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We carry out high-resolution particle image velocimetry experiments to characterize
the flow field of fractal grids located at the exit section of a turbulent round jet. We
comment on the mean flow organization and on the turbulence properties of such jets
by comparing the results with those obtained with square grids, a regular grid (having
the same effective mesh length) and a jet without turbulator. We find that, different from
the case of decaying grid turbulence, a correction must be accounted for to properly
scale the turbulence intensity profiles with a length scale based on grid parameters. We
perform a low-order reconstruction of the velocity field based on the most energetic proper
orthogonal decomposition modes and we compare the flow-field structure produced in
the lee of fractal grids with a single square object and the jet without turbulator. The
typical turbulence intensity profile detailed in Cafiero et al. (Phys. Fluids, vol. 27, 2015,
115103) for jets with fractal grids is produced by the interaction of small eddies shed by the
central grid item. In the single square grid case, the turbulence is built upon the interaction
between larger structures. Conversely, the interaction of the outward spreading wake with
the external shear layer produces pairs of vortical structures, which we relate to the higher
entrainment rate featured by jets with fractal turbulators. The secondary grid iterations
have a disruptive effect on the turbulence transport, with a corresponding large correlation
between the velocity fluctuations at the jet core with those at the jet shear layer.
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1. Introduction

Free shear flows can be considered as one of the driving research topics in fluid mechanics.
Their vast application ranges from the understanding of fundamental mechanisms such as
turbulence production and decay (Dairay, Obligado & Vassilicos 2015; Zhou et al. 2018,
2019; Cafiero & Vassilicos 2019), modelling of mixing in rivers and estuaries (Stansby
2003; Cafiero & Woods 2016), application for flow control and drag reduction (Dghim,
Ferchichi & Fellouah 2018; Cannata, Cafiero & Iuso 2019) and heat transfer enhancement
(Carlomagno & Ianiro 2014; Cafiero et al. 2017), to cite some.

Regarding the last topic mentioned above, significant effort has been spent to determine
effective ways to improve the convective heat transfer capabilities of jets in the impinging
configuration. This is often quantified in terms of the Nusselt number Nu = hD/k, where
h indicates the convective heat transfer coefficient, D is a reference length scale such as
the nozzle exit diameter and k is the fluid thermal conductivity. The main fluid dynamics
parameters on which Nu depends are the Reynolds number and the turbulence intensity
level of the flow (Hoogendoorn 1977; Carlomagno & Ianiro 2014). The key is then to
modify these parameters to cater for higher convective heat transfer rates.

Some of the most significant solutions aimed at achieving this goal are acoustic
excitation (Tianshu & Sullivan 1996), application of a swirl component to the mean flow
(Huang & El-Genk 1998; Ianiro & Cardone 2012), introduction of streamwise vortex
generators (Violato et al. 2012), introduction of perforated plates between nozzle and target
plate (Hee Lee et al. 2001) or installing mesh screens within the nozzle (Zhou & Lee 2004).
A common feature amongst all the proposed solutions is that the heat transfer enhancement
is obtained by either exciting or altering the structure and organization of the turbulence
produced in the near field. Modifying the large coherent turbulent structures can provide
significant benefits in terms of heat transfer enhancement.

In a recent experimental investigation of free and impinging jets (Cafiero, Discetti &
Astarita 2015; Cafiero et al. 2016) it has been shown that the introduction of square fractal
grids (i.e. grids obtained by repeating the same initial pattern at increasingly smaller
scales) leads to a significantly higher entrainment rate compared to jets without turbulators.
This is achieved by a significant alteration of the near field of the flow. Consistent with
the higher entrainment rate, Cafiero, Discetti & Astarita (2014) and Cafiero et al. (2017)
showed that the use of fractal grids has a significant effect on the convective heat transfer
rate, especially at short nozzle-to-plate distances.

Square fractal grids have been widely investigated in the past decade for their peculiarity
in terms of turbulence production and decay (Hurst & Vassilicos 2007; Mazellier &
Vassilicos 2010; Gomes-Fernandes, Ganapathisubramani & Vassilicos 2012; Nagata et al.
2017). Given the multiscale structure of the grid, the underlying mechanism leading to
turbulence production is quite different from that typical of regular grids. In particular, the
turbulence is produced by the interaction of the wakes shed by the single grid elements,
which will meet at different downstream distances. This results in an elongated turbulence
production region (Mazellier & Vassilicos 2010). More importantly, the turbulence
production region extent depends on the grid geometry, through the wake interaction
length scale defined as x∗ = L2

0/t0, where L0 is the side of the largest grid element and
t0 is its thickness. Such scaling parameter is defined by scaling the half-width of the wake
y1/2 ∼ √

t0x following Townsend (1976). Considering the wake of the largest bars only, the
wake-interaction length scale x∗ is defined as L0 = y1/2 ∼ √

t0x∗ (Mazellier & Vassilicos
2010).

Despite the large body of research carried out on the topic, there is still a lack of a
thorough analysis of the flow-field structure and properties in the near field of a jet with
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Turbulence properties in jets with fractal grid turbulence

fractal turbulators. The previous experimental efforts were carried out at resolutions that
hindered the sampling of the underlying phenomenon occurring in the lee of the grid.
Hence, the points that we want to address in this paper are the following: Is there any
dependency of the grid thickness ratio on how the turbulence is produced, transported
and dissipated? Is it possible to design bespoke fractal grids optimizing the value of
the thickness ratio? What is the effect of adding secondary grid iterations on turbulence
production, transport and dissipation? In their work, Cafiero et al. (2014) and Cafiero
et al. (2017) showed that fractal grids can achieve significantly higher values of the
convective heat transfer rate compared with regular and single square grids. What is the
underlying mechanism leading to such enhancement? The outcomes of these questions
would provide significant insights into the mechanism connected to multiscale grids,
providing fundamental grounds to the findings of Cafiero et al. (2017) and benefiting the
community interested in grid-generated turbulence in jets.

