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Abstract Continuum models for the spatial dynamics of growing cell pop-
ulations have been widely used to investigate the mechanisms underpinning
tissue development and tumour invasion. These models consist of nonlinear
partial differential equations that describe the evolution of cellular densities
in response to pressure gradients generated by population growth. Little prior
work has explored the relation between such continuum models and related
single-cell-based models. We present here a simple stochastic individual-based
model for the spatial dynamics of multicellular systems whereby cells undergo
pressure-driven movement and pressure-dependent proliferation. We show that
nonlinear partial differential equations commonly used to model the spatial dy-
namics of growing cell populations can be formally derived from the branching
random walk that underlies our discrete model. Moreover, we carry out a sys-
tematic comparison between the individual-based model and its continuum
counterparts, both in the case of one single cell population and in the case of
multiple cell populations with different biophysical properties. The outcomes
of our comparative study demonstrate that the results of computational sim-
ulations of the individual-based model faithfully mirror the qualitative and
quantitative properties of the solutions to the corresponding nonlinear partial
differential equations. Ultimately, these results illustrate how the simple rules
governing the dynamics of single cells in our individual-based model can lead
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to the emergence of complex spatial patterns of population growth observed
in continuum models.

Keywords Growing cell populations · Pressure-driven cell movement ·
Pressure-limited growth · Individual-based models · Continuum models

Mathematics Subject Classification (2010) 92C17 · 35Q92 · 92-08 ·
92B05 · 35C07

1 Introduction

Brief overview of continuum models of growing cell populations. Continuum
models for the spatial dynamics of growing cell populations have been widely
used to complement empirical research in developmental biology and can-
cer research. These models consist of nonlinear partial differential equations
that describe the evolution of cellular densities in response to pressure gra-
dients generated by population growth, which can be mechanically regulated,
nutrient-limited or pressure-dependent [1–3,6,9–15,17–19,27,38,52,55–58,66,
67].

For a population of cells with growth rate that depends on the local pres-
sure [7,15,23,56], a prototypical example of such models is given by the fol-
lowing equation

∂tρ− µdiv (ρ∇p) = G(p)ρ, (1)

which was proposed by Byrne & Drasdo [13]. Equation (1) is a conservation
equation for the function ρ(t, x) ≥ 0 that represents the density of cells at
position x ∈ Rd, with d = 1, 2, 3 in the biologically relevant cases, and time
t ∈ R+. The function p stands for the cell pressure and the term G is the net
growth rate of the cell density.

The second term on the left-hand side of equation (1) represents the rate
of change of the cellular density due to pressure-driven cell movement (i.e. the
tendency of cells to move towards regions where they feel less compressed).
The definition of this term builds on the seminal paper of Greenspan [27]
and subsequent work of Byrne & Chaplain [12]. In analogy with the classical
Darcy’s law for fluids, the parameter µ > 0 can be seen as the cell mobility
coefficient, which is defined as the quotient between the permeability of the
porous medium in which the cells are embedded (e.g. the extracellular matrix)
and the cellular viscosity.

The term on the right-hand side of equation (1) represents the rate of
change of the cellular density due to cell proliferation (i.e. cell division and cell
death). In the mathematical framework of equation (1), the effect of pressure-
limited growth can be captured in a first approximation by assuming the
net growth rate G to be a smooth function of p that satisfies the following
assumptions

dG

dp
< 0, G(P ) = 0. (2)
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In assumptions (2), the parameter P > 0 stands for the pressure at which cell
death exactly compensates cell division. The term homeostatic pressure has
been coined to indicate such a critical pressure [4].

In order to close equation (1) the pressure p can be defined according to
a barotropic relation p ≡ Π(ρ). Typically, the function Π(ρ) is identically
zero for ρ ≤ ρ∗ and is monotonically increasing for ρ > ρ∗, with 0 < ρ∗ <
Π−1(P ) being the density below which cells do not exert any force upon one
another [63]. For simplicity, in this paper we let Π be a smooth function of ρ
that satisfies the following assumptions

Π(0) = 0,
dΠ

dρ
> 0 for ρ > 0. (3)

For instance, in the attempt to reduce the biological problem to its essentials
while ensuring analytical tractability of the mathematical model, Perthame et
al. [54] have proposed the following definition of Π(ρ), which satisfies assump-
tions (3):

Π(ρ) = Kγ ρ
γ with γ > 1 and Kγ > 0. (4)

In definition (4), the parameter γ provides a measure of the stiffness of the
barotropic relation and Kγ is a scale factor. The limit γ → ∞ corresponds
to the case where cells behave like an incompressible fluid. In this asymptotic
regime, it has been proven that models of the form of equation (1) converge
to free-boundary problems of Hele-Shaw type [33,34,40,53].

The model (1) can be generalised to the case of multiple cell populations
with different biophysical properties (i.e. different mobilities and growth rates)
as follows

∂tρh − µh div (ρh∇p) = Gh(p)ρh, h = 1, . . . ,M. (5)

The system of coupled equations (5) relies on notation and assumptions anal-
ogous to those underlying equation (1). In particular, the coefficient µh > 0
represents the mobility of cells in the hth population and the pressure p is
defined by a barotropic relation p ≡ Π(ρ). Here ρ stands for the total cell
density, i.e.

ρ(t, x) =
M∑
h=1

ρh(t, x), (6)

and the function Π satisfies conditions (3). Moreover, the net growth rate of
the cell density Gh(p) can be assumed to be a smooth function of the cell
pressure that satisfies assumptions (2) for all h = 1, . . . ,M .

For example, building on the computational results presented by Drasdo &
Hoehme [23], Lorenzi et al. [37] considered the following variant of the system
of equations (5) ∂tρ1 − µ1 div (ρ1∇p) = G(p)ρ1,

∂tρ2 − µ2 div (ρ2∇p) = 0,
(7)
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complemented with the barotropic relation (4). The system of equations (7)
describes the interaction dynamics between a population of proliferating cells
(i.e. population 1) and a population of nonproliferating cells (i.e. population
2) with different mobilities.

Further to the biological and clinical insights into the underpinnings of
tissue development and tumour growth they can provide, these continuum
models exhibit a range of interesting qualitative behaviours. For instance, it
was shown that models in the form of equation (1) admit travelling-wave solu-
tions with composite shapes and discontinuities [63]. Moreover, in analogy with
reaction-diffusion systems arising in the mathematical modelling of other bio-
logical and ecological problems [20,41], models like the system of equations (7)
can give rise to sharp interfaces, which bring about spatial segregation between
cell populations with different biophysical properties [37].

Derivation of continuum models of growing cell populations from individual-
based models. A key advantage of continuum models for the spatial dynamics
of growing cell populations over their individual-based counterparts (i.e. dis-
crete models that track the dynamics of individual cells) [22,64] is that they
are amenable to mathematical analysis. This enables a complete exploration of
the model parameter space, which ultimately allows more robust conclusions to
be drawn. Moreover, compared to individual-based models, continuum models
offer the possibility to carry out numerical simulations at the level of larger
portions of tissues or even of whole organs, while keeping computational costs
within acceptable bounds.

