
23 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Mobile Live Streaming: Insights from the Periscope Service / Favario, Leonardo; Siekkinen, M.; Masala, Enrico. -
STAMPA. - (2016). (Intervento presentato al  convegno IEEE Workshop on Multimedia Signal Processing (MMSP)
tenutosi a Montreal, Canada nel September 2016) [10.1109/MMSP.2016.7813395].

Original

Mobile Live Streaming: Insights from the Periscope Service

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/MMSP.2016.7813395

Terms of use:

Publisher copyright

©2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2651386 since: 2021-04-03T16:38:18Z

IEEE



Mobile Live Streaming:
Insights from the Periscope Service

Leonardo Favario
Control and Computer Eng. Dept.

Politecnico di Torino, Italy
Email: leonardo.favario@polito.it

Matti Siekkinen
School of Science

Aalto University, Finland
Email: matti.siekkinen@aalto.fi

Enrico Masala
Control and Computer Eng. Dept.

Politecnico di Torino, Italy
Email: enrico.masala@polito.it

Abstract—Live video streaming from mobile devices is quickly
becoming popular through services such as Periscope, Meerkat,
and Facebook Live. Little is known, however, about how such
services tackle the challenges of the live mobile streaming
scenario. This work addresses such gap by investigating in details
the characteristics of the Periscope service. A large number of
publicly available streams have been captured and analyzed in
depth, in particular studying the characteristics of the encoded
streams and the communication evolution over time. Such an
investigation allows to get an insight into key performance
parameters such as bandwidth, latency, buffer levels and freezes,
as well as the limits and strategies adopted by Periscope to deal
with this challenging application scenario.

I. INTRODUCTION

The popularity of new services for live streaming from
mobile devices is increasing rapidly. For instance, in a recent
announcement (March 2016), Periscope, acquired by Twitter
even before the launch of its service, stated that more than 110
years of live video was being watched every day through their
application [1]. Other competing services such as Meerkat and
Facebook Live are following the same trend.

However, how such system work and in particular the
quality of experience (QoE) that they are able to deliver has
not yet been investigated in details. This work focuses on the
Periscope service by analyzing the characteristics of publicly
available live streams that any user can access through the
platform. We automated the viewing process of Periscope live
streams on an Android smartphone capturing a few thousand
sessions while logging data traffic and other useful types
of data exchanged between the application and the servers.
Data have been later postprocessed to examine various aspects
including network parameters (e.g., protocols, bitrate, latency),
service-related parameters (e.g., estimated session duration,
device movements) and QoE in terms of video playback
buffers and smoothness.

The key insight obtained through this work include under-
standing how the two application-layer protocols employed
by Periscope impact on the service, considering bitrates,
coding schemes, and QoE. Moreover, media timestamps in
the encoded streams allowed us to investigate the behavior
of the main communication parameters, and in particular the
playout buffer level and latency, also determining which is
the minimum initial playback delay necessary to avoid freeze
events. Other parameters embedded by the Periscope services

have also been analyzed, including the bitrate values reported
by the system and the position of the capturing device.

The work is organized as follows. Sec. II describes related
work in the area. Sec. III briefly overviews the Periscope
service and how data collection has been performed, then
Sec. IV analyzes in depth the information that can be extracted
by the captures. Sec. V discusses the results by summarizing
the main observations. Conclusions are drawn in Sec. VI.

II. RELATED WORK

Several research works addressed the challenges of live
streaming involving mobile devices. Issues such as optimal
content distribution have been investigated [2], including sce-
narios where it is possible to communicate directly among
devices [3], or where heterogeneous contributors and viewers
are involved [4]. Other work investigated, for instance, how
cloud-based systems can help in live streaming [5]. However,
most of the research focused on systems where the mobile de-
vice is the receiver of the live streaming, as for Twitch.Tv [6],
or other mobile VoD systems [7].

For the specific case of live streaming from mobile devices,
some works studied user activities investigating, for instance,
how to influence them [8] or how human factors can play a role
in Periscope and Meerkat [9]. Regarding technical issues, opti-
mization frameworks for uplink video transmission have been
proposed for specific cellular communication scenarios [10],
however little is known about how live mobile applications
work in real-world conditions.