The paper is organized as follows. We start by describing the experimental apparatus
and the particle image velocimetry (PIV) process in § 2. The mean flow properties are
then discussed in § 3.1, with a particular focus on the main terms of the one-point turbulent
kinetic energy equation in § 3.2. The flow-field structure is then analysed using a low-order
approach in § 3.3. The main conclusions are drawn in § 4.

2. Experimental set-up

Air is collected from the environment with a centrifugal blower. An inverter is used to
regulate the input shaft angular velocity. The fluid is seeded with olive oil particles (used
as tracers) generated by means of a Laskin nozzle (Raffel et al. 2007). The flow rate is
measured through a rotameter while a heat exchanger is used to reduce to a minimum
the fluid temperature variations with respect to the surrounding environment. The fluid is
conveyed through a plenum chamber (whose internal diameter and length are, respectively,
equal to 3D and 20D, D = 20 mm being the nozzle diameter) located upstream of a short
pipe nozzle which is 6.2D long. Inside the chamber two honeycombs reduce the large flow
structures that may be generated within the feeding circuit. A contoured entrance is used
to carry the air through the short pipe nozzle and a terminating cap is eventually used
to locate the grid at the nozzle exit section. The experiments are carried out in a room
where the temperature is regulated and kept constant, to ensure minimum variation of the
air properties. The Reynolds number is kept constant and equal to Re = UbD/ν = 16 000,
where Ub is the bulk velocity.

A family of fractal grids (FGs) and two single square grids (SGs) are employed for
this set of experiments and are compared with both the jet without turbulator (JWT)
and the regular grid (RG). The FG geometries are characterized by the largest grid item
length L0 and thickness t0, along with the thickness and length ratios tr = t0/tN−1 and
Lr = L0/LN−1, with N the number of iterations. Length and thickness at the jth iteration
can be obtained as Lj = L0R j

L and tj = t0R j
t , where RL (Rt) indicates the ratio between the

length (thickness) of two consecutive iterations. In the present case, all the FGs have a
number of iterations N = 3. The grid blockage ratio σ is defined as the ratio between the
obstructed area over the overall nozzle exit section area. The single square grids SG1 and
SG2 are directly derived by FG2 by removing the second and third iterations and, therefore,
have a blockage ratio which is one-third of that of the FGs. They differ by the orientation
of the holding bars: in the former case, the holding bars are directed along the diagonal of
the central grid item; in the latter, the holding bars are orthogonal to the central grid item.

915 A12-3

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
ve

rs
ity

 o
f S

ur
re

y,
 o

n 
10

 M
ar

 2
02

1 
at

 0
8:

43
:2

2,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

46

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2021.46


G. Cafiero, G. Castrillo and T. Astarita
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(a) (b)

Figure 1. (a) Fractal grid geometric parameters. (b) Schematic representation of the experimental set-up.

Grid σ L0 (mm) t0 (mm) Lr RL Rt tr x∗/D

FG1 0.32 8.77 1.23 4.00 0.5 0.4 6.25 3.13
FG2 0.32 9.00 1.00 4.00 0.5 0.5 4.00 4.05
FG3 0.32 9.18 0.82 4.00 0.5 0.6 2.77 5.10
FG4 0.32 9.31 0.69 4.00 0.5 0.7 2.04 6.23
SG1 0.11 9.00 1.00 — — — — 4.05
SG2 0.11 9.00 1.00 — — — — 4.05
RG 0.32 2.44 0.4 1 — 1 1 0.93

Table 1. Geometric details of the grids. Grids SG1 and SG2 differ by the orientation of the holding bars: in the
former case, the holding bars are directed along the diagonal of the central grid item; in the latter, the holding
bars are orthogonal to the central grid item.

All the relevant geometric parameters are summarized in table 1. A schematic
representation of a three-iteration FG is reported in figure 1(a).

A sketch of the experimental set-up is shown in figure 1(b). A Quantel Evergreen laser
for PIV applications (532 nm wavelength, 200 mJ pulse−1, <10 ns pulse duration), with
an exit beam diameter of about 5 mm, is used to illuminate the measurement domain. The
laser beam is initially enlarged by means of a bi-convex spherical lens (with −25 mm
focal length) and then adjusted by a bi-concave spherical lens (with 75 mm focal length).
A 90◦ rotation directs the laser beam towards the measurement region. Finally, a second
bi-convex spherical lens (with 300 mm focal length) and a cylindrical lens (with −50 mm
focal length) are used to obtain the laser sheet. The laser is operated in double-pulse mode,
with a time delay between the two pulses of 16 µs and acquisition frequency set to 15 Hz.

The origin of the reference frame corresponds to the centre of the round nozzle exit
section. The x axis is aligned with the jet centreline while y is perpendicular to x, in the
vertical direction. Concerning the FGs and the SGs, all the grids are analysed along both
the xy plane (whose results will be denoted by −0) and the plane rotated by 45◦ with
respect to it (whose results will be denoted by −45).

Four Andor Zyla sCMOS 5.5 Mpixels cameras are used to image an area extending
for 8D in the streamwise direction starting from the nozzle exit section and 1.5D
in the cross-stream direction symmetrically located with respect to the nozzle axis,
thus effectively covering ±0.75D. Each camera is equipped with a 100 mm Tokina
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Turbulence properties in jets with fractal grid turbulence

macro-objective operated with an aperture set to f# = 16. A spatial resolution of 60 pixels
mm−1 is obtained locating the four cameras alternately on either side of the laser sheet. A
sufficient number of overlapping pixels are considered to perform a reliable stitching of the
images captured by consecutive cameras. In order to reduce to a minimum any spurious
noise, this operation is carried out at raw image level, correlating the velocity fields from
consecutive cameras.

For each grid as well as for the JWT, 6000 instantaneous PIV realizations are acquired,
along both the 0◦ and the 45◦ directions, in order to assess the streamwise evolution
of the flow field. The number of snapshots is chosen in a way such that the margin of
error is 0.2 % and 3 % on the mean flow and standard deviation, respectively, with a 99 %
confidence interval.