Since continuum models are defined at the scale of whole cell populations,
they are usually formulated on the basis of phenomenological considerations,
which can hinder a precise mathematical description of crucial biological and
physical aspects. On the contrary, stochastic individual-based models that de-
scribe the dynamics of single cells in terms of algorithmic rules can be more
easily tailored to capture fine details of cellular dynamics, thus making it
possible to achieve a more accurate mathematical representation of multicel-
lular systems. Furthermore, individual-based models are able to reproduce the
emergence of population-level phenomena that are induced by stochastic fluc-
tuations in single-cell biophysical properties, which are relevant in the regime
of low cellular densities and cannot easily be captured by continuum models.
Therefore, it is desirable to derive continuum models for the spatial dynamics
of cell populations as the appropriate limit of individual-based models for spa-
tial cell movement and proliferation, in order to have a clearer picture of the
modelling assumptions that are made and ensure that they correctly reflect
the salient features of the underlying application problem.

For this reason, the derivation of continuum models formulated in terms of
partial differential equations or partial integrodifferential equations from un-
derlying individual-based models has attracted the attention of a considerable
number of mathematicians and physicists. Examples in this active field of re-
search include the derivation of continuum models of chemotaxis from velocity-
jump process [29,47,28,49] or from self-attracting reinforced random walks [61,
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62]; the derivation of diffusion and nonlinear diffusion equations from under-
lying random walks [16,30,45,48,50,51], from systems of discrete equations
of motion [46,43,44], from discrete lattice-based exclusion processes [5,24,26,
31,32,35,39,59] or from cellular automata [21,22,60]; and, most recently, the
derivation of nonlocal models of cell-cell adhesion from position-jump pro-
cesses [8]. However, with the exception of the results presented in [13,25,42],
little prior work has investigated the relation between single-cell-based models
and continuum models in the form of equation (1) and the system of equa-
tions (5). In particular, a derivation of these continuum models of growing cell
populations from underlying individual-based models of spatial cell movement
and proliferation has remained elusive.

Contents of the paper. In the present paper we aim to bridge such a gap in
the existing literature. In Section 2, we develop a simple stochastic individual-
based model for the dynamics of growing cell populations. Our model is based
on a branching random walk that takes into account the effects of pressure-
driven cell movement and pressure-dependent cell proliferation. In Section 3,
we show that equation (1) and the system of equations (5) can be formally
derived from the branching random walk that underlies our discrete model.
In Section 4, we carry out a systematic quantitative comparison between the
individual-based model and its continuum counterparts, both in the case of
one single cell population and in the case of multiple cell populations with
different biophysical properties. In summary, we construct travelling-wave so-
lutions both for equation (1) and for the system of equations (7) (Section 4.1),
we present numerical solutions that illustrate the results of the travelling-wave
analysis, and we compare such numerical solutions with the results of com-
putational simulations of the individual-based model (Section 4.2). Section 5
concludes the paper and provides a brief overview of possible research per-
spectives.

2 An individual-based model for growing cell populations

We consider a multicellular system composed of M cell populations. We rep-
resent each cell within the system as an agent that occupies a position on a
lattice. Cells can move and proliferate according to a set of simple rules that
result in a discrete-time branching random walk. For ease of presentation, we
let cells be arranged along the real line R, but there would be no additional
difficulty in considering the case of branching random walks in higher spatial
dimensions.

We discretise the time variable t ∈ R+ and the space variable x ∈ R as
tk = kτ with k ∈ N0 and xi = iχ with i ∈ Z, respectively, where 0 < τ, χ� 1.
We introduce the dependent variable nkhi ∈ N0 to model the number of cells
of population h = 1, . . . ,M on the lattice site i and at the time-step k, and
we compute the density of cells of population h and the total cell density,
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respectively, as

ρh(tk, xi) = ρkhi = nkhi χ
−1 and ρ(tk, xi) = ρki =

M∑
h=1

ρh(tk, xi). (8)

Moreover, for each lattice site i and time-step k we assume the cell pressure
p(tk, xi) = pki to be given by a barotropic relation pki ≡ Π(ρki ) with Π be-
ing a function of the total cell density that satisfies conditions (3). At each
time-step, we allow every cell to undergo pressure-dependent proliferation and
pressure-driven movement according to the following algorithmic rules, which
are schematised in Figure 1.

Pressure-dependent cell proliferation. We allow every cell to divide, die or
remain quiescent with probabilities that depend on the local pressure, and we
assume that a dividing cell is replaced by two identical daughter cells that are
placed on the original lattice site of the parent cell. In order to model pressure-
limited growth, given the net growth rate Gh that satisfies assumptions (2) for
all values of h, we assume that at the kth time-step a focal cell of population
h on the lattice site i can divide with probability

τ Gh(pki )+ where Gh(pki )+ = max
(
0, Gh(pki )

)
(9)

or die with probability

τ Gh(pki )− where Gh(pki )− = −min
(
0, Gh(pki )

)
(10)

or remain quiescent with probability

1−
(
τ Gh(pki )+ + τ Gh(pki )−

)
= 1− τ |Gh(pki )|. (11)

We assume the time-step τ to be sufficiently small so that the quantities (9)-
(11) are all between 0 and 1. Under assumptions (2), the definitions (9)-(11)
are such that if pki > P then every cell on the ith lattice site can only die or
remain quiescent at the kth time-step. Therefore, we have that

pki ≤ p for all (k, i) ∈ N0 × Z, with p = max

(
max
i∈Z

p0i , P

)
. (12)

Pressure-driven cell movement. We model pressure-driven cell movement (i.e.
the tendency of cells to move down pressure gradients) as a biased random
walk whereby the movement probabilities depend on the difference between
the pressure at the site occupied by a cell and the pressure at the neighbouring
sites. In particular, for a focal cell of population h on the lattice site i at the
time-step k, we define the probability of moving to the lattice site i − 1 (i.e.
the probability of moving left) as

JLh (pki − pki−1) = νh
(pki − pki−1)+

2 p
, (13)
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Fig. 1 Schematic representation of the algorithmic rules governing cell dynamics in our
stochastic individual-based model. Pressure-dependent cell proliferation is modelled by let-
ting the probabilities of a cell dividing, dying and remaining quiescent depend on the pressure
at the site occupied by the cell (left panel). Pressure-driven cell movement is modelled by
letting the movement probabilities depend on the difference between the pressure at the site
occupied by a cell and the pressure at the neighbouring sites (right panel)

where (pki − pki−1)+ = max
(
0, pki − pki−1

)
, the probability of moving to the

lattice site i+ 1 (i.e. the probability of moving right) as

JRh (pki − pki+1) = νh
(pki − pki+1)+

2 p
, (14)

where (pki − pki+1)+ = max
(
0, pki − pki+1

)
, and the probability of remaining

stationary on the lattice site i as

1− JLh (pki − pki−1)− JRh (pki − pki+1). (15)

In the above equations, the coefficient 0 < νh ≤ 1 is directly proportional to the
mobility of cells in population h and the parameter p is defined in (12). Notice
that the definitions (13)-(15) are such that the cells will move down pressure
gradients. Moreover, the a priori estimate (12) ensures that the quantities
defined according to (13)-(15) are all between 0 and 1.

3 Formal derivation of continuum models

In this section, we show how continuum models of growing cell populations
of the form of equation (1) and of the system of equations (5) and (7) can
be derived as formal limits of the branching random walk that underlies our
stochastic individual-based model.
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For a multicellular system the dynamic of which is governed by the algo-
rithmic rules presented in Section 2, the principle of mass balance gives

ρk+1
hi = νh

(pki−1 − pki )+

2 p

[
2τGh(pki−1)+ +

(
1− τ |Gh(pki−1)|

)]
ρkh i−1

+νh
(pki+1 − pki )+

2 p

[
2τGh(pki+1)+ +

(
1− τ |Gh(pki+1)|

)]
ρkh i+1

+

[
1− νh

(pki − pki−1)+

2 p
− νh

(pki − pki+1)+

2 p

]

×
[
2τGh(pki )+ +

(
1− τ |Gh(pki )|

) ]
ρkhi

and after a little algebra we find

ρk+1
hi = νh

(pki−1 − pki )+

2 p

(
τGh(pki−1) + 1

)
ρkh i−1

+νh
(pki+1 − pki )+

2 p

(
τGh(pki+1) + 1

)
ρkh i+1

+

[
1− νh

(pki − pki−1)+

2 p
− νh

(pki − pki+1)+

2 p

] (
τGh(pki ) + 1

)
ρkhi.