In this work we tackle the issue of analyzing the Periscope
protocol through network traffic analysis, as already done in
literature for other widespread applications such as Skype [11].
We already tried to dissect the Periscope service in general
in [12], focusing on usage characteristics, protocols, QoE and
mobile power consumption. In this work we aim specifically at
the aspects of multimedia coding and transmission, analyzing
in details the media coding parameters and the communication
behavior over time considering in particular the playout buffer
levels and freeze events.

III. BACKGROUND

A. Periscope Overview

Periscope allows its users to send live video streams into the
Internet and let other users view them. Access can be restricted



Internet 

Mitmproxy 
Network analysis 

Test client 
Periscope 
servers 

Internet 

Live streaming 
device 

Reverse 
USB 
Tethering 

Fig. 1. Experimental setup: the right part shows our server that acts as mitmproxy, storage for the captured network traces and large bandwidth provider for
the mobile device. In gray the rest of the system that cannot be directly controlled.

to chosen users; alternatively, streams can be made public.
A user has three options to discover public broadcasts. First,

the app shows broadcasts in a rank. Alternatively, the map of
the world can be explored to find broadcast within a specific
geographical area. Last, a “Teleport” button is available in
the app. When pressed, a randomly selected broadcast can be
watched. The Periscope application communicates with the
servers using an API whose specifications are not public and
communication is protected by SSL.

B. Data Acquisition

Our goal was to collect information about a relatively large
number of Periscope broadcasts in an automated fashion. In
order to enable studying also the SSL traffic between the
mobile client and Periscope servers, we set up a so called
man-in-the-middle proxy, i.e. mitmproxy [13], in between the
mobile device and the Periscope service as a transparent proxy.
Fig. 1 depicts our test scenario, in which our server runs
both the mitmproxy and a network analyzer which stores
all packets. With some effort, we were able to examine the
exchange requests between the clients and the servers and
automate the requests using smartphones. Our scripts sent
commands to the device through the Android debug bridge
(adb) to press the app “Teleport” button which takes the user
directly to a randomly selected live broadcast, then waited
for 60 s, closed the session and started again. The script also
captures, for each broadcast, all the data traffic between the
device and the Internet. Therefore, the maximum media data
length has been limited to 60 s in all experiments.

Two different smartphones have been used in our automated
experiments: one Samsung Galaxy S3 and one S4. To rule out
any issues due do the smartphone download speed they were
connected to the Internet by means of reverse tethering through
a USB connection to a PC connected to the university LAN
with more than 100 Mbps of available bandwidth. In total, we
collected 4,023 sessions.

IV. MULTIMEDIA TRAFFIC ANALYSIS

To carry out the traffic analysis we employed a wide variety
of tools ranging from standard ones such as wireshark [14]
for network trace analysis to libav [15] to inspect and decode

the multimedia content. In addition, we developed a set of
custom programs and scripts to extract information not directly
available through such programs.

A. Protocols

In our experiments we observed that Periscope uses ei-
ther the Real Time Messaging Protocol (RTMP) [16] using
source port 80 or the HTTP Live Streaming (HLS) to serve
multimedia content. Our experiments collected 1,762 RTMP
sessions and 2,261 HLS sessions. Further investigation showed
that RTMP is delivered through IP addresses corresponding to
Amazon EC2 instances whereas HLS content relies on the
Fastly Content Delivery Network (CDN).

RTMP is used when only few people watch the stream [12].
RTMP can convey different types of data. In this work we
focused on the audio and video segments. Each RTMP seg-
ment is prefixed by a header which includes, in particular, the
media type, the body size, and timestamp information. Each
body includes one control byte that specifies the multimedia
format followed by the body data itself with the multimedia
compressed content. By trial and errors we determined that
some of data at the beginning of the body contains some
Periscope proprietary information which must be discarded
in order to properly analyze the media content. Once the
media content has been extracted, it can be analyzed with
standard toolchains (e.g., libav [15]) which provide summary
information as well as the possibility to decode the content
itself.

