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DISCRETE AND CONTINUUM PHENOTYPE-STRUCTURED

MODELS FOR THE EVOLUTION OF CANCER CELL

POPULATIONS UNDER CHEMOTHERAPY∗

Rebecca E.A. Stace1, Thomas Stiehl2, Mark A.J. Chaplain3,
Anna Marciniak-Czochra4 and Tommaso Lorenzi5,∗∗

Abstract. We present a stochastic individual-based model for the phenotypic evolution of cancer cell
populations under chemotherapy. In particular, we consider the case of combination cancer therapy
whereby a chemotherapeutic agent is administered as the primary treatment and an epigenetic drug
is used as an adjuvant treatment. The cell population is structured by the expression level of a gene
that controls cell proliferation and chemoresistance. In order to obtain an analytical description of evo-
lutionary dynamics, we formally derive a deterministic continuum counterpart of this discrete model,
which is given by a nonlocal parabolic equation for the cell population density function. Integrating
computational simulations of the individual-based model with analysis of the corresponding continuum
model, we perform a complete exploration of the model parameter space. We show that harsher envi-
ronmental conditions and higher probabilities of spontaneous epimutation can lead to more effective
chemotherapy, and we demonstrate the existence of an inverse relationship between the efficacy of the
epigenetic drug and the probability of spontaneous epimutation. Taken together, the outcomes of the
model provide theoretical ground for the development of anticancer protocols that use lower concen-
trations of chemotherapeutic agents in combination with epigenetic drugs capable of promoting the
re-expression of epigenetically regulated genes.
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1. Introduction

Mathematical modelling can contribute to cancer research by supporting experimental results with a theoret-
ical basis. Furthermore, mathematical models can generate new experimentally testable hypotheses which can
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ultimately reveal emergent phenomena that would otherwise remain unobserved [3, 5–7, 17, 22, 36]. Amongst
others, integro-differential equations and nonlocal partial differential equations (PDEs) modelling evolutionary
dynamics in populations structured by physiological traits have provided fresh insight into how the adaptation
of cancer cell populations exposed to antiproliferative drugs can be acted upon by selective pressures, which
drive the outgrowth of drug-resistant phenotypic variants [2, 25–27, 29, 50–52, 54–56, 71].

A key advantage of these deterministic continuum models over their stochastic individual-based counterparts
(i.e. discrete models that track the phenotypic evolution of single individual cells) is that they are amenable
to mathematical analysis. This enables a complete exploration of the model parameter space, allowing more
robust conclusions to be drawn. Furthermore, compared to individual-based models, such continuum models
offer the possibility to carry out numerical simulations for large numbers of cells, while keeping computational
costs within acceptable bounds. However, continuum models are defined at the scale of the whole cell population
and, as such, they are usually formulated on the basis of phenomenological considerations. This can hinder a
precise mathematical description of crucial evolutionary aspects. On the contrary, stochastic individual-based
models describe the phenotypic evolution of single cells in terms of algorithmic rules, which can be more easily
tailored to capture fine details of cellular dynamics. Therefore, such discrete models make it possible to achieve
a more accurate mathematical representation of evolutionary dynamics in cancer cell populations. Furthermore,
individual-based models are able to reproduce the emergence of population-level phenomena that are induced
by stochastic fluctuations in single-cell phenotypic properties – which are relevant in the regime of low cell
numbers and cannot easily be captured by continuum models. Therefore, it is desirable to derive continuum
models for the response of cancer cell populations to chemotherapy as the appropriate limit of discrete models
for the phenotypic evolution of single cells. This may provide a clearer picture of the modelling assumptions
made and ensure they correctly reflect the essentials of the underlying biological problem.

In light of these considerations, aiming to complement the existing literature on phenotype-structured models
of evolutionary dynamics in cancer cell populations, we present here a stochastic individual-based model for
the phenotypic evolution of cancer cells under chemotherapy. In particular, we consider the case of combination
cancer therapy whereby a chemotherapeutic agent is administered as the primary treatment and an epigenetic
drug is used as an adjuvant treatment. The cancer cell population is structured by the expression level of a gene
that controls both cell proliferation and chemoresistance, and the level of expression of this gene determines the
cell phenotypic state. Each single cell within the population undergoes spontaneous epimutations and divides
or dies according to a set of simple rules, which result in a discrete-time branching random walk on the space of
phenotypic states. We formally derive a deterministic continuum counterpart of this discrete model, which we
show to consist of a nonlocal parabolic PDE for the cell population density function (i.e. the cell distribution
over the space of phenotypic states) [65]. Analysing the long-term behaviour of the solution to this equation, we
obtain a precise qualitative and quantitative depiction of evolutionary dynamics in the cancer cell population.
In this respect, our work follows earlier papers about the derivation of deterministic continuum models for the
evolution of populations structured by physiological traits from stochastic individual-based models [19, 20, 23].
It also follows previous articles on the analysis of nonlocal parabolic PDEs with advection terms that arise from
the mathematical modelling of adaptive dynamics in asexual populations [23, 24, 53].

Combining computational simulations of the individual-based model with analysis of the corresponding PDE,
we perform a complete exploration of the model parameter space. In summary, the mathematical results obtained
support cancer research by addressing the following questions:

Q1 How do chemotherapeutic agents shape the phenotypic composition and the size of cancer cell populations
by interfering with the evolution of individual cells?

Q2 What conditions on single cells’ evolutionary parameters underpin successful chemotherapy?
Q3 How does the efficacy of adjuvant epigenetic therapy relate to the probability for cancer cells to undergo

spontaneous epimutation and to the dose of chemotherapy in use?
Q4 Can anticancer protocols that use lower concentrations of chemotherapeutic agents in combination with

epigenetic drugs be more effective than therapeutic protocols based solely on high-dose chemotherapy?
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The rest of the paper is organised as follows. In Section 2, we briefly describe the underlying biological
problem and introduce the phenotype-structured individual-based model. In Section 3, we carry out a formal
derivation of the corresponding deterministic continuum model and we study the long-time asymptotic behaviour
of its solution, in order to achieve a precise mathematical characterisation of evolutionary dynamics within the
cancer cell population. In Section 4, we present the results of computational simulations of the individual-based
model, we integrate them with the analytical results established in Section 3, and we discuss their biological
implications. Section 5 concludes the paper and provides a brief overview of possible research perspectives.