The above equation simplifies to

ρk+1
hi − ρ

k
hi = τGh(pki )ρkhi

+
νh
2 p

[
ρkh i−1(pki−1 − pki )+ + ρkh i+1(pki+1 − pki )+

]
− νh

2 p

[
ρkhi(p

k
i − pki−1)+ + ρkhi(p

k
i − pki+1)+

]
+
νhτ

2 p

[
ρkh i−1Gh(pki−1)(pki−1 − pki )+ + ρkh i+1Gh(pki+1)(pki+1 − pki )+

]
−νhτ

2 p

[
ρkhiGh(pki )(pki − pki−1)+ + ρkhiGh(pki )(pki − pki+1)+

]
. (16)

Using the fact that the following relations hold for τ and χ sufficiently small

tk ≈ t, tk+1 ≈ t+ τ, xi ≈ x, xi±1 ≈ x± χ,

ρkhi ≈ ρh(t, x), ρk+1
hi ≈ ρh(t+ τ, x), ρkh i±1 ≈ ρh(t, x± χ),

pki ≈ p(t, x), pki±1 ≈ p(t, x± χ),
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we rewrite equation (16) in the approximate form

ρh(t+ τ, x)− ρh(t, x) ≈ τGh(p(t, x))ρh(t, x)

+
νh
2 p

[ρh(t, x− χ)(p(t, x− χ)− p(t, x))+]

+
νh
2 p

[ρh(t, x+ χ)(p(t, x+ χ)− p(t, x))+]

− νh
2 p

[ρh(t, x)(p(t, x)− p(t, x− χ))+]

− νh
2 p

[ρh(t, x)(p(t, x)− p(t, x+ χ))+]

+
νhτ

2 p
[ρh(t, x− χ)Gh(p(t, x− χ))(p(t, x− χ)− p(t, x))+]

+
νhτ

2 p
[ρh(t, x+ χ)Gh(p(t, x+ χ))(p(t, x+ χ)− p(t, x))+]

−νhτ
2 p

[ρh(t, x)Gh(p(t, x))(p(t, x)− p(t, x− χ))+]

−νhτ
2 p

[ρh(t, x)Gh(p(t, x))(p(t, x)− p(t, x+ χ))+] . (17)

Assuming

ρh ∈ C2(R+ × R), h = 1, . . . ,M, (18)

we approximate the terms ρh(t + τ, x), ρh(t, x − χ) and ρh(t, x + χ) in equa-
tion (17) by their second order Taylor expansions about the point (t, x). More-
over, since p ≡ Π(ρ) and Π is a smooth function of ρ, under assumption (18)
the pressure p(t, x) is twice continuously differentiable with respect to the
variable x. Hence we also approximate the terms p(t, x−χ) and p(t, x+χ) in
equation (17) by their second order Taylor expansions about the point (t, x).
In so doing, after a little algebra we find

τ ∂tρh(t, x) +
τ2

2
∂2ttρh(t, x) ≈ τGh(p(t, x))ρh(t, x) +

νhχ
2

2 p
ρh(t, x)∂2xxp(t, x)

+
νhχ

2

2 p

[
(∂xp(t, x))+ − (−∂xp(t, x))+

]
∂xρh(t, x)

+
νhτ

2 p
ρh(t, x)Gh(p(t, x− χ)) (−χ∂xp(t, x))+

+
νhτ

2 p
ρh(t, x)Gh(p(t, x+ χ)) (χ∂xp(t, x))+

−νhτ
2 p

ρh(t, x)Gh(p(t, x)) (χ∂xp(t, x))+

−νhτ
2 p

ρh(t, x)Gh(p(t, x)) (−χ∂xp(t, x))+ ,
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which implies

τ ∂tρh(t, x) +
τ2

2
∂2ttρh(t, x) ≈ τGh(p(t, x))ρh(t, x)

+
νhχ

2

2 p

(
ρh(t, x)∂2xxp(t, x) + ∂xρh(t, x)∂xp(t, x)

)
+
νhτχ

2 p
F (t, x), (19)

with

F (t, x) =
[
Gh(p(t, x− χ)) (−∂xp(t, x))+ +Gh(p(t, x+ χ)) (∂xp(t, x))+

]
ρh(t, x)

−
[
(∂xp(t, x))+ + (−∂xp(t, x))+

]
Gh(p(t, x))ρh(t, x).

Dividing both sides of the resulting equation by τ we obtain

∂tρh(t, x) +
τ

2
∂2ttρh(t, x) ≈ Gh(p(t, x))ρh(t, x)

+
νhχ

2

2 pτ

(
ρh(t, x)∂2xxp(t, x) + ∂xρh(t, x)∂xp(t, x)

)
+
νhχ

2 p
F (t, x). (20)

Letting both τ → 0 and χ→ 0 in such a way that

νhχ
2

2 p τ
→ µh as τ → 0 and χ→ 0, for h = 1, . . . ,M, (21)

from (20) we formally obtain the following system of coupled conservation
equations

∂tρh = Gh(p)ρh + µ
(
ρh ∂

2
xxph + ∂xρh ∂xph

)
, h = 1, . . . ,M,

which can be rewritten as the system of equations (5), that is,

∂tρh − µh ∂x (ρh ∂xp) = Gh(p)ρh, h = 1, . . . ,M. (22)

In a similar way, in the case of one single cell population, letting M = 1
and dropping the index h we formally obtain equation (1). Moreover, we can
formally obtain the system of equations (7) by choosing M = 2, labelling the
two populations by h = 1 and h = 2, and setting G1 ≡ G and G2 ≡ 0.

Remark 1 We note that condition (21) is a natural counterpart of the usual
parabolic scaling of Brownian motion. Hence, our formal derivation does not
impose any additional assumptions than those commonly employed for the
asymptotic investigation of random walks.
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4 Comparison between individual-based and continuum models

In this section, we carry out a systematic quantitative comparison between the
outcomes of our individual-based model, both in the case of one cell population
and in the case of two cell populations, and the solutions of the corresponding
continuum models. We first establish the existence of travelling-wave solu-
tions for the continuum models (1) and (7) (Section 4.1). We then construct
numerical solutions of the model equations which illustrate the results of the
travelling-wave analysis and we compare such numerical solutions with the re-
sults of computational simulations of our individual-based model (Section 4.2).

4.1 Travelling-wave analysis of the continuum models

We first consider the continuum model (1) and we look for one-dimensional
travelling-wave solutions of the form

ρ(t, x) = ρ(z) with z = x− ct and c > 0

that satisfy the following asymptotic conditions

ρ(z) −−−−−→
z→−∞

Π−1(P ) and ρ(z) −−−→
z→∞

0. (23)

Therefore, we study the existence of pairs (ρ, c) that satisfy the problem defined
by the differential equation

−c ρ′ − µ (ρ p′)
′

= G(p) ρ (24)

subject to conditions (23). Our main results are summarised by the following
theorem.

Theorem 1 Under assumptions (2) and (3), there exists c > 0 such that
the travelling-wave problem defined by the differential equation (24) subject to
conditions (23) admits a nonnegative and nonincreasing solution ρ.

