
23 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Multiple Delay Identification in Long Interconnects via LS-SVM Regression / Treviso, Felipe; Trinchero, Riccardo;
Canavero, Flavio G.. - In: IEEE ACCESS. - ISSN 2169-3536. - ELETTRONICO. - 9:(2021), pp. 39028-39042.
[10.1109/ACCESS.2021.3063713]

Original

Multiple Delay Identification in Long Interconnects via LS-SVM Regression

Publisher:

Published
DOI:10.1109/ACCESS.2021.3063713

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2874375 since: 2021-03-15T10:43:19Z

IEEE



Received February 1, 2021, accepted February 27, 2021. Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2021.3063713

Multiple Delay Identification in Long
Interconnects via LS-SVM Regression
FELIPE TREVISO , (Student Member, IEEE), RICCARDO TRINCHERO , (Member, IEEE),
AND FLAVIO G. CANAVERO , (Fellow, IEEE)
Department of Electronics and Telecommunication, Politecnico di Torino, 10129 Torino, Italy

Corresponding author: Felipe Treviso (felipe.treviso@polito.it)

ABSTRACT This work presents a novel approach for the accurate estimation of multiple time-delays from
the frequency response of a distributed system. The proposed approach is based on a powerful and flexible
machine learning technique, namely, the least-square support vector machine (LS-SVM). The LS-SVM
regression is used to construct a metamodel of the transfer function describing a generic linear time-invariant
system in a delayed-rational form. Specifically, after some manipulation the LS-SVM model precisely
identifies the dominant propagation delays of the original system. The essential steps and critical criteria
for the delay identification procedure are carefully discussed throughout the paper. Once the system delays
have been identified, the rational part of the metamodel expansion is then obtained by means of a progressive
application of the conventional vector fitting algorithm. Numerical examples are presented to illustrate the
feasibility and performance of the proposed technique and to compare its performances with what is provided
by state-of-the-art techniques. The results clearly highlight the capability of the proposed approach to identify
the dominant delays in distributed systems, thus allowing to construct compact delayed rational models.

INDEX TERMS Interconnect modeling, delayed rational model, delay identification, machine learning,
least-square support vector machine, kernel.

I. INTRODUCTION
Signal integrity is one of the limiting factors of the capacity
of data transmission in a high-speed link. Indeed, due to
propagation effects such as attenuation, ringing, signal delay,
distortion, reflections and crosstalk, electrical interconnects
are responsible for a considerable part of signal degradation
in high-speed channels [1]. The above effects are particularly
important for high-frequency signals, for which even phys-
ically short connections can behave as an electrically long
channel. Therefore, during the design phase of a high-speed
link, accurate models for the simulation of these structures
are essential to predict signal integrity within a simulation
framework.

A number of methods exist to generate accurate models
when dealing with electrically short interconnects, or inter-
connects that can be classified as lossless or uniform trans-
mission lines. Among such methods we can cite the use of
equivalent lumped models, the method of characteristics and
the use of reduced order and rational models [1]–[3]. Specif-

The associate editor coordinating the review of this manuscript and

approving it for publication was Wiren Becker .

ically, these techniques allow a mixed time- and frequency-
domain modeling, since the effects of high-frequency inter-
connect models are better described in the frequency-domain,
but the non-linear terminations of such interconnects (e.g.,
the link transceivers) can only be accounted for via time-
domain simulations.

Contrarily, when the channel is electrically long and con-
sists of the interconnection of several components, its charac-
terization is best achieved through 2.5 or 3D electromagnetic
simulations providing as result a set of frequency response
curves characterizing the signal propagation between every
port of the interconnect. Under the assumption of dealingwith
a linear structure, the standard approach to implement the
model of the above structure within a circuit simulation envi-
ronment is to approximate their transfer functions through
a sum of rational functions represented in pole/residue for-
mat, which can be identified with the popular vector fitting
(VF) algorithm [4]. However, when the propagation delay
between ports of the system becomes large, its frequency
response presents a phase that continuously changes and thus
it requires a high number of poles to be represented in terms
of a plain rational model. Also, if this model is used in a
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transient simulation, spurious oscillations may appear along
the interconnect leading to an inaccurate evaluation of the
signal integrity of the channel [5], [6].

A model that approximates accurately the interconnect
structure described above is the delayed rational model
(DRM) [7]. This model also allows the transfer function to
be represented in terms of a simple equivalent circuit contain-
ing only ideal transmission lines and basic lumped elements
(resistors, capacitors and inductors) [3], [7]–[10]. The DRM
model, with an explicit representation of the delayed part,
usually leads to a rational approximation that has a smaller
number of poles than a VF rational model. This reduced
complexity results in the possibility of building a more effi-
cient model to be used in transient circuit simulations, thus
reducing the computation time and required memory [7]–[9].

The DRM requires the estimation of three categories of
parameters: poles and residues for its rational term, and the
time-delays. The direct estimation of all those parameters at
the same time is impractical, as suitable values are needed
for the time-delays in the exponential term and for residues
and poles in the numerator and denominator of the rational
term. The identification of the dominant propagation delays
from frequency response samples is an essential aspect for the
achievement of a low-order DRM, since suitable approaches
for the estimation of the rational part are available [7], [11].
Several of the methods available in the literature perform
an optimization on the first identified set of delays in order
to achieve the optimal model [9], [11]–[13]. If we are con-
sidering multiple delays, the optimization should be carried
out in a high-dimensional space subject to local minima,
making it a difficult task. Therefore, a precise estimation of
the involved delays can provide an easier way to achieve a
compact DRM.

The current literature presents some methods for the esti-
mation of one or multiple time-delays [5]–[22]. For the case
of a transfer function H (jω) with a single time-delay τ , its
value in the DRM can be directly optimized given that a
reasonable search interval is defined [14]. If we consider
a transmission line, this interval can come from the loss-
less time-delay in the propagation equation [12], [14] or it
can be estimated via the magnitude of H (jω), by consid-
ering that H (jω)ejωτ is a minimum phase shift function,
in which the phase angle can be calculated directly from
the magnitude [13]–[15]. Another solid method applica-
ble when identifying a single time-delay is by consider-
ing the causality and passivity of the system, which allows
the application of the Hilbert transform to identify its
time-delay [5], [6], [16].

On the other hand, the identification of multiple time-
delays is more difficult. The Gabor transform, which provides
a time-frequency decomposition of H (jω), turns out to be the
most used method [7], [10], [11], [17], [18]. The underlying
idea is to analyze the energy content as a function of the delay,
and use the time-delays that have the largest relative contri-
bution to the total energy as dominant propagation delays.
Another approach for the time-delay estimation through the

time-frequency decomposition of the transfer function uses
a wavelet transform performed on the time-domain impulse
response of the system [8], [19]. An alternative method con-
siders that the analysis of the time-domain response of the
system to a narrow-band input pulse can be used as a way to
estimate its corresponding propagation delays [9]. Although
this method requires the time-domain response of the system,
that response can be obtained through the inverse fast-Fourier
transform of frequency-domain data. However, all these tech-
niques estimate the multiple time-delays neglecting that the
application of their result is on the estimation of a DRM.

