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Abstract

In the mobility sector Electric Vehicles represent one of the main opportu-

nities to ensure strong reduction of local pollution. However, their higher

costs compared to gas-fuelled cars are still a barrier for their large diffu-

sions. One possible solutions to increase EVs penetration is their use as

storage within households equipped with Renewable Energy Sources en-

abling a flexible energy management, for instance by the Vehicle-to-Grid

and/or Vehicle-to-Home scheme.

The aim of this paper is to investigate possible management of the EV

battery through an optimization approach capable to minimize the elec-

tricity supply costs for an Italian residential end-user with PV, consider-

ing battery constraints, such as driving habits. A statistical approach of
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driver behavior is integrated within the optimization approach to define

some possible daily driving patterns. The optimization takes into consider-

ation mobility needs, prices for selling and purchasing electricity and hourly

electrical, heating and cooling load profiles of the household. On the basis

of these constraints the optimizer identifies when PV overproduction can be

either used to charge batteries or to partially cover the load demand of the

household. Finally, economic and energy evaluations are performed under

Monte Carlo simulations to highlight reliability of potential benefits for the

household case study.

Keywords: Electric Vehicle; V2H; V2G; Household case study; PV.

Nomenclature and units

α(t) availability of EV as energy storage unit

COP Coefficient of Performance

cc energy consumption of EV battery for mo-

bility needs (kWh/km)

Cp price of electricity purchased from the grid

e/(kWh)

Cs price of electricity sold to the grid

e/(kWh)

d(t) distance travelled by EV in a time interval

(km)

ηc efficiency of EV battery during charge

phase

ηd efficiency of EV battery during discharge

phase
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ηsd self-discharge efficiency of EV battery

Ein electric power consumed by electric chiller

(kW)

Eout cooling power produced by electric chiller

(kW)

EV Electric Vehicle

PR Performance Ratio of the PV system

PV Photovoltaic

Php,in electric power consumed by heat pump

(kW)

Php,out heating power produced by heat pump

(kW)

Pp electric power purchased from the grid

(kW)

Ppv electric power produced by PV (kW)

Ps electric power sold to the grid (kW)

Pst,c electric power during charge of the EV

battery (kW)

Pst,d electric power during discharge of the EV

battery (kW)

SOC State of Charge of EV battery (kWh)

SOCmin Minimum State of Charge of EV battery

(kWh)

Smax EV battery capacity (kWh)

SC Self-Consumption
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Uc cooling power demand of the household

(kW)

Ue electric power demand of the household

(kW)

Ut thermal power demand of the household

(kW)

V 2G Vehicle to Grid

V 2H Vehicle to Home

Y C yearly electricity cost for household with

V2H operation ( e/y)

Y C∗ yearly electricity cost for household with-

out V2H operation ( e/y)

Y CS yearly cost saving for household with V2H

operation (%)

1. Introduction

Air pollution is still one of the main issue for people living in large and

small cities, despite of implementation of emission reductions measures [1],

at least at the European level, the transport sector still remains one of the

main contributors to the reduction of the air quality. For this reason, a

strategic approach for decarbonizing the transport sector is crucial to in-

crease the quality of life and health condition of the people living in cities

[2]. In this context, Electric Vehicles, especially if fed by Renewable En-

ergy Sources, play an important role by significantly reducing pollutants

emission [3]. However, even if the in the last years EV market is increasing

[3, 4], EVs penetration is still difficult due to their higher costs and the

short driving range with respect to usual gas-fuelled vehicles. Overcoming
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these aspects is crucial for promoting a large electrification in the transport

sector especially in case of light duty vehicles. The EVs could become more

economically attractive if Vehicle-to-Grid (V2G) or Vehicle-to-Home (V2H)

schemes are implemented. V2G is intended as the possibility of selling stored

energy to the grid, while V2H is the possibility of using stored energy later

for home needs. In both cases, a more sophisticated management of the EV

battery is required. EV battery can be managed as a stationary storage

unit with bidirectional power fluxes to exploit local RES generation as, for

example, Photovoltaic (PV). So, when EV is parked at home, the potential

household PV overproduction can be stored in the EV battery for covering

later, partially or fully, the domestic electric demand [5, 6, 7, 8]. As a conse-

quence, the corresponding increased self-consumption level of PV generation

also improves the resilience of those electric distribution grids subjected to

a large penetration of distributed generation based on RES [9]. Similarly, if

the energy market price is convenient, the stored PV overproduction could

be sold to the grid [10].

