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Abstract: This article investigates the large deflection and post-buckling of composite plates by
employing the Carrera Unified Formulation (CUF). As a consequence, the geometrically nonlinear
governing equations and the relevant incremental equations are derived in terms of fundamental
nuclei, which are invariant of the theory approximation order. By using the Lagrange expansion
functions across the laminate thickness and the classical finite element (FE) approximation, layer-
wise (LW) refined plate models are implemented. The Newton-Raphson linearization scheme with
the path-following method based on the arc-length constraint is employed to solve geometrically non-
linear composite plate problems. In this study, different composite plates subjected to large deflec-
tions/rotations and post-buckling are analyzed, and the corresponding equilibrium curves are com-
pared with the results in the available literature or the traditional FEM-based solutions. The effects
of various parameters, such as stacking sequence, number of layers, loading conditions, and edge
conditions are demonstrated. The accuracy and reliability of the proposed method for solving the
composite plates’ geometrically nonlinear problems are verified.

Keywords: Geometrical nonlinearity; Carrera Unified Formulation; Refined plate models; Com-
posite materials; Large deflection; Post-buckling.

1 Introduction

The availability of new constituents and manufacturing processes has widely promoted the use of
composite laminated structures, which are now constantly employed in aeronautics, aerospace, au-
tomotive and construction engineering [1]. Understanding the mechanical behaviours of composites
is, therefore more than ever, a major concern for designers and researchers [2].

*Professor of Aerospace Structures and Aeroelasticity. E-mail: erasmo.carrera@polito.it
�PhD student. E-mail: rodolfo.azzara@polito.it
�PhD student. E-mail: ehsan.daneshkhah@polito.it
§Associate professor. E-mail: alfonso.pagani@polito.it
¶Marie Curie Individual Fellow. E-mail: wubinlongchang@163.com

1



Although stiff, composite laminates can be designed to carry out large elastic displacements and
rotations when sufficiently thin. It is the case, for example, of coilable composite tape springs, see
for example [3]. In this context, new research trends are arising for characterizing the geometrically
nonlinear mechanics of such laminates [4, 5]. Zhang and Yang [6] provided a review of recent devel-
opments in finite element (FE) analysis for laminated plate structures. Han et al. [7] extended the
hierarchical FE method to geometrical nonlinearities for studying the response of composite plates.
By using first-order shear deformation theory (FSDT) and adopting the total Lagrangian formula-
tion, Zhang and Kim [8] performed nonlinear analysis of different laminated structures, employing
a displacement-based 3-node triangular plate/shell element. The same authors also developed a
displacement-based 4-node quadrilateral element for geometrically nonlinear analysis of laminated
plates [9]. A numerical method based on the higher-order shear deformation theory (HSDT) and
isogeometric analysis was provided by Tran et al. [10] to investigate geometrically nonlinear re-
sponse of two-dimensional (2D) laminated structures. Sridhar and Rao [11] utilized the four-node
quadrilateral composite shell FE to analyze laminated circular composite plates in the regime of
large-displacement fields. Liew et al. [12] employed a mesh-free kp-Ritz method combined with the
FSDT for the nonlinear flexural analysis of plates. A geometrically nonlinear parametric instability
of functionally graded plates was studied by Alijani and Amabili [13] adopting a multi-degree-of-
freedom Lagrangian formulation and nonlinear higher-order shear deformation theory. Nonlinear
static analysis of composite thick plates resting on nonlinear elastic foundations was conducted by
Baltacıoğlu et al. [14] based on a discrete singular convolution approach. Reddy et al. [15] stud-
ied the effect of different geometrical and loading parameters on the bending analysis of laminated
composite plates. Readers are referred to [16, 17, 18] for more works on the nonlinear response anal-
ysis of the large displacements/rotations of composite plates. A complete description of nonlinear
vibrations and stability of shell and plates structures was provided by Amabili [19, 20].

Among the problems characterized by geometrically nonlinear response, the post-buckling phe-
nomenon of composite plates deserves special attention. Many researchers have addressed this topic
indeed [21, 22, 23, 24]. For example, Leissa [25] presented a review of 2D laminated composite plate
buckling analysis. In addition, the book edited by Turvey and Marshal [26] conducted comprehen-
sive studies on buckling and post-buckling of composite plates. Librescu and Stein [27] formulated a
geometrically nonlinear theory of isotropic symmetrically laminated plates and analyzed their post-
buckling behaviours. The effect of material nonlinearity on the post-buckling of composite plates
and shells was studied by Wang and Srinivasan [28]. Sundaresan et al. [29] described the buckling
and post-buckling behaviours of typically 2D thick laminated rectangular plates, where they devel-
oped a eight-node isoparametric plate FE. Liew et al. [30] proposed a Ritz method combined with
the FSDT and kernel particle approximation for the field variables to investigate the post-buckling
behaviour of 2D laminated structures. Amabili and Tajahmadi [31] performed post-buckling analysis
of isotropic and composite plate structures subjected to thermal changes. Chen and Qiao [32] carried
out a post-buckling analysis of 2D composite plates subjected to combined compressive and shear
loadings using the finite strip method. Dash and Singh [33] performed buckling and post-buckling
response analyses of laminated plates with random system properties.

In the present paper, the Carrera Unified Formulation (CUF), which has been proved to be an
efficient and accurate method for solving nonlinear structural problems [34, 35, 36, 37, 38, 39, 40],
is now extended to deal with geometrically nonlinear analysis of composite plates. In this work, the
layerwise (LW) approach based on Lagrange expansions is employed (see [41, 42] for an exhaustive
derivation of CUF in LW framework). This method provides us with interface compatibility con-
ditions to be easily imposed between different layers. Moreover, by using the CUF, the expansions
along the thickness could be selected of any arbitrary order. As demonstrated in [34], the advan-
tage of CUF is that the nonlinear equilibrium and incremental equations are written in terms of
fundamental nuclei (FNs) of the secant and tangent stiffness matrices. FNs are invariant of the
theory approximation order, thus lower- to higher-order and eventually layerwise CUF structural
models can be formulated with ease [35]. In the same framework, Pagani et al. [43] evaluated the
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effect of different geometrically nonlinear models on the response of thin-walled structures adopting
a refined beam model. Pagani et al. [44] utilized a refined CUF plate model to investigate the effect
of various strain-displacement nonlinear approximations on the large deflection and post-buckling of
isotropic plates. Readers can be referred to [45, 46, 47] for important works on nonlinear analyses
of 2D isotropic and composite shell structures in the CUF framework.