Once the time-delays are identified, the rational parts of
the DRM are easily estimated if the original transfer func-
tion can be split into the sum of delayed transfer functions.
In that case, each part can be fitted individually after remov-
ing its individual delay, with any fitting method suitable
for lumped structures: the vector fitting [17], the Loewner
matrix framework [11], time-domain vector fitting [8] and
Prony’smethod [19]. A previous determination of aminimum
phase response of the separated transfer functions using the
Hilbert’s transform method can be applied before the rational
approximation is performed [6], [18], in order to estimate the
correct delay that should be used for the respective part of the
transfer function.

Another robust method is the so called delayed vector fit-
ting [7], [9], [10], a modified version of VF that uses delayed
basis functions and through iterations identify a common set
of poles for all the delays. This method provide excellent
results when an accurate estimate for the dominant time-
delays is provided. Otherwise, an optimization needs to be
performed to improve the initial set of time-delay values [7].

In this work, an alternative scheme for the estimation of
the dominant propagation delays within a DRM based on the
least-squares support vector machine (LS-SVM) regression is
presented. The LS-SVM regression is a flexible and powerful
Machine Learning (ML) regression, which has been recently
adopted for the uncertainty quantification in complex elec-
tronic systems [23]. Here, the LS-SVM regression with an
ad-hoc kernel is adopted for the identification of multiple
delays in a transmission line structure [22]. The proposed
kernel has been built by considering an infinite dimensional
feature space formed by an infinite number of rational basis,
which accounts for a continuous set of delay values within
a certain interval. Thanks to the above features, the pro-
posed method is able to identify the dominant propagation
delays of the original system. The obtained delays are then
used, within an incremental procedure, for the construction
of a compact DRM which is suitable for the simulation of
long and complex electrical interconnects. The paper is orga-
nized as follows: the goal of this work and two alternative
delay identification techniques are presented in Section II.
Section III describes the basic concepts of the LS-SVM
regression. Sections IV and V present the innovative way
in which the time-delays for the construction of a DRM are
obtained and utilized. Section VI shows the application of the
method to some examples.
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II. PROBLEM STATEMENT
Given a set of samples of the transfer function H (jωk ) ∈ C
with k = 1 . . .K of a long distributed structure at the angular
frequencies ωk ∈ R, we are looking for a DRM in the
following form:

H (jωk ) ≈ H̃ (jωk ) = r0 +
nτ∑
i=1

H̃i(jωk )e−jωkτi , (1)

with,

H̃i(jωk ) =
np,i∑
j=1

rij
jωk − pij

. (2)

where each of the nτ terms H̃i(jω) corresponds to a rational
model with np,i poles pij = p′ij+ jp

′′
ij ∈ C, residues rij = r ′ij+

jr ′′ij ∈ C and a constant term r0 ∈ R. Each of the rational terms
is associated to its corresponding time-delay term τi ∈ R

+.
By assuming that each delay term is associated to the same

set of poles, the DRM model H̃ (jω) of (1) can be simplified
as follows1:

H̃ (jω; r,p, τ ) = r0 +
nτ∑
i=1

np∑
j=1

rij
jω − pj

e−jωτi . (3)

The model parameters to be estimated by the regres-
sion problem (i.e., to fit the data) are: the residues r =
[r0, r11, . . . , rnτ np ], the poles p = [p1, . . . , pnp ] and the
delays τ = [τ1, . . . , τnτ ], for an overall number of npnτ +
np + nτ + 1 unknowns.

The DRM is linear with respect to the residues r, but it
is nonlinear with respect to the poles p and the delays τ .
Unfortunately, it is unfeasible to estimate all the parameters
(i.e., the poles, the delays and the residues) together. A wise
strategy is to rely on a two-step identification algorithm,
where the delays are identified independently and afterwards
the poles are estimated by considering such delays. Naturally,
once the delays τi and the poles pj of the models are known,
the residues can be easily estimated by solving a simple
linear regression. However, how can we find an accurate
estimation of the delays knowing only the samples H̃ (jωk )?
Two available schemes are briefly described below, based on
the Hilbert transform and the Gabor transform, respectively.

A. HILBERT TRANSFORM METHOD
This procedure finds the dominant propagation delay by
decomposing the transfer function as the product of a
minimum-phase component Hmin(jω) and an all-pass func-
tion that accounts for the propagation delay τ :

H (jω) = Hmin(jω)e−jωτ . (4)

This decomposition is possible because, for the specific
case of minimum-phase systems, the Hilbert Transform [24]

1Such simplified scenario will be used only to estimate the dominant
delays of the system. The final DRMwill be constructed by using the generic
formulation in (1).

(or equivalently, the Kramers-Kronig relations) establishes an
unique relation between the magnitude and phase such that:

arg (Hmin(jω)) = −
1
2π
−

∫ π

−π

log |Hmin(jθ )| cot
(
ω − θ

2

)
dθ,

(5)

where the barred integral symbol −
∫

represents the Cauchy
principal value of the corresponding integral. From (4), it is
evident that the magnitude of Hmin(jω) can be easily deter-
mined as:

|Hmin(jω)| = |H (jω)|. (6)

The relation in (5) can therefore be applied to estimate
the phase of Hmin(jω). After obtaining the complex value of
Hmin(jω), the delay τ is estimated as [5], [6]

τ = −
arg

(
e−jωτ

)
ω

= −
arg (H (jω)/Hmin(jω))

ω
, (7)

computed as the average over all available frequency points.
The Hilbert transform method has good performance for
systems with a single delay in the frequency response [6].
When multiple delays are present, the system delays can be
identified by using the Gabor transform.

B. GABOR TRANSFORM METHOD
The normalized frequency domain Gabor transform is
defined as follows [17]:

G(ω, τ ) =
∫
+∞

−∞

H (ξ )W ∗ω,τ (ξ )dξ, (8)

where

Wω,τ (ξ ) = W (ξ − ω)e−jξτ (9)

is a frequency-shifted window function modulated by the
complex exponential e−jξτ , with the number of oscillations
proportional to τ and ∗ represents the complex-conjugation
operation. The Gabor transform uses a normalized Gaussian
window [25], defined as:

W (ξ ) = (a2π )−1/4e−
ξ2

2a2 , (10)

such that ||W ||2 = 1.
The shape of the window W (ξ ) depends on the parameter

a. Such parameter provides a trade-off between the time and
frequency domain resolution of the transform. A small value
for a produces a narrow window, for which the resolution of
transform G(ω, τ ) is high in frequency-domain (i.e., for the
variable ω) and poor in time-domain (i.e., for the variable τ ).
Contrarily, with a large a, the transform resolution is poor in
frequency-domain and high in time-domain.

The spectrogram |G(ω, τ )|2 represents the time-frequency
energy decomposition of H (ξ ) [17]. The propagation delays
τi can be obtained from this by averaging the energy decom-
position over ω via:

G(τ ) =
1
2π

∫
+∞

−∞

|G(ω, τ )|2dω. (11)
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Once computed, the maxima ofG(τ ) provide a good estimate
for the system delays τi [7], [17]. If G(τ ) has multiple local
maxima, this method is able to approximate multiple time-
delays, thus overcoming the limitations of the Hilbert trans-
formmethod. However, the time-frequency trade-off given by
the window width still exists, and so the necessity of tuning
such width.

