [−1, 1] are
normally used, as shown in Equations (1) and (2)

[0, 1]interval =
actualValue − min(allValues)

max(allValues)− min(allvalues)))
(1)

[−1, 1]interval =
actualValue − (max(allValues) + min(allValues))/2

(max(allValues)− min(allvalues))/2
. (2)

Feature selection considers data composed of irrelevant and/or redundant features
that could influence the performance of the trading activity to a great extent. Different
feature selection such as multicollinearity, correlation coefficients and Variance Inflation
Factors (VIF ) are proposed by authors [39,40] to improve performance of the ML model
outputs. According to the authors [39] the most commonly used techniques for numerical
input and output models are correlation coefficients, such as Pearson’s for a linear correla-
tion, or rank-based methods for a nonlinear correlation. For data with numerical input and
categorical output, the most common used techniques are correlation based multicollinear-
ity coefficients and ANOVA correlation coefficients. The techniques adopted in the present
framework are correlation coefficients if data coming from robot and predicting variables
is numerical.To predict categorical variables of the robot multicollinearity feature selection
technique is used. Data variables-collected from a cobot during human-robot collaborative
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applications have been evaluated using a correlation matrix and the simplest way to detect
collinearity is to look at the correlation matrix of the predictors. An element of this matrix
that is large in absolute value indicates a pair of highly correlated variables, and therefore
a collinearity problem in the data.

Data transformation is the process where format is conveniently converted from
numerical to categorical and redundant data are removed [41]. The above mentioned
data pre-processing techniques have been implemented in this study to extract significant
features from a cobot dataset . The collected features and variables have then been passed
onto the next steps of the framework.

Correlation analyses of cobot variables during HRC.
In order t o evaluate the significance relation between predictors Xp and response Y,

correlation analysis was performed. Correlation analyses provide an idea of the linearity
between paired variables. The correlation coefficients between two random variables , are
calculated for all the model variables as a parameter of the linear dependence [42]. The
sample estimate of the correlation coefficient rxy is computed for two variables, X and Y,
dataset as:

rXY =
cov(XY)

σXσY
. (3)

In Equation (3), σX and σY represent the standard deviations of X and Y.
The correlation coefficients in the correlation matrix are then presented with values in

the [−1, 1 ] interval that have the following meanings:

r =


0, means that there is no linear relationship (X and Y are linearly uncorrelated);

1, indicates a perfect positive linear relationship with X and Y varying in the same direction;
−1,indicates a perfect negative linear relationship, with X and Y varying in the opposite direction;

(4)

The correlation coefficients can be symmetrically arranged into a correlation matrix,
where each element of each column and each row variable correspond to the
correlation coefficients.

3.3. Machine Learning Models

This section describes the utilisation of ML tools to monitor the condition of a cobot.
A correlation analysis was first used to identify which variables are significant. The
most closely correlated variables of the collaborative robot were then fed to an ML tool to
perform predictive analyses.

3.3.1. Regression Model Used to Predict the Quantitative Parameters

A Multiple Linear Regression(MLR) model was used to predict quantitative parame-
ters. An MLR model predicts the linear relationship between a dependent variable and
other variables. A multiple linear regression model with p predictor variables x1 , x2, ... ,
xp and response Y , can be formulated as

Y = β0 + β1x1 + β2x2 + ...βpxp + ε, (5)

where β0, β1, ..., βp are known as model coefficients or parameters and ε is a noise term
which is a random error. Training data can be used to estimate β̂0, β̂1, ..., β̂p, and the the
coefficients being known, predictions can be made using the following equation:

ŷ = β̂0 + β̂1x1 + β̂2x2 + ... + β̂pxp, (6)

where ŷ represents a prediction of Y on the basis of X = x. In the previous equation,
the hat ˆ symbol refers to the estimated coefficients or predicted response. Values of β
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must be estimated . The least square approach is used in this model to minimise the
following equation:

RSS =
n

∑
i=1

(Yi − ŷi)
2 =

n

∑
i=1

(Yi − β̂0 − β̂1xi1 − β̂2xi2 − ... − β̂pxip)
2. (7)

The following metrics have been selected from Table 2 to evaluate regression model:

Table 2. Evaluation metrics of the linear regression model .

Metrics Description Formulation

Residual Standard Error (RSE)
The Residual Standard Error is a
measure of the quality of a linear
regression fit.

