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tasks [3]. In this regards, biometric authentication may be seen

as a two-class classification problem in which the network has

to learn how to correctly classify the enrolled user versus every

other user.

However, the downside of deep learning classification meth-

ods is that the boundaries which are learned in order to parti-

tion the feature space are highly complex and non-linear [4].

Works which addressed this specific problem [4, 5] concluded

that most of the mass of the data points gathers close to the

decision boundaries and as such this may strongly affect the

robustness of the classifier. Within the context of biometric

authentication, this may lead two similar biometric traits of a

user to be assigned to different classes, leading to an error.

To address this problem we propose a novel classification

strategy in which the feature distributions are regularized so

as to lead to simple boundaries between the classes, thereby

reducing the probability of misclassification. In particular, we

aim at designing a classifier having “non-arbitrary” bound-

aries, which can be related to a clear data model and can

eventually be tuned in order to achieve the desired perfor-

mance. In order to reach our goal, we seek a compact yet

meaningful mapping of the input biometric traits into a lower

dimensional space which we will refer to as the latent space.

Further, we constrain the latent space to be shaped in a simple

and well-behaved manner (specifically, to follow Gaussian

distributions) so that the region of the space corresponding

to the authorized user is well-separated from that containing

all the other users, i.e. we want the points to be separable

with linear boundaries. The resulting system, which we will

refer to as RegNet, employs simple threshold-based rules in

this regularized latent space in order to discriminate between

the authorized user and everyone else.

A. Related work

Several methods have been proposed to address the biomet-

ric authentication task when dealing with faces, fingerprints,

retinas and gait. In this work we will focus on faces and

fingerprints as we evaluate the performance of RegNet on these

biometric traits.

Fingerprint authentication systems were among the first

and most studied ones. Examples of non-learning based ap-

proached are [6, 7] and [8, 9] in which the matching is made

on the global and local minutiae information respectively.

Regarding deep learning based models, most of the effort has
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I. INTRODUCTION

Biometric authentication systems are becoming ubiquitous 
thanks to their undoubtful convenience as the users are authen-

ticated based on information they inherently own, avoiding the 
need to remember passwords or provide keys.

Typically first a user’s biometric traits, i.e. face, fingerprint 
or retina, are acquired through a sensor and then processed 
in such a way that discriminative features are extracted, and 
used to compute a template. This phase, which is referred 
to as “enrollment”, prepares the system to grant access only 
to the authorized user. In the subsequent phase, which is 
referred to as “verification”, the biometric trait of a user who 
requests to be granted access is given as input to the system. 
Therefore, in order to perform a decision, the stored template 
is matched with that of the fresh biometric trait through some 
appropriate distance metric. Based on the outcome of the 
matching procedure the user is authenticated or rejected.

One of the most challenging aspects of a biometric authen-

tication system is to have a negligible number of wrongly ac-

cepted users, yet providing excellent recognition performance 
by allowing the system to be invariant with respect to some 
transformations, e.g. pose and illumination.

With this work we propose to address this problem by means 
of deep neural networks. Indeed, deep learning based meth-

ods have recently shown excellent performance at learning 
complex mappings [1, 2] and addressing difficult classification



been put towards methods to extract and classify the minutiae.

As an example, in [10] a Convolutional Neural Network

(CNN) is used to extract minutiae from raw fingerprint images.

On the face authentication side, one of the earliest and most

well-known examples is the Fisherfaces method [11] which,

thanks to the introduction of a supervised approach, improved

robustness to illumination changes. More recent approaches

are based on low-dimensional representations of the faces;

examples include sparse [12] and manifold [13] represen-

tations. A huge increase in performance has been obtained

only recently with the advent of deep learning methods such

as Facenet [14], Deepface [15] and ArcFace [16] which, by

learning the features through deep CNN, are able to achieve

state-of-the-art results.

From the above works it becomes clear that learning-based

methods have mainly addressed biometric authentication as

a classification problem. To the best of our knowledge, this

is the first approach to biometric authentication in which the

paradigm is shifted from learning the classifcation boundaries

to learning the mapping to a latent space. In this regard we

mention some notable works which addressed the problem

of learning a mapping into a regularized space. Examples

include adversarial [17] and variational autoencoders [18] in

which the encoded representation is regularized to follow a

target distribution. Regarding this latter work, we highlight

that RegNet is conceptually different. In fact, as will become

clear in the following, we propose a network which directly

generates samples from the intended distribution; this is in

contrast to variational autoencoders in which the network

learns the parameters of a distribution from which the samples

are then drawn.

II. PROPOSED METHOD

The main goal of RegNet is to learn a mapping from the

distribution of the input biometric traits of authorized and

unauthorized users to some well-behaved distributions in the

latent space. More specifically, the biometric traits of the

authorized user should be mapped to a target distribution

whose mass center is far enough from that of the target

distribution of unauthorized users. In this way, since that the

latent space is well-behaved, a simple thresholding decision

rule can be employed in order to discriminate among the two

classes.