The present research aims to use the CUF and arc-length method with path-following constraint
to study the geometrically nonlinear composite plate problems. In this regard, different compos-
ite plates subjected to large displacements/rotations and post-buckling are investigated. Large-
deflection and post-buckling problems are solved by using the Newton-Raphson linearization scheme
for different symmetric and antisymmetric composite plates. The corresponding equilibrium curves
are also compared with the results in the available literature or the traditional FEM-based solutions,
and the effects of different parameters such as the stacking sequence, number of layers, loading con-
ditions, and edge conditions are investigated.

This paper is structured as follows: (i) first, preliminary information about the nonlinear geo-
metrical relations are provided in Section 2, including the 2D CUF plate model adopted; (ii) next,
numerical results are reported in Section 3, and they involve laminated composite plates with dif-
ferent boundary and loading conditions; (ii) finally, conclusions are presented in Section 4.

2 Geometrically nonlinear unified finite plate element

2.1 Preliminary considerations

In this section, the n-ply laminated plate, as illustrated in Fig. 1, is assumed to be located in the
x − y plane, whereas the thickness direction lays along z-axis. The 3D displacement, strain and

a

xy

h

Figure 1: The n-ply laminated plate and related coordinate reference system.

stress vectors of a given point in the composite plate are defined, respectively as follows:

uk(x, y, z) = {ukx uky u
k
z}T

εk = {εkxx εkyy εkzz εkxz εkyz ε
k
xy}T

σk = {σkxx σkyy σkzz σkxz σkyz σkxy}T

(1)

where the superscript k denotes the kth-layer of the laminated plate and the superscript T signifies
the transpose. The presented approach, based on the total Lagrangian formulations, employs the
Green-Lagrange strain ε and the second Piola-Kirchhoff stress σ, which are work-conjugate. The
Green-Lagrange strain vector εk is obtained via the displacement-strain relations as:

εk = εkl + εknl = (bl + bnl)u
k (2)
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in which bl and bnl represent the 6×3 linear and nonlinear differential operators and they are defined
as follows:

bl =



∂x 0 0

0 ∂y 0

0 0 ∂z

∂z 0 ∂x

0 ∂z ∂y

∂y ∂x 0


, bnl =



1

2
(∂x)2

1

2
(∂x)2

1

2
(∂x)2

1

2
(∂y)

2 1

2
(∂y)

2 1

2
(∂y)

2

1

2
(∂z)

2 1

2
(∂z)

2 1

2
(∂z)

2

∂x ∂z ∂x ∂z ∂x ∂z

∂y ∂z ∂y ∂z ∂y ∂z

∂x ∂y ∂x ∂y ∂x ∂y


, (3)

where ∂x = ∂(·)/∂x, ∂y = ∂(·)/∂y, ∂z = ∂(·)/∂z are the partial derivatives.
The following constitutive equation is considered for the stress-strain relationship:

σk = C̃kεk (4)

where C̃k is the material elastic matrix. Readers are referred to [48, 49] for the complete expressions
of this matrix.

2.2 Carrera Unified Formulation (CUF)

2.2.1 Theory kinematics and finite element approximation

In the framework of the 2D Carrera Unified Formulation [50], the 3D displacement field u(x, y, z) is
written as a general expansion of the primary unknowns:

u(x, y, z) = Fs(z)us(x, y), s = 0, 1, . . . , N, (5)

in which Fs represents a set of thickness expansion functions, us indicates the generalized displace-
ment vector depending on the in-plane coordinates x and y, N is the order of expansion in the
thickness direction and the repeated index s denotes summation [44]. In the present work, Lagrange
polynomials (LE) are assumed for the expansion functions Fs due to the promising and accurate re-
sults of the LE [51, 52, 53]. It should be noted that the unknown variables are pure displacements in
the case of LE. In addition, the LW approach based on the LE is used in this research. This method
provides us with interface compatibility conditions to be easily imposed between different layers. By
using the CUF, the expansions along the thickness could be selected of any arbitrary order. There-
fore, different refined plate models can be obtained by changing the expansion order. The acronym
LDN (Layerwise Displacement-based theory of expansion order N) will be adopted in this article to
refer to specific refined plate models. For instance, LD1, LD2, and LD3 indicate linear (two-node),
quadratic (three-node), and cubic (four-node) Lagrange expansion functions, respectively, which are
utilized to formulate CUF plate models with linear to higher-order kinematics.

According to the finite element method (FEM), the generalized displacement vector us is ap-
proximated based on the FE nodal parameters qsj and shape functions Nj as:

us(x, y) = Nj(x, y)qsj , j = 1, 2, . . . , nel, (6)

in which Nj are the jth shape function, qsj represents the unknown nodal variables, nel is the number
of nodes per element and j indicates summation. In this article, the classical 2D nine-node quadratic
(Q9) FEs are employed for the shape functions in the x− y plane. More details about the Lagrange
polynomials and shape functions can be found in [48].
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2.2.2 Fundamental nuclei of the secant and tangent stiffness matrices

The nonlinear governing equations can be derived by using the principle of virtual work, that is,

δLint = δLext (7)

The virtual variation of internal strain energy in Eq. (7) is calculated as:

δLint =< δεTσ > (8)

in which < (·) >=
∫
V (·) dV , where V represents the initial undeformed volume of the composite plate

structure considering the hypothesis of small deformations, and δ is the virtual variation operator.
According to FEM approximation (6), CUF (5), constitutive equations (4) and geometric relations
(2), it is proved that:

δLint = δqT
τi <

(
Bτi
l + 2 Bτi

nl

)T
C
(
Bsj
l + Bsj

nl

)
> qsj

= δqT
τi K

ijτs
0 qsj + δqT

τi K
ijτs
lnl qsj + δqT

τi K
ijτs
nll qsj + δqT

τi K
ijτs
nlnl qsj

= δqT
τi K

ijτs
S qsj

(9)

where the two matrices Bl and Bnl are linear and nonlinear geometrical matrices and Kijτs
S =

Kijτs
0 + Kijτs

lnl + Kijτs
nll + Kijτs

nlnl is the FN of the secant stiffness matrix. In this paper, the nonlinear
model considering the full components of the matrices Bl and Bnl for the Green–Lagrange strain
vector is referred to as a Full NL model. The specific expressions of these matrices have been
provided in [37] and are omitted here for brevity.