However, the power exchanged with the battery needs to be optimally

managed if the RES generation must be fully exploited also from the eco-

nomic point of view [11]. For example, an optimization algorithm is pro-

posed in [12] for EV battery management to minimize total electricity costs

of households considering both battery technical constraints and a detailed

modeling of user comfort preference, thermal dynamics and household oc-

cupancy patterns. Different optimization technique are instead compared in

[13] for minimizing the electricity cost of the household within a residential

energy management by means of EV battery management. A Mixed Inte-

ger Linear Programming (MILP) formulation is instead presented in [14] for

minimizing electricity costs of household considering also the reactive power

5



generation from EV battery inverter. In the literature presented above, all

management strategies must cope with the driving patterns which strictly

influence the EV battery availability to store energy. However, in general

this aspect is investigated with simplified approaches where the car usage

and the mobility need are assumed fixed, so no statistical analysis of driving

patterns are considered.

In this paper a different approach for evaluating the optimal scheduling

of EV battery for increasing the PV exploitation and minimizing the elec-

tric, heating and cooling energy supply costs at household level is presented.

The optimal management of the EV battery here proposed is based on MILP

formulation of household energy system, where driving patterns are statis-

tically extrapolated by an existing database for considering the influence of

the EV battery availability in V2G and V2H operations. The base of these

data is the study on driving patterns in the six larger European Countries

(Italy, France, Germany, UK, Spain and Poland) [16]. Statistic data are

used to randomly generate different driving patterns within a Monte Carlo

approach for estimating energy and economic benefits of a V2H and V2G

management. Simulations considering the Italian context are performed and

energy and economic results are presented and discussed.

The paper is organized as follows: in Section 2 the database concern-

ing the driving pattern of Italian driver’s living in small town and rural

area is presented and a statistical analysis is discussed to randomly generate

car usage profiles; in Section 3 the energy demand for an Italian house-

hold is presented; the MILP formulation of the optimization problem for

the management of the EV battery is presented in Section 4; Monte Carlo

simulations and results are finally discussed in Section 5.
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2. Driving pattern

One of the main economic drivers for the application of V2G and V2H

operations in household is the maximization of the self-consumption of the

RES based generation system. In this way, an end-user can potentially ben-

efit of the EV battery capacity for storing RES overproduction and supply

its internal demand due to domestic appliances. In the Italian context, the

wider RES distributed generation system installed in household is based on

PV [15]. So, this RES technology was considered in this paper.

However, the use of the EV as an energy storage unit is strictly related to

the driver’s pattern behaviour. In fact, differently from battery for station-

ary applications, the availability of this ”moving” storage system depends

on how the EV is used by the drivers and on the scope of each trips. In this

respect, two main classes of mobility can be identified [16]:

• Systematic mobility where the car is used by drivers for trips from

home to workplace and vice versa: this class represents approxima-

tively 35-40% of all trips in the six most populous EU countries

• Unsystematic mobility where the car is used by drivers for reasons not

strictly related to work (e.g. shopping): this class accounts for around

one-third of all the trips.

This classification is essential since the PV generation can be fully ex-

ploited in the household only if the EV is parked at home when PV over-

production occurs, so the energy surplus can be stored in the EV battery

and used later for eventually supply the household appliances. If the car is

used for systematic mobility, an unmatched condition can occur since the

EV is typically not parked at home during daytime of working days (i.e.
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Monday to Friday), and consequently the PV overproduction of the house-

hold cannot be stored in the EV battery [17]. On the other hand, different

conditions could be obtained when unsystematic mobility is considered: in

this case, an higher probability for finding car at home during PV overpro-

duction could be instead expected. For this reason, this paper investigates

the possibile implementation of V2G and V2H operation, within household

with PV production, through the management of EV battery considering

only unsystematic mobility needs for the driver’s car.

