
01 October 2023

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Solid Tumors Are Poroelastic Solids with a Chemo-mechanical Feedback on Growth / Ambrosi, D; Pezzuto, S.;
Riccobelli, D.; Stylianopoulos, T.; Ciarletta, P.. - In: JOURNAL OF ELASTICITY. - ISSN 0374-3535. - 1:(2017), pp. 1-18.
[10.1007/s10659-016-9619-9]

Original

Solid Tumors Are Poroelastic Solids with a Chemo-mechanical Feedback on Growth

Publisher:

Published
DOI:10.1007/s10659-016-9619-9

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2714853 since: 2021-04-05T09:02:13Z

Kluwer Academic Publishers



Solid tumors are poroelastic solids

with a chemo�mechanical feedback on growth

D. Ambrosi1, S. Pezzuto2, D. Riccobelli1, T. Stylianopoulos3, and P. Ciarletta1,
1 MOX�Dipartimento di Matematica, Politecnico di Milano,

piazza Leonardo da Vinci 32, 20133 Milano, Italy,
2 Università della Svizzera Italiana, Institute of Computational Science,

Faculty of Informatics, Via Giuseppe Bu� 13, 6900 Lugano, Switzerland,
3 Cancer Biophysics Laboratory,

Department of Mechanical and Manufacturing Engineering,

University of Cyprus, P.O. Box 20537 Nicosia 1678, Cyprus.

November 17, 2016

Abstract

The experimental evidence that a feedback exists between growth and stress in
tumors poses challenging questions. First, the rheological properties (the �constitu-
tive equations�) of aggregates of malignant cells are still a matter of debate. Secondly,
the feedback law (the �growth law�) that relates stress and mitotic�apoptotic rate is
far to be identi�ed. We address these questions on the basis of a theoretical analysis
of in vitro and in vivo experiments that involve the growth of tumor spheroids. We
show that solid tumors exhibit several mechanical features of a poroelastic material,
where the cellular component behaves like an elastic solid. When the solid compo-
nent of the spheroid is loaded at the boundary, the cellular aggregate grows up to an
asymptotic volume that depends on the exerted compression. Residual stress shows
up when solid tumors are radially cut, highlighting a peculiar tensional pattern.
By a novel numerical approach we correlate the measured opening angle and the
underlying residual stress in a sphere. The features of the mechanobiological system
can be explained in terms of a feedback of mechanics on the cell proliferation rate
as modulated by the availability of nutrient, that is radially damped by the bal-
ance between di�usion and consumption. The volumetric growth pro�les and the
pattern of residual stress can be theoretically reproduced assuming a dependence of
the target stress on the concentration of nutrient which is speci�c of the malignant
tissue.
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Introduction

After Folkman & Hochberg [1], the multicellar spheroid is a standard in vitro system
used to evaluate the uncontrolled duplication rate of a tumor cell aggregate. A tumor
spheroid is a cluster of cells �oating in a culture medium, it is an ensemble of cells
freely proliferating in an environment with large availability of nutrient. The malignant
cells have lost the ability to self�regulate their own number through a normal apoptosis
mechanism, regulated by the homeostasis with the environment; they duplicate in an
uncontrolled manner, isotropically, producing a nearly spherical shape.
In the standard free�growth case, a plot of the diameter of the tumor vs. time typically
exhibits an early stage of exponential growth, followed by a linear one. The transition
from one regime to the other is mainly regulated by the availability of nutrient, that is
driven by di�usion through the intercellular space. In fact, when the size of the tumor
Ro(t) is smaller than the typical di�usion length, the nutrient is everywhere available in
the spheroid and the growth is volumetric [2]:

dR3
o

dt
’ Ro3; (1)

so that Ro ’ et. Conversely, when the diameter of the spheroid is much larger than the
penetration length of the nutrient, one obtains surface growth, that is

dR3
o

dt
’ Ro2; (2)

and Ro ’ t. In a realistic intermediate regime, the concentration of nutrients decays
exponentially with the radius [3], favoring the external proliferation vs the internal one.
This work is motivated by a number of recent experiments that demonstrate the depen-
dence of the growth rate of a tumor spheroid on the mechanical load at the boundary.
Some papers report a reduced apoptosis, with no signi�cant changes in proliferation [4].
According to others, the cell division, rather than the cell death rate, is a�ected by stress
[5]. To disentangle the puzzle of the biological feedback of stress on growth, we discuss
�rst the rheology of the cellular aggregate as a living material, to point out its constitu-
tive properties. We illustrate a number of arguments that support the hypothesis that a
solid tumor is a poroelastic material, where the cells and the extra-cellular matrix rep-
resent the solid elastic component. A mathematical model based on such an assumption
is able to predict inhomogeneities that can not be justi�ed by �uid-like assumptions.
In the last section we address the numerical simulation of the growth of a murine tumor.
In vivo tumors reach a larger size, they can be partially vascularized, they have a more
complex internal composition and exhibit release of residual stress. We test the ability of
our mathematical model comparing the observed and the predicted opening angle after
excision.
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1 Background: elementary rheology and growth theory