Proof We divide the proof of Theorem 1 into two steps. First we prove that
for c > 0 fixed the differential equation (24) subject to the asymptotic condi-
tions (23) admits a nonnegative and nonincreasing solution ρ (Step 1). Then
we show that there exists a unique value of the wave speed c that satisfies the
travelling-wave problem (Step 2).

Step 1. Multiplying both sides of the differential equation (24) by
dp

dρ
we obtain

the following boundary-value problem for p

−p′ (c+ µ p′)− µ p′′ ρ dp

dρ
= G (p) ρ

dp

dρ
, (25)

p(z) −−−−−→
z→−∞

P and p(z) −−−→
z→∞

0. (26)
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Let z∗ be a critical point of p in R. Using the differential equation (25) we see
that

p′′(z∗) = − 1

µ
G (p(z∗))

and, under assumptions (2) and conditions (26), using the strong maximum
principle we conclude that p < P in R and that p cannot have a local minimum
in R, i.e.

p′(z) < 0 for all z ∈ R. (27)

Hence the solution p of the differential equation (25) subject to conditions (26)
is a nonnegative and nonincreasing function that satisfies

0 < p(z) < P for all z ∈ R. (28)

Since p ≡ Π(ρ) and Π is a smooth monotonically increasing function of ρ, we
can then conclude that the cell density ρ is a nonnegative and nonincreasing
function as well.

Step 2. Using a method similar to that used in Step 5 of the proof of Theorem 2
one can prove that p is a monotonically decreasing function of the parameter
c. This ensures that given the pressure p or, equivalently, the cell density ρ the
wave speed c can be uniquely identified through a monotonicity argument. ut

We then turn to the travelling-wave analysis of the system of equations (7).
On the basis of the results presented in [37], we consider one-dimensional
travelling-wave solutions of the form

ρ1(t, x) = ρ1(z) and ρ2(t, x) = ρ2(z), with z = x− ct and c > 0,

that satisfy the following conditions

ρ1(z)

> 0, for z < 0,

= 0, for z ≥ 0,
ρ2(z)


= 0, for z < 0,

> 0, for z ∈ [0, `),

= 0, for z ≥ `,

(29)

for some ` > 0, along with the asymptotic condition

ρ1(z) −−−−−→
z→−∞

Π−1(P ). (30)

Hence, we study the existence of triples (ρ1, ρ2, c) along with ` > 0 that satisfy
the problem defined by the following system of differential equations−c ρ

′
1 − µ1 (ρ1 p

′)
′

= G(p)ρ1,

−c ρ′2 − µ2 (ρ2 p
′)
′

= 0,
(31)
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subject to conditions (29) and (30). Notice that the principle of mass conser-
vation gives ∫ `

0

ρ2(z) dz = N2 (32)

for some N2 > 0 that represents the number of cells in population 2. Our main
results are summarised by the following theorem.

Theorem 2 Under assumptions (2) and (3), for any N2 > 0 given, there
exists c > 0 and ` > 0 such that the system of differential equations (31)
subject to conditions (29) and (30) admits a component-wise nonnegative so-
lution (ρ1, ρ2) with ρ1 nonincreasing, and ρ2 nonincreasing and satisfying con-
dition (32). Moreover, the pressure p has a kink in z = 0 with

sgn(p′(0+)− p′(0−)) = sgn(µ2 − µ1). (33)

Proof Building upon the method of proof presented by Lorenzi et al [37] for
the case of the barotropic relation (4), we prove Theorem 2 in five steps. We fix
the parameter c > 0 and first prove that, for N2 > 0 given, the problem under
study admits a component-wise nonnegative solution (ρ1, ρ2) with ρ2 nonin-
creasing and with the value of ` being determined by condition (32) (Step 1),
and with ρ1 nonincreasing (Step 2). Then we prove that the total cell density
ρ is continuous on (−∞, `) (Step 3) and the jump condition (33) holds (Step
4). Finally, we show that there exists a unique value of the wave speed c that
satisfies the travelling-wave problem (Step 5).

Step 1. Integrating the differential equation (31)2 between a generic point
z ∈ [0, `] and ∞, and using the fact that both p′(z) → 0 and ρ2(z) → 0 as
z →∞, we find

p′(z) = − c

µ2
< 0 for all z ∈ [0, `]. (34)

Integrating equation (34) between a generic point z ∈ [0, `) and `, and using
the fact that p(`) = 0, gives

p(z) =
c

µ2
(`− z) for z ∈ [0, `], (35)

which implies that

p(0) =
c `

µ2
. (36)

Since ρ1 ≡ 0 on [0, `], under assumptions (3), we have that p is a monotonically
decreasing function of ρ2 in [0, `]. Hence, the results (34) and (35) allow us to
conclude that ρ2 is decreasing in (0, `). Moreover, for N2 > 0 given, since the
value of ρ2(z) is uniquely determined for all z ∈ [0, `], the value of ` is uniquely
fixed by the mass conservation condition (32).
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Step 2. Since ρ2 ≡ 0 on (−∞, 0) and, therefore, ρ1 ≡ ρ on (−∞, 0), mul-

tiplying both sides of the differential equation (31)1 by
dp

dρ
we obtain the

following boundary-value problem for p

−p′ (c+ µ1 p
′)− µ1 p

′′ ρ
dp

dρ
= G (p) ρ

dp

dρ
, (37)

p(z) −−−−−→
z→−∞

P and p(0) =
c `

µ2
. (38)

Hence, using a method similar to that used in Step 1 of the proof of Theorem 1
one can prove that ρ1 is decreasing in (−∞, 0).

Step 3. The results proved in Step 1 and Step 2 ensure that the total cell
density ρ is nonincreasing and continuous in (−∞, 0) and in (0, `). We now
prove that ρ is continuous in z = 0. Adding together the differential equa-
tions (31)1 and (31)2 gives

−c (ρ1 + ρ2)
′ −
(

(µ1ρ1 + µ2ρ2) p′
)′

= G(p)ρ1. (39)

Multiplying both sides of the above differential equation by p and using the
fact that

p
(

(µ1ρ1 + µ2ρ2) p′
)′

=
(
p (µ1ρ1 + µ2ρ2) p′

)′ − (µ1ρ1 + µ2ρ2) (p′)2

we find that

(µ1ρ1 + µ2ρ2) (p′)2 = G(p)ρ1 + c p (ρ1 + ρ2)
′
+
(
p (µ1ρ1 + µ2ρ2) p′

)′
.

Integrating both sides of the latter differential equation between a generic point
z∗ < 0 and `, and estimating the right-hand side from above by using the fact
that −∞ < (ρ1 + ρ2)

′
(z) ≤ 0 for all z ∈ [z∗, `), p(`) = 0 and ρ2(z∗) = 0, yields∫ `

z∗
(µ1ρ1 + µ2ρ2) (p′)2 dz ≤

∫ `

z∗
G(p)ρ1 dz − µ1 ρ1(z∗) p(z∗) p′(z∗) <∞.

The above integral inequality ensures that p′ ∈ L2
loc(R). This result along with

the fact that p ∈ L∞(R) allow us to conclude that p is continuous in z = 0.
Since p ≡ Π(ρ) and Π is a smooth monotonically increasing function of ρ, we
have that the total cell density ρ is continuous in z = 0 as well.

Step 4. Integrating the differential equation (39) between a generic point z < `
and ` and using the fact that ρ1(`) = ρ2(`) = 0 yields

c (ρ1(z) + ρ2(z)) + (µ1ρ1(z) + µ2ρ2(z)) p′(z) =

∫ `

z

G(p)ρ1 dz′.