RSE =
√

1
n−2 RSS

R2

R squared is the square of the
Pearson correlation coefficient
between the labels and the pre-
dicted values. This metric ranges
from zero to one. A higher value
indicates a higher quality model.

R2 = 1 − (yi−ŷi)
2

yi−ŷ)2 =
SSreg
SStot

Adjusted R2

This measures the proportion
of variation explained by only
those independent variables that
really help to explain the de-
pendent variable.In the equation,
where R2-sample R-square; p-
Number of predictors; N-total
sample size

R̄2 = 1 − (1−R2)(N−1))
N−p−1

F-score

This makes it possible to com-
pute the variance of the depen-
dant variable, the simpler model
is not able to explain as much as
the complex model. In the equa-
tion k1 and k2 are parameters of
two models

F-statistics =
(

RSS1−RSS2
k2−k1

)

(
RSS2
n−k2

)

p-value

This is a statistical test that deter-
mines the probability of extreme
results of the statistical hypothe-
sis test, and which takes the Null
Hypothesis to be correct.

3.3.2. Automatic Classification Model to Predict Qualitative Parameters

The Automatic machine learning(AutoML) system was adopted to find the best ML
model for our framework. H2O AutoML is an open source, user-friendly machine learning
software that was designed not only for advanced machine learning users , but also for non
experts. Recent studies show that H2O AutoML [43] performs better than other competitor
tools. The authors of [44,45] assessed the robustness and efficiency of AutoML, with respect
to other automatic models such as TPOT [46] and AutoKeras [47]. These authors used
dirty, clean and noisy data sets to evaluate the robustness of the tool. Other studies, [48,49]
have shown the effectiveness of the AutoML system, with respect to other tools, like
auto-sklearn [50] and Auto-WEKA [51] using open source datasets. AutoML relies on
the efficient training of H2O machine learning algorithms to produce a large number of
models in a short time. H2O AutoML supports the supervised training of regression, binary
classification and multi-class classification models on tabular datasets. H2O AutoML is
available in Python, R, Java and Scala as well as through a web GUI.
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The base models of H2O are Generalized Linear Models (GLM), Distributed Random
Forests (DRF), XGBoost, Gradient Boosting Machines (GBM), and Deep Learning (NN).
The used hyperparameters are chosen from a predefined search space using a grid search.
H2O chooses one of the three different options. It may use just one of the base models
or their hyperparameter-optimised versions. It can also choose a Best Of Family Stacked
Ensemble model, which includes one model from each category and the last available
option is the All Models Stacked Ensemble pipeline . After training one of the above
mentioned models, AutoML uses a test dataset to evaluate the accuracy and quality of
the new model, and provides a number of evaluation metrics that indicate how good the
model performs on the test dataset. The following metrics were selected to evaluate the
regression model:

The evaluation metrics used for the classification model are shown in the Table 3.

Table 3. Evaluation metrics of the classification model.

Metrics Description of the Metrics

AUC PR
The area under the precision-recall (PR) curve. This value ranges
from zero to one, and a higher value indicates a higher-quality
model.

AUC ROC
The area under the receiver operating characteristic (ROC) curve.
This ranges from zero to one,and a higher value indicates a higher-
quality model.

Accuracy The fraction of classification predictions produced by the model
that were correct.

Log loss
The cross-entropy between the model predictions and the tar-
get values. This ranges from zero to infinity, and a lower value
indicates a higher-quality model.

RMSE

The root-mean-square error metric is a frequently used measure
of the differences between the values predicted by a model, or an
estimator,and the observed values. This metric ranges from zero
to infinity; a lower value indicates a higher quality model.

MSE
This is an estimator that measures the average of the squares of
the errors, that is, the average squared difference between the
estimated values and the actual values

Feature importance

AutoML generates tables that indicate how much each feature
impacts a specific model. The values are provided as a percentage
of each feature: the higher the percentage is, the more that feature
impacts model training.

3.4. Description of the Case Study: Monitoring Cobot Arm Joints

This section describes a case study where a cobot(UR3) performs pick and place tasks
with a human operator , considering different loads—maximum, medium and minimum.
The components of the experiment consist of a human operator, a UR3 robot and a shared
workspace as shown in Figure 3. Both the robot and the human worker can access all the
components necessary for the assembly in the workspace, such as the base, flanges, bolts
and nuts. The HRC assembly application and integrated assembly method is described
in [25]. During the case study, Physical and hardware data, such as temperature, load,
speed, power, and programmed stops, protective stops and so forth, were acquired from
the developed data acquisition framework during the case study. The robot was used
without any workpiece to indicate the minimum load. A medium load corresponds to
a 1.5 kg workpiece and a maximum load to a 3.0 kg workpiece. The monitoring system
monitored all the physical parameters and predicted the parameters of influence of the
cobots using different ML models.
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Figure 3. HRC application processes: the figure on the left demonstrates the HRC assembly pro-
cess; The figure on the right demonstrates the cobot transporting assembled components to the
target position.