The simplest distinction among �uid and solid materials can be based on an elementary
ideal experiment: under a pure shear load �uids �ow, while solids do not, at the time
scale of interest. This draconian categorization encompasses also viscoelastic materials,
as they typically exhibit �uid-like or solid-like properties depending on the relaxation
time scales. As an example, a "Maxwell �uid" behaves as a solid if observed at a time
scale much smaller than its relaxation time. Analogously, a "Kelvin solid" �ows like
a �uid when observed on short enough time scales. Things become a little bit more
complex when �ow is prompted only above a yield stress, but the distinction persists
when loads are neatly below or beyond the threshold.
Many biological materials are composed by a mixture of several components: interstitial
�uid, di�erent species of cells, collagen �bres, and so on. For these microscopically
heterogeneous materials the overall mechanical behavior is represented, at the macroscale,
by the superposition of single phase contributions, proportionally to the volume fraction
occupied by each component. The archetypical example of a mixture is a porous elastic
material permeated by a �uid: the stress in a poroelastic medium is the sum of the
interstitial pressure of the �uid plus the solid stress, which is proportional to the solid
volume fraction.
Fluids and solids behave in a very di�erent manner when internal stresses arise not
because of external loads, but as due to the inner material reorganization (growth and
remodelling). The simplest example are thermal stresses in inhomogeneously heated
materials with temperature-dependent density: residual stresses relax in �uids, not in
solids. The persistence of residual stress is therefore the signature of solid-like behavior
which has to be properly addressed in a modelling framework. In case of small strains,
linearized elasticity applies and stress (and strains) can be superimposed. In case of
large strains, as it is often the case with soft matter, a multiplicative decomposition of
the tensor gradient of deformation has to be introduced.
For our purposes, we represent the motion of every material point of a continuous body
as a smooth invertible map �(X) with Jacobian F = @�

@X . For a nonlinear elastic material
the strain energy is W (F); when the body grows and residual stress is present, the strain
energy rewrites

W (FG�1); (3)

where G is usually called �growth tensor�.

2 Are solid tumors �uids?

While the availability of nutrients is the major factor a�ecting tumor growth, other ex-
ternal agents can play a role. The mechanical in�uence of external loading on tumor
growth has been �rst demonstrated by Helmlinger et al. [4]. They designed an experi-
mental setup in order to control the load applied at the boundary of tumor cell spheroids
in vitro in agarose gels, and checked the in�uence of such a stressed state on the growth
rate of the multicell spheroid. They compared the free growth of a �oating multicell
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spheroid with the size of cell aggregates placed into the agarose gel. The gel is produced
at a given (known) sti�ness by suitably tuning the concentration of the solid phase. As
the spheroid grows, it displaces the surrounding gel, which then exerts a compressive
force at the surface of the tumor spheroid. An a priori mechanical characterization of
the gel allows to calculate the pressure exerted by the gel on the spheroid, depending on
its radius.

The main result of the experiments carried out by the group of Rakesh Jain [4] is that
the stress �eld reduces the �nal size of the spheroids, with a decreased apoptosis and non
signi�cant changes in proliferation. It is therefore clear that a precise determination of
the constitutive laws that characterize the mechanical behavior of a tumour spheroid is
a pre-requisite in order to assess a reliable stress�growth relationship.

Early attempts in this respect assumed that a cell conglomerate behaves like a vis-
coelastic �uid, able to bear a static load because of its surface tension [6]. At equilibrium,
measurements of the curvature radius of a loaded sample provide the surface tension of
the ��uid".
According to the Laplace formula, the pressure jump across a curved interface between
two �uids is inversely proportional to the radius of the curvature. If the spheroid is
loaded with the force F acting on a contact surface A, by continuity of the stress, the
inner pressure is F=A and therefore

F
A

= �
�

1
R1

+
1
R2

�
; (4)

where � is the surface tension and R1; R2 are the curvature radii of the free surface.
According to the experiments, the surface tension of a cell aggregate ranges in 1�22�10�3

Newton/meter (as a reference value, the surface tension of the water is about 72 � 10�3

Newton/meter). Relaxation times range between 1 and 50 seconds [6].
The opposite approach is to describe a solid tumour as a viscoelastic solid. In this

case, at equilibrium the external load should be balanced by the stress in the body,
depending on the strain of its material points. Assuming an homogeneous deformation
and using the same data provided by the experiments above, one can estimate the Young
modulus E according to the following rule:

F
A

= E
h� h0

h0
; (5)

where h; h0 are the height of the loaded and unloaded sample, respectively. In this case
one �nds E ’ 4 kPa, a typical soft�range value for living cells [7].