A spline interpolation of the preprocessed images as well as of the velocity field is
operated as recommended by Astarita (2006, 2008). A Blackmann weighting window
is applied to the final window to tune the spatial resolution of the resulting velocity
field (Astarita 2007). The final interrogation window size is set to 24 × 24 pixels, with
75 % overlap, resulting in a vector pitch of 0.1 mm. In terms of relevant flow scales, the
pixel pitch corresponds to ≈ 7η in the worst-case scenario, where η = (ν3/ε)1/4 is the
Kolmogorov length scale, ε the turbulence dissipation and ν the air kinematic viscosity. As
worst-case scenario we consider the region of the flow where the dissipation is the highest,
i.e. immediately past the central grid item. In the case of the JWT, near the nozzle exit
section the flow is mostly laminar, so the relevant length scale is the shear layer thickness.
We estimated the shear layer thickness at x/D = 0.05, from the time-averaged vorticity
profile. We measured the distance between two consecutive zero crossings of the vorticity
profile, respectively occurring in the irrotational flow region (outside the jet core) and in
the potential core of the jet. This scale was significantly larger than η, being of the order
of 0.15D.

We performed an estimate of the error associated with the PIV process measuring the
displacement field in pixels obtained in regions where the flow is quiescent. This resulted
in a value of about 0.15 pix, which in turn corresponds to a 1.5 % error in the estimate of
the mean flow.

2.1. Comparison with previous literature
We performed a validation of the experiment by comparing the results obtained in the
JWT case with literature data. Figure 2 shows the mean and root mean square (r.m.s.)
of the streamwise velocity component measured at x/D = 0.05 in the JWT case. Data
are normalized with respect to the centreline velocity Uc. We compared our results with
those obtained by Mi, Nobes & Nathan (2001), which are taken at the same Reynolds
number (16 000) and at the same location, but with different inlet conditions, namely a
pipe nozzle and a contraction, as opposed to the short pipe nozzle employed in the present
experiments. As expected, the inlet profiles obtained with a short pipe nozzle sit between
the two reference cases. In particular, the mean velocity Ū/Uc resembles quite closely the
top hat profile obtained with the contraction inlet. Conversely, the inlet profile obtained in
the pipe case approximates a fully developed parabolic profile.

The r.m.s. of the streamwise velocity component features values close to zero within
the potential core, as in the contraction case. However, a broader shear layer can
be clearly detected following the partial flow development occurring within the short pipe
nozzle. This is also confirmed by the even wider shear layer that is obtained in the pipe
case.
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Figure 2. (a) Mean streamwise velocity and (b) r.m.s. of the streamwise velocity profiles measured at
x/D = 0.05 and normalized with respect to the centreline velocity value Uc. Data are compared with the
measurements of Mi et al. (2001) taken at the same Reynolds number (16 000) for different inlet conditions,
namely a contraction and a pipe nozzle.

3. Results and discussion

3.1. Mean flow spatial organization
We start by showing the mean flow spatial organization for all the investigated cases, with
the aim of giving a direct grasp of the effect of the thickness ratio and of the secondary
iterations on the flow field.

Figures 3–5 report the time-averaged axial velocity contour maps relative to the SGs, the
FGs and the RG, respectively. It is worth noticing that, in order to reduce the measurement
noise, their values are averaged with respect to the symmetry plane x–z.

Figure 3 shows that the effects associated with the different holding bars can only
be appreciated close to the nozzle exit section, as they affect the recirculation region
evolution, while no significant differences can be observed in the axial velocity values,
consistent with their equal blockage ratio. On the other hand, according to the higher
value of the blockage ratio σ (which is almost three times the blockage ratio of the SGs),
all the maps relative to the FGs (see figure 4) are characterized by higher velocity values
with respect to those of the SGs.

As expected, the different thickness of the grid items influences the jet evolution close to
the nozzle exit section, so that, in the 0◦ maps, a higher value of t0 corresponds to a more
extended recirculation region past the first iteration grid item. On the other hand, less fluid
moves through the secondary iteration squares. Therefore, the axial velocity distribution
shows higher uniformity for decreasing tr values as the blockage imposes on the flow a
more even distribution.

As observed in Cafiero et al. (2017) in the case of impinging circular jets equipped with
fractal turbulators, this affects the convective heat transfer rate and, more importantly,
its spatial uniformity. The authors showed that FG inserts are indeed extremely effective
in getting localized high convective heat transfer rate at short nozzle-to-plate distances.
Conversely, the use of a single SG, or the choice of a different initial pattern, is advised
when it is desirable to obtain a uniform distribution of the convective heat transfer rate.

Moving downstream, the jet loses memory of the grid geometry and no significant
difference between the investigated cases can be perceived for x/D > 7.

Figure 5 reports the time-averaged axial velocity contour maps past the RG. Since the
laser sheet is directed along one of the grid’s bars, an initial velocity defect can be detected.
As x/D increases, the axial velocity is recovered. For x/D < 2.5, the highest axial velocity
values are located at the interface between the core of the jet and the growing shear layer.
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Figure 3. Time-averaged axial velocity component contour maps relative to the SGs.

The time-averaged axial velocity profiles evaluated along the centreline for all the
analysed grids are shown in figure 6. The data for the JWT case are also plotted as
reference. Both single and fractal square grids cause a significant increase of the mean
axial velocity immediately past the grid, as a consequence of the local blockage imposed
by the grid iterations. Both the Ū/Ub profiles for the SGs attain values of about 1.5 at
x/D = 0.05 with a rapid decrease that leads to values smaller than the JWT cases from
4D and 4.65D from the nozzle exit section, respectively, for SG1 and SG2.

The length of the measurement domain is not large enough for complete jet development
past both SG1 and SG2. Therefore, the velocity profiles do not recover the behaviour of
the JWT flow field.

An increase of tr from 2.04 to 6.25 in the FGs causes an increase of the mean axial
velocity at short distances from the nozzle, because of the progressively smaller area
through the central grid item. Nevertheless, this mechanism is not monotonic, as the largest
value is attained for the FG2 case. A similar behaviour was observed for the convective
heat transfer rate (Cafiero et al. 2017).