2.1. Data analysis

The maximization of the PV self-consumption is based on an optimal

management of the EV battery capacity. However, this optimal management

can not ignore the statistical variability of the driver’s pattern behavior,

since it strictly influences the EV battery availability as energy storage unit.

So, a preliminary statistical analysis of driver’s car usage was performed for

the Italian context to defines:

• the intervals when the car is parked at home during a day (i.e. the

identification of the time when car is leaving home and when it is

coming back)

• the distance travelled by the car when it is moving out of home

The statistical analysis was performed considering the data used for in-

vestigating the driver’s car usage in the reports [18, 19]. The database

contains data of each car trips (e.g. duration, scope, departure and arrival

time, place of departure and arrival, etc.) for people living in the six most

populous country of European Union (Italy, France, Germany, UK, Spain

and Poland). Data regarding trips for systematic and unsystematic mobility
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are available from this database where a further classification is introduced

concerning the people’s living area: metropolitan area, large city, large town,

small town and rural area. Each drivers is identified by an ID, so its corre-

sponding trips are recorded according to this anonymous classification.

The analysis was performed by considering only people living in single-

family building, since the installation of the infrastructure for charging the

EV battery is easier to be implemented, if compared to people living in a

multi-family building where reduced spaces for parking and other barriers

can occur. Thus, since single-family buildings are supposed to be mainly

located in small towns or in rural area, data for driver’s pattern behavior

were extracted from the database considering people living in those areas of

Italy.

Firstly, the extracted data were subdivided in two main groups according

to weekday (i.e. from Monday to Friday) or weekend day classification, since

the car usage in Saturday or Sunday is typically different than during the

working days. Then for each j-th (j = 1, . . . , IDtot) driver’s ID extracted

from the database, the times when the car leaves home and when it comes

back were observed for each trips. In the database, a day of 24 hours is dis-

cretized in consecutive intervals of 5 minutes, so the results were aggregated

in two vectors L and R where each of them is formed by 288 elements. Each

elements of L counts the number of trips where the cars leave from home

in a given i-th time interval and each elements of R counts, instead, the

number of trips where the cars return at home in a given i-th time interval

of 5 minutes.

L = (l1, l2, . . . , l288) (1)
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R = (r1, r2, . . . , r288) (2)

Essentially, the aggregation process consists in summing up the number

of times that cars start from home and come back at home in a given i-th

time interval, as follows:

li =

IDtot∑
j=1

li,j (3)

ri =

IDtot∑
j=1

ri,j (4)

Consequently, each element of the first vector L represents the total

number of trips starting from home observed in a given time interval for

living home, while each element of the second vector R represents the total

number of trips that end at home in a given time interval.

A discretized probability was subsequently calculated by a simplified

approach for defining when cars lives home and comes back during weekday

and during the weekend. The probability in the i-th time interval is defined

as the ratio between the number of trips in that interval and the sum of all

trips, as follows:

p(li) =
li∑288
i=1 li

(5)

p(ri) =
ri∑288
i=1 ri

(6)

Figure 1 shows that Italian drivers, engaged on unsystematic mobility

during weekdays and living in small towns or in rural area, usually leave
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home at 8 a.m.. Instead, users prefer coming back home at 11 a.m., but in

general drivers can also return in the afternoon up to 8 p.m.

(a) (b)

Figure 1: Probability distribution for cars living home a) and coming back home b) during

weekday.

Figure 2 shows instead the probability for leaving and coming back home

calculated in the weekend. It is noticeable that Italian drivers usually leave

home later in the weekend for unsystematic mobility needs (around 10 a.m.

or 2 p.m.) compared to weekdays, while they back home with higher prob-

ability at 1 p.m. or around 6 p.m.

2.2. Driving pattern generation

A daily driving pattern behavior can be randomly generated according to

the four previous discrete distributions. The generation of the departure and

the arrival times of a car at home permits to estimate the periods when the

EV battery capacity can be used at home for increasing PV self-consumption

in weekdays and weekend days.