III. A LEAST-SQUARE SUPPORT VECTOR MACHINE
PRIMER
This section summarizes the basic concepts of the LS-SVM
regression for complex-valued functions. The LS-SVM is a
flexible machine learning technique for both classification
and regression [26], [27]. Usually, the LS-SVM regression
is derived for real valued inputs x and output y. However, for
this work, the inputs and output are required to be complex,
since we will deal with transfer functions in the frequency
domain, as specified in (1). The modification of the LS-
SVM problem to consider complex input-output relationship
is straightforward [28], [29] and outlined in the Appendix.

Starting from a set of complex training pairs {(xk , yk )}Kk=1
with the scalar output yk ∈ C and possibly multiple input
parameters arranged in a vector xk ∈ Cd , we are looking
for the following primal space formulation of the LS-SVM
regression [30], which writes:

ỹ(x) =
〈
w∗,ϕ(x)

〉
+ b, (12)

where w ∈ CD are the regression coefficients, ϕ(·) : Cd →
CD are the considered basis functions and b ∈ C is a bias
term. Equivalently, the model in (12) can also be represented
by its dual space formulation [30], which writes:

ỹ(x) =
K∑
k=1

αkk(xk , x)+ b, (13)

where αk = αk,r + jαk,i are the model coefficients of this
representation and the kernel function k(xi, xj) is defined as:

k(xi, xj) =
〈
ϕ(xi),ϕ(xj)

〉
. (14)

The vector of model error e = {ek}Kk=1 (see (43) in the
Appendix) is equal to the true value yk minus the model
output of (12) computed at xk , for all training points. The
LS-SVM minimizes the L2-norm of the primal space model
coefficients w plus the sum of squared errors, weighted by
the regularization parameter γ . Such parameter, commonly
referred to as hyperparameter, is tuned during the model
training, usually via cross-validation. A large value for γ
will lead to a model with smaller error, but that may present
overfitting.

The LS-SVM model is determined in the dual space by
solving the following linear system of equations:�+ I2K/γ

1 0
0 1

1T 0T

0T 1T
0 0
0 0



αr
αi
br
bi

 =

yr
yi
0
0

 , (15)

where 1 = [1, . . . , 1]T and 0 = [0, . . . , 0]T are vectors
containing K equal elements, I2K is an identity matrix with
size 2K , and the 2K × 2K kernel matrix �(xk , xk ) is defined
as

� =

[
�(1,1) �(1,2)

�(2,1) �(2,2)

]
. (16)

In the K × K square submatrices that compose �, an ele-
ment �(.,.)

j,i in the j-th row and i-th column is defined as
follows:

�
(1,1)
j,i = <{k(xi, xj)}, (17a)

�
(1,2)
j,i = −={k(xi, xj)}, (17b)

�
(2,1)
j,i = ={k(xi, xj)}, (17c)

�
(2,2)
j,i = <{k(xi, xj)}, (17d)

for i, j = 1, . . . ,K .
The unknowns α = αr + jαi = [α1,r + jα1,i, . . . , αK ,r +

jαK ,i] and b = br + j bi are computed by solving (15).
Once the dual space model is determined for known basis, its
equivalent primal space formulation can be obtained through

w =
K∑
k=1

αkϕ
∗(xk ). (18)

The dimensions of primal and dual formulations are dif-
ferent: the primal space formulation has D terms, which is
the number of basis of the primal space, i.e., the dimension
of w and ϕ(x), while the dual space formulation is a non-
parametric model with a number of terms equal to the number
of training samples, K . Finally, the constant bias term b is
present in both models.

IV. DELAY EXTRACTION VIA LS-SVM REGRESSION
This Section deals with the application of the LS-SVM
regression presented in Sec. III for the modeling of complex
distributed structures. For the sake of clarity, the proposed
methodology is first derived step-by-step to define the LS-
SVM formulation in the case of delayed-rational transfer
functions introduced in Sec. II. The practical application for
the identification of delays and their use in a transfer function
such as the one in (1) is provided in the next section.

The discussion starts by recasting the DRM in (3) in terms
of the primal-space LS-SVM regression in (12) which writes:

H̃ (jω) =
np,nτ∑
i=1,j=1

wijϕij(ω; pj, τi)+ b (19)

=
〈
w∗,ϕ(ω;p, τ )

〉
+ b, (20)

wherew = [w11, . . . ,wnτ np ]
T
∈ C(nτ np) is a vector collecting

the regression unknowns, the generic parameter x in (12) has
been replaced by ω (i.e., d = 1) and ϕ(ω;p, τ ) ∈ C(nτ np) is a
vector collecting the basis functions

ϕ(ω;p, τ ) =
[
ϕ11(ω; p1, τ1), . . . , ϕnτ np (ω; pnp , τnτ )

]T
.

(21)
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This formulation can be seen as a discretization in the p-τ
space from which each node {τi, pj} leads to a basis of the
DRM, and in which all poles are paired with the same com-
bination of delays.

Comparing (19) and (3), the basis functions ϕij(ω; pj, τi)
are defined by the following expression

ϕij(ω; pj, τi) =
cij

jω − pj
e−jωτi (22)

= cτie
−jωτi ·

cpj
jω − pj

(23)

= ϕτi (ω; τi) · ϕ
p
j (ω; pj), (24)

where cij = cτicpj is a constant introduced to increase the
model flexibility. The overall number of features (or bases) is
D = npnτ , which is equivalent to the number of nodes in the
aforementioned discretization.

From the latter development, it is evident that the regres-
sion unknowns wij are proportional to the corresponding
residue rij by the scalar constant cij ∈ R:

rij = cijwij. (25)

It is also clear that the bias term b is equal to the constant term
r0 of the DRM. Since the LS-SVM formulation is equivalent
to the original one in (3), using a finer discretization will
increase the dimensions of the feature space provided by the
transformation function ϕ (i.e., the number of bases ϕij).

Aside from the above expansion, a parallel dual space
formulation for the LS-SVM problem, defined by (13), takes
the form

H̃ (jω) =
K∑
k=1

αkk(ωk , ω;p, τ )+ b, (26)

where the kernel k(·, ·) : C× C→ C is defined according to
the basis functions collected in ϕ as:

k(ωk , ωl;p, τ )

= 〈ϕ(ωk ;p, τ ),ϕ(ωl;p, τ )〉

=

nτ∑
i=1

np∑
j=1

cijejωkτi

(−jωk − p∗j )
cije−jωlτi

(jωl − pj)

=
〈
ϕτ (ωk ; τ ),ϕτ (ωl; τ )

〉 〈
ϕp(ωk ;p),ϕp(ωl;p)

〉
=

nτ∑
i=1

c2τie
−j(ωl−ωk )τi

︸ ︷︷ ︸
kτ (ωk ,ωl ;τ )

np∑
j=1

c2pj
(−jωk − p∗j )(jωl − pj)︸ ︷︷ ︸

kp(ωk ,ωl ;p)

. (27)

where pj and τi span all the poles and delays values considered
in their discretization. The resulting kernel can be interpreted
as the product of two kernels, one generated by the chosen
delays and the other by the chosen poles. Such two terms,
kτ (ωk , ωl; τ ) and kp(ωk , ωl;p), are then named the delay and
the rational kernels, respectively.