2. Biological background and description of the model

2.1. Biological background

Recent experimental and clinical studies indicate that carcinogenesis can be viewed as an evolutionary process
at the cellular level [39, 45, 46, 58, 61, 73, 83, 85, 86, 88]. In summary, novel phenotypic variants emerge via
heritable variations in gene expression. The existing phenotypic variants undergo natural selection through
competition for space and resources, in some cases under the action of xenobiotic agents such as anticancer
drugs, and the cells in fittest phenotypic states survive to proliferate at the expense of the weaker phenotypic
variants.

Under such an evolutionary perspective, the development of chemoresistance in cancer cell populations can
be conceptualised as a population bottleneck owing to the selective pressure exerted by the chemotherapeutic
agent(s) in use. This is illustrated by the schematic diagram presented in Figure 1. Prior to chemotherapy, the cell
population is mainly composed of highly-proliferating phenotypic variants, which have a competitive advantage
over cells in slow-proliferating phenotypic states in favourable environmental conditions. Some slow-proliferating
cells are still present because of genotypic and phenotypic variability. In the presence of chemotherapy, the
population is exposed to the selective stress induced by the chemotherapeutic agent(s), which target mostly
rapidly proliferating phenotypic variants. Therefore, cells with a lower proliferative potential will acquire a
competitive advantage over more proliferative cells. As a result, most of the fast-proliferating, chemosensitive
cells will die out and the aftermath of chemotherapy will be a population of slow-proliferating, chemoresistant
cells. Hence, one will initially observe a reduction in the size of the cell population. However, since those cells
that have survived chemotherapy will no longer respond to the therapeutic agents in use, and they will not have
to compete anymore for space and resources against cells with a higher proliferative potential, the size of the
cell population will ultimately grow again.

Whilst genetic mutations are a known source of phenotypic variability in cancer cell populations, a growing
number of researchers welcome the contribution of epimutations (i.e. heritable phenotypic variations that are
nongenetic in nature) in the events leading to the development and progression of cancer [13, 14, 21, 28, 33,
38, 44, 64, 68, 69, 77–79]. The initiation of genetic mutations is a result of abnormal structural changes in the
DNA sequence, which incorporate a multitude of dissimilar alterations (e.g. replication error, neglected damage,
substitution of base pairs and rearrangement). Epimutations, in contrast, act at the level of transcription by
altering gene expression while leaving the order of the DNA bases unaltered. Gene expression may be upregu-
lated, downregulated or even silenced, and the mechanisms through which this happens are of interest [30, 32].
DNA methylation and histone modification are two widely accepted epigenetic mechanisms in the development
of resistance to chemotherapeutic agents, which both lead to gene silencing [60, 87].

The development of drugs which interfere with these epigenetic mechanisms and potentially revert cancer-
ous cells back to a more normal phenotypic state appears to be a valuable resource for effective therapeutic
protocols [66]. In this regard, a new perspective for cancer therapy is offered by experimental results show-
ing that the so-called epigenetic drugs can induce the re-sensitisation of cancer cells to chemotherapeutic
agents [1, 18, 49, 57, 74, 81, 89]. The role of epigenetic drugs is to interfere with the epigenetic machinery
such that they promote re-expression of epigenetically regulated genes. Demethylating agents (which act to
inhibit DNA methylation) and histone deacetylase (HDAC) inhibitors (which target the prevention of histone
modification by acetylation) are two types of epigenetic drugs the effects of which prove promising on human
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Figure 1. Schematic diagram illustrating the evolutionary process leading to the emergence
of chemoresistance in cancer cell populations.

cancer. For instance, in melanoma and breast cancer studies, the methylation inhibitor 2-deoxy-5-azacytidine
(DAC) demonstrated improved chemotherapeutic drug-uptake whilst reducing chemoresistance [41]. A mouse
model showed no effect of DAC on tumour growth but revealed its ability to sensitise the tumour to other
chemotherapeutic agents. Additionally, the HDAC inhibitor Vorinostat has the ability to sensitise cancer cells
to other drug therapies; however, side effects prevent translation to the clinic [42]. Such drugs lie at the heart of
controlling fundamental homeostatic mechanisms, rendering contrasting properties to those seen by chemothera-
peutic drugs [89]. Researchers have discovered that inhibiting the DNA transcription regulator cyclin-dependent
kinase 9 (CDK9) reactivates genes that have been epigenetically silenced by cancer, which leads to enhanced
anti-cancer immunity [90]. Although the efficacy and side effects of this class of therapeutic agents are still
largely to be assessed, within the past two decades seven epigenetic drugs have received regulatory approval,
and numerous other candidates are currently in clinical trials [35].

2.2. A stochastic individual-based model for the phenotypic evolution of cancer cell
populations

We study evolutionary dynamics of a well-mixed population of cancer cells structured by the expression level
y ∈ R≥0 of an epigenetically regulated gene that controls both cell proliferation and chemoresistance, such as
the DLL1 gene [47, 67, 72]. Cells within the population divide, die and undergo spontaneous epimutations,
i.e. epimutations that occur randomly due to nongenetic instability and are not induced by any selective pres-
sure [43]. Moreover, a chemotherapeutic agent can be administered as the primary treatment and an epigenetic
drug promoting the re-expression of the gene may be used as an adjuvant treatment.

On the basis of previous experimental results, such as those reported in [37, 80], we follow Pisco and Huang [68]
by assuming that there is a sufficiently high level of gene expression yH conferring the highest rate of cellular
division and, given that chemotherapeutic agents target mostly rapidly dividing cells [8], we also assume that
there is a sufficiently low level of gene expression yL < yH which endows cancer cells with the highest level of
chemoresistance. Based on the modelling strategies proposed by Lorenzi et al. [52], we represent the phenotypic
state of cancer cells by the rescaled variable x ∈ R with

x =
y − yL

yH − yL
,
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Figure 2. Schematic diagram illustrating the relationships between gene expression levels,
phenotypic states and cellular characteristics in our model.

so that the state x = 0 corresponds to the highest level of chemoresistance, whereas the state x = 1 corresponds
to the highest proliferative potential. These ideas are illustrated by the scheme in Figure 2.

Building upon the ideas presented by Chisholm et al. [23], we model the phenotypic evolution of the cell
population as a time-discrete branching random walk whereby the time variable t ∈ R≥0 and the phenotypic
state x ∈ R are discretised, respectively, as

th = hτ for h ∈ N0 and xi = iχ for i ∈ Z, with 0 < τ, χ� 1.