When many users watch the stream, a different protocol
is used. Periscope servers resort to the so called HTTP Live
Streaming (HLS), by serving content as HTTP resources (i.e.,
segments) which are periodically requested and downloaded
by the client. Such resources are encoded according to the
MPEG Transport Stream (MPEG-TS) [17] format which can
multiplex both audio and video and synchronizing them using
the Presentation Time Stamp (PTS) information embedded into
the MPEG-TS format.

B. Audio Characteristics

All the audio content is encoded using the Advanced Audio
Coding (AAC) [18], sampled at 44,100 Hz 16 bit. The content



0.0

0.2

0.4

0.6

0.8

1.0

 0  20  40  60  80  100  120

fra
ct

io
n 

of
 s

tre
am

s

bitrate (kbit/s)

HLS
RTMP

(a) audio

0.0

0.2

0.4

0.6

0.8

1.0

 0  200  400  600  800 1000 1200

fra
ct

io
n 

of
 s

tre
am

s

bitrate (kbit/s)

HLS
RTMP

(b) video

Fig. 2. Bitrate of audio and video streams: two preferred values can be clearly
observed for the case of audio.

0.0

0.2

0.4

0.6

0.8

1.0

 1  2  3  4  5  6

fra
ct

io
n 

of
 s

eg
m

en
ts

segment duration (s)

Fig. 3. Duration of HLS segments.

is encoded using a Variable Bit Rate (VBR) codec, hence each
audio frame has a different size. However, the variation of the
average bitrate is limited. The average bitrate is typically either
32 or 64 kbps. Fig. 2a shows the cumulative distribution of
the bitrate. Note that the audio content has been reconstructed
in Audio Data Transport Stream (ADTS) format [18] so the
values in the figure are slightly higher than 32 or 64 kbps due
to the inclusion of ADTS headers. When the bitrate is lower
than 32 kbps, typically the content is almost silence. Also,
we observe that there is no significant difference between the
measures for the HLS and the RTMP case.

C. Video Characteristics

All video content is encoded using the Advanced Video
Coding (AVC) standard [19], using resolution always equal to
320×568, up to 30 frames per second (fps). Fig. 2b shows the
video bitrate whose typical value ranges between 100 and 600
kbps. The difference between HLS and RTMP is limited. For
the HLS case, Fig. 3 shows the observed segment duration.
The large majority of cases present segment lengths equal
to 3.6 s. Such value corresponds to 108 frames at 30 fps.
Nevertheless, the corresponding bitrate can vary significantly
as shown in Fig. 2b.

Figure 4 shows the average frame rate of the video streams:
there is a strong tendency to use 30 fps, but other rates are
possible since occasionally frames are skipped, i.e., they are
not encoded nor transmitted. Note that there is no significant
difference between the HLS and RTMP cases.

Moreover, occasionally it seems that some frames are miss-
ing (not just skipped as in the previous case). Such condition
is detected by unexpected gaps in the Picture Order Count
(POC). In this case, to decode the video some concealment
technique must be applied. We attribute such a fact to the up-

0.0

0.2

0.4

0.6

0.8

1.0

 0  5  10  15  20  25  30  35

fra
ct

io
n 

of
 s

tre
am

s

frame rate per second

HLS
RTMP

Fig. 4. Average frame rate of video stream.

0.0

0.2

0.4

0.6

0.8

1.0

 0  20  40  60  80  100  120  140

fra
ct

io
n 

of
 s

tre
am

s

timestamp difference (ms)

HLS video
RTMP video

HLS audio
RTMP audio

Fig. 5. Cumulative distribution of difference between two subsequent times-
tamps.

loading device which might have experienced some encoding
or transmission issues.

Fig. 5 shows the difference between timestamps of consec-
utive frames in the video stream. Timestamps are extracted
either from the RTMP header or directly from the MPEG-
TS PTS values. The cumulative distribution shows that 33.3
ms (equivalent to 30 fps) represents the large majority of
cases. Other common difference values are 40 and 66.6 ms
(respectively equivalent to 25 and 15 fps).