In the case of conservative loading, the tangent stiffness matrix is obtained by linearizing the
virtual variation of the internal strain energy, which is expressed as:

δ(δLint) =< δ(δεTσ) >=< δεTδσ > + < δ(δεT)σ >= δqT
τiK

ijτs
T δqsj (10)

where Kijτs
T = Kijτs

0 +Kijτs
T1

+Kijτs
σ . The first term < δεTδσ > in Eq. (10) requires the constitutive

equation to be linearized. Therefore, we have:

δσ = δ(Cε) = Cδε = C(Bsj
l + 2 Bsj

nl)δqsj (11)

< δεTδσ > = δqT
τi < (Bτi

l + 2 Bτi
nl)

TC (Bsj
l + 2 Bsj

nl) > δqsj

= δqT
τi K

ijτs
0 δqsj + δqT

τi

(
2 Kijτs

lnl

)
δqsj + δqT

τi K
ijτs
nll δqsj + δqT

τi

(
2 Kijτs

nlnl

)
δqsj

= δqT
τi

(
Kijτs

0 + Kijτs
T1

)
δqsj

(12)

where Kijτs
T1

= 2 Kijτs
lnl + Kijτs

nll + 2 Kijτs
nlnl represents the nonlinear contribution of the FN of the

tangent stiffness matrix resulting from the linearization of the constitutive relation.
The evaluation of the second term < δ(δεT)σ > in Eq. (10) requires the linearization of the non-

linear geometrical relations. From Eqs. (2) and (3) and according to Crisfield [54], the linearization
of the virtual variation of the strain vector reads as follows [37]:

δ(δε) =



(δux,x )v δux,x + (δuy,x )v δuy,x + (δuz,x )v δuz,x

(δux,y )v δux,y + (δuy,y )v δuy,y + (δuz,y )v δuz,y

(δux,z )v δux,z + (δuy,z )v δuy,z + (δuz,z )v δuz,z[
(δux,x )v δux,z + δux,x (δux,z )v

]
+
[
(δuy,x )v δuy,z + δuy,x (δuy,z )v

]
+
[
(δuz,x )v δuz,z + δuz,x (δuz,z )v

]
[
(δux,y )v δux,z + δux,y (δux,z )v

]
+
[
(δuy,y )v δuy,z + δuy,y (δuy,z )v

]
+
[
(δuz,y )v δuz,z + δuz,y (δuz,z )v

]
[
(δuxx )v δux,y + δux,x (δux,y )v

]
+
[
(δuy,x )v δuy,y + δuy,x (δuy,y )v

]
+
[
(δuz,x )v δuz,y + δuz,x (δuz,y )v

]



(13)
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in which the subscript “v” represents the variation. Thus, we have:

δ(δε) = B∗
nl


δqxτiδqxsj

δqyτiδqysj

δqzτiδqzsj

 (14)

where

B∗
nl =



FτFsNi,xNj,x FτFsNi,xNj,x FτFsNi,xNj,x

FτFsNi,yNj,y FτFsNi,yNj,y FτFsNi,yNj,y

Fτ,zFs,zNiNj Fτ,zFs,zNiNj Fτ,zFs,zNiNj

FτFs,zNi,xNj + Fτ,zFsNiNj,x FτFs,zNi,xNj + Fτ,zFsNiNj,x FτFs,zNi,xNj + Fτ,zFsNiNj,x

Fτ,zFsNiNj,y + FτFs,zNi,yNj Fτ,zFsNiNj,y + FτFs,zNi,yNj Fτ,zFsNiNj,y + FτFs,zNi,yNj

FτFsNi,xNj,y + FτFsNi,yNj,x FτFsNi,xNj,y + FτFsNi,yNj,x FτFsNi,xNj,y + FτFsNi,yNj,x


(15)

After simple mathematical manipulations, we obtain:

< δ(δεT)σ > = <



δquxτi δquxsj

δquyτi δquysj

δquzτi δquzsj



T

(B∗
nl)

Tσ >

= δqT
τi < diag

[
(B∗

nl)
Tσ
]
> δqsj

= δqT
τi < diag

[
(B∗

nl)
T(σl + σnl)

]
> δqsj

= δqT
τi(K

ijτs
σl

+ Kijτs
σnl

)δqsj

= δqT
τiK

ijτs
σ δqsj

(16)

where the diagonal terms of the 3 × 3 diagonal matrix diag
[
(B∗

nl)
Tσ
]

are the components of the
vector (B∗

nl)
Tσ. According to Eqs. (2) and (4), σl = Cεl, σnl = Cεnl. Furthermore, also the

called geometric stiffness matrix Kijτs
σ = Kijτs

σl
+Kijτs

σnl
is defined, , which contributes to the tangent

stiffness matrix arising from the strain–displacement geometrical relation. Its specific expression can
be referred to the work [37] and is omitted for simplicity.

Once the FNs of secant and tangent stiffness matrices are available as the basic building blocks,
one can expand them to formulate the nonlinear governing equations and incremental equations
of the global system. Thus, the path-following Newton-Raphson linearization method (or tangent
method) is chosen to compute the nonlinear system. Readers are referred to [34, 37] for more
information about the employed Newton-Raphson method with a path-following constraint and the
explicit forms of tangent and secant stiffness matrices.

3 Numerical Results

This section presents numerical results of the large deflection and post-buckling of composite plates
based on CUF plate models. First, different refined composite plates under uniform transverse
pressure are calculated with symmetric and antisymmetric laminations. The equilibrium curves
are compared with those in the available literature. Then, the post-buckling analyses of laminated
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plates subjected to in-plane compressive loads are performed, and a comprehensive investigation is
carried out for the evaluation of the effects of different edge conditions on the plate post-buckling
behaviours.