Being a biometric authentication system, RegNet operates

in two phases: enrollment and authentication. In the following

we will discuss in detail these two phases, which within

the context of deep neural networks directly translate to the

training and test phases.

A. Enrollment

In this phase the network has to learn the distribution of the

biometric traits of the authorized user (respectively unautho-

rized users) and has to generate a sample drawn from the

authorized (respectively unauthorized) target distribution. It

becomes evident that, in order to define a proper loss function,

we should minimize a suitable distance metric between the

distributions of the generated samples and the target ones.

Thus, let us first define the desired target distributions Pa

and Pu (for authorized and unauthorized users respectively) as

two multivariate Gaussian distributions over a d-dimensional

space:

Pa = N (µTa,ΣTa), Pu = N (µTu,ΣTu),

where ΣTa = σ2
Ta

Id and ΣTu = σ2
Tu

Id are defined as diag-

onal covariance matrices and µTa = µTa1
T , µTu = µTu1

T

are the mean vectors.

At this point, in order to define a suitable distance metric

let us define the output of the encoding network as z = H(x),
where z ∈ R

d is the latent mapping and x ∈ R
n is the input

biometric trait. Further, let B = {Ba=0,Ba=1} denote the set

of all possible biometric traits and a ∈ {0, 1} an indicator

variable such that a = 1 represents the authorized user and

a = 0 represents all other unauthorized users. The goal is to

learn an encoding function of the input biometric trait z =
H(x) such that z ∼ Pa if x ∈ Ba=1 and z ∼ Pu if x ∈ Ba=0,

with Pa and Pu the target distributions in the latent space.

We are now interested in computing the statistics of the

generated samples z, thus we should recall that during the

training the network is given as input a batch of biometric

traits X ∈ R
b×n with b being the batch size, thus resulting in

Z ∈ R
b×d after the encoding. Therefore, we can compute the

first and second order statistics (over a batch) of the encoded

representations Za,Zb related to authorized (µOa,ΣOa) and

unauthorized (µOu,ΣOu) input biometric traits respectively.

More specifically, we have that µ
(i)
Oa

= E[Z
(i)
a ] and Σ

(ii)
Oa

=

var(Z
(i)
a ), where (i) denotes the i-th colum and (ii) the i-th

diagonal entry.

Having defined the statistics of both target and encoded

samples distributions, we can define a suitable metric to

compare how far the distributions are from each other. More

in detail we employ the KL divergence, which for multivariate

Gaussian distributions (in case of authorized input biometric

traits) can be written as:

La =
1

2

[

log
|ΣTa|

|ΣOa|
− d+ tr(Σ−1

Ta
ΣOa) +

+ (µTa − µOa)
⊺
Σ

−1
Ta

(µTa − µOa)
]

For the case of diagonal covariance matrices we are consider-

ing can be rewritten as

La =
1

2

[

log
σ2d
Ta

∏

i
Σ

(ii)
Oa

− d+

∑

i
Σ

(ii)
Oa

σ2
Ta

+
||µTa − µOa||2

σ2
Ta

]

.

In a similar fashion we can obtain Lu by considering the

statistic’s of both target and encoded distributions in the case

of unauthorized input biometric traits.

Then, the loss function which the encoder network has to

minimize is given by L = 1
2La + 1

2Lu, which achieves its

minimum when the statistics of the two generated distributions

will match that of the target ones.

At this point we note that we are shaping the distribution of

the encoded samples by only enforcing first and second order



Encoder [18 layers ResNet ]

z

[3x3,32]x2
[3x3,32]x2

[3x3,64]x2
[3x3,64]x2

[3x3,128]x2
[3x3,128]x2

[3x3,256]x2
[3x3,256]x2

∊{0,1}
Authenticate Reject

z

Authentication

Fig. 1: RegNet architecture. The biometric traits are given as input to the encoder; the output is a sample z from either Pa or

Pu. During the authentication phase, given z a thresholding decision can be applied to determine the user’s class.

statistics. Indeed, from our experiments we have observed that

these statistics are sufficient to shape the encoded samples

distributions to closely follow the target ones. This leads us

to conjecture that the encoder output tends to a maximum

entropy distribution (Gaussian) and thus first and second order

moments are sufficient to shape the latent space as intended.

B. Authentication

Following the enrollment phase, we can use the trained

encoder to perform user authentication.

In the authentication phase the encoder network is used

to compute the latent representation of the input biometric

trait. Then, since the latent space is well-behaved, a threshold

applied on the ℓ2 norm of the latent representation can be

employed in order to output a decision. Under the assumption

of µTa < µTu and σTa = σTu, the decision step can be

formalized as follows:
{

accept if ||z||2 ≤ τ,

reject if ||z||2 > τ,

where τ is an adjustable threshold that can be varied to obtain

the desired trade-off between false acceptance rate (FAR) and

false rejection rate (FRR).