A second argument supporting the assumption of solid�like constitutive equations is
based on the spatial correlation between stress and apoptosis�mitosis in loaded ellipsoidal
spheroids [8]. The non�homogeneous proliferation pattern can be produced only by a
solid-like material: a hydrostatic generates a pressure independent on the position in any
symmetric geometry, while in a solid material, high stress concentrates around the tips.

Furthermore, the work by Netti et al. [9] support the view that tumors behave as
solid-like materials. In their study, stress-relaxation experiments of various tumor types
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in con�ned compression were performed and at the end of the experiment all tumors
equilibrated in a constant, non-zero stress, typical of viscoelastic solids.

Finally, evidence of residual stress in murine and human tumors is reported by
Stylianopoulos et al [10]. They cut the tumor azimuthally and observed an opening
angle, which is the signature of a solid like behavior. Residual stress is likely produced
by an inhomogeneous duplication rate of the cells as well as by mechanical interactions be-
tween the cells and extracellular matrix components, particularly collagen and hyaluronic
acid, that strain the tumor microenvironment. Only solids can contain residual stress,
due to the evolution of their relaxed con�guration produced by incompatible growth [11]:
energy can be elastically stored in the unloaded body only if it is a solid. In particular,
Stylianopoulos et al. observed a compressive residual stress (i.e. negative opening angle)
in the kernel and a tensile residual stress (positive opening angle) in the outer shell of the
tumor. This behaviour is paradoxical in terms of availability of nutrients: their concen-
tration is larger near the boundary, thus favoring proliferation and eventually producing
compressive stress. In a solid tumor in vivo, this intuitive explanation does not work and
we address such a puzzle in the next sections.

3 Growth and stress

An evocative de�nition of a tumor is �a living system that has lost its self�regulating abil-
ity towards homeostasis�. In other words, tumor cells do not correctly detect or elaborate
the external signals that should regulate its proliferation and apoptosis, and duplicate
without control. When the stress state of the system is not in homeostatic mechanical
equilibrium, it remodels (growing or resorbing matter) until the target tensional state is
recovered. In this respect, all the genetic information that detail the shape and function
of organs are encoded in the target stress. A suggestive mechanical interpretation of
a tumor therefore naturally arises: a tumor is an open system (in terms of mass and
energy) with a damaged inner mechano-biological control inducing a disregulation of
tensional homeostatis, i.e. the feedback that normally self�regulates growth in terms of
stress�modulated control does not properly work. In other words, tumor cells regulate
production and consumption not according to a bene�t of the whole organism but only
in view of maximum invasion of malignant cells: the control on growth does indeed exist,
also as a function of available nutrients, but the corresponding duplication/apoptosis
strategy has a di�erent aim.

The experiments illustrated in the section above do not only demonstrate the exis-
tence of residual stress in tumors, but they also show that the inhomogeneous prolifer-
ation and apoptosis, triggered by the di�erential availability of nutrients, is enhanced
in a mechanically loaded spheroid. Their main result is that mechanical stress a�ects
proliferation and apoptosis inside the spheroid in a non�homogeneous way, a correlation
existing between strong apoptosis and high stress.

In another series of experiments, the compression of the spheroid is controlled by
the concentration of a large molecule (Dextran) soluted in the bath [12, 5]. As Dextran
molecules cannot enter neither the cell membrane nor the interstitial (intracellular) space,
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an imbalance of osmotic pressure at the boundary loads the cellular aggregate. It is
reported that for larger concentrations of Dextran the diameter of the spheroid grows
slower and reaches a plateau at smaller radius, in agreement with the results of Helmlinger
et al [4]. While a single cell is almost incompressible with respect to the pressure due to
the concentration of Dextran, the volume of the cell aggregate strongly depends on the
osmotic pressure [13]. The reduction in volume in the cellular aggregate therefore mainly
occurs because of reduction of the intercellular space, in the inner region of the spheroid.

The large number of available data suggests that a cell aggregate behaves as a poroe-
lastic material. The mathematical modelling of solid tumors as porous deformable media
has been addressed in a number of papers [14, 15, 16]; it a suitable mechanical framework
to account for the coupled dynamics of cells and extracellular matrix (the solid matrix)
and interstitial �uid. The interstitial �ow is typically represented by a Darcy-type equa-
tion, while the mass exchange among phases which allows a prediction of the growth of
the mass.