3.1 Large deflection of composite plates subjected to uniform transverse pres-
sure

3.1.1 Cross-ply [0/90]s laminate with different edge conditions

For the first analysis case, a 4-layer [0/90]s square composite plate is studied. The geometric charac-
teristics of the structure are with width a = b = 30.48 cm and thickness h = 7.62 mm. This structure
is subjected to a uniform transverse pressure. The transverse pressure is fixed in the direction (z
axis), and the pressure values are investigated versus the corresponding displacements along the
equilibrium path. The following two kinds of boundary conditions are considered for this case: (a)
all edges are fully clamped in such a way that u = v = w = 0 at x = 0, a and y = 0, b; (b) all edges
are simply-supported in such a way that u = v = w = 0 at x = 0, a, z = 0 and y = 0, b, z = 0. The
material properties for this composite plate are reported in Table 1.

E1 (GPa) E2 = E3 (GPa) G12 = G13 (GPa) ν12 = ν13

12.60 12.62 2.15 0.2395

Table 1: Material properties of a 4-layer [0/90]s composite plate [16].

In this work, convergence analyses illustrated in Fig. 2 are conducted to evaluate the effects of
mesh approximation and kinematic expansion. First, the finite plate elements are 4×4Q9, 8×8Q9,
and 12×12Q9 with the fixed LD1 theory approximation order for each layer. Then, the kinematic
expansion order along the thickness direction is changed from LD1 to LD3, considering the 12×12Q9
in-plane mesh approximation. Moreover, the transverse displacement values for various models and
loads, along with the total degrees of freedom (DOFs), are reported in Table 2. As observed

0 1 2 3 4 5 6 7 8
0

4000

8000

12000

16000

20000

p z
a4
/(E

2h
4 )

uz /h

 4x4Q9-LD1
 8x8Q9-LD1
 12x12Q9-LD1

(a) Mesh approximation

0 1 2 3 4 5 6 7 8
0

4000

8000

12000

16000

20000

p z
a4
/(E

2h
4 )

uz /h

 12x12Q9-LD1
 12x12Q9-LD2
 12x12Q9-LD3

(b) Kinematic expansion

Figure 2: Convergence analysis for a 4-layer [0/90]s composite plate under uniform transverse pres-
sure with clamped edge conditions at the center of the composite plate. Comparison of (a) various
in-plane mesh approximations and (b) different orders of Lagrange expansion functions in the thick-
ness direction.

from Fig. 2 and Table 2, the convergence is achieved for the nonlinear response curves based on the
12×12Q9-LD1 model, which will be used to investigate the equilibrium curves of the above-mentioned
composite plate. Furthermore, the results show that the difference between the equilibrium paths
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CUF plate model DOFs
uz/h

pza
4/E2h

4 = 4000 pza
4/E2h

4 = 16000

4 × 4Q9-LD1 1215 4.44 7.16
8 × 8Q9-LD1 4335 4.42 7.03

12 × 12Q9-LD1 9375 4.41 6.98

Table 2: Equilibrium points of nonlinear response curves of a 4-layer [0/90]s composite plate under
transverse pressure with clamped edge conditions for different models and loads at the center of the
composite plate.

for the investigated CUF plate models is not significant in the case of the composite plate under
bending.

The equilibrium curves for this composite plate subjected to both clamped and simply-supported
edge conditions are illustrated in Fig. 3, which plots the normalized values of the displacement in
the middle point of the plate versus the normalized values of the applied transverse pressure. As
shown in this figure, the equilibrium curves predicted by the CUF linear and Full nonlinear (Full
NL) plate models match well with those in the available literature using the FSDT theory [16]. In
addition, the difference between linear and nonlinear models is more significant as the transverse
pressure value is increased. Also, the load-carrying capacity of the composite plate with the clamped
edge conditions is higher than that of the composite plate with the simply-supported ones.

Table 3 shows the displacement values based on different 2D CUF models and solutions in the
available literature [16] at the fixed load of Pza4

E2h4
= 100 for the clamped edge conditions, and at

the fixed load of Pza4

E2h4
= 25 for the simply-supported edge conditions. According to this table, the

displacement values of the 2D CUF Full NL and linear models agree well with the corresponding
values of the FSDT nonlinear and linear models, respectively.

0.0 0.4 0.8 1.2 1.6 2.0
0

50

100

150

200

250

300

p z
a4
/(E

2h
4 )

uz /h

 Full NL-12x12Q9-LD1
 Linear-12x12Q9-LD1
 Ref [16]-FSDT NL
 Ref [16]-FSDT Linear

(a) Clamped edge conditions

0.0 0.4 0.8 1.2 1.6 2.0
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p z
a4
/(E

2h
4 )

uz /h

 Full NL-12x12Q9-LD1
 Linear-12x12Q9-LD1
 Ref [16]-FSDT NL
 Ref [16]-FSDT Linear

(b) Simply-supported edge conditions

Figure 3: Comparison of the equilibrium curves for a 4-layer [0/90]s composite plate under uniform
transverse pressure with different edge conditions.

3.1.2 [45/-45/0/0/45/-45/90/90]s laminate with clamped edge conditions

A 16-layer [45/−45/0/0/45/−45/90/90]s square composite plate is analyzed as the second case. The
geometric characteristics are with width a = b = 25.4 cm and thickness h = 2.11 mm. A schematic
view of the investigated composite plate is illustrated in Fig. 4. The plate generates large deflection
due to a uniform transverse pressure, and the edges are fully clamped so that u = v = w = 0 at
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Model
Clamped Simply-supported

uz(mm) uz(mm)

Full NL 12×12Q9-LD1 7.57 5.62
Ref [16] - FSDT NL 7.71 5.67

Linear 12×12Q9-LD1 11.81 10.86
Ref [16] - FSDT Linear 12.19 11.21

Table 3: The displacement values based on different 2D CUF models and solutions in the available
literature [16] for the 4-layer [0/90]s composite plates under transverse pressure at the fixed load of
Pza4

E2h4
= 100 with clamped edge conditions, and at the fixed load of Pza4

E2h4
= 25 with simply-supported

edge conditions.

x = 0, a and y = 0, b. The material properties for this composite plate are reported in Table 4.