Finally, independent of the inlet conditions, all the curves practically collapse to that of
the JWT for x/D > 7.

Figure 6 also shows that the streamwise velocity measured in the lee of both the SGs
and FGs reaches a local minimum between 0.4 < x/D < 0.5. This initial reduction of the
mean streamwise velocity could be associated with a vena contracta effect, according to
results reported by Quinn & Azad (2013) for sharp-edged-orifice round and cruciform jets.

915 A12-7

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
ve

rs
ity

 o
f S

ur
re

y,
 o

n 
10

 M
ar

 2
02

1 
at

 0
8:

43
:2

2,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

46

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2021.46


G. Cafiero, G. Castrillo and T. Astarita

0.5
FG1

FG1

FG2

FG2

FG3

FG3

FG4

FG4

0

–0.5

0.5

0

–0.5

0.5

0

–0.5

0.5

0

–0.5

y/D

y/D

y/D

y/D

0.5

0

–0.5

y/D

0.5

0

–0.5

y/D

0.5

0

–0.5

y/D

0.5

0

–0.5

y/D

0 2 4 6 8

0 2 4 6 8

0 2 4 6 8

0 2 4 6 8

0 2 4 6 8

0 2 4 6 8

0 2 4 6 8

0 2 4 6 8

x/D

–0.2 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

U/Ub

Figure 4. Time-averaged axial velocity component contour maps relative to the FGs.
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Figure 5. Time-averaged axial velocity component contour map relative to the RG.
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Figure 6. Time-averaged axial velocity profile Ū/Ub evaluated along the jet centreline (y/D = 0).

The RG mean axial profile strongly differs from those described above. As already
suggested by the contour map (see figure 5), after an initial recovery, Ū/Ub attains a
constant value of about 1.4 for 1 < x/D < 5.5 and it then decreases. Different from the SG
profiles, apart from the initial stage, Ū/Ub always shows higher values than the JWT. This
difference is expected to decrease at larger distances, where the effect of the grid fades
out.

The r.m.s. axial (u′/Ub) and the radial (v′/Ub) velocity fluctuations evaluated along the
jet centreline are reported in figures 7(a) and 7(b). The profiles show two peaks: a first
one at smaller values of x/D, which we attribute to the grid-generated turbulence, and a
second one at larger streamwise distances, which is related to the effect of the growing jet
shear layer merging at the centreline. According to Seoud & Vassilicos (2007), Mazellier
& Vassilicos (2010) and Nagata et al. (2017), both the number of fractal iterations and the
bar thickness affect the turbulence intensity peak, in the case of grid-generated turbulence.
Starting from the momentum equation of a wake in the far field, Gomes-Fernandes et al.
(2012) obtained a scaling of the turbulence intensity peak based on the drag coefficient
of the grid and the thickness of the central grid item. A comparison between SGs and
FG2 (i.e. the square FG having the same L0 and t0 values) shows that the increase in N
causes an upstream shift of the location of the peak (xpeak), in good agreement with the
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Figure 7. Root mean square of the (a) axial (u′/Ub) and (b) radial (v′/Ub) velocity component evaluated
along the jet centreline (y/D = 0).

decaying grid turbulence measurements reported by Mazellier & Vassilicos (2010) and
Nagata et al. (2017), for 1 ≤ N ≤ 3. This suggests an effect of the secondary grid iteration
on the location of the maximum value of the turbulence intensity. Nevertheless, it is worth
explicitly pointing out that the comparison in terms of maximum turbulence intensity
between the FGs and the SGs is not meaningful given the significantly different value
of the blockage ratio. Similarly to the convective heat transfer results reported by Cafiero
et al. (2017), only small differences can be detected between FG1 (tr = 6.25) and FG2
(tr = 4.05). To investigate this aspect further, in figure 8 we plot the value of the turbulence
intensity peak, defined as the maximum value of tke = 1

2(u′2 + 2v′2) (with v′ = w′ at the
centreline) in the range of streamwise distances 0 < x/D < 2.5 as a function of tr. The
peak in the turbulence intensity increases with the value of tr, with a peak identified at
tr = 4 and then a slightly lower value at tr = 6.25. This seems to suggest the existence of
an optimal value of the thickness ratio as to maximize the turbulence intensity produced
by the FG. The limited number of investigated grids, as well as the small variation between
FG1 and FG2, leaves still the possibility of the existence of a threshold value of tr beyond
which the turbulence intensity peak does not vary significantly.

The interplay between the growing shear layer and the wakes shed by the grid bars
causes a different behaviour with respect to the grid turbulence experiments reported
in previous investigations (Seoud & Vassilicos 2007; Mazellier & Vassilicos 2010). In
particular, the location of the peak in the turbulence intensity profile does not scale
according to xpeak ∼ 0.5x∗. As evidenced in Cafiero et al. (2015), the growing shear layer
determines an asymmetric spreading of the wakes generated by the grid bars, with a larger
value of the spreading rate towards the centreline. This effectively causes an upstream shift
of the location where the wakes meet, hence resulting in an upstream shift of the peak in
the turbulence intensity profile. Considering the location of the local maxima, i.e. the
first peak in the streamwise velocity fluctuation profile, obtained for the four investigated
FGs, figure 9 shows the scaling as a function of x∗. It is interesting to see that there is
still a clear correlation with the wake interaction length scale. Nevertheless, a significant
upstream shift of the peak with respect to the grid turbulence case can be detected. This
difference must be attributed to the effect of the growing shear layers, which causes a
higher spreading rate of the wakes shed from the grid bars, and the consequent shift of
xpeak.
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Figure 8. Maximum value of the turbulent kinetic energy tkemax for the investigated FG cases as a function
of the thickness ratio tr.
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Figure 9. Location of the maximum in the u′/Ub profiles for the four investigated FGs, xpeak, as a function of

the wake interaction length scale x∗. Data are normalized with respect to the jet diameter D.