In the experimental setup by Montel et al. [12, 5] the porous media theory o�ers
a transparent explanation for interplay between the pressure of the �uid, the chemical
potential of the Dextran and the stress in the solid matrix. The external load at the
boundary is the sum of two terms: the pressure of the �uid plus the chemical potential of
the Dextran. Observing that the diameter of the macromolecules is typically larger than
the size of the intracellular pores, we split the �uid load into two contributions: one that
balances the interstitial pressure, the other one loading the solid (cellular) component.
Formally, we assume that the global balance at the boundary

(�p� pD)out n = (T� pI)in n; (6)

splits into

�pout = �pin; (7)

�pDn = Tn: (8)

where p is the pressure of the interstitial �uid, pD is the osmotic pressure contribution due
to the concentration of Dextran, T is the Cauchy stress tensor in the cellular aggregate,
I is the identity tensor and n is the outgoing normal (radially directed) vector. This
assumption is in agreement with the observation that the solid stress is not a�ected by
the interstitial �uid pressure [10].
On the basis of this hypothesis, the stress state in the loaded spheroid can be determined
solving the force balance equations for the solid component only. Assuming spherical
symmetry, the tensor gradient of deformation and the growth tensor read

F = diag
�
r0;

r
R
;
r
R

�
; G = g(r) I; (9)

where r(R; t) is the radial coordinate of the material point that was in R at time t = 0,
I is the identity tensor and the prime 0 denotes derivation in R. The solid component of
the poroelastic spheroid must satisfy the force balance equation

d
dr
Trr +

2
r

(Trr � T��) = 0; (10)
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with boundary conditions

r(0; t) = 0; Trr(ro) = �pD: (11)

where ro = r(Ro; t). A simple representation of an hyperelastic compressible material is
provided by the strain energy

Ŵ (F) =
�
2

(F � F� 2 log(det F)� 3) : (12)

If the material grows, the strain energy depends on the growth tensor too, through a
classical multiplicative decomposition

W (FG�1) =
�
2

�
FG�1 � FG�1 � 2 log(det(FG�1))� 3

�
; (13)

where � is the shear elastic modulus. First variation and pull back to the reference
con�guration yields the �rst Piola-Kirchho� stress

P = � det(G)
�
FG�1G�T � F�T

�
; (14)

where, explicitly,

PRR = �g3
�
r0

g2 �
1
r0

�
; P�� = �g3

�
r
Rg2 �

R
r

�
: (15)

The force balance equation (10) in material coordinates reads

d
dR

PRR +
2
R

(PRR � P��) = 0; (16)

or, explicitly,

d
dR

�
r0g �

g3

r0

�
= 2

�
g
r
R2 �

g3

r
� g

r0

R
+

g3

r0R

�
; (17)

to be supplemented by boundary conditions (11) rewritten in material coordinates

PRR(Ro) = (det F)Trr F�1
rr jR0 = �(det F) pD F�1

rr jR0 ; (18)

or, explicitly

�g3
�
r0

g2 �
1
r0

�
jR0 = �pD

r2

R2 jR0 : (19)

For constant g the force balance equation (17) with boundary conditions (19) has solution

r(R; g) = gR; (20)

where  is the positive root of the third order polynomial

f() = pD3 + �2 � � = 0: (21)

One may notice that f(0) = �� < 0 while f 0 is always positive, therefore the root is
unique. Moreover f(1) = pD > 0, so that it must be 0 <  < 1.
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Remark

One could observe that poroelasticity has been advocated for the model above, but its use
is apparently very limited: there is no interstitial �uid �ow, and the porosity, the volume
fraction of solid vs. liquid component, is not even mentioned. There is a rationale behind
such a minimal choice. Fluid �ow is so slow that it carries no contribution in the stress
balance equation; of course, mass exchange among species is the true physical mechanism
for the growth of the tumor mass, however here it is directly incorporated in the growth
tensor G. Secondly, the porosity of the matrix should contribute to the stress tensor T
with a multiplicative factor depending on the determinant of the gradient of deformation;
as a matter of fact, we incorporate such a contribution in the compressibility of the strain
energy function (12). The numerical results to be illustrated in the next sections will
con�rm that good predictions can be obtained even with such a simple constitutive law,
thus con�rming that the theory weakly depends on the speci�c constitutive equation for
the strain energy density of the solid matrix. The crucial ingredient of the model is the
multiphase split of the load at the boundary into a �uid and a solid component (9).