C. Architecture details

RegNet deals with image biometric data, therefore we

employ a convolutional neural network for the encoder archi-

tecture. More specifically, we use a ResNet-18 architecture

[19] made of four blocks, each of them consisting of an

increasing number of 3×3 filters, see Fig. 1. The last layer is a

fully connected layer which maps the output of the last filter to

z: the d-dimensional latent representation. For the experiments

we set d = 3 as it leads to better separation in the latent space

and thus higher performance. Furthermore, we set µTa = 0,

µTu = 40 and σTa = σTu = 1. To optimize the network we

employ Adam optimizer and use stochastic gradient descent

over mini-batches of size 100 samples.

III. EXPERIMENTAL SETTINGS AND RESULTS

A. Datasets

In biometric authentication systems it is common to assume

that the user puts him/herself in a controlled condition for the

biometric acquisition (e.g. frontal face pose). This motivates us

to consider constrained datasets, i.e. those dataset in which the

biometric traits have been acquired in constrained conditions.

For the face authentication task we employ two commonly

used datasets. The first dataset we employ is the CMU Multi-

PIE dataset [20]. It consists of samples with different poses

illumination and expressions. In total it has 750,000 samples

of 337 subjects acquired in 4 different sessions. We consider

the frontal poses of 129 subjects which are common in all

4 sessions. In total each user has 220 samples. We split the

data as 75% for training and the remaining 25% for testing.

For a single user enrollment out of 220 samples of authorized

user, 165 are used for the training and remaining are left for

testing. For unauthorized users enrollment out of 128 users, 96

users samples are used for the training and remaining 28 users

samples are left for the testing. We resize the images from

480x640x3 to 144x192x3. In total, we consider 32 candidates

for authorized user enrollment. Further to create more diverse

samples, we employ the mixup strategy as described in [21]:

positive and negative training samples are mixed through

convex combination.

The second dataset we consider is the cropped version of

extended Yale Face Database B [22]. It contains the frontal

pose of 38 subjects with varying illumination conditions with

approximately 59 samples of size 192 × 168 for every user.

For each enrollment, the dataset is split into training and test

sets for both the authorized and unauthorized users. For each

authorized user, out of the 59 images, 49 are used for training

and 10 for testing. For the case of unauthorized users, 31 users

are used for training (1829 samples) and 6 are left for testing

(354 samples). The total number of training and test samples

is 1878 and 364 respectively. Finally, by employing crops of

size 184×160, the samples are augmented by an augmentation

factor of F = 81 and F1 = 25. Further to create more diverse

samples we employ mixup strategy as explained for CMU

Multi-PIE dataset.

The fingerprint authentication experiments are performed

on Fingerprint Verification Competition (FVC 2006) DB2 [23]

dataset. The dataset is made of 150 users, each of them

containing 12 image samples acquired by an optical sensor.

The images of size 560 × 400 are resized to 202 × 149. For

each enrollment, out of the 12 images of each authorized user,

10 are used for training and the remaining ones for testing. For

the case of unauthorized users, 124 users are used for training

(1488 samples) and 25 are left for testing (300 samples). The

total number of training and test samples is 1498 and 302
respectively. The dataset is augmented to augmentation factors

of F = 289 and F1 = 25 by cropping the images down to

186 × 133 pixels. As done for the face dataset we employ

mixup [21].
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Fig. 2: Face authentication scores for authorized users (blue) and unauthorized users (red) for Yale B. (a) Histogram of ||z||2
decision statistics of RegNet; (b) Histogram of the sigmoid outputs of RegNet encoder classifier; (c) Histogram of the sigmoid

outputs of FaceNet embeddings classifier; (d) Histogram of the sigmoid outputs of ArcFace embeddings classifier; (e) Histogram

of the normalized matching distances of Fisherfaces. The plots in (b)-(c) depict a detailed view to better appreciate the leakage

effects.
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B. Results

Face authentication. In this case we compare the results

of RegNet with the RegNet encoder classifier, the Fisherfaces

approach [11], FaceNet [14] and ArcFace [16]. The RegNet

encoder classifer is a network with the same structure as the

RegNet encoder, but trained in a more classical way through

sigmoid cross-entropy loss. This network does not employ a

variational loss function, therefore it allows us to assess the

improvement obtained via the learned mapping with respect

to a conventional neural network. Regarding FaceNet and

ArcFace, since it is not possible to train it from scratch because

of the extreme data scarcity, we compute the 512-dimensional

embeddings of the input images given a pre-trained network

on the CASIA WebFace dataset [25]. Then, a classifier is

independently trained on the embeddings of each user.