The radial velocity fluctuations show a similar trend both in terms of the location of the
peak (xpeak) and in terms of the local maximum, with the FG2 case being the largest.

For x > xpeak, the velocity fluctuations do not decay monotonically because of the
development of the external shear layer, such that a second turbulence production region
is visible. Figure 7 shows that the axial location at which the shear layer turbulence
production overcomes the grid turbulence decay depends on tr, so that lower tr values
cause an upstream shift of this position. Moreover, for fixed values of N, whilst the radial
fluctuation profiles almost collapse for x/D > 5, significant differences can be observed
in the axial fluctuations curves: the FG4 curve shows an absolute maximum of u′/Ub at
about x/D = 6 which is 15 % larger than the corresponding peak relative to FG1. It is also
relevant to point out that the location of the maximum r.m.s. of the axial and radial velocity
fluctuations is not affected by N and tr, showing that it is fundamentally regulated by the
location where the jet shear layer meets at the centreline. The difference in the intensity
values does not show any clear trend with tr. Furthermore, the significantly lower intensity
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obtained in the SG1 and SG2 cases compared to FG2 can be attributed to the lower value
of the grid blockage ratio.

Finally, figure 7 also shows the u′/Ub and the v′/Ub profiles related to the RG. As
can be seen, the strong peak of the velocity fluctuations produced in this case featured at
about x/D = 0.18 (i.e. xpeak/x∗ = 0.24) rapidly decays, following the power law which
is expected for RG-generated turbulence (Comte-Bellot & Corrsin 1966). Even in this
case a second region of turbulence production is detected for x/D > 3 where, opposite to
the FG and the SG cases, the profiles collapse with the JWT ones, thus suggesting most
of the turbulence produced by the grid has already been dissipated. It is worth noticing
that the use of the RG is advantageous, in terms of turbulence production, up to 1.4D with
respect to the SGs and up to 1.3D with respect to FG4, a value that goes down to 0.9D for
FG1.

3.2. One-point turbulent kinetic energy equation
We now turn to the estimates of the main terms of the single-point turbulent kinetic energy
equation. The purpose of this is twofold: we are interested in highlighting firstly the effect
of the secondary grid iterations on the distribution of turbulence production, dissipation
and transport and secondly the effect of the grid thickness ratio on how turbulence is
produced, transported and dissipated. The single-point turbulent kinetic energy equation
can be expressed using a compact notation as (Valente & Vassilicos 2014)

Ūk

2
∂q2

∂xk︸ ︷︷ ︸
A

= −u′
iu

′
j
∂Ūi

∂xj︸ ︷︷ ︸
P

− ∂

∂xk

(
u′

kq2

2
+ u′

kp
ρ

)
︸ ︷︷ ︸

T

+ ν

2
∂2q2

∂x2
m︸ ︷︷ ︸

Dv

−ε, (3.1)

with q2 = u′
i
2; A, P and T indicate the advection, production and transport of turbulent

kinetic energy, while Dv and ε indicate the viscous diffusion and the dissipation due to the
fluctuating rate of strain. For the present case, given the value of the Reynolds number, Dv

is deemed to be negligible with respect to ε. The turbulent transport T is constituted by the
triple velocity correlation u′

kq2 and by the pressure velocity correlation u′
kp, which cannot

be measured with the current PIV set-up. We neglect the latter term in our computation
of the turbulent transport, effectively referring to the triple velocity correlation term only,
and henceforth we refer to it as

T = ∂

∂xk

(
u′

kq2

2

)
. (3.2)

One of the main issues in measurements of the turbulent dissipation is related to spatial
resolution. It is indeed necessary to cope with the necessity of resolving the spatial
derivatives of the velocity fluctuations, which are used to calculate the fluctuating strain
rate tensor. Numerical simulations carried out to appropriately select the spatial resolution
for turbulent dissipation measurements have shown that the minimum requirement for
accurate sampling of the Kolmogorov length scale is in the range 5η–7η (Laizet, Nedić
& Vassilicos 2015). For the present set of experiments, in the worst-case scenario, which
is attained in the wake generated by central grid item where the value of dissipation is the
highest, the resolution at which we manage to resolve the velocity gradients is estimated
to be 7η. Even though this might be reflected in slightly underestimated values of the
turbulent dissipation, we are mostly interested in the comparison between the different
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Figure 10. Production, dissipation and transport terms in the turbulent kinetic energy (3.1) for the fractal FG2
and single square SG1 grids. Data are measured at (a) x/x∗ = 0.1, (b) x/x∗ = 0.24, i.e. corresponding to the
peak of turbulent kinetic energy, and (c) x/x∗ = 0.5. Data are normalized with respect to U3

b/D.

grids as a function of the thickness ratio and the number of iterations. Similarly to what
was done by Li, Chen & Katz (2017) in the case of a study of the tip gap ratio in rotating
machines, we consider ε as a pseudo-dissipation, which delivers relevant information in
terms of a comparative analysis between the grids.

Further information about the assumptions made to measure each term of (3.1) is
reported in Appendix A.

Figure 10 shows the production (P), dissipation (ε) and transport (T ) terms for the SG1
and FG2 cases. These quantities are normalized with respect to U3

b/D. Three different
streamwise locations are considered, x/x∗ = 0.1, x/x∗ = 0.24 and x/x∗ = 0.5, which
correspond to locations in the production, peak and decay region of the turbulent velocity
fluctuations (see also figure 7).

The two grids considered here differ in the number of iterations, while the size of the
central grid item is the same. As already mentioned, this implies that the blockage ratio
is significantly different. This comparison is helpful in assessing how the presence of the
secondary grid iterations alters the production, transport and dissipation profiles.