We introduce the dependent variable Nh
i ∈ N0 to model the number of cells in the phenotypic state xi at the

hth time-step, and we compute the cell population density nhi , the size of the cell population (i.e. the total
number of cells) ρh, the mean phenotypic state µh, and the related standard deviation σh as

nhi = Nh
i χ
−1, ρh =

∑
i

Nh
i µh =

1

ρh

∑
i

xiN
h
i and σh =

(
1

ρh

∑
i

x2
i N

h
i −

(
µh
)2) 1

2

. (2.1)

Notice that the standard deviation σh provides a possible measure of the level of phenotypic heterogeneity within
the cell population at the hth time-step. Furthermore, focussing on the case of continuous drug administration,
we introduce the parameters cK ∈ [0, 1] and cE ∈ [0, 1] to model, respectively, the rescaled constant concentration
of the chemotherapeutic agent and of the epigenetic drug within the system.

We model the phenotypic evolution of the single cells by means of the following algorithmic rules, which are
schematised in Figure 3.

Mathematical modelling of phenotypic variations (cf. Fig. 3(a)). To model the effect of spontaneous
epimutations, at the beginning of each time-step h, we allow all cancer cells to update their phenotypic states
according to a random walk. In summary, every cell in the population can undergo an epimutation and enter
into a new phenotypic state with probability λ ∈ [0, 1], or remain in its current phenotypic state with probability
1 − λ. A cell in the phenotypic state xi that undergoes an epimutation can either enter into the phenotypic
state xi−1 with probability pL or enter into the phenotypic state xi+1 with probability pR. Hence, we assume
that

pL + pR = λ. (2.2)

Spontaneous epimutations are modulated by the epigenetic drug, which promotes the re-expression of the gene
(i.e. it favours the transition of cancer cells from lower to higher values of xi). We let the strength of the action
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Figure 3. Schematic representation of the algorithmic rules governing the phenotypic evolu-
tion of cancer cells in the stochastic individual-based model. (a) Spontaneous epimutations are
modelled as transitions between adjacent phenotypic states that occur with probabilities pL and
pR. Epigenetic therapy is integrated into the model through the dependence of the transition
probabilities on the concentration of the epigenetic drug cE [i.e. pL ≡ pL(cE) and pR ≡ pR(cE)].
(b) For a cell in the phenotypic state xi, we let b(xi) and k(xi, cK) model, respectively, the net
rate of cell division (i.e. the difference between the rate of cell division and the rate of natural
death) and the rate of cell death induced by the concentration cK of the chemotherapeutic
agent. Moreover, we denote by d(ρh) the rate of cell death due to intrapopulation competi-
tion caused by nutrient and space limitations, with ρh being the size of the cell population
at the time-step h. During the time interval of length τ � 1 between the hth time-step and
the time-step h + 1, we let a cell in the phenotypic state xi divide with probability τ b(xi)+

or die with probability τ
(
b(xi)− + d(ρh) + k(xi, cK)

)
, or remain quiescent with probability

1− τ
(
|b(xi)|+ d(ρh) + k(xi, cK)

)
.

of the epigenetic drug increase with the drug concentration; therefore, we make the assumptions that pR is an
increasing function of cE. In more detail, we assume

pL ≡ pL(cE), pR ≡ pR(cE), pR : [0, 1]→ [0, λ], p′R(·) ≥ 0, pL(cE) = λ− pR(cE), (2.3)

and we choose

pL(cE) :=
λ

2
− ν

2
cE and pR(cE) :=

λ

2
+
ν

2
cE, (2.4)

where the parameter ν ∈ R>0, with ν � 1, models the strength of modulation of spontaneous epimutation by
the epigenetic drug.

Mathematical modelling of cell division and death (cf. Fig. 3(b)). At any time-step h, after the
phenotype update, we allow every cell to divide or die or remain quiescent at rates that depend on their phe-
notypic states, as well as on the environmental conditions given by the size of the cell population ρh and the
concentration of the chemotherapeutic agent cK. We denote by b(xi) the net division rate of a cell in the phe-
notypic state xi (i.e. the difference between the rate of cell division and the rate of natural death). To take into
account the fact that the phenotypic state x = 1 corresponds to the highest rate of cell division, we let the net
cell division rate b : R→ R satisfy following assumptions (see also Rem. 2.1)

b(1) > 0, arg max
x∈R

b(x) = 1 and b′′(·) < 0. (2.5)

Moreover, to translate into mathematical terms the idea that higher cell numbers correspond to less available
space and resources, and thus to more intense intrapopulation competition, at every time-step h we allow the
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cells to die due to intrapopulation competition at rate d(ρh), where the function d : R≥0 → R≥0 satisfies the
following assumptions

d(0) = 0 and d′(·) > 0. (2.6)

Finally, we denoted by k(xi, cK) the rate at which a cell in the phenotypic state xi can be induced to death
by the chemotherapeutic agent. Since the cells in the phenotypic state x = 0 are fully chemoresistant and, for
cells in phenotypic states other than the most chemoresistant one, the rate of death induced by chemotherapy
increases with the dose of the chemotherapeutic agent, we assume the function k : R× [0, 1]→ R≥0 to satisfy
the following conditions (see also Rem. 2.1)

k(·, 0) = 0, arg min
x∈R

k(x, cK) = 0 ∀ cK > 0,
∂k(x, ·)
∂cK

> 0 ∀x 6= 0 and
∂2k(·, cK)

∂x2
> 0 ∀ cK > 0. (2.7)

Remark 2.1. The concavity assumption on the net proliferation rate b(x) and the convexity assumption on
the rate of death induced by the chemotherapeutic agent k(x, cK) for cK > 0 lead naturally to smooth fitness
landscapes (cf. Rem. 3.1), which are close to the approximate fitness landscapes inferred from experimental
data through regression techniques [63].

In this framework, between the time-step h and the time-step h+ 1, we let a cell in the phenotypic state xi:

– divide (i.e. be replaced by two identical progeny cells) with probability

τ b(xi)+ where b(xi)+ = max (0, b(xi)) , (2.8)

– die (i.e. be removed from the population) with probability

τ
(
b(xi)− + d(ρh) + k(xi, cK)

)
where b(xi)− = −min (0, b(xi)) , (2.9)

– remain quiescent with probability

1− τ
(
|b(xi)|+ d(ρh) + k(xi, cK)

)
where |b(xi)| = b(xi)+ + b(xi)−. (2.10)

Notice that we assume the parameter τ to be sufficiently small so that the quantities (2.8)–(2.10) are all between
0 and 1.