As can be seen from Table I, RegNet achieves the highest

performance on all the considered metrics. It is important to

notice that the RegNet encoder classifier, while sharing the

RegNet architecture, achieves lower performance especially at

low FAR, see Fig. 5(a)-(b). This suggests that the well-defined

regions in the latent space given by the target distributions

yield a more robust classification scheme. Indeed, as can

be seen in Fig. 3(a) and 2(a), RegNet effectively separates

authorized and unauthorized users. A good separation is also

achieved by other methods, see Fig. 3(b)-(c) and 2(b)-(c);

however they fail to assign to all the unauthorized users

a correct score, yielding some “leakage” into the wrong

distribution. This behavior can indeed be more clearly noticed

in ROC comparison in Fig. 5(a)-(b). Further, it can also be

noticed that the proposed approach performs better at low FAR

values when compared to RegNet encoder classifier.

At this point it is also interesting to notice that deep learning

based methods are able to achieve higher performance when

tested on the Multi-PIE dataset. Even though this dataset



Dataset Method EER% GAR@10
−1FAR% GAR@10

−2FAR% Accuracy@EER

RegNet 0.023 100.0 100.0 99.977
RegNet enc. classifier 0.040 100.0 100.0 99.960

FaceNet 1.286 98.819 98.712 98.714
ArcFace 0.893 99.159 99.108 99.107

Face - Yale B

Fisherfaces 15.351 84.215 61.135 84.649

RegNet 0.045 100.0 100.0 99.955
RegNet enc. classifier 0.676 100.0 99.432 99.324

FaceNet 0.930 99.368 99.201 99.070
ArcFace 1.811 98.811 98.125 98.189

Face - Multi-PIE

Fisherfaces 32.620 10.002 2.800 67.379

TABLE I: Performance comparison of RegNet with respect to other biometric authentication schemes for faces.

Dataset Method EER% GAR@10
−1FAR% GAR@10

−2FAR% Accuracy@EER

RegNet 0.476 100.0 99.934 99.524

RegNet enc. classifier 0.565 100.0 99.845 99.435
Verifinger 0.758 100.0 99.796 99.361

Fingerprint FVC 2006

Hybrid approach [9] 3.200 98.182 94.854 96.799

TABLE II: Performance comparison of RegNet with respect to other biometric authentication schemes for fingerprints.
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Fig. 5: ROC comparison on overall results of 32 users for faces (a)-(b) and fingerprint (c) datasets. RegNet is compared with

the RegNet encoder classifier, FaceNet [14], ArcFace [16] and Fisherfaces [11] in (a)-(b); with RegNet encoder classifier,

VeriFinger [24] and the hybrid approach [9] in (c).

is more complex with respect to the Yale B because of

the unconstrained acquisitions, it has more samples. For this

reason, methods which can learn complex features from the

data will benefit. Conversely, traditional approaches such as

Fisherfaces by relying on properly aligned and constrained

images show a performance drop when tested on the more

complex Multi-PIE dataset.

Fingerprint authentication. For fingerprint authentication

we compare RegNet with RegNet encoder classifier, Verifinger

[24], and the hybrid approach described in [9]. As for the

equal error rate (EER), the proposed method achieves an

EER of 0.476% outperforming all the other approaches. In

terms of genuine acceptance rate (GAR) at small FAR values,

the proposed method outperforms the hybrid approach, and

improves over RegNet encoder classifier and Verifinger. As

previously observed for the case of face authentication, in Fig.

4(a) it can be seen how RegNet effectively separates authorized

and unauthorized users. However, it can also be noticed that

the distribution of authorized users spreads more with respect

to the case of the face dataset. This might be due to the

extremely small number of training samples for the authorized

user which is only 10 prior to the augmentation. In the case

of non deep learning approaches Fig. 4(c)-(d), the authorized

and unauthorized users do not have a clear scores separation.

Additionally, it can be seen that the RegNet encoder classifier

is still introducing some “leakage”. This aspect can be further

noticed in Fig. 5(c): RegNet outperforms all other methods by

achieving highest values of GAR even for low values of FAR.

The above results strongly motivate the intuition behind

RegNet: learning the mapping instead of the classification

boundaries leads to improved performance and robustness of

the classifier.

IV. CONCLUSIONS

We presented a novel strategy to address the biometric

authentication problem with deep neural networks. Instead

of learning complex boundaries, the proposed approach aims

at learning a mapping onto target distributions allowing for

simple threshold-based classification. We demonstrated that

RegNet is an effective general-purpose biometric authenti-

cation framework which can achieve low EER and good

latent space separation as demonstrated through extensive

experiments on two different biometric traits. Furthemore, the

comparison with a network sharing the same architecture as

RegNet but trained in a more standard way, allowed us to show

the superiority of the proposed architecture.
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