4 Mechanobiological feedback and equilibrium

In the general case, a growth law for G is to be supplemented to close the di�erential
equation (17-19). We consider �rst the case of growth controlled by a mechanical feedback
only. If nutrients are largely available everywhere, the growth in time is expected to
depend on the stress only. In �nite elasticity, the growth must depend on an invariant
measure of the stress. A thermodynamically consistent choice is to adopt the dependence
on the Eshelby stress [17]. To minimize the calculations, while preserving the essential
biophysical features, we chose here to measure the stress in terms of the second Piola-
Kirchho� tensor S, which reads

S = F�1P: (22)

The mitotic rate of single tumor cells is known to be inhibited by compression [4], and
promoted by tension [18], and a very simple growth law that can account for such a
behavior is

_g =
g
�

�
1 +

trS
3��

�
g
�

�
; (23)

where 1=� is the mitotic rate in absence of external stimuli, �� is a threshold stress and the
last term in brackets accounts for apoptosis, the natural cellular death rate. We highlight
that the assumption of an isotropic growth tensor allows to set a functional dependence
on the trace of S. For a general anisotropic growth a more complex dependence on the
principal stresses would be needed, guided by thermo-mechanical requirements.
Consider the unloaded case �rst: �pD = 0 and at time t = 0 the solid component has
g = 1. As S = 0, the evolution in time of G is autonomous and independent of the radial
position, so that g(t) is constant in space and its evolution in time initially follows the
well known exponential growth in size of the cell aggregate up to a saturation dictated
by the value of �. The solid component of the poroelastic spheroid is therefore relaxed,
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exactly as a sponge in the deep ocean, where the interstitial pressure balances the head
of the water.
If Dextran is present, the extra pressure compresses the cellular phase and triggers the
mechanobiological feedback via equations (23). The growth g(t) is given by the solution
of the �rst order ordinary di�erential equation

_g =
g
�

�
1� g

�
pD
��

+
1
�

��
: (24)

Equation (24) has two equilibrium points: g = 0, always unstable, and

ge =
���

�pD + ��
; (25)

which is always stable (for the �xed r(R; t) of (20)). The mathematical model therefore
predicts the following scenario, corresponding to the observed dynamics. For null osmotic
pressure, the system grows exponentially, then it tends to saturation. For su�ciently
large osmotic pressure the stable equilibrium depends on the applied pressure pD. After
derivation of equations (21) and (25) we get

dge
dpD

= �
�2��

(�pD + ��)2
 (2pD + 2�)

3pD + 2�
< 0: (26)

The solution of equation (24) explains the plateau in growth vs time reported for loaded
spheroids at di�erent Dextran concentrations, but it does not account for the radial den-
sity inhomogeneities observed in excised aggregates. Remaining in a purely mechanical
setting, an explanation for such a discrepancy between theory and experiments could be
provided by the possible onset of an instability for the equilibrium solution (24) of the
coupled problem. This question is addressed in the appendix, where we study the stabil-
ity of the solution of the nonlinear system (17) and (23) with boundary conditions (19)
in order to explain the emergence of inhomogeneity. The result of the analysis is that the
small perturbations are always damped in time, so that a purely mechanical framework
cannot account for the observed dependency of growth on the radial coordinate. The
biophysics of the system needs therefore to be enriched: in the next section we show that
the kinetics of nutrients can trigger dependence of the asymptotic state on the radial
coordinate.

5 Dynamics of the nutrient and inhomogeneity of growth

In an avascular tumor, nutrients are provided to malignant cells by di�usion through the
boundary of the spheroid. The balance between di�usion and uptake is fast with respect
to the growth times (one hour vs. days) and obeys a linear reaction�di�usion equation:

�
1
r2

d
dr

�
r2 dc
dr

�
= �

c
�2 ; (27)
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with boundary conditions

dc
dr
jr=0 = 0; c(r0) = c0; (28)

where the decay length � is on the order of 100-200 micrometers and c0 is the external
(constant) concentration. We remind that the boundary value problems refers to the
avascular phase of tumor growth. At later stages, neovascularization can be triggered
after the di�usion-limited radius is reached. In such a case, a distributed nutrient supply
from the tumor vascular network should also be taken into consideration.
During the avascular growth phase, the concentration pro�le can be calculated by direct
integration of the equation in spatial coordinates [3], yielding an exponential decay of
the concentration of nutrient going from the boundary to the center of the spheroid:

c(r) = c0
r0

sinh(r0=�)
sinh(r=�)

r
: (29)

To account for the combined action of stress and nutrient pattern, we propose to rephrase
equation (24) to the following growth law

_g =
g
�
c

�
1 + c

�
trS
3��

�
g
�

��
: (30)

According to equation (30), the proliferation of the malignant cells is enhanced by the
availability of nutrient, as it is usually assumed in mathematical models that do not
speci�cally account for mechanics. In the same way as in equation (23), it is expected
that the system reaches an equilibrium when the term in brackets vanishes: a plateau
in size is observed for large enough times. The novelty of this growth law is that the
equilibrium does not correspond to an homogeneous growth tensor gI, but it depends on
the radial position through the concentration of nutrient, thus originating an inhomoge-
neous residual stress. Using numerical simulations, in the next sections we are able to
show that the predicted residual stress is in agreement with the reported opening angles
from cutting experiments.