On the basis of the ideas proposed in [23, 52], in this paper we will consider the following definitions

b(x) := γ − η (1− x)2, d(ρ) := ζ ρ, k(x, cK) := cK x
2. (2.11)

In the definitions (2.11), the parameter γ ∈ R>0 is the division rate of the fastest dividing cells in the phenotypic
state x = 1, while the parameter η ∈ R>0 is a nonlinear selection gradient that provides a measure of the strength
of natural selection in the absence of xenobiotic agents. Finally, the parameter ζ ∈ R>0 is inversely proportional
to the carrying capacity of the cancer cell population. The fact that the net proliferation rate b(x) can become
negative for values of x sufficiently far from 1 captures the idea that phenotypic variants with a low level
of fitness cannot survive within the population. Definitions (2.11) satisfy assumptions (2.5)–(2.7) and ensure
analytical tractability of the deterministic continuum counterpart of the stochastic discrete model, which will
be formally derived in the next section.
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3. Corresponding continuum model and analysis
of evolutionary dynamics

3.1. Formal derivation of the continuum model corresponding to the individual-based
model

Considering a cell population that evolves according to the algorithmic rules presented in Section 2.2 (cf. the
scheme in Fig. 3), the principle of mass balance gives

nh+1
i =

[
2τb(xi)+ + 1− τ

(
|b(xi)|+ d(ρh) + k(xi, cK)

)][
pL(cE)nhi+1 + pR(cE)nhi−1 +

(
1− pL(cE)− pR(cE)

)
nhi

]
.

Noting that

b(xi) = b(xi)+ − b(xi)− and |b(xi)| = b(xi)+ + b(xi)−,

the above difference equation can be rewritten as

nh+1
i =

(
1 + τ b(xi)− τ d(ρh)− τ k(xi, cK)

)[
pL(cE)nhi+1 + pR(cE)nhi−1 +

(
1− pL(cE)− pR(cE)

)
nhi

]
. (3.1)

Using the fact that the following relations hold for τ and χ sufficiently small

th ≈ t, th+1 ≈ t+ τ, xi ≈ x, xi−1 ≈ x− χ, xi+1 ≈ x+ χ,

nhi ≈ n(x, t), nh+1
i ≈ n(x, t+ τ), nhi−1 ≈ n(x− χ, t), nhi+1 ≈ n(x+ χ, t), ρh ≈ ρ(t) =

∫
R
n(x, t) dx,

we rewrite (3.1) in the following approximate form

n(x, t+ τ) ≈
(

1 + τ R(x, ρ(t), cK)
)[
pL(cE)n(x+ χ, t) + pR(cE)n(x− χ, t) +

(
1− pL(cE)− pR(cE)

)
n(x, t)

]
,

with

R(x, ρ, cK) := b(x)− d(ρ)− k(x, cK). (3.2)

Assuming that n ∈ C2 (R× R≥0), we can approximate the terms n(x, t + τ), n(x − χ, t) and n(x + χ, t) in
the latter equation by their second order Taylor expansions about the point (x, t), that is, we can use the
approximations

n(x, t+ τ) ≈ n+ τ
∂n

∂t
+
τ2

2

∂2n

∂t2
and n(x± χ, t) ≈ n± χ∂n

∂x
+
χ2

2

∂2n

∂x2
, with n ≡ n(x, t).

In so doing, after a little algebra we find

∂n

∂t
+
τ

2

∂2n

∂t2
≈ χ

τ

(
pL(cE)− pR(cE)

)∂n
∂x

+
χ2

2τ

(
pL(cE) + pR(cE)

) ∂2n

∂x2

+R(x, ρ(t), cK)

[
n+ χ

(
pL(cE)− pR(cE)

)∂n
∂x

+
χ2

2

(
pL(cE) + pR(cE)

)∂2n

∂x2

]
. (3.3)
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Substituting (2.4) into (3.3) yields

∂n

∂t
+
τ

2

∂2n

∂t2
≈ −χν

τ
cE
∂n

∂x
+
χ2

τ

λ

2

∂2n

∂x2
+ R(x, ρ(t), cK)

(
n− χν cE

∂n

∂x
+ χ2λ

2

∂2n

∂x2

)
. (3.4)

Letting ν, τ, χ→ 0 in (3.4) in such a way that

lim
ν,τ,χ→0

χν

τ
= α and lim

τ,χ→0

χ2

τ
= β with α, β ∈ R>0 (3.5)

we formally obtain the following nonlocal parabolic equation for the population density function n(x, t) ≥ 0:
∂n

∂t
+ α cE

∂n

∂x
= β

λ

2

∂2n

∂x2
+R(x, ρ(t), cK)n, n ≡ n(x, t), (x, t) ∈ R× R≥0,

ρ(t) =

∫
R
n(t, x) dx.

(3.6)

Without loss of generality, in the remainder of this section we will assume

α = β = 1. (3.7)

Remark 3.1. The functional R(x, ρ, cK) defined according to (3.2) represents the fitness of cancer cells in the
phenotypic state x under the environmental conditions determined by the population size ρ and by the concen-
tration of the chemotherapeutic agent cK, i.e. the fitness landscape of the cancer cell population [43, 58, 70].
Substituting definitions (2.11) into definition (3.2), a little algebra shows that

R
(
x, ρ, cK

)
= γ − η cK

η + cK
− (η + cK)

(
x− η

η + cK

)2

− ζ ρ.

Therefore, the fittest phenotypic state (i.e. the phenotypic state with the highest fitness) is

xfit =
η

η + cK

and the gene expression level corresponding to the fittest phenotypic state yfit is given by the following equation

yfit = xfit yH + (1− xfit) yL.

Hence, although x ∈ R and y ∈ R≥0, we have that

0 < xfit ≤ 1 and yL < yfit ≤ yH .