Letting z → 0− and using the fact that ρ1(0−) = ρ(0−) and ρ1 ≡ 0 on [0, `]
we find that

c ρ(0−) + µ1 ρ(0−) p′(0−) = 0. (40)
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Similarly, letting z → 0+ and using the fact that ρ2(0+) = ρ(0+) and ρ1 ≡ 0
on [0, `] gives

c ρ(0+) + µ2 ρ(0+) p′(0+) = 0. (41)

Since ρ(z) is continuous in z = 0, combining equations (40) and (41) we obtain

µ1 p
′(0−) = µ2 p

′(0+) =⇒ p′(0−) =
µ2

µ1
p′(0+).

This result along with the expression (34) for p′(0+) gives

p′(0−) = − c

µ1
and p′(0+)− p′(0−) =

c

µ1 µ2
(µ2 − µ1) .

From the latter equation we deduce the jump condition (33). Moreover, sub-
stituting the expression of p′(0−) into the differential equation (37) gives
p′′(0−) < 0.

Step 5. We prove that p is a monotonically decreasing function of the pa-
rameter c on (−∞, 0). This ensures that given the cell density ρ1 the wave
speed c can be uniquely identified through a monotonicity argument. Recall-
ing that ρ2 ≡ 0 on (−∞, 0) and, therefore, ρ1 ≡ ρ on (−∞, 0), differentiating
equation (31)1 with respect to z we find

−c (ρ′)
′ − µ1

[
(p′)
′′
ρ+ p′′ ρ′ + (p′)′ρ′ + p′(ρ′)′

]
=

dG

dp
p′ ρ+G (p) ρ′ (42)

with

p′(z) −−−−−→
z→−∞

0 and p′(0) = − c

µ1
.

On the other hand, differentiating equation (31)1 with respect to c gives

−c
(
∂ρ

∂c

)′
− µ1

[(
∂p

∂c

)′′
ρ+ p′′

∂ρ

∂c
+

(
∂p

∂c

)′
ρ′ + p′

(
∂ρ

∂c

)′]

=
dG

dp

∂p

∂c
ρ+G (p)

∂ρ

∂c
+ ρ′

(43)

with

∂p

∂c
(z) −−−−−→

z→−∞
0 and

(
∂p

∂c

)′
(0) = − 1

µ1
.

Using the fact that p′ =
dp

dρ
ρ′, we rewrite the differential equations (42) and

(43), respectively, as

−c (ρ′)
′ − µ

[
(p′)
′′
ρ+ p′′ρ′ + (p′)′ρ′ +

dp

dρ
ρ′ (ρ′)′

]
=

dG

dp
p′ ρ+G (p) ρ′ (44)
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and

−c
(
∂ρ

∂c

)′
− µ

[(
∂p

∂c

)′′
ρ+ p′′

∂ρ

∂c
+

(
∂p

∂c

)′
ρ′ +

∂p

∂ρ
ρ′
(
∂ρ

∂c

)′]

=
dG

dp

∂p

∂c
ρ+G (p)

∂ρ

∂c
+ ρ′.

(45)

Since
dp

dρ
> 0, we have

ρ′ = p′
(

dp

dρ

)−1
and

∂ρ

∂c
=
∂p

∂c

(
dp

dρ

)−1
.

Hence, introducing the notation f = p′, g =
∂p

∂c
and

k0 =

(
dp

dρ

)−1
, k1 = ρ, k2 = p′′

(
dp

dρ

)−1
, k3 = ρ′,

k4 = ρ′
dp

dρ
, k5 =

dG

dp
ρ+G (p)

(
dp

dρ

)−1
,

we rewrite the differential equations (44) and (45), respectively, as

−c (k0 f)
′ − µ

[
k1 f

′′ + k2 f + k3 f
′ + k4 (k0 f)

′]
= k5 f (46)

with

f(z) −−−−−→
z→−∞

0, f(0) = − c

µ1
(47)

and

−c (k0 g)
′ − µ

[
k1 g

′′ + k2 g + k3 g
′ + k4 (k0 g)

′]
= k5 g + ρ′ (48)

with

g(z) −−−−−→
z→−∞

0, g′(0) = − 1

µ1
. (49)

Since f(z) < 0 for all z ∈ (−∞, 0) and f ′(0) < 0, noting that both f(z) → 0
and g(z) → 0 as z → −∞ and the right-hand side of the differential equa-
tion (48) contains the additional term ρ′ < 0 compared to the right-hand side

of the differential equation (46), we deduce that g =
∂p

∂c
< 0, which concludes

the proof of Theorem 2. ut

Remark 2 Based on the jump condition (33), we expect the travelling-wave
solution of Theorem 2 to be unstable if µ1 > µ2. In fact, a small perturbation
of ρ1(z) that is greater than zero on [0, `) will propagate with approximate
speed −µ1 p

′(0+). Noting that when µ1 > µ2 the jump condition (33) gives
−µ1 p

′(0+) > −µ1 p
′(0−), we deduce that such a perturbation will separate

from the rest of the travelling wave ρ1(z).
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4.2 Quantitative comparison between individual-based and continuum models

4.2.1 One cell population

We begin by comparing the computational simulation results of our individual-
based model in the case of one cell population with the numerical solutions
of equation (1). For consistency with equation (1), we set M = 1 and we
drop the index h = 1 both from the functions and from the parameters of
the individual-based model. A complete description of the setup of numerical
simulations is given in Appendix A.1 and Appendix B.1. In particular, we use
the following definition of the net growth rate G

G(p) =
1

2π
arctan(β (P − p)) with β > 0, (50)

so that assumptions (2) are satisfied.

Travelling fronts. Figure 2, along with the video accompanying it (vid. On-
line Resource 1), demonstrates that there is an excellent quantitative match
between the numerical solutions of equation (1) and the computational sim-
ulation results of our individual-based model. In agreement with the results
established by Theorem 1, the cell density is nonincreasing and connects the
homogeneous steady state ρ ≡ Π−1(P ) to the homogeneous steady state ρ ≡ 0.
Accordingly, the cell pressure is nonincreasing and connects the homogeneous
steady state p ≡ P to the homogeneous steady state p ≡ 0.

Higher values of β lead to higher speed of invasion. Figure 3, along with the
video accompanying it (vid. Online Resource 2), indicates that, as one would
expect, increasing the value of the parameter β in the definition (50) of G(p)
accelerates the growth of the cell population, thus leading to a higher speed
of invasion.