Equation (26) is a non-parametric model (i.e., the number
of the regression unknowns is independent from the number
of basis functions in ϕ) and, no matter how finely the p − τ

plane is discretized, it can always be determined by means
of the solution of the linear system in (15). Indeed, the dis-
cretization is embedded within the kernel function. The key
advantage of working in the dual space is that the dual space
formulation does not require an explicit definition of the basis
functions ϕ and its formulation can even be applied to the
extreme case in which the dimension of ϕ grows to infinity.
According to this fact, let us consider the case in which

the τ−axis is infinitely discretized and any τ value between
τm and τM is included in the kernel. This discretization is
achieved by making c2τi = c2τ = 1τ = (τM − τm)/nτ while
nτ →∞. Hence, the inner product 〈ϕ(ωk ;p, τ ),ϕ(ωl;p, τ )〉
is computed through an integral over τ and a sum over p.With
reference to (27), the rational kernel remains the same, but the
delay kernel becomes the following definite integral [31]:

kτ (ωk , ωl) =
∫ τM

τm

e−j(ωl−ωk )τdτ. (28)

The above delay kernel represents a space with an infinite
dimension due to the continuous τ−axis. The discretization
along the p−axis is given by the other part of the kernel,
kp(ωk , ωl).

The integral in (28) can be evaluated to a closed expression,
which writes:

kτ (ωk , ωl)

=


(
e−jτM (ωl−ωk ) − e−jτm(ωl−ωk )

)
−j(ωl − ωk )

, ωk − ωl 6= 0;

τM − τm, ωk − ωl = 0.
(29)

The rational kernel in (27) remains a sum over a limited
set of poles P = {p1, . . . , pnp}. This set of poles will provide
the general trend that must be followed by the rational part of
the model, and thus do not need to contain the exact poles of
the system, while the infinite number of delays will guarantee
that its exact delays are replicated in the LS-SVM model. An
approach including an infinite number of poles as done for the
delay kernel could also be possible. However, the resulting
double integration leads to complicated equations, which
makes the subsequent evaluation of the kernel slow, limiting
the still undetermined benefits that it could bring.

The constants cpj in (23) are set to cpj = |p
′
j|
1/2. In this way,

all the terms ϕpj (ω; pj) have the same 2-norm for any value of
pj for which p′j 6= 0. The 2-norm of each of the ϕpj (ω; pj) basis
amounts to:〈
ϕ
p
j (ω; pj), ϕ

p
j (ω; pj)

〉
=

∫
∞

−∞

|p′j|

(jω − pj)(−jω − p∗j )
dω = π.

(30)

This definition of cpj amplifies the LS-SVMweights wij asso-
ciated with the dominant poles of the system (i.e., the poles
with a smaller real part). Considering the same residues in the
final model, a smaller value for cij means that the weight wij
should increase, as can be seen in (25).
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Separating the rational part of (27), and with the consider-
ations stated above, the rational kernel kp(ωk , ωl) writes:

kp(ωk , ωl) =
np∑
j=1

|p′j|(
jωk − pj

) (
−jωl − p∗j

) . (31)

According to (27), the delay-rational kernel results from
the multiplication of the delay kernel in (29) by the rational
kernel in (31). It contains the delayed rational basis of (22)
with the set of poles P = {p1, . . . , pnp}, each of them
containing the same infinite number of delays in the range
[τm, τM ].
While the dual space LS-SVM model (26) with the afore-

mentioned kernel is non-parametric, it can still be linked to
an infinite dimensional parametric model expressed by (20):

H̃ (jω) =
〈
w∗,ϕ(ω;p, τ )

〉
+ b

=

np∑
j=1

∫ τM

τm

w′j(τ )e
−jωτ cpj

jω − pj
dτ + b, (32)

where the weights w′j(τ ) refer to the continuous parameter
τ . They exist for any pole pj and take the following form,
according to (18):

w′j(τ ) =
K∑
k=1

αkejωkτ
cpj

−jωk − p∗j
. (33)

These weights w′j(τ ) are proportional to the residue in the
DRM, thus providing information on the most relevant terms
for the model construction; in fact, a large residue is asso-
ciated to the delay that is most significant for the part of the
model corresponding to the pole pj. Furthermore, a combined
weight W (τ ) that accounts for all poles of the kernel can be
defined as:

W (τ ) =

 np∑
j=1

|w′j(τ )|
2

1/2

=

 np∑
j=1

(
K∑
k=1

αkcp
−jωk − p∗j

ejωkτ
)

×

(
K∑
k=1

αkcp
−jωk − p∗j

ejωkτ
)∗1/2

. (34)

The plot and analysis of the weight W (τ ) provides infor-
mation about the system delays, with peaks indicating higher
‘‘energy’’ content and corresponding to the dominant delays
of the original system. The representativeness of these peaks
to identify the system delays is assured by the fact that one of
the conditions of the LS-SVM problem is the minimization of
〈w,w〉 =

∑
|w|2 (see (43) in Appendix). Hence, it is unlikely

the occurrence of unnecessary high values for w′j(τ ).

FIGURE 1. Magnitude of the LS-SVM weights as a function of τ .

A. ILLUSTRATIVE EXAMPLE
As an illustrative example, the following synthetic transfer
function with a single real pole at−3 rad/s and a single delay
at 3 s, is considered:

H (jω) =
1

jω + 3
e−jω3, (35)

in the bandwidth 0 - 5 rad/s.
We can build the LS-SVM model from (26) with τm = 0,

τM = 5 s and the poles P = {−2,−4,−6} rad/s. It is
important to remark that the above set of poles does not match
the exact pole in the transfer function, but are within the same
region of space. The plot of the magnitude of w′j(τ ) as a
function of τ gives us an interesting insight. Figure 1 shows
these curves for each of the poles included in the kernel and
with cpj = 1. The curves clearly have their peak near the
true delay of the original system, τ = 3 s. However, if the
weights are observed for one individual pole, the peak is not
exactly at the expected value: in fact, it is at τ = 3.09 s for
pj = −6 rad/s, τ = 3.05 s for pj = −4 rad/s and τ = 2.95 s
for pj = −2 rad/s. Nonetheless, by looking at the combined
weight W (τ ), the peak appears at τ = 3.00 s, showing that
the use of a higher number of poles compensate the fact that
the exact pole of the system is unknown. The delay is shown
to be the most important element for obtaining an accurate
model, and the use of infinite possible delays by means of the
kernel function guarantees that its correct value is considered.
In the next section, this procedure for delay identification is
described for a more generic case, when the original system
is unknown.