3.2. Analysis of evolutionary dynamics

For any initial condition n(x, 0) that satisfies the following biologically realistic assumptions

n(x, 0) ∈ L1 ∩ L∞(R), n(x, 0) > 0 a.e. only on Ω ⊂ R with Ω being a compact set, (3.8)

the long-time behaviour of the solution n(x, t) ≥ 0 to equation (3.6) is characterised by Theorem 3.2.
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Theorem 3.2. Under definitions (2.11) and (3.2) and assumptions (3.7), the integral ρ(t) of the solution to
the nonlocal parabolic PDE (3.6) subject to the initial condition (3.8) satisfies the following:

(i) if

η cK
η + cK

+
c2E
2λ

+

(
λ

2

) 1
2

(η + cK)
1
2 ≥ γ (3.9)

then

lim
t→∞

ρ(t) = 0; (3.10)

(ii) if

η cK
η + cK

+
c2E
2λ

+

(
λ

2

) 1
2

(η + cK)
1
2 < γ (3.11)

then

lim
t→∞

ρ(t) = ρ > 0 with ρ =
1

ζ

(
γ − η cK

η + cK
− c2E

2λ
−
(
λ

2

) 1
2

(η + cK)
1
2

)
. (3.12)

Moreover, under the additional assumption (3.11), the nonlocal parabolic PDE (3.6) admits a unique nonnegative
nontrivial steady-state solution n(x) with

n(x) =
ρ

(2π)
1
2 σ

exp

[
−1

2

(x− µ)
2

σ2

]
, (3.13)

where

µ =
η

η + cK
+

cE

(2λ)
1
2 (η + cK)

1
2

and σ =

(
λ

2 (η + cK)

) 1
4

. (3.14)

Proof. Substituting definitions (2.11) and (3.2) and assumptions (3.7) into the nonlocal parabolic PDE (3.6)
gives

∂n

∂t
+ cE

∂n

∂x
=
λ

2

∂2n

∂x2
+
(
γ − η (1− x)2 − cK x2 − ζ ρ(t)

)
n, n ≡ n(x, t), (x, t) ∈ R× R≥0.

We rewrite the latter PDE as

∂n

∂t
+ cE

∂n

∂x
=
λ

2

∂2n

∂x2
+
(
γK − ηK (x− xK)2 − ζ ρ(t)

)
n, (3.15)

with

γK := γ − η cK
η + cK

, ηK := η + cK and xK :=
η

η + cK
. (3.16)
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Proof of (3.10) and (3.12). Using the method of proof that we presented in [23], one can show that, for any
initial condition satisfying assumptions (3.8), the integral of the solution to the PDE (3.15) is such that

ρ(t) =

ρ(0) exp

[∫ t

0

g(s) ds

]
1 + ζ ρ(0)

∫ t

0

exp

[∫ s

0

g(z) dz

]
ds

,

where the function g(t) is such that g(t) −→ γK −
c2E
2λ
−
(
λ ηK

2

) 1
2

=: g as t→∞. Since

exp

[∫ t

0

g(s) ds

]
∼ Ceg t as t→∞ and

∫ t

0

exp

[∫ s

0

g(z) dz

]
ds ∼


const if g < 0

Ct if g = 0
C

g
eg t if g > 0

as t→∞

for some C ∈ R>0, we conclude that ρ(t) is such that

if γK ≤
c2E
2λ

+

(
λ ηK

2

) 1
2

then lim
t→∞

ρ(t) = 0, whereas if γK >
c2E
2λ

+

(
λ ηK

2

) 1
2

then lim
t→∞

ρ(t) =
g

ζ
.

This concludes the proof of (3.10) and (3.12).

Proof of (3.13) and (3.14). A nonnegative nontrivial steady-state solution n(x) of the PDE (3.15) satisfies the
following differential equation


λ

2
n′′ − cE n′ +

(
γK − ηK (x− xK)2 − ζ ρ

)
n = 0, n ≡ n(x), x ∈ R,

ρ =

∫
R
n(x) dx.

(3.17)

We make the change of variables y = x− xK and rewrite (3.17) as


λ

2
n′′ − cE n′ +

(
γK − ηK y2 − ζ ρ

)
n = 0, n ≡ n(y), y ∈ R,

ρ =

∫
R
n(y) dy.

(3.18)

Making the additional change of variables

n(y) = exp
(cE y
λ

)
u(z) with z = y

(
8 ηK
λ

) 1
4

(3.19)
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we find that u(z) satisfies the differential equation

u′′ −
(
z2

4
+ a

)
u = 0, u ≡ u(z), z ∈ R with a :=

ζ

(2λ ηK)
1
2

(
ρ+

c2E
2λ ζ

− γK
ζ

)
. (3.20)

The differential equation (3.20) is the Weber’s equation, the solutions of which are bounded for all z ∈ R if and
only if

a = −m− 1

2
with m ∈ Z∗.

The bounded solutions are of the form

u(z) ∝ exp(−z2/4)Hm(z), (3.21)

where Hm(z) denotes the Hermite polynomial of degree m [59, 84]. Since Hm(z) ≥ 0 for all z ∈ R only if m = 0,

the existence of a nontrivial nonnegative solution of the differential equation (3.20) requires a = −1

2
. Under

assumption (3.11), solving the algebraic equation

a = −1

2
⇐⇒ ζ

(2λ ηK)
1
2

(
ρ+

c2E
2λ ζ

− γK
ζ

)
= −1

2

for ρ we find the expression (3.12) of ρ, as expected. Furthermore, using equation (3.21) with m = 0 along with
the change of variables (3.19) we find that

n(y) = C exp

−1

2

(
2 ηK
λ

) 1
2

(
y − cE

(2λ ηK)
1
2

)2
,

for some C ∈ R>0. The change of variables y = x− xK then yields

n(x) = C exp

−1

2

(
2 ηK
λ

) 1
2

[
x−

(
xK +

cE

(2λ ηK)
1
2

)]2
. (3.22)

Moreover, we can evaluate the constant C in terms of ρ by integrating both sides of (3.22) over R and imposing∫
R
n(x) dx = ρ. In so doing we find C = ρ (2π)−

1
2

(
λ

2 ηK

)− 1
4

. Substituting the expression of C together with

the definitions (3.16) of ηK and xK into (3.22) we obtain (3.13) with µ and σ given by (3.14). This concludes
the proof of (3.13) and (3.14).

Additional pieces of biological information are conveyed by the result established by the following corollary
of Theorem 3.2.