However, once the time when a car leaves home and comes back is de-

fined, both for weekdays and weekend days, the number of trips per day
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(a) (b)

Figure 2: Probability distribution for cars living home a) and coming back home b) during

weekend.

should be considered as well. In fact, this factor influences the energy con-

sumption of the EV battery capacity due to mobility needs and consequently

the available energy storage content to supply household appliances. Even

if the driver’s pattern suggests that only two trips per day occurs in most

of the cases (i.e. about 80%), more than two trips per day are generally

observed in the database according to the discrete probability distribution

shown in Figure 3.

Finally, the trip duration is randomly generated for each journey ac-

cording to the discrete probability distribution of Figure 4 extrapolated by

the database. This distribution highlights how the trip duration for unsys-

tematic mobility for people living in small town or rural area are typically

within the range of 10-30 minutes both for weekday and weekend days.

However, a simplified approach is proposed here to make easier the anal-

ysis and the generation of daily driving pattern. In particular, if two trips

per day are generated, the first one is assumed from home to an outdoor

destination and the second one from outside to home, so their duration D
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(a) (b)

Figure 3: Probability distribution of number of trips per day in weekdays a) and weekend

b).

(a) (b)

Figure 4: Probability distribution of trip duration in weekdays a) and weekend b).

is supposed to be the same.

Instead, if the simulation randomly generates a number of trips per day

greater than two, only two ”equivalent” trips per day are considered: two

trips represents the leaving and coming back trips as described before, while

additional trips are counted differently. Under the hypothesis that each

additional trips is travelled out of home (i.e. intermediate trips do not

consider stops at home), half duration for the outdoor trips ε belongs to
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the first ”equivalent” trip (from home to outside) and the remaining half

duration belongs to the second ”equivalent” trip (from outside to home), as

follows:

D′ =


D if Ntrips = 2

D +
∑Ntrips

h=3

εh
2

if Ntrips > 2

(7)

where Ntrips is the number of trips randomly generated, D is the duration

of the first and the last trip of a day and εh is the duration of each h-th

additional trip travelled out of home. Substantially, the duration D′ of the

two equivalent trips is equal to the sum of the duration of each trips travelled

in a day. Figure 5 shows an example of how the trips duration is arranged

in the random generation of driving pattern

Figure 5: Arrangement of the trips duration in the random trip generation.

Finally, the trip duration can be suitably converted in a distance travelled

in each trip by multiplying the trip duration for the average speed of the

car observed in the database and reported in Table 1.

Table 1: Average speed of cars for Italian drivers living in small town and rural area.

Weekdays Weekend

Average speed (km/h) 38.3 40.8

The estimation of the average distance travelled by each trips is funda-

mental to evaluate the energy consumption of the EV battery capacity for
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mobility needs.

2.3. Daily driving distance and availability profiles

The result of the data analysis is the creation of an automatic procedure

to randomly generate different daily time profiles, describing the driver’s

pattern behavior, according to the discrete probability functions presented

in Section 2.1 and 2.2. Since the time of leaving home and the time of

coming back home were extracted from the analysis of the two vectors L

and R, in which a day is discretized in 288 time intervals, the corresponding

daily driving pattern time profile, that describes the driver’s behavior, is

still a vector discretized in consecutive intervals of 5 minutes.

Two different time profiles were created. The first one represents the

availability of the EV battery to be used as energy storage systems in the

household to store the electricity overproduction of PV and release it when

economically profitable. For this reason, this time profile assumes only 0/1

value according to the EV availability (1) or unavailability (0) to be parked

at home and connected to the household electric system. The second time

profile represents instead the distance travelled by the EV when out of home.

Figure 6 and 7 show an example of these time profiles during one week. It

is noticeable how the generation of different daily driving patterns influences

the presented weekly profile.

The average distance calculated for each trip allows also to estimate the

energy consumption needed during the trips of the day. This consumption

influences the State Of Charge (SOC) of the EV battery and the available

energy content to be used to satisfy household electricity needs. Table 2

shows the average specific energy consumption of EV used here during dif-

ferent season of the year and reported in [19, 20, 21].
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Figure 6: Weekly time profile of the availability for the car to be parked at home.

Figure 7: Weekly time profile of the distance travelled by car.

Table 2: Average energy consumption of EV for mobility needs.