3.5. Correlation Analyses

The acquired variables from the case study were correlated to identify any important
variables of the cobot during the task execution with a human. The correlation coefficient
is an important measure of the association of continuous data.

Figures 4–9 show the correlation matrix of six joints to identify the most correlated
variables of the specific joints. The correlation matrix clearly shows that the temperature
and load variables are very closely correlated for each joint. Current in joint 1, joint 2 and
joint 3 is the next most closely correlated variable with load and temperature. Voltage and
speed variables are weakly correlated with other variables. Voltage is slightly correlated
only with a robot speed between Joint 0–5 with a maximum −0.78 value in Joint 1. The joint
speed variables are not correlated with other variables and they are almost 0 in every joint,
only with voltage 0.01 in joint 1.

The most closely correlated variables in the correlation matrix were chosen for the
regression and classification models to make predictions.

Figure 4. Correlation matrix of joint 0.
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Figure 5. Correlation of joint 1.

Figure 6. Correlation of joint 2.
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Figure 7. Correlation of joint 3.

Figure 8. Correlation of joint 4.
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Figure 9. Correlation of joint 5.

Figure 10 shows a box plot of the temperature of each joint when working with
different loads. Figure 11 shows a box-plot of the power (product of current and voltage)
vs different loads. The box plots indicate that when there is a maximum load, or the end-
effector of the robot is working under a full load condition, there is a risk of the temperature
in some joints, especially Joints 2, 3, 4 and 5, of rising above 50 degrees. According to the
datasheet of the robot, the maximum temperature should not exceed 50 degrees, and this
value limits the working range of the robot.

Figure 10. Box-plot of the Load with the Temperature.
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Figure 11. Box-plot of the Load and the Power.

Figure 12 displays a box-plot of the speed vs different loads , and the plot shows that
varying the loads has no effect on the speed of the robot.

Figure 12. Box-plot of the Load with the Speed.

Correlated variables such as loads, temperature and power are passed to the ML tools
to monitor the conditions of the cobot. The monitoring system is a hybrid system, as both
quantitative data regression models (data driven) and qualitative parameters classification
models are used. All the results appear on the analytical dashboard of the robot.



Appl. Sci. 2021, 11, 1621 15 of 20

4. Results And Discussions

The results of the linear regression model, when used to predict the temperature of
the robot and when AutoML is used to forecast safety stops during collaborative work
are presented in this section. The correlation matrix and studies have shown that the
temperature of the each joint and protective stops during collaborative tasks are important
factors of the robot manipulator that can influence the reliability of collaborative work.
Figure 13 shows the results of a linear regression model used to predict the temperature
of a robot while performing human robot collaboration tasks with different loads. The
blue data on the graph are the original data and the red data are the predicted variables.
Moreover, the graph shows the critical temperature condition when the robot works with
maximum loads and normal condition when the robot performs tasks with lighter loads.

Figure 13. Temperature prediction results under different conditions.

The Table 4 shows the performance results of the linear regression model . The main
evaluation parameters of the model were the Adjusted R squared, multiple R-squared,
F-statistics and p-values. The linear model with all the data resulted in a higher error than
for the other experimental setups. The performance of the LM with all the data including
the max. medium and min data , resulted in an Adjusted R-squared equal to 0.9346 and
a multiple R-squared of 0.9529, which are sufficient to be integrated into the monitoring
system as temperature prediction models.

Table 4. Performances of the general linear model when predicting the cobot temperature.

Experimental Setups Res. Std. Err. Multiple R-Squared Adjusted R-Squared F-Statistic p-Value

UR3 with all the data 1.865 0.9529 0.9346 52.02 <1.163 × 10−10

UR3 with the Max.Load 0.1422 0.9152 0.9151 3.347 × 104 <2.2 × 10−16

UR3 with the Medium Load 0.364 0.1571 0.1569 578.3 <2.2 × 10−16

UR3 with the Min. Load 0.3832 0.3952 0.395 2027 <2.2 × 10−16
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Table 5 demonstrates the coefficients of the Linear regression model for UR3 with
all the data and important variables.It is clear , from the table, that the most influencing
variable with the greatest influence on the temperature predictive model is load.