Differences between the outcomes of individual-based and continuum models in
the presence of sharp transitions from high to low cell densities. The results
presented so far indicate that there is an excellent agreement between the com-
putational simulation results of our individual-based model and the solutions of
the corresponding continuum models. However, due to extinction phenomena
related to stochasticity effect that occur in the individual-based model for low
cell densities, we expect differences between the outcomes of the two modelling
approaches to emerge in the presence of sharp transitions from high to low to-
tal cell densities. In order to verify this hypothesis, exploiting the asymptotic
results of Perthame et al. [54] – who have shown that under the barotropic
relation (4) sufficiently high values of the parameter γ lead equation (1) to
develop sharper invasion fronts – we compare the computational simulation
results of our individual-based model in the case of one cell population with
the numerical solutions of equation (1) under the barotropic relation (4) for
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Fig. 2 Travelling fronts. Comparison between the computational simulation results of
our individual-based model in the case of one cell population (solid lines) and the numer-
ical solutions of the continuum model (1) (dashed lines). The left and right panel display,
respectively, the pressure and the cell density at three successive time instants, i.e. t = 10
(left curves), t = 15 (middle curves) and t = 20 (right curves). Values of the pressure and
the cell density are in units of 104. Simulations were carried out using a barotropic relation
that satisfies assumptions (3) and the definition (50) of G(p), with the homeostatic pressure
P = 120 × 104 and the coefficient β = 4 × 10−6. A complete description of the numeri-
cal simulation setup is given in Appendix A.1 and Appendix B.1. Sample dynamics of the
pressure and the cell density obtained from the individual-based model and the continuum
model are shown in the video accompanying this figure (vid. Online Resource 1)

increasing values of γ. A complete description of the setup of numerical simu-
lations is given in Appendix A.1 and Appendix B.1. The results obtained are
summarised by Figure 4 which shows that larger values of the parameter γ
can bring about sharper invasion fronts, which come along with more abrupt
variations in the cell density, thus leading to more evident differences between
the computational simulation results of the stochastic individual-based model
and the numerical solutions of equation (1) at the front of invasion. Ultimately,
this causes the invasion front of the individual-based model to travel at the
same speed but behind the front of the corresponding continuum model.

4.2.2 Two cell populations

We now turn to the case of two cell populations and we compare computational
simulation results of our individual-based model with numerical solutions of
the system of equations (7). For consistency with the system of equations (7),
we choose M = 2, and we set G1 ≡ G and G2 ≡ 0 in the individual-based
model. Full details of the setup of numerical simulations can be found in Ap-
pendix A.2 and Appendix B.2 for the results reported in Figures 5 and 6, and
Appendix A.3 and Appendix B.3 for the results reported in Figures 7 and 8.
In particular, we use the definition (50) of the net growth rate G(p) with the
homeostatic pressure P = 10 × 104 and we let the population of nonprolifer-
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Fig. 3 Higher values of β lead to higher speed of invasion. Comparison between
the computational simulation results of our individual-based model in the case of one cell
population (solid lines) and the numerical solutions of the continuum model (1) (dashed
lines). The left and right panel display, respectively, the pressure and the cell density at
the time instant t = 15 for increasing values of the parameter β in the definition (50) of
G(p), i.e. β = 1.5 × 10−6 (light grey and yellow lines), β = 4 × 10−6 (middle grey and
red lines) and β = 4 × 10−5 (dark grey and brown lines). Values of the pressure and the
cell density are in units of 104. Simulations were carried out using a barotropic relation
that satisfies assumptions (3) with the homeostatic pressure P = 120 × 104. A complete
description of the numerical simulation setup is given in Appendix A.1 and Appendix B.1.
Sample dynamics of the pressure and the cell density obtained from the individual-based
model and the continuum model are shown in the video accompanying this figure (vid.
Online Resource 2)

ating cells (i.e. population 2) be ahead of the population of proliferating cells
(i.e. population 1) at the initial time t = 0.

Figures 5 and 6, along with the videos accompanying them (vid. Online Re-
source 3 and Online Resource 4), demonstrate that there is an excellent quan-
titative match between the numerical solutions of the system of equations (7)
and the computational simulation results of our individual-based model, both
in the case where µ1 ≤ µ2 and when µ1 > µ2. Over time, the pressure p con-
verges to the homeostatic pressure P while the cell density ρ1 converges to the
corresponding value Π−1(P ).

Travelling fronts and spatial segregation between the two cell populations. If
µ1 ≤ µ2 (i.e. if ν1 ≤ ν2), in agreement with the results established by Theo-
rem 2, spatial segregation occurs and the two cell populations remain separated
by a sharp interface (vid. Figure 5 and Online Resource 3). The population of
nonproliferating cells stays ahead of the population of proliferating cells and,
over the regions where they are greater than zero, the cell densities are nonin-
creasing. The pressure itself is continuous across the interface between the two
cell populations, whereas its first derivative jumps from a lower negative value
to a larger negative value, i.e. the sign of the jump coincides with sgn(µ2−µ1)
(cf. the jump condition (33)).
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Fig. 4 Differences in the outcomes of individual-based and continuum models
in the presence of sharp transitions from high to low cell densities. Comparison
between the computational simulation results of our individual-based model in the case of
one cell population (solid lines) and the numerical solutions of the continuum model (1)
(dashed lines). The left and right panel display, respectively, the pressure and the cell den-
sity at the time instant t = 15 for increasing values of the parameter γ in the barotropic
relation (4), i.e. γ = 1.2 (light grey and yellow lines), γ = 1.5 (middle grey and red lines)
and γ = 2 (dark grey and brown lines). Values of the pressure and the cell density are in
units of 105. Magnifications of the curves near the invasion fronts are shown in the insets.
Simulations were carried out using the definition (50) of G(p), with the homeostatic pres-
sure P = 120×105 and the coefficient β = 4×10−5. A complete description of the numerical
simulation setup is given in Appendix A.1 and Appendix B.1

Mixing between the two cell populations. If µ1 > µ2 (i.e. if ν1 > ν2) the
cell population 2 is left behind by the cell population 1, which ultimately
propagates alone (vid. Figure 6 and Online Resource 4). This is consistent
with the heuristic argument provided in Remark 2, which suggests that the
travelling-wave solutions of Theorem 2 are unstable in the case where µ1 > µ2.

Numerical simulations for more realistic barotropic relations. In this paper, we
have focused on barotropic relations that satisfy assumptions (3). However, as
mentioned earlier in Section 1, more realistic barotropic relations satisfy the
following conditions

Π(ρ) = 0 for ρ ∈ [0, ρ∗) and
dΠ

dρ
> 0 for ρ > ρ∗, (51)

with 0 < ρ∗ < Π−1(P ). Figures 7 and 8, along with the videos accompanying
them (vid. Online Resource 5 and Online Resource 6), display the computa-
tional simulation results of our stochastic individual-based model and the nu-
merical solutions of the system of equations (7) obtained under a barotropic re-
lation that satisfies the more general assumptions (51) (vid. Appendix A.3 and
Appendix B.3 for a complete description of the numerical simulation setup).
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Fig. 5 Travelling fronts and spatial segregation between the two cell popula-
tions. Comparison between the computational simulation results of our individual-based
model in the case of two cell populations (solid lines) and the numerical solutions of the
continuum model (7) (dashed lines), for µ1 ≤ µ2 (i.e. ν1 ≤ ν2). The left and right panel
display, respectively, the pressure and the cell densities of population 1 (red lines) and pop-
ulation 2 (blue lines) at three successive time instants, i.e. t = 300 (left curves), t = 450
(middle curves) and t = 600 (right curves). Values of the pressure and the cell densities
are in units of 104. Simulations were carried out using a barotropic relation that satisfies
assumptions (3) and the definition (50) of G(p), with the homeostatic pressure P = 10×104

and the coefficient β = 4× 10−5. A complete description of the numerical simulation setup
is given in Appendix A.2 and Appendix B.2. Sample dynamics of the pressure and the cell
density obtained from the individual-based model and the continuum model are shown in
the video accompanying this figure (vid. Online Resource 3)

These computational results and numerical solutions clearly share the same
properties as those of Figures 5 and 6. This supports the conclusion that the
essentials of the results obtained using barotropic relations of the form (3)
remain intact even under the more realistic assumptions (51).