In the production region (x/x∗ = 0.1), a first difference between the two grids is related
to the significantly larger values of production for the FG2 case. This difference can be
attributed to the larger value of the blockage ratio of the FG2 case. Interestingly, the overall
behaviour of the profiles is unmodified. It is reasonable to assume that the effect of the
secondary iterations becomes more relevant at larger distances, where their wakes meet
at the centreline. This is indeed the case near the peak of the turbulence intensity, where
the profiles obtained with FG2 and SG1 show a different behaviour (figure 10b). However,
the presence of the second and third iterations reflects a significantly higher production
P across the whole jet width, with intense peaks also in the external shear layer region
(y/D = ±0.5). The intense activity occurring in the external shear layer can be related to
the observations of Cafiero et al. (2015): they observed that FGs significantly enhance the
entrainment rate of the jet, with higher values of the Reynolds shear stress uv. Later in the
paper, for the FG2 case will be shown the existence of a correlation between the structures
produced past the grid and those generated within the jet shear layer, which is most likely
responsible for the strong peaks in the turbulence production.

The dissipation profiles show a more clear dependence on the grid geometry. Large
dissipation values can be detected in the jet shear layer (y/D = ±0.5) and in the lee of

915 A12-13

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
ve

rs
ity

 o
f S

ur
re

y,
 o

n 
10

 M
ar

 2
02

1 
at

 0
8:

43
:2

2,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

46

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2021.46


G. Cafiero, G. Castrillo and T. Astarita

the central grid bar item (y/D = ±0.25). However, the FG2 case also shows two inner
peaks, which are likely to be attributable to the grid geometry and, more specifically, to
the secondary grid iterations.

The most prominent differences between the two cases are related to the turbulent
transport. At the centreline, both cases feature values of transport equal to zero. Both
the terms q2u′ and q2v′ are indeed close to zero: q2v′ from symmetry arguments, while
at small distances from the grid, the streamwise velocity fluctuations are still quite small,
leading to q2u′ ≈ 0.

As |y/D| increases, for the SG1 case the wake-like behaviour is reflected in alternating
positive–negative values of the transport. The spreading wake produced by the central
grid item is characterized by positive values of T ; conversely, at y/D = ±0.25 a strong
negative peak is related to the negative streamwise velocity fluctuations produced by the
grid item, locally acting as a bluff body.

The same profile shows a much more complex behaviour in the FG2 case, which is
likely to be attributable to the grid geometry. Particularly interesting are the differences
between the two cases near the interface between the jet core and the surrounding
ambient. The FG2 case shows local peaks of turbulent transport, which are likely to
be related to the higher entrainment rate that characterizes the FGs (Cafiero et al.
2015).

The same comparison is also carried out at larger distances from the grid exit section.
At x/x∗ = 0.24, the turbulent production P is mostly related to the jet shear layer for
the SG1 case. On the other hand, the FG2 case still shows large values of production
in the lee of the grid items. As expected by inspection of (3.1), the leading production
term is u′v′(∂Ū/∂y), which is zero from symmetry arguments. At the centreline, the term

u′2(∂Ū/∂x) is not zero, indeed being the relevant production term, it is still significantly
smaller than the values elsewhere across the jet. It is also relevant to point out that the
term u′w′(∂Ū/∂z) is also zero in the investigated plane, as ∂Ū/∂z is zero from symmetry
arguments.

The large values of streamwise and lateral velocity fluctuations are then associated
with the turbulent transport that takes place from wake regions towards the jet centreline.
Figure 10(b) indeed shows that the turbulent transport at the centreline is larger for the
FG2 case; at the same time, the dissipation values for the two cases are not dissimilar,
hence justifying the higher values of velocity fluctuations for FG2.

The differences between the two grids become less relevant at larger streamwise
distances. At x/x∗ = 0.5, the FG2 case features values of production and transport
larger than those for SG1 near the flow boundaries. At the centreline, the dissipation
values overcome turbulent transport, with corresponding decay of the velocity fluctuations
(figure 7).

The effect of the grid geometry is also assessed looking at the results obtained from
the four different FGs. The FG2 grid data are replotted in figure 11 to allow an easier
comparison. A first immediate observation is that the thickness ratio has a direct impact
on the P, T and ε profiles. Larger values of production, dissipation and transport can be
detected as tr increases, particularly near the grid (figure 11a). The FG1 and FG2 cases are
characterized by larger values of the central grid item thickness t0, with correspondingly
higher lateral mean flow shear rates. This leads to the progressively larger values of
production evidenced in figure 11.

As the distance from the grid increases (figure 11b,c), the production, dissipation and
transport profiles still show a clear trend as a function of tr. It is also interesting to
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Figure 11. Production, dissipation and transport terms in the turbulent kinetic energy (3.1) for the four
investigated FGs. Data are measured at (a) x/x∗ = 0.1, (b) x/x∗ = 0.24, i.e. corresponding to the peak of
turbulent kinetic energy, and (c) x/x∗ = 0.5. Data are normalized with respect to U3

b/D.

notice that the FG1 and FG2 cases, which are characterized by the largest value of tr,
display significantly larger peaks in both P and T , whilst the FG3 and FG4 cases are
closer to the SG case.

3.3. Flow-field reconstruction using proper orthogonal decomposition
The introduction of multiple scales significantly increases the complexity of the flow field.
In particular, the FG geometry gives rise to a wealth of structures that pose a serious
problem for their detection. With the aim of characterizing the near-field topology in
the presence of a FG, we use proper orthogonal decomposition (POD) to identify the
energy-containing modes of the flow. We implement the POD algorithm as proposed by
Sirovich (1987), which is particularly suitable for PIV data. The velocity field U can be
decomposed as:

U = Ψ Σ Φ, (3.3)

where Ψ and Φ represent the decomposition basis of the velocity field U , respectively, in
time and space and Σ is the diagonal matrix containing the singular values of the velocity
field. The velocity field can be decomposed into a number of modes equal to the number
of snapshots. As suggested by Raiola, Discetti & Ianiro (2015), it is possible to operate a
low-order reconstruction of the velocity field, where only a subset of modes are considered.
The choice of the number of modes can be dictated by energy considerations, such as only
a given share of the total amount of energy is kept within the reconstructed field. With
k being the total number of modes that are deemed sufficient to reconstruct the velocity
field, one obtains

Uk = Ψ Ik Σ Φ = Ψ Ik Ψ TU, (3.4)

where Ik is a diagonal square matrix of size equal to the number of snapshots with only
the first k diagonal elements equal to 1 and 0 elsewhere (the resulting rank of Ik is k). We
perform the POD analysis for three representative cases, JWT, FG2 and SG1, and use it to
evidence the flow structure considering only those modes that carry the highest share of
energy. The POD analysis is performed on the instantaneous flow fields measured in the xy
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Figure 12. (a) Contour representation of the instantaneous out-of-plane fluctuating vorticity component
ωzD/Ub with overlaid streamlines. Three different inlet conditions are considered: JWT, FG2 and SG1. The
instantaneous realization is obtained as a low-order reconstruction considering only the first 10 most energetic
modes. (b) Schematic description of the inward and outward spreading wake.

plane (i.e. along the 0◦ direction). In this sense, POD can be particularly instrumental in
performing a comparative analysis between different inflow conditions (Taira et al. 2019).