Table 5. Performances of the linear regression model when predicting the robot temperature.

Input Variables Estimate Std. Error t Value Pr(>|t|)

Intercept 1.195 × 10+3 1.375 × 10+3 0.869 <0.396248
LOAD 1.208 × 10+1 1.041 × 10+0 11.611 8.56 × 10−10

JOINT_0 1.534 × 10+0 2.694 × 10−1 5.693 2.13 × 10−5

SPEED_ROBOT −6.107 × 10−2 1.411 × 10−2 −4.327 0.000406
TIME −7.458 × 10−7 8.761 × 10−7 −0.851 0.405837

CURRENT 5.800 × 10+1 2.902 × 10+1 1.999 0.060971
VOLTAGE 1.048 × 10−10 2.652 × 10−10 0.395 0.697487

POWER −4.051 × 10−10 2.063 × 10−10 −1.964 0.065163

H2O AutoML is used to predict safety stops during collaborative tasks. Our dataset is
trained in an H2O cluster using R, version 3.6.3. The AutoML function in H2O automates
the process of building a large number of models and finds the most suitable model for a
given dataset. AutoML includes a “leaderboard” of models that are trained in the process.
It includes a 5-fold validated model performance, and no hyperparameters were used
for our dataset. Figure 14 shows the performance of AutoML and the importance of the
ten models.

Figure 14. Performance of the AutoML algorithms.

Users can receive scores of the dataset using the leaderboard frame. Our dataset
was trained in a binary classification model, and AUC metrics was used as the main
model parameter.

The predictive model results of AutoML are shown in Table 6.
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Table 6. Results of different models used to predict safety stops using the automatic machine learning.

Model_id AUC logloss aucpr rmse mse

GBM_1_AutoML_20201030_160448 0.982 0.052 0.921 0.109 0.012
GBM_grid__1_AutoML_20201030_160448_model_3 0.979 0.055 0.913 0.112 0.012

XRT_1_AutoML_20201030_160448 0.979 0.055 0.927 0.106 0.011
DRF_1_AutoML_20201030_160448 0.979 0.059 0.927 0.105 0.011

DeepLearning_grid__2_AutoML_20201030_160448_model_1 0.913 0.107 0.766 0.150 0.022
DeepLearning_grid__1_AutoML_20201030_160448_model_1 0.907 0.141 0.749 0.152 0.023
DeepLearning_grid__3_AutoML_20201030_160448_model_1 0.904 0.120 0.754 0.151 0.023

DeepLearning_1_AutoML_20201030_160448 0.883 0.116 0.744 0.153 0.023
GLM_1_AutoML_20201030_160448 0.835 0.114 0.687 0.153 0.023

According to the table, the best performing algorithm is Gradient Boosting Machine
(GBM). The importance of the variables for the GBM model is shown in Figure 15.
According to the plot, the variables with the most influence on the GBM model are the
SPEED of the robot, and CURRENT.

Figure 15. Importance of the variables on the different models.

5. Conclusions

A platform used to monitor the health status of collaborative robots during collab-
orative tasks is presented in this paper. The case study was performed on benchmark
tasks for collaborative assembly processes. An automatic machine learning(ML) tool was
used to perform on-line monitoring and predict outages of the industrial cobots during
a human-robot collaboration process. Such an on-line monitoring system allows more
reliable human robot collaboration applications to be created, unplanned downtime dur-
ing task execution to be eliminated, and the trust of humans during interaction with a
robot and the lifetime of the robot to be maximised. The proposed framework demon-
strates data management techniques on an industrial robot that is considered as a physical
cyber-system. Using an assembly case study, the parameters of a robot were collected
and fed to an automatic ML model in order to identify the most significant reliability
factors and to predict the necessity of safety stops of the robot. According to the results, a
linear regression model was selected for certain quantitative variables such as temperature.
The classification model was used to predict the qualitative variables. The linear regression
model was found to be sufficiently good to be integrated in the monitoring system to
predict temperature. H2O, with the AutoML function, was used to predict safety stops
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during collaborative tasks and the results show that GBM appears to be the best model for
the considered dataset. Further improvement will involve the integration of other relevant
sensors in the monitoring platform to further increase the usability of the system under
variable working conditions.
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