5 Conclusions and research perspectives

In summary, we have developed a simple, yet effective, stochastic individual-
based model for the spatial dynamics of multicellular systems whereby cells
undergo pressure-driven movement and pressure-dependent proliferation. We
have shown that nonlinear partial differential equations commonly used to
model the spatial dynamics of growing cell populations can be formally derived
from the branching random walk that underlies our discrete model. Moreover,
we have carried out a systematic comparison between the individual-based
model and its continuum counterparts, both in the case of one single cell pop-
ulation and in the case of multiple cell populations with different biophysical
properties. The outcomes of our comparative study demonstrate that the re-
sults of computational simulations of the individual-based model faithfully
mirror the qualitative and quantitative properties of the solutions to the cor-
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Fig. 6 Mixing between the two cell populations. Comparison between the computa-
tional simulation results of our individual-based model in the case of two cell populations
(solid lines) and the numerical solutions of the continuum model (7) (dashed lines), for
µ1 > µ2 (i.e. ν1 > ν2). The left and right panel display, respectively, the pressure and the
cell densities of population 1 (red lines) and population 2 (blue lines) at three successive
time instants, i.e. t = 100 (left curves), t = 150 (middle curves) and t = 190 (right curves).
Values of the pressure and the cell densities are in units of 104. Simulations were carried out
using a barotropic relation that satisfies assumptions (3) and the definition (50) of G(p),
with the homeostatic pressure P = 10 × 104 and the coefficient β = 4 × 10−5. A complete
description of the numerical simulation setup is given in Appendix A.2 and Appendix B.2.
Sample dynamics of the pressure and the cell density obtained from the individual-based
model and the continuum model are shown in the video accompanying this figure (vid.
Online Resource 4)

responding nonlinear partial differential equations. Ultimately, these results
illustrate how the simple rules governing the dynamics of single cells in our
individual-based model can lead to the emergence of complex spatial patterns
of population growth observed in continuum models – e.g. travelling waves
with composite shapes and sharp interfaces corresponding to spatial segrega-
tion between cell populations with different biophysical properties.

We have focussed on the case of one spatial dimension and considered
barotropic relations that satisfy assumptions (3). However, the model pre-
sented here, as well as the related formal method to derive corresponding con-
tinuum models, can be adapted to higher spatial dimensions and more realistic
barotropic relations of the form (51). In this regard, it would be interesting
to use our stochastic individual-based model to further investigate the forma-
tion of finger-like patterns of invasion observed for the system of equations (7)
posed on a two dimensional spatial domain [37]. Such spatial patterns resemble
infiltrating patterns of cancer-cell invasion commonly observed in breast tu-
mours [65]. An additional development of our study would be to compare the
results presented here with those obtained from equivalent models defined on
irregular lattices, as well as to investigate how our modelling approach could
be related to off-lattice models of growing cell populations [22,42,64].
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Fig. 7 Numerical simulations for more realistic barotropic relations. Comparison
between the computational simulation results of our individual-based model in the case of
two cell populations (solid lines) and the numerical solutions of the continuum model (7)
(dashed lines), for µ1 ≤ µ2 (i.e. ν1 ≤ ν2). The left and right panel display, respectively, the
pressure and the cell densities of population 1 (red lines) and population 2 (blue lines) at
three successive time instants, i.e. t = 300 (left curves), t = 450 (middle curves) and t = 600
(right curves). Values of the pressure and the cell densities are in units of 104. Simulations
were carried out using a barotropic relation that satisfies the assumptions (51) and the
definition (50) of G(p) with the homeostatic pressure P = 10× 104 and the coefficient β =
4×10−5. A complete description of the numerical simulation setup is given in Appendix A.3
and Appendix B.3. Sample dynamics of the pressure and the cell density obtained from the
individual-based model and the continuum model are shown in the video accompanying this
figure (vid. Online Resource 5)

Our modelling framework can be easily extended to incorporate additional
layers of biological complexity, such as nutrient-limited proliferation, undi-
rected random cell movement, chemotaxis and haptotaxis. These are all lines
of research that we will be pursuing in the near future.

A Details of numerical simulations of the individual-based model

We use a uniform discretisation of the interval [0, 100] that consists of 1001 points as the
spatial domain (i.e. the grid-step is χ = 0.1) and we choose the time-step τ = 2× 10−3. We
implement zero-flux boundary conditions by letting the attempted move of a cell be aborted
if it requires moving out of the spatial domain. For all simulations, we use the definition (50)
of G(p) and we perform numerical computations in Matlab. Further details specific either
to the case of one single cell population or to the case of two cell populations are provided
in the next subsections.

A.1 Setup of numerical simulations for the case of one single cell population

For consistency with equation (1), we set M = 1 and we drop the index h = 1 both
from the functions and from the parameters of the individual-based model. We define the
rate G in equations (9)-(11) according to equation (50). We set the homeostatic pressure
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Fig. 8 Numerical simulations for more realistic barotropic relations. Comparison
between the computational simulation results of our individual-based model in the case of
two cell populations (solid lines) and the numerical solutions of the continuum model (7)
(dashed lines), for µ1 > µ2 (i.e. ν1 > ν2). The left and right panel display, respectively,
the pressure and the cell densities of population 1 (red lines) and population 2 (blue lines)
at three successive time instants, i.e. t = 100 (left curves), t = 150 (middle curves) and
t = 200 (right curves). Values of the pressure and the cell densities are in units of 104.
Simulations were carried out using a barotropic relation that satisfies assumptions (51) and
the definition (50) of G(p) with the homeostatic pressure P = 10×104 and the coefficient β =
4×10−5. A complete description of the numerical simulation setup is given in Appendix A.3
and Appendix B.3. Sample dynamics of the pressure and the cell density obtained from the
individual-based model and the continuum model are shown in the video accompanying this
figure (vid. Online Resource 6)

P = 120× 104 for the simulation results reported in Figure 2 and Figure 3, while we choose
P = 120 × 105 for the simulation results of Figure 4. Moreover, we choose β = 4 × 10−6

for the simulation results reported in Figure 2, β = 4 × 10−5 for the simulation results of
Figure 4, and β ∈

{
1.5× 10−6, 4× 10−6, 4× 10−5

}
for the simulation results of Figure 3.

We set ν = 0.02 in equations (13)-(15) and we define the pressure pki according to the
following barotropic relation

Π(ρki ) = Kγ (ρki )γ with Kγ =
γ + 1

γ
and γ > 1,

which satisfies conditions (3). We let γ ∈ {1.2, 1.5, 2} for the simulation results of Figure 4,
while we choose γ = 1.2 for the simulation results reported in Figure 2 and Figure 3. We
use the initial cell density

ρ0i = A exp
(
−b x2i

)
with A = 2× 104 and b = 4× 10−3.

The results presented in Figure 2 and Figure 3 correspond to the average over three simu-
lations of our individual-based model, while the results in Figure 4 correspond to one single
simulation when γ = 1.5 or γ = 2 and the average over two simulations when γ = 1.2.

A.2 Setup of numerical simulations for the case of two cell populations –
Figure 5 and Figure 6

For consistency with the system of equations (7), we choose M = 2, and we set G1 ≡ G
and G2 ≡ 0 in equations (9)-(11), where G is defined according to equation (50) with the
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homeostatic pressure P = 10 × 104 and the factor β = 4 × 10−5. We set ν1 = 0.01 and
ν2 = 0.5 in equations (13)-(15) for the simulation results reported in Figure 5, while we
consider ν1 = 0.5 and ν2 = 0.01 for the simulation results of Figure 6. We define the
pressure pki according to the following simplified barotropic relation

Π(ρki ) = K ρki with K = 2,

which satisfies conditions (3). We make use of the initial cell densities

ρ01i = A1 exp
(
−b1 x2i

)
and ρ02i =


0, for xi ≤ 13,

A2 exp
(
−b2(xi − 14)2

)
, for xi ∈ (13, 29),

0, for xi ≥ 29,

(52)

where

A1 = 1.25× 104, b1 = 0.06, A2 = 2.5× 104 and b2 = 6× 10−3.