V. PRACTICAL PROCEDURE FOR DRM ESTIMATION
This Section generalizes the procedure illustrated in the
previous Section to the case of a system with multiple delays
and reflections like, for example, an electric interconnect. The
target model to approximate this system is the DRM in (1),
with complex and unknown poles.

A. TIME-DELAY INTERVALS IN THE DELAY KERNEL
The delay extraction approach outlined in Sec. IV and bet-
ter detailed in this section requires a delay-rational kernel
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function containing all delays within a certain interval. How-
ever, the span of this interval was not discussed yet. For causal
systems, the time-delay has to be positive, and therefore,
τm ≥ 0. The determination of the maximum delay τM can
rely on the frequency discretization of input data. In fact,
assuming that the original frequency response of the sys-
tem has equally-spaced frequency points, with 1f being the
separation between two consecutive samples, the following
empirical relationship holds: τM − τm < 1/1f . With τm = 0,
the maximum time-delay then becomes τM < 1/1f , which
is the value we use for our examples presented in section VI.

B. THE RATIONAL KERNEL
The example in Sec. IV-A showed that the delays can be
identified without knowing the exact poles that compose the
rational part of the system. A sufficiently large number of
poles, chosen in a reasonable region of space where the poles
of the original system are expected to be, was able to replace
the effect of the exact pole in the estimation of the LS-SVM
model. Hence, we use the set P = {p1, . . . , pnp} in which the
poles are randomly chosen with independent real and imagi-
nary parts, both from a Gaussian distribution with mean zero
and standard deviation equal to ωK . The real part of the poles
is forced to be negative by discarding samples with positive
value, in order to ensure that the obtained system is stable.
Although this is not the optimal set of poles for the rational
kernel, this choice is adopted because it provides a good
delay estimation using a relatively small number of poles.
Since the rational part of the system (with its corresponding
delay removed) should be very simple, usually no more than
10 poles, a np on the order of 20 to 30 poles is sufficient to
identify the delay values.

C. DELAY IDENTIFICATION ALGORITHM
After considering the details of the previous subsections,
we can devise a procedure to identify the relevant delays of
a generic distributed system based on the weights estimated
by a LS-SVM model. The procedure is simply an extension
of what was described at the end of Sec. IV and illustrated
by the black line of Fig. 1. The complete procedure for time-
delay identification can be summarized by Algorithm 1. Once
identified by the peak positions, the delays can be used to
build a DRM of little complexity.

Admittedly, the peaks still need to be found visually, and
some discernment is required to distinguish the delay peaks
from the side lobes that appear in the plot, as observed
in Fig. 1. Nonetheless, the main delay peak is more pro-
nounced than its corresponding side lobes, and hence the
delay peaks are identified as being higher than its near sur-
roundings.

D. DELAYED RATIONAL FITTING
It is presented here a procedure to progressively identify a
DRM of (1) starting from the delay terms obtained via the
procedure proposed in V-C. The DRMmodel Ȟ is built in nτ
steps, being nτ the number of identified delays, by consider-

Algorithm 1 Delay Identification Algorithm
1: Group the frequency response samples in the vectors
ω = [ω1, . . ., ωK ] and H (jω) = Hr (jω) + jHi(jω) =
[Hr (jω1)+ jHi(jω1), . . .,Hr (jωK )+ jHi(jωK )];

2: Draw a random set of complex poles P ∈ Cnp in a
reasonable region of the complex plane as discussed in
Sec. V-B;

3: Define theminimum andmaximum considered delays τm
and τM ;

4: Compute the kernel for all frequency pairs {ωi, ωj}Ki,j=1
using (27), and assembly the linear system in (15);

5: Tune the hyperparameter γ such that the model error is
acceptable and solve (15);

6: ComputeW (τ ) according to (34);
7: Find the peaks in W (τ ), which are the set of relevant

delays τ = {τ1, . . . , τnτ } for the modeled system.

ing a different set of poles for each delay term, i.e.,

H (jωk ) ≈ Ȟ (jωk ) = r0 +
nτ∑
i=1

Ȟi(jωk )e−jωkτi , (36)

for k = 1, . . . ,K , where, similar to (1), Ȟi indicates the
approximated rational terms associated to the delay τi.
The proposed procedure progressively identified the terms

Ȟi of the DRM in (36) by adding a new rational term at each
iteration. Specifically, at a generic step l of the procedure,
a standard rational fitting algorithm [4] is applied to get an
approximated version Ȟl(ωk ) of the rational term associated
to the l-th delay τl .

The approximation of each rational term Ȟl(jωk ) is com-
puted as the difference between the target transfer function
H and the DRM approximation at the current iteration Ȟ (l),
compensated for the time-delay associated to the current
step Ȟ (l), and writes:

Ȟl(jωk ) =
[
H (jωk )− Ȟ (l−1)(jωk )

]
ejωkτl (37)

for l = 1, . . . , nτ .
Whilst, the overall DRM approximation Ȟ (l) at a generic

iteration l writes

Ȟ (l)(jωk ) =
l∑
i=1

Ȟi(jωk ) exp(−jωkτi). (38)

At the first step, the procedure is initialized as
Ȟ (0)(jωk ) = 0. After nτ steps, the algorithm ends and pro-
vides as a results the DRM Ȟ (jωk ) = Ȟ (nτ )(jωk ).

The rational fitting adopted at each iteration considers a
different number of poles for each of rational term Ȟi of the
DRM. For the rational term, the number of poles is selected
by looking at the marginal improvement of the model error
(i.e., we check if the model accuracy increases significantly
when the number of poles is increased by one). The above
procedure is summarized in Alg. 2.

The procedure does not lead to the optimal selection of the
poles and residues for the DRM, but it is simple and effective
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in providing a DRM with a small number of poles, which are
different for each delay term. A more robust and automated
method for a delayed rational fitting using the same poles
for all delay terms is provided by [7]. The passivity of the
resulting model is not guaranteed by the method. However,
it can be checked and enforced afterwards by using methods
available in the literature [9].

Algorithm 2 Incremental Rational Fitting Algorithm
1: Group the frequency response samples in the vectors
ω = [ω1, . . ., ωK ] and initialize the algorithm with the
time-delay vector τ = [τ1, . . . , τnτ ], the target transfer
functionH (jω) and the approximatemodel H̃ (0)(jω) = 0;

2: for l = 1, . . . , nτ do
3: Compute Ȟl(jω) by using (37);
4: Use VF to get a rational model of Ȟl(jω) with a maxi-

mum number of poles from 1 to a small np,max;
5: Select the appropriate number of poles as explained in

V-D;
6: Use (38) to update the partial DRM Ȟ (l)(jω);
7: end for
8: Ȟ (jω) = Ȟ (nτ )(jω) is the final model containing all

delays.

VI. APPLICATION EXAMPLES
The main purpose of this work was to devise a procedure to
extract the delays and poles of a distributed system that can
be applied to extract a DRM. In order to exemplify the use
of the advocated procedure, three examples are presented in
this section. Throughout the examples, comparisons with the
state-of-the-art VF technique for the estimation of rational
models [4], Hilbert transform [5] approach and Gabor trans-
form [7] method for delay identification are presented.