Corollary 3.3. Under the assumptions of Theorem 3.2 and the additional assumption (3.11), if the following
condition is verified

cE > λ
3
4

(
η + cK

2

) 1
4

(3.23)
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then the asymptotic value of the cell population size (3.12) is such that

∂ρ

∂λ
> 0. (3.24)

Proof. Differentiating the expression (3.12) of ρ with respect to λ and solving the inequality
∂ρ

∂λ
> 0 for cE one

can easily verify the claim of Corollary 3.3.

The asymptotic results established by Theorem 3.2 together with the additional result given by Corollary 3.3
demonstrate that, if the cancer cell population does not go extinct, i.e. if assumption (3.11) is satisfied, then:

– The equilibrium population size ρ is a decreasing function of the concentration of the chemotherapeutic
agent cK and of the concentration of the epigenetic drug cE.

– The reduction in the equilibrium population size induced by the chemotherapeutic agent is an increasing
function of the selection gradient η and of the probability of spontaneous epimutation λ.

– The reduction in the equilibrium population size due to the epigenetic drug is a decreasing function of the
probability of spontaneous epimutation λ.

– If the concentration of the epigenetic drug is sufficiently high – i.e. when cE satisfies condition (3.23) –
the population size at equilibrium is an increasing function of λ.

– The equilibrium phenotype distribution n(x) is unimodal, with the mean phenotypic state µ being at the
distribution’s peak.

– If cE = 0 and cK = 0 then µ = 1, that is, in the absence of xenobiotic agents the peak of the equilibrium
phenotype distribution is at the fastest proliferating state x = 1.

– The mean phenotypic state µ is a decreasing function of the concentration of the chemotherapeutic agent
cK. Higher values of cK lead the peak of the equilibrium phenotype distribution to move from the fastest
proliferating state x = 1 towards more chemoresistant phenotypic states closer to the most chemoresistant
state x = 0.

– The level of phenotypic heterogeneity at equilibrium (i.e. the standard deviation σ of the phenotypic
distribution) is an increasing function of the probability of spontaneous epimutation λ, and a decreas-
ing function of both the nonlinear selection gradient η and the concentration of the chemotherapeutic
agent cK.

– The mean phenotypic state µ is an increasing function of the concentration of the epigenetic drug cE.
For cK > 0 given, higher values of cE move the peak of the equilibrium phenotype distribution from more
chemoresistant phenotypic states closer to x = 0 towards more chemosensitive phenotypic states closer to
x = 1.

– For cE > 0 given, the change in the mean phenotypic state µ induced by the epigenetic drug is a decreasing
function of the probability of spontaneous epimutation λ and of the concentration of the chemotherapeutic
agent cK.

In the next section, these mathematical findings are integrated with the results of computational simulations of
the stochastic individual-based model, and their biological relevance is discussed in detail.
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4. Computational simulations of the stochastic
individual-based model

4.1. Setup of computational simulations

To carry out computational simulations of the stochastic individual-based model, we consider x ∈ [−4, 4] ⊂ R
and we define τ = 0.001, χ =

√
τ and ν = χ, so that conditions (3.5) and (3.7) are met. In agreement with

previous papers [11, 12, 52, 69, 82], we define

γ := 0.6 day−1, η := 0.3 day−1, ζ := 0.6× 10−4 cells−1 day−1 (4.1)

and, unless otherwise stated, we choose

λ := 0.01. (4.2)

Computational simulations are carried out in Matlab. At each time-step, we follow the procedures sum-
marised hereafter to simulate phenotypic variations, cell division and cell death. All random numbers mentioned
below are real numbers drawn from the standard uniform distribution on the interval (0, 1) using the Matlab
function rand.

– Phenotypic variations. For each cell, a random number is generated and we determine whether or not
the cell undergoes a phenotypic variation by comparing this number with the value of the probability of
epimutation λ. If a cell undergoes a phenotypic variation, a new random number is generated and we let
the cell move either into the phenotypic state to the left or into the phenotypic state to the right of its
current state based on a comparison between the random number and the values of the quantities pL(cE)
and pR(cE) defined according to (2.4). The attempted phenotypic variation of the cell is aborted if it
requires moving out of the computational domain [−4, 4].

– Cell division and death. The size of the cell population is computed and the probabilities of cell division,
death and quiescence are evaluated for every phenotypic state according to (2.8)–(2.11). For each cell,
a random number is generated and the cells’ fate is determined by comparing this number with the
probabilities of division, death and quiescence corresponding to the cell phenotypic state.

We study the evolution of the cell population over the time window [0, T ] with T corresponding to 60 days. The
average CPU time for one computational simulation is 62 seconds.

To reproduce a biological scenario where the cell population has never been exposed to therapy, we consider
an initial cell number approximatively equal to the equilibrium population size (3.12) for cE = 0 and cK = 0
(i.e. the initial total number of cells is 8841). Moreover, we assume the phenotypic states of the cells to be
initially distributed according to a normal distribution with mean zero (i.e. most of the cells are initially in the
fastest dividing state x = 0).

For all the computational simulations of the individual-based model that we report on in this section, we
show that the size of the cell population ρh, the mean phenotypic state µh and the population density nhi at
day 60 match, respectively, with the equilibrium population size ρ, the equilibrium average phenotypic state
µ, and the equilibrium population density n(x) given by (3.12)–(3.14). This testifies to the robustness of the
computational results presented here.
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Figure 4. Population density nhi at day 60 and corresponding dynamics of the population
size ρh for increasing concentrations of the chemotherapeutic agent – i.e. cK = 0.1 (blue lines),
cK = 0.4 (green lines) and cK = 1 (red lines) – in the absence of the epigenetic drug – i.e. cE = 0.
The black dashed lines highlight the equilibrium population density n(x) and the equilibrium
population size ρ given by (3.13) and (3.12), respectively. Values are in units of 104.

4.2. Main results

The chemotherapeutic agent reduces the population size at the cost of promoting the outgrowth of more
chemoresistant phenotypic variants

The computational simulation results presented in Figure 4 show that, in the absence of epigenetic therapy
(i.e. when cE = 0), higher doses of the chemotherapeutic agent (i.e. higher values of cK) trigger a more pro-
nounced population bottleneck by causing a sharper reduction in the total number of cells before re-growth
towards a stable value. The black dashed lines in Figure 4 highlight the equilibrium population size ρ (right
panel) and the equilibrium population density n(x) (left panel) given, respectively, by (3.12) and (3.13). In agree-
ment with the asymptotic results established by Theorem 3.2, the population density at day 60 is unimodal
with the distribution’s peak being closer to the highly-chemoresistant phenotypic state x = 0 for higher values
of cK, while the corresponding population size is a decreasing function of the dose of the chemotherapeutic
agent. These results formalise the idea that chemotherapy reduces the size of cancer cell populations at the cost
of promoting the selection of more chemoresistant phenotypic variants.