The results presented in Figure 5 and Figure 6 correspond to one single simulation of our
individual-based model.

A.3 Setup of numerical simulations for the case of two populations – Figure 7
and Figure 8

For consistency with the system of equations (7), we choose M = 2, and we set G1 ≡ G
and G2 ≡ 0 in equations (9)-(11), where G is defined according to equation (50) with the
homeostatic pressure P = 10 × 104 and the factor β = 4 × 10−5. We set ν1 = 0.01 and
ν2 = 0.5 in equations (13)-(15) for the simulation results reported in Figure 7, while we
consider ν1 = 0.5 and ν2 = 0.01 for the simulation results of Figure 8. We define the
pressure pki according to the following barotropic relation

Π(ρki ) = q (ρki − ρ∗)+ where q = 10 and ρ∗ = r P with r = 10−3,

which satisfies conditions (51). We make use of the initial cell densities (52) with

A1 = 12.5× 104, b1 = 0.06, A2 = 25× 104 and b2 = 6× 10−3.

The results presented in Figure 7 and Figure 8 correspond to one single simulation of our
individual-based model.

B Details of numerical simulations of the continuum models

We let x ∈ [0, 100] and we construct numerical solutions for equation (1) and for the system
of equations (7) complemented with zero Neumann boundary conditions. We use a finite
volume method based on a time-splitting between the conservative and nonconservative
parts. For the conservative parts, transport terms are approximated through an upwind
scheme whereby the cell edge states are calculated by means of a high-order extrapolation
procedure [36], while the forward Euler method is used to approximate the nonconservative
parts. We consider a uniform discretisation of the interval [0, 100] that consists of 1001
points and we perform numerical computations in Matlab. For all simulations, we use the
definition (50) of G(p). Further details specific either to the case of one cell population or
to the case of two cell populations are provided in the next subsections.
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B.1 Setup of numerical simulations for equation (1)

The rate G is defined according to equation (50) with the homeostatic pressure P = 120×104

for the numerical solutions reported in Figure 2 and Figure 3, while we choose P = 120×105

for the numerical solutions of Figure 4. Moreover, we choose β = 4×10−6 for the numerical
solutions reported in Figure 2, β = 4 × 10−5 for the numerical solutions of Figure 4, and
β ∈

{
1.5× 10−6, 4× 10−6, 4× 10−5

}
for the numerical solutions reported in Figure 3. We

define the pressure p according to the following barotropic relation

Π(ρ) = Kγ ρ
γ with Kγ =

γ + 1

γ
and γ > 1,

which satisfies conditions (3). We let γ ∈ {1.2, 1.5, 2} for the numerical solutions of Figure 4,
while we choose γ = 1.2 for the numerical solutions reported in Figure 2 and Figure 3.
Given the parameter values used for the individual-based model in the case of one single cell
population, we choose the mobility µ = 4.166×10−7 for the numerical solutions reported in
Figure 2 and Figure 3, while we set µ = 4.166×10−8 for the numerical solutions of Figure 4.
In this way, both values of µ satisfy condition (21) for h = 1. We impose the initial condition

ρ(0, x) = A exp
(
−b x2

)
with A = 2× 104 and b = 4× 10−3.

B.2 Setup of numerical simulations for the system of equations (7) – Figure 5
and Figure 6

The rate G is defined according to equation (50) with the homeostatic pressure P = 10×104

and β = 4 × 10−5. Given the parameter values used for the individual-based model in the
case of two cell populations, we choose the mobilities µ1 = 2.5×10−7 and µ2 = 1.25×10−5

for the numerical solutions reported in Figure 5, and the mobilities µ1 = 1.25 × 10−5 and
µ2 = 2.5 × 10−7 for the numerical solutions of Figure 6. This ensures that conditions (21)
for h = 1, 2 are satisfied. We define the pressure p according to the following simplified
barotropic relation

Π(ρ) = K ρ with K = 2,

which satisfies conditions (3). We impose the initial conditions

ρ01(0, x) = A1 exp
(
−b1 x2

)
and ρ02 =


0, for x ≤ 13,

A2 exp
(
−b2(x− 14)2

)
, for x ∈ (13, 29),

0, for x ≥ 29,

(53)

where
A1 = 1.25× 104, b1 = 0.06, A2 = 2.5× 104 and b2 = 6× 10−3.

B.3 Setup of numerical simulations for the system of equations (7) – Figure 7
and Figure 8

The rate G is defined according to equation (50) with the homeostatic pressure P = 10×104

and β = 4 × 10−5. Given the parameter values used for the individual-based model in the
case of two cell populations, we choose the mobilities µ1 = 2.5×10−7 and µ2 = 1.25×10−5

for the numerical solutions reported in Figure 7, and the mobilities µ1 = 1.25 × 10−5 and
µ2 = 2.5 × 10−7 for the numerical solutions of Figure 8. This ensures that conditions (21)
for h = 1, 2 are satisfied. We define the pressure p according to the following barotropic
relation

Π(ρ) = q (ρ− ρ∗)+ where q = 10 and ρ∗ = r P with r = 10−3,
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which satisfies conditions (51). We impose the initial conditions (53) with

A1 = 12.5× 104, b1 = 0.06, A2 = 25× 104 and b2 = 6× 10−3.

Acknowledgements FRM is funded by the Engineering and Physical Sciences Research
Council (EPSRC). TL and FRM gratefully acknowledge Dirk Drasdo and Lúıs Neves de
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tissues by cell division and apoptosis. Proc. Nat. Acad. Sci. USA 107(49), 20,863–
20,868 (2010)

57. Roose, T., Chapman, S.J., Maini, P.K.: Mathematical models of avascular tumor growth.
SIAM Review 49(2), 179–208 (2007)

58. Sherratt, J.A., Chaplain, M.A.J.: A new mathematical model for avascular tumour
growth. J. Math. Biol. 43(4), 291–312 (2001)

59. Simpson, M.J., Landman, K.A., Hughes, B.D.: Cell invasion with proliferation mecha-
nisms motivated by time-lapse data. Physica A Stat. Mech. Appl. 389(18), 3779–3790
(2010)

60. Simpson, M.J., Merrifield, A., Landman, K.A., Hughes, B.D.: Simulating invasion with
cellular automata: Connecting cell-scale and population-scale properties. Phys. Rev. E
76(2), 021,918 (2007)

61. Stevens, A.: The derivation of chemotaxis equations as limit dynamics of moderately
interacting stochastic many-particle systems. SIAM J. Appl. Math. 61(1), 183–212
(2000)

62. Stevens, A., Othmer, H.G.: Aggregation, blowup, and collapse: The ABC’s of taxis in
reinforced random walks. SIAM J. Appl. Math. 57(4), 1044–1081 (1997)

63. Tang, M., Vauchelet, N., Cheddadi, I., Vignon-Clementel, I., Drasdo, D., Perthame, B.:
Composite waves for a cell population system modeling tumor growth and invasion.
In: Partial Differential Equations: Theory, Control and Approximation, pp. 401–429.
Springer (2014)

64. Van Liedekerke, P., Palm, M., Jagiella, N., Drasdo, D.: Simulating tissue mechanics
with agent-based models: Concepts, perspectives and some novel results. Comput. Part.
Mech. 2(4), 401–444 (2015)
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