6 Numerical simulations

Numerical integration of equations (17) and (30) with boundary conditions (19) and
initial conditions

r(R; t = 0) = R; g(R; t = 0) = 1; (31)

is performed using a �nite di�erence scheme with centered discretization in space and
a fourth order Runge-Kutta scheme in time. The parameters used in the numerical
simulations are � = 2:5 days, � = 2:9 kPa, � = 3:7, � = 250�m and � = 10 kPa.
The initial radius is 100�m, the �nal simulation time is tf = 25 days and the boundary
condition of (27) is c0 = 1.
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Figure 1: Volume of a spheroid vs. time for di�erent values of the osmotic pressure.

The volume of the spheroid initially grows very rapidly for all values of pD. At large
times, for null or small values of osmotic pressure the slope of the curve becomes very
small, and it becomes horizontal for large pD (Figure 1).

As expected, the non-uniform pattern of nutrients triggers a weak inhomogeneity in
growth. While the predicted growth pattern cannot be directly compared with data, it
is indirectly supported by the residual stress that it produces by the relation (3). The
radial and hoop component of the residual stress are plotted in Figures 2 and 3 versus
the radial coordinate at equilibrium.

As expected, the radial stress vanishes on the boundary of the spheroid, while it is
internally compressive. Conversely, the hoop stress changes sign, being compressive in
the core and tensional in the outer layer. Such a residual stress distribution is stable
against both circumferential and azimuthal perturbations of the tumour boundary, as
investigated in [19].

Data on residual stress of in vitro tumor spheroids are not available, probably be-
cause they are too soft and do not reach a size such that a mechanical manipulation and
a precise cut can be operated. However the pattern reported in Figure 2 and Figure 3
is in qualitative agreement with experiments on (much bigger) human tumors implanted
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Figure 2: Radial residual stress versus the radial position at �nal time for di�erent values
of the osmotic pressure.

in mice [10]. Stylianopoulos et al. observe that cells at the periphery of the spheroid are
restricted by the surrounding tissue and thus, during radial tumor growth they develop
tensile circumferential forces. Surrounding tissues in vivo would then produce on the
tumor a compressive hydrostatic pressure increasing with the tumour growth. Further-
more, Figures 3 and 4 depict that the magnitude of stress - either compressive or tensile -
increases as the osmotic pressure exerted on the cells, pD, decreases. This is explained by
the fact that for low osmotic pressures the tumor becomes larger in size and the stresses
increase.

If the external pressure is removed, the radius quickly grows and reaches the same
value of the free-growth case (Figure 4), in agreement with the experimental results [12].

6.1 Stress release in a cut spheroid

A quantitative comparison among observed and predicted residual stress can be obtained
on the basis of the opening angle of cut specimens. To this aim, tumor spheroids have
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Figure 3: Hoop residual stress versus the radial coordinate at �nal time for di�erent
values of the osmotic pressure.

been grown in mice and then they have been cut along their azimuthal plane for about
80% of their diameter. The spheroids then partially relax their residual stress: the cut
surface opens up at the periphery while the inner region swells (see �gure 5). Figure 6
depicts the cutting experiments for breast and pancreatic tumors implanted in nude mice,
also reporting the tumor opening length and the maximum residual stresses within the
tumor specimens.

The observed behavior, which is in qualitative agreement with our predictions in the
stress pattern in small, in vitro, spheroids, can be quantitatively compared with opening
angles data on the basis of a three dimensional numerical simulation only. As a matter of
fact, an axial cut of a ring preserves the cylindrical symmetry of the problem [20], while
an azimuthal cut of a sphere breaks it.

Numerical simulations are obtained using a �nite element code that solves the equa-
tion of �nite elasticity on a spherical wedge. The computation reproduces the physical
observations: the spheroid grows under spherical symmetry which is eventually broken by
the cut. We therefore use the growth tensor computed under radial symmetry assumption
and we evaluate the opening angle that it produces.
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Figure 4: Radius of the spheroid vs. time for pD = 0 (blue line) and pD = 2000 Pa
(green line). After 12 days the external pressure is removed and the system returns the
curve corresponding to the unloaded state.