The video encoding pattern typically uses the IBPBP...I
structure, where one frame containing B-type slices is inserted
between frames containing either I-type or P-type slices. Only
in 17.3% of the cases B-type slices are not used. For HLS, a
closed Group-Of-Picture (GOP) structure is used, i.e., there
is no coding dependency among different HLS segments,
whereas RTMP uses both open and closed GOPs. The HLS
solution potentially allows to seamlessly switch between dif-
ferent representations if necessary. However, detecting repre-
sentation changes is not easy due to the variability of the
video content which might cause a rate change on its own.
Moreover, currently we did not observe any explicit hint of
such feature being implemented, e.g., changes in the structure
of the name of requested URLs. However, in our setup we
did not expect such changes since there are no significant
download bandwidth variations.

Most of the video content is encoded using one slice per
frame, whereas occasionally two slices are used to split the
picture horizontally in two parts. We speculate this could be
due to the encoding device which might speed up encoding
by parallelizing the coding operations for one frame.

Each frame containing I-type slices is preceded by an AVC



0.0

0.2

0.4

0.6

0.8

1.0

-180 -90  0  90  180

fra
ct

io
n 

of
 s

tre
am

s

position (degrees)

RTMP
HLS

Fig. 6. Average position of the mobile device during the whole video session.
Zero represents vertical, 90 or -90 is horizontal.

0.0

0.2

0.4

0.6

0.8

1.0

 1  10  100

fra
ct

io
n 

of
 s

tre
am

s

amount of variation (degrees)

RTMP
HLS

Fig. 7. Amount of degrees covered by the position of the mobile device
during the whole video session.

Sequence Parameter Set (SPS) and a Picture Parameter Set
(PPS). This allows any viewer joining at any time to have all
the necessary information to start decoding from that point.
SPS and PPS are typically inserted every 36 frames (that is
1.2 s at 30 fps).

D. Embedded Information by Periscope

Additional information is embedded into the video stream
just after the SPS and PPS, using the AVC Supplemental
Enhancement Information (SEI) NALU data type, with an
application-defined format. Although we were not able to
decode all information, simple inspection of the data allowed
to extract the name of some properties and their value. In
particular, four fields attracted our attention: the uploadrate
which we assumed to be the available rate estimated by the
application, the bps which seems to be the actual transmitted
bitrate, the ntp which seems to be the time at which the
data was produced or received by the Periscope server, and
the rotation which seems to be the position of the device as
detected by the sensors of the mobile device.

The rotation information is useful to roughly estimate, by
means of a physical world measure, how much the device is
moved across the session. Fig. 6 show the average position
of the mobile device during the whole video session. When
the device is hold vertically, the value is zero degrees. Values
equal to 90 or -90 correspond to horizontal position. Since
devices are often moved during the video session, Fig. 7
show how many positions (quantized as integer degree values)
are covered by the position of the mobile device during the
whole video session. The majority of the devices are held in a
relatively stable position for the whole duration of the session
(60% of the devices is moved less than 10 degrees) whereas

 0

 100

 200

 300

 400

 500

 600

 0  200  400  600  800  1000

bp
s 

pa
ra

m
et

er
 (/

10
00

)

video bitrate (kbps)

RTMP
HLS

Fig. 8. Values of the bps parameter versus the effective average video bitrate.

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000

 0  200  400  600  800  1000up
lo

ad
ra

te
 p

ar
am

 (/
10

00
)

video bitrate (kbps)

RTMP
HLS

Fig. 9. Values of the uploadrate parameter versus the effective average video
bitrate.

others might significantly change (e.g., about 10% rotates more
than 90 degrees). Large values are relatively common since
devices are often held in hand as opposed to being left in
a fixed stable position. By visually inspecting the decoded
content, we noticed that many movements often yield a low
quality video, therefore the rotation parameter could suggest
the presence of video segments with low quality.

Fig. 8 shows the value of the bps parameter as a function
of our measured video bitrate. From the strong correlation
of the points in the graph we speculate that the bps parameter
could be the target encoding bitrate decided by the application
and that, in any case, is capped at 450,000. Analogously,
Fig. 9 shows the value of the uploadrate parameter. It seems
reasonable to assume that this could be an estimate of the
available upload bandwidth as seen from the mobile device
which, in fact, can be relatively high, up to about 6,000 kpbs.
However, the bitrate of the received video is about half of
such value, probably not to saturate the uplink of the mobile
device, and in any case is capped at about 450 kbps. Finally,
note that no differences between RTMP and HLS seem to be
present for both parameters.