Mid-surface

(-45/45)
(0/0)

(-45/45)
(90/90)

254 mm

1
6

-l
ay

er
s

Figure 4: Schematic view of a 16-layer [45/− 45/0/0/45/− 45/90/90]s composite plate.

E1 (GPa) E2 = E3 (GPa) G12 = G13 (GPa) G23 (GPa) ν12 = ν13

131 13.03 6.41 4.72 0.38

Table 4: Material properties of a 16-layer [45/− 45/0/0/45/− 45/90/90]s composite plate [55].

The convergence analysis for this laminated case is illustrated in Fig. 5. Fig. 5a provides the
transverse deflection at the center of the composite plate for various CUF plate models, and the
in-plane meshes from 16Q9 to 144Q9 FEs are used, whereas only one LD1 is adopted for each layer
in the thickness direction. Instead, analyses based on different through-the-thickness kinematic
approximations are reported in Fig. 5b. Moreover, the transverse displacement values for various
CUF plate models and loads are tabulated in Table 5 along with the DOFs. As shown in Fig.
5 and Table 5, the convergence is obtained for the nonlinear static response when adopting the
12×12Q9-LD1 model.

Figure 6 depicts the equilibrium curves at the center of the laminated plate and the comparison
with reference solutions in the available literature. As illustrated in this figure, the equilibrium
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Figure 5: Convergence analysis for a 16-layer [45/− 45/0/0/45/− 45/90/90]s composite plate under
uniform transverse pressure with clamped edge conditions.

CUF plate model DOFs
uz/h

pza
4/E2h

4 = 400 pza
4/E2h

4 = 1600

4 × 4Q9-LD1 4131 0.81 1.71
8 × 8Q9-LD1 14739 0.89 1.80

12 × 12Q9-LD1 31875 0.90 1.82

Table 5: Equilibrium points of nonlinear response curves of a 16-layer [45/−45/0/0/45/−45/90/90]s
composite plate under uniform transverse pressure with clamped edge conditions for different CUF
plate models and loads. The displacement is calculated at the center of the composite plate.
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curves obtained by the CUF linear and Full NL plate models agree well with the corresponding
values from the available literature [55, 56, 57].
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Figure 6: Comparison of the equilibrium curves for a 16-layer [45/ − 45/0/0/45/ − 45/90/90]s
composite plate under uniform transverse pressure with clamped edge conditions.

3.1.3 Cross-ply [0/90] and [0/90]3 laminates with clamped edge conditions

The last large-deflection cases are 2-layer [0/90], and 6-layer [0/90]3 square composite plates with
the width of a = b = 30.48 cm and the thickness of h = 2.44 mm. The plates are subjected to
the large deflection due to a uniform transverse pressure, and the edges are fully clamped such that
u = v = w = 0 at x = 0, a and y = 0, b. The material properties for the two composite plates are
shown in Table 6.

E1 (GPa) E2 = E3 (GPa) G12 = G13 (GPa) G23 (GPa) ν12 = ν13

275.79 6.89 4.13 3.44 0.25

Table 6: Material properties of a 2-layer [0/90] composite plate [16].

In this case, the convergence analysis shown in Fig. 7 is conducted to evaluate the effects of in-
plane mesh kinematic expansion approximations. First, the finite plate elements are 2×2Q9, 4×4Q9,
and 8×8Q9 with the fixed LD1 kinematic approximation order for each layer. Then, the theoretical
expansion order along the thickness direction is changed from LD1 to LD3, while the finite plate
elements are fixed at 8×8Q9. Moreover, the transverse displacement values for various CUF plate
models and loads, along with the DOFs, are provided in Table 7. As can be seen in Fig. 7a, the
convergence is achieved in the upper bound and at least for the 4×4Q9 plate model, while the models
with different through-the-thickness kinematic approximations are converged in Fig. 7b. Therefore,
it is clear from Fig. 7 and Table 7 that the convergence can be reached for the nonlinear response
when adopting the 8×8Q9-LD1 CUF plate model.

The equilibrium curves for 2-layer [0/90] and 6-layer [0/90]3 composite plates subjected to
clamped edge conditions are shown in Fig. 8, which plots the normalized values of the displace-
ment at the center of the plate versus the normalized values of the applied transverse pressure. It
is evident in this figure that the equilibrium curves obtained by the CUF linear and Full NL plate
models provide excellent predictions compared with the solutions in the available literature using

11



0 1 2 3 4 5 6 7 8
0

50000

100000

150000

200000

250000

300000

p z
a4
/(E

2h
4 )

uz /h

 2x2Q9-LD1
 4x4Q9-LD1
 8x8Q9-LD1

(a) Mesh approximation

0 1 2 3 4 5 6 7 8
0

50000

100000

150000

200000

250000

300000

p z
a4
/(E

2h
4 )

uz /h

 8x8Q9-LD1
 8x8Q9-LD2
 8x8Q9-LD3

(b) Kinematic expansion

Figure 7: Convergence analysis for a 2-layer [0/90] composite plate under uniform transverse pressure
with clamped edge conditions.

CUF plate model DOFs
uz/h

pza
4/E2h

4 = 50000 pza
4/E2h

4 = 250000

2 × 2Q9-LD1 225 4.61 7.80
4 × 4Q9-LD1 729 4.18 7.07
8 × 8Q9-LD1 2601 4.17 7.05

Table 7: Equilibrium points of nonlinear response curves of a 2-layer [0/90] composite plate under
uniform transverse pressure with clamped edge conditions for different CUF plate models and loads.
The displacement is calculated at the center of the plate structure.
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the FSDT theory [16]. In addition, the load-carrying capacity of the composite plate with a 6-layers
is higher than that of the composite plate with a 2-layers.