The 3D numerical problem is based on FEniCS [21]. The computational domain
is discretized with quadratic tetrahedral elements, with an average diameter of 10�m.
Since we expect near to singular stresses around the edge of the cut, the mesh is gradually
re�ned nearby this edge to one twentieth of the original size. The mesh contains roughly
28 143 elements and it has been produced by Gmsh [22]. The non-linear variational
problem is discretized with quadratic isoparametric �nite elements, and the �nal problem
has 137 949 degrees of freedom. The solver for non-linear problem is based on a modi�ed
Newton's method speci�cally designed for variational inequalities, and implemented in
the PETSc framework [23]. The solver can deal with inequality constraints, as we have
on the cut boundary surface to avoid self-contact during the swelling. The solver for the
linear system is MUMPS [24].

The simulation is performed in two steps: �rst, we apply a homogeneous growth tensor
obtained by averaging the target one, while keeping the cut sealed; then, we release the
cut and we enforce the �nal growth tensor. This strategy facilitates the convergence of
the non-linear solver, which performs 40 iterations at most. A relative error below 1%
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Figure 5: An intact, residually stressed spheroid (left) is cut along an azimuthal plane
for 80 % of its diameter. The outer region opens up while the inner one swells(right),
thus distribution of residual stress that goes from compressive to tensile along the radial
coordinate.

on the opening angle is observed when the mesh is uniformly re�ned, certi�cating the
numerical convergence.

Boundary conditions, reported in Figure 7, apply as follows: the outer boundary is
stress-free, the cut surface is enforced to have non-negative displacement in the normal
direction to avoid self-contact, and on the internal, intact, portion of the boundary
symmetry arguments yield null normal displacement and while the other components
of the displacement must have null derivative with respect to the normal direction. In
Figure 8 the deformed con�guration obtained after a vertical cut of 80% of the diameter
is shown.

The parameters used in the numerical simulations are � = 2:5days, � = 33:35,
� = 37, � = 2:5mm, � = 27:0 kPa and pD = 5:0 kPa. The initial radius is 100�m,
the simulation ends at t = 50 days and the boundary condition of (27) is c0 = 1. In
the numerical experiment the tumor opens with an angle of 11.70�, corresponding to
1.41mm of opening length. The �nal volume is 169.84mm3. The inner-most part of the
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Figure 6: Tables with experimental measures (top) of cutting experiments (bottom) for
MCF10CA1a breast tumor cells (left) and for MiaPaCa2 pancreatic tumor cells (right)
implanted orthotopically in the mammary fat pad of nude mice.

cut, for about 20% of the diameter, is in self-contact, certi�cating that this portion of
the tumor tends to swell outward after the cut. It is to be remarked that the di�usion
length assumed here is larger than the one used for small in vitro spheroids.

These results are in agreement with the ex-vivo experiments: the opening length, the
�nal volume and the hoop stress are very close to the reported ones for the MiaPaCa2
tumor number 4 (see Figure 6) [10].

In order to investigate the relationship between the heterogeneity in the growth tensor
and the opening angle, we have performed a numerical experiment where the di�erence
between the growth at the center and the boundary of the tumor is stepwise increased
from zero to a value of 20. Table 1 summarizes the result of the simulation. As expected
from the theory, a uniform growth yields no residual stress and the tumor does not
open after the cut (�rst column of the table). On the other hand, the greater the
di�erence in growth between the center and the boundary, the larger the opening length
and consequently the opening angle (from the second column of the table). The volume
is mostly a�ected by the average value of the growth over the entire domain, and not by
the heterogeneity. The numerical experiment also shows that the angle linearly increases
with the di�erence in growth of about 8� every 10 units per mm of growth.

Final remarks

The growth of a tumor spheroid can be controlled using mechanical stress: when an
osmotic pressure is applied at the boundary, the radius of the aggregate grows in time
until it reaches an equilibrium volume which inversely depends on the load. The size
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Figure 7: Computational domain and boundary conditions for the 3d numerical exper-
iment of the opening angle. The �symmetry� label indicates that the surface is �xed in
the normal direction. The vertical cut is 80% of the diameter deep.

control is fully reversible: when traction is released, the cellular matrix relaxes and
returns the original growth curve. The observation that the intercellular space forms a
pore-like structure, that macromolecules cannot enter, suggests to represent mechanically
the cellular aggregate as a poroelastic material [25]. The evidence of a residual stress
leads to the assumption that the solid phase is hyperelastic: the large compliance of the
cell aggregate is due to the squeezing of the intracellular �uid and the corresponding
reduction of the intracellular space, while the single cells are much sti�er [13]. Boundary
conditions are split accordingly: the osmotic pressure generated by the Dextran solution
of the surrounding �uid loads the solid phase only.