E. Real-Time Communication Aspects

To investigate in more details the real-timeliness of the
communication system we analyzed in depth the captured
network traces and the evolution of the header timestamps of
each segment (in case of RTMP) or the PTS values (in case of
HLS). The PTS or RTMP timestamp and the arrival time of
each byte in the TCP flow, which can be precisely determined
through the network traces, allow to investigate the behavior of
the session over time. For instance, Fig. 10 shows three sample
sessions. All of them show, on the vertical axis, the timestamp
of the audio and video frames (in the RTMP flow or as PTS in
the MPEG-TS), as well as the Periscope NTP values embedded



-10

 0

 10

 20

 30

 40

 50

 60

 70

 0  10  20  30  40  50  60

m
ed

ia
 ti

m
es

ta
m

p 
va

lu
es

 (s
)

time (s)

audio
video

NTP values
reference

(a) RTMP sample #1

-10

 0

 10

 20

 30

 40

 50

 60

 70

 0  10  20  30  40  50  60

m
ed

ia
 ti

m
es

ta
m

p 
va

lu
es

 (s
)

time (s)

audio
video

NTP values
reference

(b) RTMP sample #2

-10

 0

 10

 20

 30

 40

 50

 60

 70

 0  10  20  30  40  50  60

m
ed

ia
 ti

m
es

ta
m

p 
va

lu
es

 (s
)

time (s)

audio
video

NTP values
reference

(c) HLS sample #1

Fig. 10. Timestamps of audio and video frames, and of the Periscope NTP value encoded in the AVC SEI NALUs shown as a function of their reception
time. A reference playback line is also shown assuming playback starting when the first packet is received.

in the AVC SEI NALU. Moreover, a reference playback line is
also plotted, assuming as a time reference the reception of the
first packet. Audio and video timestamps are almost always
superimposed, in fact they are multiplexed and transmitted
very closely in time. Fig. 10a shows an initial fast buffering
phase (about 1 s), then the TCP transmission rate matches
the one of the media content, except occasionally when there
might be network communication issues (e.g., between 37 and
40 s). If such impairments are limited, they have no effect on
the playback, but if the rate drop significantly for a larger
amount of time a stall or freeze event may happen (i.e., the
video freezes and the audio stops), as it happens in Fig. 10b.
Note that the vertical difference between a 45-degree line and
timestamp values allow to determine how much media data
is present in the playout buffer. The larger the value of the
initial playback delay, the lower the position of the 45-degree
line in the figure. Hence, in Fig. 10b a larger initial playback
delay would help in mitigating the length of the freeze event,
at the expenses of a higher latency. Also, note that in case of
transmission impairments the system tends to privilege audio
over video (see the interval 10 to 15 s where the audio curve
is higher than the video one). Finally, Fig. 10c shows the same
plot for an HLS session. Audio and video timestamps exhibit
a staircase behavior, since during the vertical phase a new
HLS segment is quickly downloaded, then nothing happens
until the next HTTP request. Note also that our setup includes
a fast Internet connection (over 100 Mbps) which allows to
download segments from the CDN servers very quickly.

Despite the fact that we do not know exactly the delay
between the reception of the first packet and the start of
the playback, we can compute a lower bound on such value
by assuming that the playback starts immediately upon the
reception of the first media data. Such condition is represented
in Fig. 10 by the reference playback line.

To understand the influence of the initial playback delay on
the number of freeze events and their total duration, we com-
puted the cumulative distributions for several initial playback
delay values. Results are shown in Fig. 11 and Fig. 12. Clearly,

0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

 0  10  20  30  40  50

fra
ct

io
n 

of
 s

tre
am

s

total duration of freezes (s)

3 s
2 s
1 s
0 s

(a) RTMP

0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

 0  10  20  30  40  50

fra
ct

io
n 

of
 s

tre
am

s

total duration of freezes (s)

3 s
2 s
1 s
0 s

(b) HLS

Fig. 11. Duration of freezes for the RTMP and HLS sessions with the initial
playback delay specified in the legend.