With the aim of understanding the interaction between the structures produced by the
grid and the external shear layer, we look at the flow field reconstructed considering only
the first 10 POD modes. The relatively low number of modes is chosen to highlight the
effect of the large structures produced by the presence of the grid and their interaction with
the growing shear layer. The number of modes being fixed, this corresponds to different
values of total energy, ranging from 15 % for the FG2 case to 20 % for the SG1 case and
35 % for the JWT case. We compared the reconstructed field obtained keeping the number
of modes fixed with the case where the modal energy was considered as fixed and equal to
20 %, without noticing significant differences.

Figure 12(a) shows the contour representation of the instantaneous out-of-plane
fluctuating vorticity component ωzD/Ub with overlaid streamlines in the JWT (top), FG2
(middle) and SG1 (bottom) cases. The JWT case evidences the presence of large coherent
structures originating in the jet shear layer. These structures arise as a consequence of the
Kelvin–Helmholtz instabilities at short distances from the nozzle exit section. The jet core
features vorticity values close to zero, the jet still being in the potential core region.

The FG2 case exhibits a marked change in the vorticity field structure that can be easily
seen from visual inspection. A more detailed analysis of the instantaneous vorticity field
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Figure 13. Pre-multiplied spectra of the lateral velocity component k5/3Ev calculated at y/D = 0.25 for the
SG1 and FG2 cases.

reveals a complex evolution of the flow structures in the near field of the jet. For the sake
of explanation, it is convenient to define as the inward spreading wake the portion of the
wake produced by the grid bar item which is directed towards the jet axis, whilst as the
outward spreading wake the portion of the wake that evolves towards the outer shear layer.
A schematic description is provided in figure 12(b). Even though the two wake regions
are originated by the same grid item, their evolution and the structures thereby produced
are significantly different. The inward spreading wake is characterized by small-scale
structures, that merge at x/D ≈ 1.4. This result is consistent with the location of the
maximum in the r.m.s. of the streamwise velocity component. Conversely, the outward
spreading portion of the wake shows a growth of the coherent structures as a consequence
of the interaction with the structures produced in the external shear layer.

The SG1 case features alternate patches of positive and negative vorticity produced in
the lee of the grid item, which can be attributed to the typical Karman wake. Interestingly,
despite the same geometry of the grid item, the fractal geometry has a marked impact
on the vorticity field. The effect of the second iterations is indeed such that the large
coherent structures shed by the grid item are replaced by more turbulent smaller eddies.
Furthermore, the effect is also reflected in the external shear layer. In the SG1 case, the
large rollers produced in the shear layer are not detected. This difference has a strong
impact on the entrainment rate of the jet (Cafiero et al. 2015) as well as the turbulence
production evidenced in figure 10.

This aspect has been already investigated in the case of freely decaying turbulence by
Melina, Bruce & Vassilicos (2016). Even though the inlet conditions are similar, it must
be pointed out that the present case of turbulent jet is characterized by the additional
effect of the spreading shear layer, which eventually interacts with the structures shed by
the grid items. In that case, the authors compared the effects of a square FG to a single
square having the same blockage ratio and showed that the fractal geometry is responsible
for the suppression of vortex shedding. A similar result is reported in figure 13, where
the spectra of the lateral velocity component Ev obtained in the FG2 and SG1 cases are
plotted as a function of kt0, where k is the wavenumber and t0 the thickness of the central
grid item. The spectra are obtained considering the lateral velocity component measured at
y/D = 0.25 (i.e. in the lee of the central grid item). The clear peak observed at kt0 = 0.15
and associated with the vortex shedding in the SG1 case disappears in the FG2 case.

915 A12-17

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
ve

rs
ity

 o
f S

ur
re

y,
 o

n 
10

 M
ar

 2
02

1 
at

 0
8:

43
:2

2,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

46

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2021.46


G. Cafiero, G. Castrillo and T. Astarita

0 1 2 3 4 5

r/D r/D
6 7 8

–0.10

–0.05

R V w
–

V s
l

R V w
–

V w
l

0

0.05

0.10(a) (b)
SG1
FG2

0 1 2 3 4 5 6 7 8
–0.15

–0.10

–0.05

0

0.05

0.10

Figure 14. (a) Cross-correlation of the lateral velocity measured at y/D = 0.25 with the lateral velocity
measured at the jet shear layer for the SG1 and FG2 cases. (b) Cross-correlation of the lateral velocity measured
at y/D = 0.25 with the lateral velocity measured at y/D = −0.25 for the SG1 and FG2 cases.

Besides providing a qualitative description of the flow field, we further investigate
the correlation between the structures produced within the external shear layer and those
shed by the interaction of the mean flow with the grid bars. Figure 14(a) shows the
cross-correlation (RVw−Vsl) between the lateral velocity component measured at y/D =
0.25, Vw, and the lateral velocity component measured at the shear layer, Vsl; we define
this location as the value of y/D such that Ū/Uc = 0.5, with Uc being the value of the
mean streamwise velocity component at the centreline (y/D = 0). The FG2 case shows an
extremely clear alternating behaviour, with a peak-to-peak distance equal to D. The SG1
case, on the other hand, features a significantly smaller correlation, thus confirming the
observation raised from the analysis of the instantaneous reconstructed flow field.