The exponential decay in the pattern of nutrients makes the proliferation process

g(R = 0) 45.0 44.0 43.0 42.0 41.0 40.0

g(R = R0) 45.0 48.0 51.0 54.0 57.0 60.0

opening length [mm] 0.0 0.540 1.12 1.70 2.30 2.92

opening angle [deg] 0.0 3.43 6.94 10.5 14.2 18.0

volume [mm3] 94.7 94.8 95.0 95.4 95.9 96.6

Table 1: Numerical result of a stepwise increase of the di�erence in growth between the
center and the boundary of the tumor. The growth function g(R) is linear in the radial
component.
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Figure 8: Current con�guration of an unloaded grown sphere with initial radius of 100�m.
The sphere is azimuthally cut at the �nal time. The parameters in the simulation are: � =
2:5 days, � = 33:35, � = 37, � = 2:5mm, � = 27:0 kPa and pD = 5:0 kPa. The domain
of the numerical simulation is a quarter of a sphere. For the sake of graphical clarity of
the opening angle, the spherical wedge is combined with its symmetric counterpart. The
body is unloaded but not stress free: the color map represents the trace of the Cauchy
stress tensor. The lowest part of the cut is partially resew by the swelling.

of a su�ciently large loaded spheroid inhomogeneous and the generated residual stress
depends on the radial position: it is compressive near the center and tensional at the
periphery [10]. This feature is paradoxical when compared with the usual scenario:
large availability of nutrients at the periphery of the spheroid is expected to favour the
proliferation and, therefore, emergence of compressive residual stress. The dynamics of
tumor growth is apparently di�erent: tumor cells duplicate (or control their apoptosis)
on the basis of the available nutrients, but their target stress modulates so as to produce
compression in regions with small concentration of nutrients. In other words, the reported
radial distribution of residual stress can be explained only admitting that in the inner
regions, where the concentration of nutrients is very small, malignant cells slow down
their apoptotic rate, in agreement with the observations of Helmlinger et al [4].
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After a standard multiplicative decomposition of the tensor gradient of deformation
to account for growth, we introduce a simple law of biomechanical feedback, and we are
eventually able to explain the observed dynamics. On the basis of such a conjecture,
we were able to reproduce growth pro�les of tumor spheroids for di�erent values of the
applied load and the open angles of mice bearing breast tumors. Particularly for the
second result, the solid phase of mice bearing tumors apart from cells consists also of the
extra-cellular matrix, which can contribute to the development of residual stress. Here
the mechanical contribution of all components of the tumor are resumed in the solid
phase, and the growth tensor G accounts also for the possible tensional contribution due
to the elongation of the collagen �bres.

Our mechanobiological model explains the observed smaller asymptotic volume as a
function of increasing osmotic load on the basis of a stress-growth coupling. At later
stages, not covered by the present model, when the radial inhomogeneity is fully de-
veloped, the solid (cellular) component of the spheroid undergoes a stress per volume
fraction larger than a threshold that takes it into the plastic regime [26]; then cells start
�owing centripetally, producing an internalization of the cells from the periphery to the
center of the tumor [27, 28].
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Appendix: Stability of the homogeneous solution

The integration of the �stress-modulated growth� illustrated in the previous section pre-
dicts a spatially homogeneous solution, parametrically depending on the time-dependent
growth rate. The growth g(R; t) is independent of the radial position because the stress
is the same everywhere. In such a purely mechanical setting we now study the stability
of the homogeneous solution (20) and (25). In other words, the question is whether the
spatial inhomogeneity observed in grown spheroids could be produced by the mechanobi-
ological feedback, thus amplifying the spatial perturbations of the stress to yield inho-
mogeneous growth.
To investigate this hypothesis we consider the following perturbation of the homogeneous
solution:

r(R; t) =g0(t)R+ �(R; t); g0(t)R� �(R; t); (32)

g(R; t) =g0(t) + �(R; t); g0(t)� �(R; t); (33)

where  and g0(t) are solutions of equations (21) and (24), respectively, and g0(0) = 1.
When the perturbed solutions are plugged in equations (21) and (24) and only �rst order
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terms are retained, the following linear equations are found

�
�0 + 2

�
R

�0
= 

3� 2

2 + 1
�0; (34)

_� =
�

1 + 2
g0

�
� 2

g0

�
� 4

g0

�2

�
�
�

+
2
3

g0

��3

�
�0 + 2

�
R

�
: (35)

Derivation of the former equation in space, derivation of the latter in time and cross
substitution yields
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which determines the evolution in time of the spatial perturbation in the growth g(t).
Instability shows up if

��2(2 + 1) > 2g0
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; (37)

for some 1 < g0(t) < ge, where 0 < (pD) < 1.
The result (37) is negative versus our conjecture: it predicts a stabilization of the sys-
tem for large enough growth g0 which is not in agreement with experiments. If the
purely mechanical system is stable, the reported inhomogeneity (large proliferation near
the boundary, smaller internally) should instead be explained accounting for the role of
nutrients.
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