Table 3 shows the displacement values based on the different 2D CUF plate models and solutions
in the available literature [16] at the fixed load of Pza4

E2h4
= 500 for the 2-layer [0/90] composite plate,

and at the fixed load of Pza4

E2h4
= 1500 for the 6-layer [0/90/0/90/0/90] composite plate. Based on

Table 3, the displacement values of the CUF linear and Full NL plate models match well with those
of the FSDT nonlinear and linear models, respectively.
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Figure 8: Comparison of the equilibrium curves for 2-layer [0/90] and 6-layer [0/90]3 composite
plates under uniform transverse pressure with clamped edge conditions.

Model
2-layer [0/90] 6-layer [0/90/0/90/0/90]

uz(mm) uz(mm)

Full NL 8×8Q9-LD1 1.79 2.45
Ref [16] - FSDT NL 1.78 2.43
Linear 8×8Q9-LD1 3.57 4.12

Ref [16] - FSDT Linear 3.52 4.11

Table 8: The displacement values based on different 2D CUF plate models and solutions in the
available literature [16] at the fixed load of Pza4

E2h4
= 500 for the 2-layer [0/90] composite plate, and

at the fixed load of Pza4

E2h4
= 1500 for the 6-layer [0/90]3 composite plate under uniform transverse

pressure.

3.2 Post-buckling of composite plates under in-plane compressive loads

3.2.1 Cross-ply [0/90]2 rectangular laminate with simply-supported edge conditions

A 4-layer [0/90]2 rectangular composite plate is considered as the first post-buckling case. The
structure has the length of a = 20 cm, the width of b = 5 cm, and the thickness of h = 2 mm.
The plate is subjected to in-plane compressive line loads in the x-axis direction, Nx (force per unit
width), see Fig. 10. The edges are simply-supported in such a way that one set of opposite edges
along width x = 0, a satisfy v = w = 0 (see S1 in Fig. 10), whereas another set of simply-supported
opposite edges along the length y = 0, b satisfy w = 0 at z = 0 (see S2 in Fig. 10). Furthermore, a
constraint condition satisfying u = v = 0 at the center point of the plate is used in order to avoid
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the rigid-body motion of the plate. The material properties, loading, and edge conditions for this
composite plate are shown in Table 9 and Fig. 10.

E1 (GPa) E2 = E3 (GPa) G12 = G13 (GPa) G23 (GPa) ν12 = ν13

220 5.5 3.3 2.75 0.25

Table 9: Material properties of a 4-layer [0/90]2 composite plate.

For this composite plate, the convergence analysis of the equilibrium curves is reported in Fig. 9,
which plots the normalized values of the displacement at the center of the plate versus the normalized
values of the applied compressive line load. To evaluate the effect of in-plane mesh and kinematic
expansion approximations, the finite plate elements are first considered to be 10×2Q9, 20×5Q9,
and 40×10Q9 with the fixed LD1 kinematic expansion for each layer. Then, the expansion order
along the thickness direction is changed from LD1 to LD3, while the finite plate element is fixed at
20×5Q9. Moreover, the transverse displacement values for various CUF plate models and loads are
reported in Table 10 along with the DOFs. Fig. 9a shows that the convergence is achieved in the
lower bound and at least for the 20×5Q9-LD1 plate model. Thus, as evident from Fig. 9 and Table
10, the convergence is achieved for the nonlinear response curves when using the 20×5Q9-LD1 plate
model.
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Figure 9: Convergence analysis for a cross-ply [0/90]2 laminate under in-plane compressive line loads
in the x-axis direction with simply-supported edge conditions.

Figure 10 shows the equilibrium curves for a cross-ply [0/90]2 composite plate obtained by the
2D CUF Full NL model, ABAQUS (ABQ) 2D shell model and ABQ 3D solid model. As shown
in Fig. 10, the equilibrium curves obtained by the 2D CUF Full NL model agree well with the
ABQ 3D solid model. In contrast, the ABQ 2D shell model predicts accurate results in only the
range of small/moderate displacements, while the difference become more remarkable when large
displacements are considered. For clarity, in the nonlinear analysis using the ABQ 3D solid model, a
fine mesh employing C3D20R elements is used to overcome the mesh instability problem due to the
hourglassing. Figure 11 depicts the deformed configurations and the displacement contours based
on the 2D CUF Full NL model (20×5Q9-LD1), ABQ 2D shell model (60×15 S8R) and ABQ 3D
solid model(60×15×4 C3D20R) at the fixed load of Nxba

E2h3
= 300 for the above-mentioned rectangular

composite plate. It is clear from this figure that the buckled pattern and the displacement values of
different regions predicted by the 2D CUF model have a good consistency with those based on the
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CUF plate model DOFs
uz/h

Nxba/E2h
3 = 200 Nxba/E2h

3 = 400

10 × 2Q9-LD1 1575 0.731 1.618
20 × 5Q9-LD1 6765 0.859 1.865
40 × 10Q9-LD1 25515 0.859 1.865

Table 10: Equilibrium points of nonlinear response curves of a cross-ply [0/90]2 laminate under
in-plane compressive line loads in the x-axis direction with simply-supported edge conditions for
different CUF late models and loads- The displacement is calculated at the center of the laminated
plate.
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Figure 10: Comparison of equilibrium curves for a cross-ply [0/90]2 laminate under in-plane com-
pressive line loads in the x-axis direction with simply-supported edge conditions based on the 2D
CUF Full NL model (20×5Q9-LD1), ABQ 2D NL model (60×15 S8R) and ABQ 3D NL model
(60×15×4 C3D20R).
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ABQ models.
Table 11 shows the displacements values at the fixed load of Nxba

E2h3
= 300 and the linear buckling

loads predicted by the above-mentioned three models for the same rectangular composite plate.
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Figure 11: Comparison of displacement contours at the fixed load of Nxba
E2h3

= 300 for a cross-ply
[0/90]2 laminate under in-plane compressive line loads in the x-axis direction with simply-supported
edge conditions based on (a) 2D CUF Full NL 20×5Q9+LD1 model, (b) ABQ 2D NL 60×15 S8R
model and (c) ABQ 3D NL 60×15×4 C3D20R model.