Similarly, the cross-correlation (RVw−Vw1) of the lateral velocity components measured
at y/D = ±0.25 (Vw and Vw1, respectively) shows an alternating behaviour, with a similar
spatial frequency of D. The substantial difference between the SG1 and the FG2 cases
might be attributed to the space-scale unfolding mechanism described by Laizet &
Vassilicos (2012). The smaller eddies shed by the secondary grid iterations generate a
cross-talk between the wakes generated at y/D = ±0.25, effectively being responsible for
the higher values of correlation observed in figure 14(b).

4. Conclusions

The grid geometry plays a role in the location of the peak in the turbulence intensity
profile. The result, previously found in decaying turbulence experiments, is confirmed in
the case of submerged jets. A significant difference arises, however: the growing shear
layer embedding the jet core causes an upward shift of the peak in the turbulence intensity.
We demonstrate that, even with this difference, the location of the peak is still related to
the grid geometry, which can be determined as a fraction of the wake interaction length
scale as x∗ = L2

0/t0.
The distribution of the grid blockage ratio plays also a major role in the way turbulence is

produced and dissipated; a less relevant effect is evidenced on transport. Larger thickness
ratios lead to significantly larger values of production and dissipation. The overall balance
is such that the turbulent kinetic energy grows with the thickness ratio, with a primary
effect on the streamwise component. Nevertheless, this growth resembles the behaviour
already evidenced in the convective heat transfer rate results of Cafiero et al. (2017),
relative to the centreline values of the Nusselt number, with an optimum value of thickness
ratio of around 4. The limited number of grids do not allow for a thorough assessment of

915 A12-18

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
ve

rs
ity

 o
f S

ur
re

y,
 o

n 
10

 M
ar

 2
02

1 
at

 0
8:

43
:2

2,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

46

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2021.46


Turbulence properties in jets with fractal grid turbulence

this maximum, but the agreement between the flow-field measurements and the convective
heat transfer results clearly suggests that this is the case.

Furthermore, the central grid element alone is not responsible for the larger production
rate experienced in FGs. The comparison with an isolated square item with the same
geometry but significantly lower blockage ratio shows a marked change in the terms of the
turbulent kinetic energy equation. Particularly interesting is the effect of the grid on the
turbulence produced in the external shear layer, suggesting that the interaction mechanism
occurring between the merging wakes plays a major role. Nevertheless, the substantial
difference in the blockage ratio between the two cases does not allow any conclusion on
the turbulence intensity levels attained with single SGs and FGs.

Fractal grids promote a suppression of the shedding associated with the central grid
item, as demonstrated by inspection of the lateral velocity spectra. This topic has been
already investigated in the literature by Melina et al. (2016) in the case of grid turbulence.
We confirm a similar behaviour in the case of a turbulent round jet, where there is the
added twist of the spreading shear layer interacting with the grid-generated structures.

The reconstructed flow field based on the leading POD modes shows significant
differences in the flow structure in the lee of the isolated SG element and the FG. In
particular, the SG1 case features little interaction between the structures produced by the
grid item and the external shear layer, resulting in a significantly smaller production and
entrainment rates.

Consistent with the multiscale geometry, FGs produce structures at multiple scales:
smaller eddies in the inward spreading wake, whose interaction leads to large values of
turbulence intensity obtained in the FG case; larger structures which interact at the flow
boundaries and that can be attributed to the enhanced entrainment rate of FGs (compared
with the JWT). The comparison with the single SG (with smaller value of thickness ratio)
allows us to determine that the effect of the secondary grid iterations is mostly limited
to the turbulence transport. This behaviour is also reflected in the results obtained in
the previous section of the paper, where we see a strong correlation between the lateral
velocity signal measured at y/D = 0.25 and the values obtained both in the jet shear layer
and at y/D = −0.25. This result provides the first experimental evidence of the space-scale
unfolding mechanism discussed by Laizet & Vassilicos (2012), who showed that FGs can
deliver substantially larger values of scalar transfer and turbulent diffusion due to the
multiscale nature of the generated turbulent field. The authors supported this statement
showing temperature–velocity correlations in the case of grid turbulence. We show that,
despite suppressing vortex shedding, the effect of the FG is such to produce a multiscale
turbulent flow with an enhanced correlation between the structures produced by the central
grid item and those in the jet shear layer, effectively suggesting an enhanced turbulence
transport across the jet.

Declaration of interest. The authors report no conflict of interest.
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Gioacchino Cafiero https://orcid.org/0000-0003-1251-4802;
Tommaso Astarita https://orcid.org/0000-0002-4749-0575.

Appendix A

In this appendix we detail the assumptions made to calculate the terms of (3.1). Given the
nature of the PIV measurement technique, we have only access to the in-plane components
(x, y) of the velocity vector and its in-plane spatial derivatives.
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The dissipation (ε) is defined as

ε = 2νsijsij, (A1)

with sij = ∂u′
i/∂xj being the fluctuating velocity strain rate tensor components. Given the

limitations of our PIV set-up, we are limited to the in-plane velocity components and
derivatives, such that sij = ∂u′/∂y + ∂v′/∂x.

The production term is defined as

P = −u′
iu

′
j∂Ūi/∂xj. (A2)

In the present case, we measure it as P = −u′2∂Ū/∂x − u′v′∂Ū/∂y, with the second
term being a leading term anywhere across the jet, apart from the centreline (where
∂Ū/∂y = 0).

Lastly, the turbulence transport is defined as

T = ∂

∂xk

(
u′

kq2

2
+ u′

kp
ρ

)
. (A3)

Given the limitations of the temporal resolution of the PIV system and since we do not
have access to any pointwise fluctuating pressure measurements, we cannot measure the
pressure–velocity correlation terms in the computation of the turbulence transport. Hence,
we can only estimate the transport associated with the triple velocity correlation, as T =
(∂/∂x)(u′q2/2) + (∂/∂y)(v′q2/2).
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