The level of phenotypic heterogeneity in the population decreases with the concentration of the
chemotherapeutic agent

The computational simulation results presented in the right panel of Figure 4 reveal also that the standard
deviation of the population density nhi at day 60 decreases with the concentration of the chemotherapeutic
agent. This is in agreement with the asymptotic results established by Theorem 3.2, and reflects the fact that
chemotherapy acts as a selective pressure on cancer cells, thus reducing the level of phenotypic heterogeneity
within the population.

Higher probabilities of spontaneous epimutation and larger selection gradients increase the cytotoxic
effect of the chemotherapeutic agent

The heat map in the left panel of Figure 5 depicts how the population size ρh at day 60 varies as a function
of the probability of spontaneous epimutation λ and of the nonlinear selection gradient η, under chemotherapy
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Figure 5. The plot in the left panel shows the population size ρh (in units of 104) at day 60 as
a function of the probability of spontaneous epimutation λ and of the selection gradient η. The
concentration of the chemotherapeutic agent is cK = 0.5 and there is no epigenetic drug (i.e.
cE = 0). This plot matches with the plot of the equilibrium population size ρ given by (3.12)
as a function of the parameters λ and η, which is displayed in the right panel.

as a stand alone treatment (i.e. for cK > 0 and cE = 0). The plot matches with the same plot of the equilibrium
population size ρ given by (3.12), which is displayed in the right panel of Figure 5. These results indicate that,
in the absence of epigenetic therapy, the cell population size at day 60 is a decreasing function of the parameters
λ and η, which supports the idea that the cytotoxic effect of the chemotherapeutic agent becomes stronger in
the presence of higher probabilities of spontaneous epimutation and larger selection gradients.

The epigenetic drug reduces the size of the population and counters the selection of chemoresistant
phenotypic variants

The results presented in Figure 6 summarise the effects on the cell population of adjuvant epigenetic therapy.
The black dashed lines highlight the equilibrium population density n(x) (left panel) and the equilibrium pop-
ulation size ρ (right panel) given by (3.13) and (3.12), respectively. In agreement with the asymptotic results
established by Theorem 3.2, the computational simulation results displayed in the insets in the right panel of
Figure 6 show that, for all the doses of the chemotherapeutic agent considered here (i.e. all values of cK > 0 used
to carry out computational simulations), the population size ρh at day 60 is lower under adjuvant epigenetic
therapy (i.e. when cE > 0) compared to the case without epigenetic drug (i.e. for cE = 0). Furthermore, the
cell population density nhi at day 60 is unimodal, and the phenotype distribution’s peak for cE > 0 is further
away from the highly-chemoresistant phenotypic state x = 0 than in the case where cE = 0 (vid. insets in the
left panel of Figure 6). The distance between the values of the mean phenotypic state µh at day 60 obtained for
cE > 0 and cE = 0 is a decreasing function of cK. Taken together, these results support the idea that combining
primary chemotherapy with adjuvant epigenetic therapy makes it possible to induce to death a larger num-
ber of cancer cells, and meanwhile hamper the selection of chemoresistant phenotypic variants. Moreover, the
results predict that epigenetic drugs promoting the re-expression of epigenetically regulated genes will be more
effective in preventing the emergence of chemoresistance under low-dose chemotherapy than under high-dose
chemotherapy.
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Figure 6. Population density nhi at day 60 and corresponding dynamics of the population
size ρh for increasing concentrations of the chemotherapeutic agent – i.e. cK = 0.1 (blue lines),
cK = 0.4 (green lines) and cK = 1 (red lines) – in the presence of the epigenetic drug – i.e.
cE = 0.025. The black dashed lines highlight the equilibrium population density n(x) and the
equilibrium population size ρ given by (3.13) and (3.12), respectively. The insets show the
comparison between the results obtained with (ticker lines) and without (thiner lines) the
epigenetic drug (i.e. for cE > 0 and cE = 0, respectively). Values are in units of 104.

The action of the epigenetic drug is hampered by higher probabilities of spontaneous epimutation

The results presented in Figure 7 illustrate how the size ρh and the mean phenotypic state µh of the cell
population at day 60 vary as functions of the probability of spontaneous epimutation λ under chemotherapy
(i.e. for cK > 0). Different colours correspond to different doses of the epigenetic drug (i.e. different values of
cE). The dashed lines highlight the equilibrium population size ρ and the equilibrium mean phenotypic state
µ given by (3.12) and (3.14), respectively, as functions of the parameter λ. In agreement with the asymptotic
results established by Theorem 3.2, the mean phenotypic state µh at day 60 does not depend on the probability
of spontaneous epimutation under chemotherapy as a stand-alone treatment (i.e. for cK > 0 and cE = 0), while
it becomes a decreasing function of the parameter λ in the presence of adjuvant epigenetic therapy (i.e. when
cK > 0 and cE > 0). This suggests that epigenetic drugs can become less effective in countering the emergence
of chemoresistance in those cases where cancer cells are more likely to undergo spontaneous epimutations.

The epigenetic drug can alter dependence of the cell population size on the probability of spontaneous
epimutation

The computational simulation results presented in Figure 7 also show that, in the absence of the epigenetic
drug, the cell population size ρh at day 60 is a decreasing function of the probability of spontaneous epimutation
λ. On the other hand, as established by Corollary 3.3, if the dose of the epigenetic drug is sufficiently high
[i.e. if condition (3.23) is verified] then the cell population size ρh at day 60 is an increasing function of λ.
This communicates the notion that epigenetic drugs which induce gene re-expression may alter the existing
relationships between the probability of spontaneous epimutation and the size of cancer cell populations.

Considerations about therapeutic optimisation

The plots in Figure 8 illustrate how the size ρh and the mean phenotypic state µh of the cell population at day
60 vary as functions of the total concentration of the therapeutic agents (i.e. different values of the sum cK + cE).
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Figure 7. Plots of the population size ρh and the mean phenotypic state µh at day 60 as
functions of the probability of spontaneous epimutation λ. The concentration of the chemother-
apeutic agent is cK = 0.4, while the concentration of the epigenetic drug is alternatively defined
as cE = 0 (blue dots), cE = 0.025 (green dots), cE = 0.034 (yellow dots) or cE = 0.048 (red dots).
The values of cE corresponding to the yellow and red lines are such that the condition (3.23)
is satisfied for all values of λ considered. The dashed lines highlight the equilibrium population
size ρ and the equilibrium mean phenotypic state µ given by (3.12) and (3.14), respectively.