Model uz(mm) Linear Buckling Load (N/m)

2D CUF Full NL 20×5Q9+LD1 1.422 503360
ABQ 2D NL 60×15 S8R 1.134 497658

ABQ 3D NL 60×15×4 C3D20R 1.428 498976

Table 11: Comparison of displacements values at the fixed load of Nxba
E2h3

= 300 and the normalized
linear buckling loads for a cross-ply [0/90]2 laminate under in-plane compressive line load in the
x-axis direction with simply-supported edge conditions.

3.2.2 Cross-ply [0/90]n square laminates with simply-supported edge conditions

The cross-ply [0/90]n composite square plates are investigated in this section [16]. The subscript n
denotes the number of [0/90] layers. This structure has the width of a = b = 1 m and the thickness
of h = 2 mm. The plate is subjected to a uniformly distributed in-plane compressive line load in
the y-axis direction Ny (force per unit length, see Fig. 13) and the edges are simply supported that
one set of opposite edges along the x-axis direction x = 0, a satisfy v = w = 0, whereas another set
of simply-supported opposite edges along the y-axis direction y = 0, b satisfy u = w = 0 (see S in
Fig. 13). Table 12 provides the material properties of the composite plate.
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E1 (GPa) E2 = E3 (GPa) G12 = G13 (GPa) G23 (GPa) ν12 = ν13 ν23

250 6.25 5.125 3.25 0.24 0.49

Table 12: Material properties of a [0/90]n composite plate [16].

For this composite plate structure, the convergence analysis of the equilibrium curves is plotted
in Fig. 12, which plots the normalized values of the displacement in the middle point of the laminate
versus the normalized values of the applied compressive load. Moreover, the transverse displacement
values for various CUF plate models and loads are reported in Table 13 along with the DOFs. As
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Figure 12: Convergence analysis of the in-plane mesh approximation for a cross-ply [0/90] laminate
under in-plane compressive line loads in the y-axis direction with simply-supported edge conditions.

CUF plate model DOFs
uz/h

Nya
2/E2h

3 = 15 Nya
2/E2h

3 = 35

6 × 6Q9-LD1 1521 0.90 1.97
9 × 9Q9-LD1 3249 0.97 2.11

12 × 12Q9-LD1 5625 1.01 2.19
18 × 18Q9-LD1 12321 1.03 2.20

Table 13: Equilibrium points of nonlinear response curves of a cross-ply [0/90] laminate under
in-plane compressive line loads in the y-axis direction with simply-supported edge conditions for
different CUF plate models and loads. The displacement is calculated at the center of the laminated
plate.

shown in Fig. 12 and Table 13, the convergence is achieved at least for the 12×12Q9-LD1 model.
The equilibrium curves obtained by the 2D CUF Full NL model and solutions in the available

literature are compared in Fig. 13. In this figure, the horizontal lines show the corresponding linear
buckling load by the CUF method. It is clear in Fig. 13 that the equilibrium curves predicted by
the 2D CUF Full NL model agree well with those available in the literature [16]. The results show
the fact that by assuming a constant value for the plate thickness, increasing the layer number of
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the composite plate results in higher structural stiffness and load-carrying capacity of the plate.
Moreover, the linear buckling strength is increased significantly for the [0/90]4 plate with 8-layers
compared to the [0/90]1 plate with 2-layers. Also, it can be understood that the linear buckling
strength of the [0/90] composite plate is dramatically lower than all other investigated composite
plates. It is noted from Fig. 13 that no exact buckling load exists for the [0/90]n composite plate
structure based on the CUF Full NL plate model. This is because the antisymmetric composite
laminate is under in-plane compressive loads. The buckling load predicted by the linear buckling
analysis is much higher than that based on the Full NL plate model. Therefore, the linear buckling
analysis cannot be utilized to calculate the buckling load of the antisymmetric plate structure due
to the curvature introduced by the in-plane compressive loads.

Figure 13: Comparison of the equilibrium curves for different cross-ply [0/90]n laminated plates
under in-plane compressive line loads in the y-axis direction with simply-supported edge conditions
based on 2D CUF Full NL 12×12Q9-LD1 model.

3.2.3 Angle-ply [45/-45]s laminate with simply-supported edge conditions

This analysis case deals with angle-ply [45/−45]s composite square plate under the combined loading
[55]. The width of the plate is a = b = 0.25 m and the thickness is h = 2.5 mm. Different loading
cases are assumed for the composite plate such as the combination of uniformly distributed in-plane
compressive bi-axial line loads of Nx and Ny (Nx = Ny in the current example), the in-plane shear
load of Nxy = Nx, and the uniform transverse pressure of Pz = 0.1Nx. The edge conditions are
simply-supported in such a way that only the transverse deflections are restrained at the edges.
The material properties and a schematic view of the loading conditions are shown in Table 14 and
Fig. 14, respectively.

E1 (GPa) E2 = E3 (GPa) G12 = G13 (GPa) ν12 = ν13

206.9 5.2 2.6 0.25

Table 14: Material properties of a 4-layer [45/− 45]s composite plate [55].
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Figure 14: Combined loading of a laminated composite plate: positive in-plane shear, in-plane
compression, and the uniform transverse pressure.

For this composite structure, the convergence analysis of the equilibrium curves is provided in
Fig. 15, which plots the normalized values of the displacement in the middle point of the plate versus
the values of the loading factor (λ). It is evident from Fig. 15 that the convergence is reached at
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Figure 15: Convergence analysis for an angle-ply [45/ − 45]s laminate under the combined loading
with simply-supported edge conditions.

least for the 15×15Q9-LD1 plate model.
Fig. 16 illustrates how the deflection at the middle of the laminate varies by increasing the loading

after the bifurcation point. The results show the fact that the direction of the applied shear loading
plays a pivotal role in the post-buckling behaviour of the angle-ply composite plate. Specially, in
contrast with the negative shear loading, the angle-ply plate with positive shear loading shows higher
rigidity and load-carrying capacity, which will be further displayed below.