0.40

0.50

0.60

0.70

0.80

0.90

1.00

 0  2  4  6  8  10

fra
ct

io
n 

of
 s

tre
am

s

number of freezes

3 s
2 s
1 s
0 s

(a) RTMP

0.40

0.50

0.60

0.70

0.80

0.90

1.00

 0  2  4  6  8  10

fra
ct

io
n 

of
 s

tre
am

s

number of freezes

3 s
2 s
1 s
0 s

(b) HLS

Fig. 12. Number of freezes for the RTMP and HLS sessions with the initial
playback delay specified in the legend.

as the delay increases the number and duration of freezes
decrease. Note the strong difference between the RTMP and
the HLS case. The latter has much shorter total duration
of freezes probably because it benefits from higher latency
compared to RTMP. However, a small initial playback delay
is essential not to incur in freezes just after playback starts,
which is the reason for the high fraction of streams with 1
freeze in Fig. 12. It is also possible to compute the cumulative
distribution of the minimum initial playback delay that would
be needed to avoid any freeze event. Fig. 13 shows that less
than about 20% (RTMP) or 10% (HLS) of the streams need to
have an initial playback delay of more than 1 s to compensate
for network communication issues. At about 7 s curves are
almost flat, i.e., there is no further advantage in increasing the
latency.



0.40

0.50

0.60

0.70

0.80

0.90

1.00

 0  2  4  6  8  10  12  14

fra
ct

io
n 

of
 s

tre
am

s

latency (s)

HLS
RTMP

Fig. 13. Initial playback latency necessary to avoid freezes.

V. DISCUSSION

Summarizing the findings of the previous sections, in
general it seems that Periscope can provide a reasonably
good mobile live streaming service. In our setup we avoided
downlink bandwidth limitations, therefore all effects are due to
either the uploading device or Periscope server processing. In
general, the typical constraints of the scenario can be fulfilled
by the uploading device, especially in terms of reasonable QoE
and limited latency. Also, by observing the NTP timestamp
values it seems that a relatively low latency can be achieved
when using the RTMP protocol, despite the underlying con-
nection is TCP which is notoriously ill-suited for real-time
communications. Moreover, in case the download bandwidth
is not a limitation, setting the initial playback delay to 1 s
is enough to avoid playback disruptions for 80% (RTMP) or
90% (HLS) of the sessions. Further increase of such value up
to about 7 s allows smooth playback for 95% of the session.

Variable frame rate video, observed through variable dif-
ferences between timestamps, is used in more than 20% of
the cases to mitigate bandwidth limitations by intentionally
skipping a few frames in the video sequence. No such event
happens for audio probably due to its limited bandwidth
requirements.

However we also noticed that occasionally some video
frames appears to be missed unintentionally in the compressed
stream. This situation is detected by observing the evolution
over time of the AVC Picture Order Count (POC) field in
NALU header. Probably, data are passed as is by Periscope
servers to the viewers which need to detect and deal with
such issue, e.g., applying some concealment technique.

Concerning the characteristics of the audio and video con-
tent, no significant differences are observed when data is
transmitted using either RTMP or HLS. The only discriminant
between the use of HLS as opposed to RTMP seems to be the
number of viewers [12].

VI. CONCLUSION

In this work we investigated in details the characteristics
of the Periscope mobile live streaming service. The charac-
teristics of a large number of publicly available streams have
been investigated in depth, focusing on multimedia content
and communication timings. The latter aspect showed that the
real-time streaming service can be delivered over TCP to a
multiplicity of users using both a specialized application level
protocol such as RTMP and a more scalable HTTP streaming

approach suitable for a large number of viewers by accepting
higher latency. We hope that these findings, both qualitative
and quantitative, will contribute to better understand the issues
faced by actual multimedia coding and transmission systems
in the real world conditions in which mobile live streaming
systems operate. Future work will be devoted to investigate
the behavior of the system when the download bandwidth is
limited to understand possible adaptation strategies.

REFERENCES

[1] Periscope, “Year one,” Online (accessed 27 May 2016):
https://medium.com/@periscope/year-one-81c4c625f5bc#.mzobrfpig,
Mar. 2016.