A. EXAMPLE 1: SYNTHETIC TRANSFER FUNCTION
The proposed model is first investigated on a synthetic exam-
ple with known poles and delays. Initially, the following
transfer function sampled at 1001 evenly spaced points from
ω = 0 to ω = 2000π rad/s is considered:

H1(jω) =
20π

jω + 20π
e−0.15jω. (39)

For the delay identification, we adopted a kernel with the
20 random poles shown in Fig. 2-a, and a maximum delay
value τM = 1 s determined according to subsection V-A.
Then, Algorithm 1 produces the weight W (τ ), as displayed
in Fig. 2-b with normalization to its maximum value. The
peak identifies exactly the delay of our synthetic transfer
function, i.e. τ = 0.15 s. The figure also compares the
results of the present method with the time-delays obtained
by means of two other methods: the Hilbert transform (gray
line) and the Gabor transform (dashed lines). The former
method identifies by design only one delay value, at τ =
0.1494 s, which is slightly to the left of the actual delay value.
On the other hand, the Gabor transform, after the tuning of the

FIGURE 2. First synthetic example: Panel (a) shows the 20 random poles
used within the LS-SVM kernel. Panel (b) plots W (τ ) for delay
identification; comparison with Hilbert and Gabor transforms is also
displayed.

window width provides a pattern which is similar to the one
provided by the proposed method. However, the peak in the
Gabor transform plot is shifted slightly to the right of the LS-
SVM peak, and it can be pushed further if smaller values for
the window width a are chosen.

As a further comparison among the three methods, and to
stress their performances for a system with multiple delays,
let us consider a second synthetic transfer function:

H2(jω) =

(
20
√
10π

jω + 20π + 60π j
+

20
√
10π

jω+20π−60π j

)
e−0.15jω

+
4π

jω + 20π
e−0.3jω (40)

sampled at the same frequency points as H1(jω). There are
two main differences from the previous example: H2(jω)
is composed by terms with two different delays τ =

{0.15, 0.3} s, and one of this terms is an underdamped system.
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FIGURE 3. Plots of the normalized weight used for delay identification;
comparison with Hilbert and Gabor transforms is also displayed, for
the second synthetic example.

The normalized W (τ ) is displayed in Fig. 3, together with
the Hilbert and Gabor transform curves. The main LS-SVM
weight peak identifies exactly the delays of our synthetic
transfer function, i.e. τ = 0.15 s, and a smaller peak is
present at the second transfer function delay at τ = 0.3 s.
TheHilbert transform also identifies exactly the first andmost
important delay peak, but misses the second one. The Gabor
transform peaks are again shifted slightly to the right, but this
time additional side peaks appear when the frequency domain
window is wide. They disappear by using a narrower window,
as shown in the green curve, but these leads to a worse time-
domain resolution of the transform, which makes both the
first and second peaks appear in more inaccurate values of
τ .
The computational cost of the LS-SVM method might

be worrisome, as it depends on the inversion of matrices,
which might be computationally slow if the involved matri-
ces are large. However, Table 1 shows that the impact on
the performance was not so large in these examples. Using
those K = 1001 frequency response samples, the LS-SVM
required a computational time of 17.57 and 16.45 s, compared
to 12.96 and 9.88 s for the Gabor transform. For smaller num-
ber of samples, the difference is reduced, up to a point where
the LS-SVM may be faster than the Gabor transform, e.g.,
with 334 samples. The Hilbert transformed always required a
larger computational time than both other methods.

The proposed method presents a trade-off between the
maximum frequency of the system (or bandwidth), the max-
imum identifiable delay (related to the length of the inter-
connect) and computational performance (that depends on
the number of frequency samples). For a fixed computational
time, if the maximum frequency is increased, 1f increases,
and therefore the maximum identifiable delay τM is smaller.

TABLE 1. Comparison of the computational time between the three
applied delay identification methods for different number of frequency
response samples, for the two examples of synthetic transfer functions.

FIGURE 4. Schematic of the circuit used in example 2.

On the other hand, channels that operate at higher frequencies
would be naturally shorter, thus the delays that need to be
identified in such channels are smaller, compensating the
shrink of τM .

B. EXAMPLE 2: CIRCUIT WITH MULTIPLE TRANSMISSION
LINE PATHS
The transfer function H (jω) = Vo(jω)/Vi(jω) of the circuit
in Fig. 4 presents a larger number of delays, due to multiple
propagation paths. The circuit is composed by 5 transmission
lines with different lengths (TL1: 0.47 m; TL2: 1.38 m; TL3:
0.31 m; TL4: 1.19 m; TL5: 0.28 m), resulting in 3 differ-
ent paths from the input to the output, and additional paths
generated by reflections at the various splitting points of the
circuit. In addition to the transmission lines, there are also a
few lumped resistors and capacitors, creating linemismatches
and adding corrugations to the voltage/current waveforms.

The above circuit is simulated in SPICE, and H (jω) is
obtained at 1229 equally-spaced frequency points between
0 and 2 GHz. The proposed method is applied in the same
sequence as described in example 1, but this time 25 ker-
nel poles are adopted, due to the higher complexity of the
transfer function. The obtained time-delay curve is shown
in Fig. 5. In the same figure, the delays from the Hilbert
and Gabor transform methods are also shown, for compar-
ison. The detail of the first peak (shown in an inset of
Fig. 5) is interesting: it reveals that the peak shape is almost
coincident with the Gabor transform curve, but identifies a
delay slightly higher than the Hilbert transform. Also for
the additional peaks, the time-delay curve computed via the
proposed approach presents a remarkable resemblance to the
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FIGURE 5. Example 2: plots of wp(τ ) for delay identification; comparison
with Hilbert (green line) and Gabor (dashed blue curve) transforms is also
displayed.

TABLE 2. Computational time required for delay identification in
example 2 as a function of the number of considered points in the τ -axis.

one obtained through the Gabor transform, although all peaks
are slightly to the left of the Gabor transform ones.

The curves on the previous figure require the discretization
of the τ -axis. Together with the number of frequency samples,
this discretization affect the computational time of the curves.
Table 2 shows how this time changes according to the number
of τ points considered, in this example. It is seem that, for a
small number of points, the Gabor transform performs better,
but as the number of points increases, the LS-SVM becomes
more efficient. The model estimation does not depend on the
τ -axis discretization, and thus, it is computationally easy to
compute the weights at a new point, with (34). The computa-
tional time of the Hilbert transform is higher, and it does not
require any discretization.

Five significant delays are identify from the curve of Fig. 5:
τ1 = 10.199 ns, τ2 = 24.453 ns, τ3 = 26.941 ns,
τ4 = 30.443 ns, τ5 = 32.931 ns. Smaller peaks or peaks very
close to larger ones are ignored. By using the five identified
delays with Algorithm 2, the original transfer function H (jω)
is fitted using 12 poles in total. This approximation is shown
in Fig. 6, indicating an excellent phase reconstruction over
the entire bandwidth (lower panel).