The equilibrium curves for this angle-ply composite plate subjected to different combined loadings
are shown in Fig. 17, which plots the normalized values of the displacement in the middle point of
the plate versus the normalized values of the applied compressive line load in the x-axis direction.
The horizontal lines in this figure display the corresponding linear buckling loads predicted by the
CUF method. It is found from Fig. 17 that for this symmetric composite structure, the buckling
loads predicted by the linear buckling analysis are almost the same as those based on CUF Full NL
plate model, even if there exists uniform transverse pressure applied to the plate. Thus, the linear
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Figure 16: Comparison of the equilibrium curves based on the values of loading factor λ for an angle-
ply [45/− 45]s laminate under different combined loadings with simply-supported edge conditions.

buckling analysis can be exploited to first predict the buckling load of the symmetric composite
structure. In addition, the linear buckling load of the angle-ply plate with positive shear is higher
than other loading cases, which demonstrates the previously mentioned fact that the angle-ply plate
with positive shear loading has higher rigidity and load-carrying capacity. Finally, it is noted that as
the transverse pressure is relatively small compared with the in-plane loads, the equilibrium curves
with transverse pressure gradually approach those without transverse pressure when continuously
increasing the loading.

3.2.4 Cross-ply [0/90] square laminate with different edge conditions

The effect of different plate edge conditions on the post-buckling nonlinear response of the cross-ply
composite plate under in-plane compressive load is presented for the final post-buckling example.
This problem deals with a cross-ply [0/90] square plate with different edge conditions [30]. This
2D model has the width of a = b = 1 m and the thickness of h = 1 cm. In the first analysis
case, the plate is subjected to a uniformly distributed in-plane compressive line load in the x-axis
direction Nx, while in the second analysis case, the plate is subjected to a uniformly distributed
in-plane compressive line load in the y-axis direction Ny. The edge conditions are SSSS, SSCC,
SSSC, SSFC, and SSFS. The letters “S”, “C”, and “F” indicate simply-supported, clamped, and
free edge conditions. It should be noted that the third and fourth letters of the boundary condition
refer to y = b and y = 0. Furthermore, the clamped edge conditions satisfy u = v = w = 0 at
the corresponding edge and the simply-supported edge conditions satisfy v = w = 0 at x = 0, a, or
u = w = 0 at y = 0, b. Material properties for the bove-mentioned composite plate are shown in
Table 15.

E1 (GPa) E2 = E3 (GPa) G12 = G13 (GPa) G23 (GPa) ν12 = ν13

220 5.5 3.3 2.75 0.25

Table 15: Material properties of a 2-layer [0/90] composite plate [30].
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Figure 17: Comparison of the equilibrium curves for an angle-ply [45/−45]s laminate under different
combined loadings with simply-supported edge conditions.

For this cross-ply composite plate with simply-supported edge conditions, the convergence anal-
ysis of the equilibrium curves for the in-plane compressive loads in the x-axis direction is provided
in Fig. 18. This figure shows that the convergence is obtained at least for the 12×12Q9-LD1 plate
model. The equilibrium curves based on this convergence plate model are investigated for SSSS,
SSCC, SSSC, SSFC, and SSFS edge conditions in Figs. 19 and 20 to evaluate the effect of dif-
ferent edge conditions on the nonlinear response of the cross-ply composite plate. The horizontal
lines in these two figures’ enlarged views indicate the corresponding linear buckling loads by the
CUF method. The results show that the load-carrying capacity of the composite plate with the
clamped edge conditions is higher than other investigated edge conditions. Furthermore, it can be
understood that the presence of a free edge reduces the buckling strength significantly. The current
method can also predict the nonlinear response of the composite plate beyond the limit load and
the snap-through instability.
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Figure 18: Convergence analysis of the in-plane mesh approximation for a cross-ply [0/90] laminate
under in-plane compressive loads in the x axis direction with simply-supported edge conditions.

Figure 19: Comparison of the equilibrium curves for a cross-ply [0/90] laminate under in-plane
compressive line loads in the x-axis direction with different edge conditions based on 2D CUF Full
NL 12×12Q9-LD1 model.
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Figure 20: Comparison of the equilibrium curves for a cross-ply [0/90] laminate under in-plane
compressive line loads in the y-axis direction with different edge conditions based on 2D CUF Full
NL 12×12Q9-LD1 model.

4 Conclusions

In this work, large deflection and post-buckling analyses of laminated composite plates have been
investigated by employing the Carrera Unified Formulation (CUF) and the layerwise (LW) approach
based on Lagrange expansion. The path-following Newton-Raphson linearization method has been
adopted to compute the full geometrically nonlinear plate problems. Different two-dimensional (2D)
composite plate structures subjected to large deflections/rotations and post-buckling have been
analyzed and the numerical results have been compared with solutions in the available literature.
Furthermore, the linear buckling load of the composite plates has been calculated for the post-
buckling cases. The effects of different parameters, such as the stacking sequence, number of layers,
loading way, and edge conditions, have been investigated and discussed in detail. The results have
demonstrated that:

� The equilibrium curves obtained by the CUF linear and Full NL models agree well with those
in the available literature or the ABAQUS 3D solid model solutions;

� Increasing the layer number of the composite plates results in the higher buckling strength and
load-carrying capacity of the composite structures;

� For the angle-ply laminate subjected to the combined loading (in-plane shear and bi-axial com-
pression), the direction of the applied shear plays a pivotal role in the post-buckling behaviour
of the composite plate, and the angle-ply plate with positive shear loading shows higher rigidity
and load-carrying capacity;

� The buckling strength and the load-carrying capacity of the composite plates with the clamped
edge conditions are higher compared to other investigated edge conditions, and the presence
of a free edge reduces the buckling strength significantly;
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� The linear buckling analysis cannot be utilized to calculate the buckling load of the antisym-
metric structure. However, the buckling loads predicted by the linear buckling analysis for
symmetric composite structures are almost the same as those based on CUF Full NL plate
model.

Further developments of the proposed methodology are being studied, such as a nonlinear local
analysis and a localized buckling with the advantage of coupling the global/local approach with
optimization tools to reduce computation time. Furthermore, the same nonlinear methodology will
also be adopted to perform dynamic analyses. Other important topics under development are the
extension of CUF-based nonlinear finite elements for the analysis of deployable space structures,
elastomers and mechanical meta-materials. Preliminary results have shown some potential and
advantages on the accuracy of the results and processing times.
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