Figure 8. Plots of the population size ρh and the average phenotypic state µh at day 60 as
functions of the total concentration of therapeutic agents cE + cK, i.e. cK ∈ [0.5− cE, 1− cE]
with cE = 0 (blue dots), cE = 0.04 (green dots), cE = 0.06 (yellow dots) and cE = 0.07 (red
dots). The dashed lines highlight the equilibrium population size ρ and the equilibrium mean
phenotypic state µ given by (3.12) and (3.14), respectively.

Different colours correspond to different combinations of the chemotherapeutic agent and the epigenetic drug
(i.e. different values of cK > 0 and cE ≥ 0 that give the same value of cK + cE). The dashed lines highlight the
corresponding values of the equilibrium population size ρ and the equilibrium mean phenotypic state µ given
by (3.12) and (3.14), respectively. These results show that, for each given value of the total concentration of
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therapeutic agents, values of the mean phenotypic state more distant from the highly-chemoresistant phenotypic
state x = 0 and lower values of the size of the cell population can be obtained by increasing the value of cE
and decreasing the value of cK. This supports the conclusion that therapeutic protocols based on lower doses of
chemotherapeutic agents in combination with epigenetic drugs that promote the re-expression of epigenetically
regulated genes can lead to a better therapeutic outcome – a therapeutic outcome characterised by smaller
cancer cell numbers and lower levels of chemoresistance – than therapeutic protocols based solely on high-dose
chemotherapy.

5. Conclusions and research perspectives

We have developed a simple, yet effective, phenotype-structured individual-based model for the evolution of
a cancer cell population under the action of a chemotherapeutic agent in combination with an epigenetic drug.
Moreover, we have formally derived the deterministic continuum counterpart of such a stochastic discrete model,
which is given by a nonlocal PDE for the population density function. Integrating the results of computational
simulations of the stochastic individual-based model with analytical results on the long-term behaviour of the
solution to the corresponding PDE, we have obtained findings with broad structural stability under parameter
changes. The results achieved give answers to questions Q1–Q4 posed in Section 2. In summary:

A1 Our results support the idea that chemotherapeutic agents reduce the size of cancer cell populations
at the cost of promoting the outgrowth of more resistant phenotypic variants. Moreover, the level of
chemoresistance acquired by cancer cell populations can vary with the administered dose of the chemother-
apeutic agent. This suggests that different doses of the same agent can trigger the selection for phenotypic
variants characterised by different levels of chemoresistance. Finally, the results presented here indicate
that the level of phenotypic heterogeneity in cancer cell populations decreases with the concentration of
chemotherapeutic agents, which reflects the fact that higher doses of chemotherapy correspond to harsher
environmental conditions and stronger selective pressures.

A2 The results of this in silico study suggest that, under the continuous administration of chemotherapeu-
tic agents, harsher environmental conditions (i.e. stronger selection gradients independent of xenobiotic
agents) and higher probabilities of spontaneous epimutation can make cancer cell populations more
sensitive to the cytotoxic action of chemotherapy.

A3 Our results demonstrate the existence of an inverse relationship between the efficacy of epigenetic drugs
and the probability for cancer cells to undergo spontaneous epimutations. Furthermore, the model supports
the idea that epigenetic drugs can be more effective in countering the emergence of chemoresistance when
used in combination with low-dose chemotherapy.

A4 The outcomes of the model provide theoretical ground for the development of anticancer protocols that
use lower concentrations of chemotherapeutic agents in combination with epigenetic drugs capable of
promoting the re-expression of epigenetically regulated genes; with the caveat that such drugs may alter
the way in which spontaneous epimutations impact on the evolution of cancer cell populations.

The focus of this work has been on the case of continuous drug administration. However, the stochastic
individual-based model presented here, as well as the related formal method to derive the corresponding deter-
ministic continuum model, can be easily adapted to drug doses that vary over time. In this regard, it would
be interesting to investigate whether the delivery schedules for the chemotherapeutic agent obtained through
numerical optimal control of the nonlocal PDE for the population density function [2, 62] would remain optimal
also for the individual-based model. Another track to follow might be to investigate the effect of stress-induced
epimutations triggered by the selective pressure that chemotherapeutic agents exert on cancer cells [25]. An
additional development of this study would be to include a spatial structure, for instance by embedding the
cancer cells in the geometry of a solid tumour, and to take explicitly into account the effect of spatial interactions
between cancer cells, therapeutic agents and other abiotic factors, such as oxygen and glucose [54, 55]. In this
case, the resulting individual-based model would be integrated with a system of PDEs modelling the dynamics
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of the abiotic factors, thus leading to a hybrid model [4, 9, 10, 15, 16, 31, 34, 40, 48, 75, 76]. These are all lines
of research that we will be pursuing in the near future.
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[66] S.X. Pfister and A. Ashworth, Marked for death: targeting epigenetic changes in cancer. Nat. Rev. Drug Disc. 16 (2017) 241.



22 R.E.A. STACE ET AL.

[67] G. Piazzi, L. Fini, M. Selgrad, M. Garcia, Y. Daoud, T. Wex, P. Malfertheiner, A. Gasbarrini, M. Romano, R.L. Meyer et al..
Epigenetic regulation of delta-like controls notch activation in gastric cancer. Oncotarget 2 (2011) 1291.

[68] A. Pisco and S. Huang, Non-genetic cancer cell plasticity and therapy-induced stemness in tumour relapse:‘what does not kill
me strengthens me’. Br. J. Cancer 112 (2015) 1725–1732.

[69] A.O. Pisco, A. Brock, J. Zhou, A. Moor, M. Mojtahedi, D. Jackson and S. Huang, Non-darwinian dynamics in therapy-induced
cancer drug resistance. Nat. Commun. 4 (2013) 2467.

[70] F.J. Poelwijk, D.J. Kiviet, D.M. Weinreich and S.J. Tans, Empirical fitness landscapes reveal accessible evolutionary paths.
Nature 445 (2007) 383.
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