In table 3, we compare the DRMs obtained using Algo-
rithm 2 and the delays obtained through the proposed
LS-SVM method, with three alternatives: a DRM obtained
considering the delays from the Gabor transform and Algo-
rithm 2; a single delay DRM that uses the Hilbert trans-

FIGURE 6. Magnitude and phase plots of the reconstructed transfer
function of example 2.

form delay and VF to obtain the rational part; and a direct
VF approximation. It is shown that a VF approximation
with similar accuracy would require at least 40 poles, if the
model accounts for the Hilbert transform delay, or 52 poles,
if no delay is considered. This is more than three times the
number of poles adopted by the proposed model. Moreover,
with a very small change in the delays to τ1 = 10.260 ns,
τ2 = 24.514 ns, τ3 = 27.002 ns, τ4 = 30.566 ns, τ5 =
33.023 ns, the model obtained using the delays from the
Gabor transform does not achieve a good accuracy. The issue
seems to rest on τ1: by replacing it with the LS-SVM value,
which is only 0.061 ns smaller, a good accuracy is restored.
It is believed by the authors that Ȟ1(jωk ) in (37) might
become non-causal when H (jωk ) has a delay larger than its
intrinsic delay compensated (i.e., if τ1 is larger than the true
delay in H (jωk )), which hinders the rational approximation.
Overall, the obtained results demonstrates that the identified
delays help reducing the complexity of the model.

As a final comparison, we can look at the total compu-
tational time required to obtain these DRM or VF models,
which is presented in Table 4. That data corresponds to the
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FIGURE 7. Example 3: plots of W (τ ) for delay identification; comparison with Hilbert (green line) and Gabor (dashed blue curve) transforms is
also displayed.

FIGURE 8. Example 3. (a) – Plot of W (τ ) of S1,1 for delay identification. (b) and (c) – Comparison of the model with original data for the
magnitude and phase of S1,1(jω).

FIGURE 9. Example 3. (a) – Plot of W (τ ) of S1,2 for delay identification. (b) and (c) – Comparison of the model with original data for the
magnitude and phase of S1,2(jω).

TABLE 3. Summary of the error between system response H(jω) in
example 2 and models H̃(jω) used to approximate it.

cases where 10,000 τ -values were evaluated to obtain the
plot in Fig. 5. It is shown that VF is faster, but this was also
the method with the highest number of poles. The proposed

method took around five times longer than VF, but it requires
around 4 times less poles, and had a better performance than
the other DRM alternatives.

C. EXAMPLE 3: SpaceWire CABLE
Simulated data of a SpaceWire (SpW) link, containing a 10 m
long SpaceWire cable with compatible connectors and PCB
adapters [32] is considered as a final application example
of the presented method. The structure of SpaceWire cable
is rather complicated (4 twisted-shielded pairs surrounded
by an external shield), thus requiring an 18 × 18 scattering
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FIGURE 10. Example 3. (a) – Plot of W (τ ) of S2,2 for delay identification. (b) and (c) – Comparison of the model with original data for the
magnitude and phase of S2,2(jω).

TABLE 4. Comparison of the computational time required for delay
identification and rational fitting through the analyzed methods in
example 2.

matrix to fully describe the electromagnetic behaviour of
the link. The simulation accounted for the entire structure
of the SpaceWire cable (full details are given in [32]), but,
for simplicity, we model here only the scattering parameters
of a single wire, from end to end. The 1-wire link is then
represented by the following scattering matrix S(jω):

S(jω) =
[
S1,1(jω) S1,2(jω)
S2,1(jω) S2,2(jω)

]
, (41)

where S1,2(jω) and S2,1(jω) are equal due to the reciprocity
of the passive link.

The proposed method is applied to each of the elements
of the matrix individually, and then a multiport model is
achieved by combining the individual results [7]. A remark-
able simplification when dealing with multiport systems
comes from the fact that the kernel matrix � depends only
on the set of poles P , τm, τM and the sampled frequency
points ωk , which are the same for all elements of the scatter-
ing matrix, i.e., the k = 1, . . . , 2000 equally-spaced points
between 0 and 1 GHz. The kernel does not depend on the
frequency response itself. Therefore, the kernel matrix used
to solve (50) can be computed only once, simplifying the
computational process.

The proposed method is applied to S1,1(jω), S1,2(jω) and
S2,2(jω) in the same manner as in example 2, with 25 kernel
poles, τm = 0 and τM = 1/1f = 2 µ s. In parallel and
for the sake of comparison, the Hilbert and Gabor transform
methods are applied to the scattering matrix of the SpW link.
Figure 7 shows the results of the three methods, normalized
so that their highest peak has the same value for all three

plots. The plots document a very good agreement of the three
techniques.

For S1,1(jω), Fig. 8-a shows the identified delays, of which
the first one happens at τ = 0.5 ns and represents a reflection
occurring a few centimeters into the propagation path, where
the PCB and connector transitions into the SpaceWire cable.
Another 6 delays were identified with order of magnitude in
the hundreds of ns. Furthermore, τ = 0 is a candidate delay,
representing the port reflection, due to a possible mismatches
between the port and the input impedance of the structure;
however, its identification is compromised by the very close
first peak. Figures 8-b and 8-c show the magnitude and
phase of the S1,1 approximation, performed with 8 delays and
19 total poles.

For S1,2(jω), Fig. 9-a shows the identified delays. Since
S1,2 represents the end-to-end transmission of the link,
the first peak appears after a considerable delay, contrary
to the reflection term S1,1. In total, 6 main delays were
identified. Figures 9-b and 9-c show the approximation of the
S1,2 transfer function performed with the identified 6 delays
and 19 total poles: the good quality of this approximation is
evident.

The time-delays of S2,2 are identified from the curve dis-
played in Fig. 10-a. They are similar to the ones of S1,1,
although not exactly the same, because the link is non-
symmetrical. In total, 7 delays terms, including τ = 0 due
to direct reflection, are identified. In addition, 26 poles in
total are needed for a good quality approximation, as shown
in Figs. 10-b and 10-c.
The three alternative models presented in VI-B are built

for comparison. A summary of the L2 and L∞-norm error
between the original data and the constructed models is
shown in Table 5. It is evident that the proposed DRMmodel
presents a much lower complexity when compared with the
mere rational VFmodel. In this example, it achieved a similar
performance than the model that uses the Gabor transform
delays. The Hilbert transform delay also led to an accurate
and low order model, but only for the transmission scattering
parameter S1,2. For the reflections, this method is not appli-
cable, and thus it would require the high order VF models to
build the complete multiport system.
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TABLE 5. Summary of the error between available data for the link in
Example 3 and models used to approximate it.

TABLE 6. Computational time required for delay identification and
rational fitting of the multiport system from example 3.

The total computational time required to build the four
aforementioned models is also relevant. It is compared
in Table 6, for both the delay identification and the rational fit-
ting. We see that the faster complete procedure is VF (which
could be even faster using techniques specific for multiport
systems [3]). Nonetheless, the total time spent by the DRM
techniques is reasonable, given the remarkable reduction in
the number of required poles. Moreover, we see that the
fact of computing the kernel matrix only once provides an
advantage for the LS-SVM in terms of delay estimation time.