[2] T. Lohmar, T. Einarsson, P. Fröjdh, F. Gabin, and M. Kampmann,
“Dynamic adaptive HTTP streaming of live content,” in World of
Wireless, Mobile and Multimedia Networks (WoWMoM), 2011 IEEE
International Symposium on a, June 2011, pp. 1–8.

[3] L. Zhou, “Mobile device-to-device video distribution: Theory and
application,” ACM Trans. Multimedia Comput. Commun. Appl.,
vol. 12, no. 3, pp. 38:1–38:23, Mar. 2016. [Online]. Available:
http://doi.acm.org/10.1145/2886776

[4] Q. He, J. Liu, C. Wang, and B. Li, “Coping with heterogeneous video
contributors and viewers in crowdsourced live streaming: A cloud-based
approach,” IEEE Transactions on Multimedia, vol. 18, no. 5, pp. 916–
928, May 2016.

[5] Y. Zheng, D. Wu, Y. Ke, C. Yang, M. Chen, and G. Zhang, “Online
cloud transcoding and distribution for crowdsourced live game video
streaming,” IEEE Transactions on Circuits and Systems for Video
Technology, vol. PP, no. 99, pp. 1–1, 2016.

[6] C. Zhang and J. Liu, “On crowdsourced interactive live streaming: A
twitch.tv-based measurement study,” in Proceedings of the 25th
ACM Workshop on Network and Operating Systems Support
for Digital Audio and Video, ser. NOSSDAV ’15. New
York, NY, USA: ACM, 2015, pp. 55–60. [Online]. Available:
http://doi.acm.org/10.1145/2736084.2736091

[7] Z. Li, J. Lin, M.-I. Akodjenou, G. Xie, M. A. Kaafar, Y. Jin, and G. Peng,
“Watching videos from everywhere: a study of the PPTV mobile VoD
system,” in Proc. of the 2012 ACM conf. on Internet Measurement
Conference. ACM, 2012, pp. 185–198.

[8] S. Wilk, D. Wulffert, and W. Effelsberg, “On influencing mobile live
video broadcasting users,” in 2015 IEEE International Symposium on
Multimedia (ISM). IEEE, 2015, pp. 403–406.

[9] J. C. Tang, G. Venolia, and K. M. Inkpen, “Meerkat and periscope: I
stream, you stream, apps stream for live streams,” in Proceedings of
the 2016 CHI Conference on Human Factors in Computing Systems,
ser. CHI ’16. New York, NY, USA: ACM, 2016, pp. 4770–4780.
[Online]. Available: http://doi.acm.org/10.1145/2858036.2858374

[10] A. El Essaili, L. Zhou, D. Schroeder, E. Steinbach, and W. Kellerer,
“QoE-driven live and on-demand LTE uplink video transmission,” in
IEEE 13th International Workshop on Multimedia Signal Processing
(MMSP). Hangzhou, China: IEEE, Oct. 2011, pp. 1–6.

[11] D. Bonfiglio, M. Mellia, M. Meo, and D. Rossi, “Detailed analysis of
skype traffic,” IEEE Transactions on Multimedia, vol. 11, no. 1, pp.
117–127, 2009.

[12] M. Siekkinen, E. Masala, and T. Kämäräinen, “Anatomy of a Mobile
Live Streaming Service: the Case of Periscope,” ArXiv e-prints, May
2016. [Online]. Available: https://arxiv.org/abs/1605.04270

[13] “Mitmproxy Project: https://mitmproxy.org/.”
[14] “Wireshark Project: https://www.wireshark.org/.”
[15] “LibAV Project: https://libav.org/.”
[16] H. Parmar and M. Thornburgh, “Adobe’s real time mes-

saging protocol v. 1.0,” Online (accessed 27 May 2016):
https://www.adobe.com/content/dam/Adobe/en/devnet/rtmp/pdf/
rtmp specification 1.0.pdf, Dec. 2012.

[17] ISO/IEC 13818-1, “MPEG-2 Part 1 - Systems,” ISO/IEC, Oct. 2007.
[18] ISO/IEC 13818-7, “MPEG-2 Part 7 - Advanced Audio Coding (AAC),”

ISO/IEC, Jan. 2006.
[19] ISO/IEC 14496-10 & ITU-T H.264, “Advanced Video Coding (AVC),”

May 2003.