VII. CONCLUSION
DRM models are one of the best alternatives to reduce
the complexity of models of distributed systems. However,
the extended use of such a clever implementation is hindered
by the difficulty in estimating accurately both the poles and
delays needed for their representation. The present work
proposed a new method to assist on the construction of a
DRM. The approach consists in approximating the frequency
response of the system by means of the dual space formu-
lation of the LS-SVM with an ad-hoc kernel based on an
infinite number of delayed-rational basis; and the analysis of
the weights of this approximation which allows us to identify
the dominant time-delays present in the distributed system,
that represent the most critical elements of the model. Once
those terms are identified, only the rational part of the DRM
needs to be estimated, and this can be done through the more
conventional VF procedure.

The lower complexity of the resulting DRM implies that
an equivalent circuit for the distributed system would require

less dynamic components, and thus would be processed more
efficiently by time-domain simulators. A clear task that can
benefit from this speed-up is the assessment of the integrity
of signal propagating in a system with electric interconnects.
The DRM has also the advantage of being causal, as positive
delays are used in the transfer function; furthermore, its phase
is very accurate at all frequencies, while VF models could
loose accuracy for smaller amplitudes.

Comparing the results of this work with similar existing
delay-identification methods, it can be readily observed that
the present technique, like theGabor transform, has the ability
to identify multiple propagation delays. However, the Gabor
transform suffers from the necessity of tunning the width of
its window function, which can push the identified delays to
values larger than the actual value. Meanwhile the Hilbert
transform is limited to a single delay. The distinctive feature
of our approach is its DRM structure, inspired by the physical
structure of electronic systems of large dimensions, where the
signal propagation is subject to time-delays. In addition, the
flexibility provided by the kernel is unique; in fact, the consid-
ered poles and time-delay interval can be adapted according
to the knowledge about the system, and a strategy of handling
multiple time-delay intervals deserves future investigations,
together with the possible extension to a large number of
parameters.

APPENDIX
EXTENSION OF THE LS-SVM TO COMPLEX FUNCTIONS
Starting from a set of complex training pairs {(xk , yk )}Kk=1
with the scalar output yk ∈ C and possibly multiple input
parameters arranged in a vector xk ∈ Cd , we are looking
for the following primal space formulation of the LS-SVM
regression, which writes:

ỹ(x) =
〈
w∗,ϕ(x)

〉
+ b, (42)

where w ∈ CD are the regression coefficients, ϕ(·) : Cd →
CD are the considered basis functions, b ∈ C is a bias
term and ∗ represents the element-wise complex-conjugation
operation.

The LS-SVM is derived by solving the following optimiza-
tion problem:

min
w,e

Jp(w, e) =
1
2
wHw+

γ

2

K∑
k=1

eke∗k

s.t. <{wTϕ(xk )+ b+ ek} = yk,r
={wTϕ(xk )+ b+ ek} = yk,i (43)

for k = 1, . . . ,K . In the above equation, the superscript H

denotes the conjugate-transpose operation and the vector of
model error e = {ek}Kk=1 is equal to the true value yk minus
the model output of (42) computed at xk , for all training
points. Problem (43) minimizes the L2-norm of the primal
space model coefficients w plus the sum of squared errors,
weighted by the regularization parameter γ . Such parameter,
commonly referred to as hyperparameter, is tuned during
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the model training usually via cross-validation. The optimal
model is found by means of the Lagrangian, which for this
problem writes:

L(w, b, e;α) =
1
2

(
wT
r wr + wT

i wi

)
+ γ

K∑
k=1

(
e2k,r + e

2
k,i

)
−

K∑
k=1

αk,r

(
wT
r ϕr (xk )− wT

i ϕi(xk )+ br + ek,r − yk,r
)

−

K∑
k=1

αk,i

(
wT
r ϕi(xk )+ wT

i ϕr (xk )+ bi + ek,i − yk,i
)
,

(44)

where αk = αk,r + jαk,i are Lagrange multipliers, w = wr +

jwi, ek = ek,r+j ek,i, yk = yk,r+j yk,i and ϕ(xk ) = ϕr (xk )+
jϕi(xk ). The derivatives of the Lagrangian are equal to:

∂L
∂wr
=

1
2
(2wr )−

K∑
k=1

αk,rϕr (xk )−
K∑
k=1

αk,iϕi(xk ), (45a)

∂L
∂wi
=

1
2
(2wi)+

K∑
k=1

αk,rϕi(xk )−
K∑
k=1

αk,iϕr (xk ), (45b)

∂L
∂br
= −

K∑
k=1

αk,r , (45c)

∂L
∂bi
= −

K∑
k=1

αk,i, (45d)

∂L
∂ek,r

= −αk,r + 2
γ

2
ek,r , (45e)

∂L
∂ek,i

= −αk,i + 2
γ

2
ek,i, (45f)

∂L
∂αk,r

=−(wT
r ϕr (xk )−w

T
i ϕi(xk )+br+ek,r−yk,r ), (45g)

∂L
∂αk,i

= −(wT
r ϕi(xk )+w

T
i ϕr (xk )+bi+ek,i−yk,i). (45h)

Making the derivatives equal to zero results in the defini-
tions below:

w =
K∑
k=1

αkϕ
∗(xk ), (46)

K∑
k=1

αk = 0, (47)

ek =
αk

γ
, (48)

wTϕ(xk )+ b+ ek − yk = 0. (49)

By combining the equations in (49) and (47) and separating
its real and imaginary parts, and substituting in (49) the value
for w and ek in (46) and (48), one can build the following

linear system of equations:�+ I2K/γ
1 0
0 1

1T 0T

0T 1T
0 0
0 0



αr
αi
br
bi

 =

yr
yi
0
0

 , (50)

where 1 = [1, . . . , 1]T and 0 = [0, . . . , 0]T are vectors
containing K equal elements, I2K is an identity matrix with
size 2K , and the 2K × 2K kernel matrix �(xk , xk ) is defined
as

� =

[
�(1,1) �(1,2)

�(2,1) �(2,2)

]
. (51)

In the K × K square submatrices that compose �, an ele-
ment �(.,.)

j,i in the j-th row and i-th column is defined as
follows:

�
(1,1)
j,i = <{k(xi, xj)}, (52a)

�
(1,2)
j,i = −={k(xi, xj)}, (52b)

�
(2,1)
j,i = ={k(xi, xj)}, (52c)

�
(2,2)
j,i = <{k(xi, xj)}, (52d)

for i, j = 1, . . . ,K . The kernel function k(xi, xj) is defined
as:

k(xi, xj) =
〈
ϕ(xi),ϕ(xj)

〉
. (53)

The unknowns α = αr + jαi = [α1,r + jα1,i, . . . , αK ,r +
jαK ,i] and b = br + j bi are computed by solving (50). The
determination of the previous parameters leads to the dual
space representation of the regression, written as

ỹ(x) =
K∑
k=1

αkk(xk , x)+ b, (54)

where the Lagrange multipliers αk become the unknowns for
the model.
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