EV consumption

(kWh/km)

winter 0.25

summer/mid 0.20

It is noticeable that energy consumption in winter is generally higher

than one in summer or mid seasons, because of the consumption required

from the ventilation and heating system of the EV.
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3. Household case study

A single-family household with PV generation located in the Northern

part of Italy was identified as simple case study. The household is equipped

by an EV used to satisfy unsystematic mobility needs according to the defini-

tion introduced in Section 2. Figure 8 shows the layout of the energy system

analyzed in this paper, where EV can provide V2H and V2G operation for

increasing PV self-consumption and consequently energy self-sufficiency.

Figure 8: Layout of the energy fluxes in the domestic case study.

The heating and cooling energy generation within household is based

on electricity-driven systems instead of traditional one based on fossil fuel,

since this configuration allows to fully exploit the benefit from the manage-

ment of the EV battery: a heat pump is used to cover the space heating and

Domestic Hot Water (DHW) demand, while an electric chiller supplies the

space cooling need in summer. Table 3 summarizes the main technical char-

acteristics of these energy sources, under the hypothesis that their average

Coefficient of Performances (COPs) are supposed to be constant along the

year. Electric appliances can be supplied by the grid, by the PV during its

daylight production or by the EV battery during its V2H operation.
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Table 3: Main characteristics of the energy sources in the case study.

Technical characteristics

Heat Pump Pn=15 kWt COP=4

Electric Chiller Pn=5 kWc COP=3

PV Pn=6 kWp PR=0.75

The time profile of the heating load was obtained considering the nor-

malized load profiles presented in [22, 23], an yearly energy consumption for

space heating of 145 kWh/m2/y and for DHW of 30kWh/m2/y according to

a climatic zone E as classified by the Italian regulation [24] with an overall

surface of approximatively 120 m2.

The cooling demand time profile was instead obtained by means of the

normalized load profiles presented in [25, 26] for typical Italian domestic

end-users assuming a yearly cooling demand of 25 kWh/m2/y. Cooling load

profiles were also further rescaled through the analysis of the cooling degree

days.

The household electric load profiles due to other internal appliances was

instead defined according to [27] as already presented in [23]. The corre-

sponding estimated average daily and yearly electricity demand are respec-

tively close to 7.5 kWh/day and 2700 kWh/y, in line with the average elec-

tricity demand for an Italian domestic end-user as reported by the Italian

Energy Authority (ARERA) [28]. The resulting yearly electricity demand,

obtained summing up the consumption of heat pump, electric chiller and

internal appliances, is close to 7280 kWh.

The PV generation time profile was obtained through an analysis on the

solar irradiation data from PVGIS database [29] as described in [30]. Since

the PV installation is located in the Northern part of Italy, a yearly produc-
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tion of 7350 kWh is estimated corresponding to around 1200 of equivalent

full-load hours. Figure 9 shows an example of the load and the PV profiles

extrapolated for the household case study, where Ut, Ue and Uc represent

the energy demand for space heating/DHW, electricity and space cooling,

respectively.

(a)

(b)

Figure 9: Example of load profiles (heating Ut, cooling Uc, electric Ue and PV PPV )

generation profiles in weekdays during a) winter and b) summer.
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Since the aim of this paper is based on the evaluation and minimization of

the household energy supply costs through the management of EV battery,

also time profile for the electricity bought from the grid and sold to the grid

were defined. The former refers to a common flat tariff for residential and

domestic costumers equal to 220 e/MWh [31] (including taxes and excises),

while the latter is derived from [32] and it has an yearly average value of

42e/MWh. Figure 10 shows an example of the electricity price variability

for the PV production sold to the grid.

Figure 10: Italian selling electricity prices during different seasons.

The driving pattern of the EV, that influences the management of V2H

operation, is taken into account through the availability and the distance

travelled daily time profiles randomly generated according to the driving

pattern described in Section 2. The EV battery considered in this case

study have different size according to the market segmentation of vehicles

[33] in order to evaluate the impact of different battery capacity. So, three

main classes were identified, as follows:
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• A for mini cars with a battery capacity equal to 20kWh.

• B for small cars with a battery capacity equal to 40kWh.

• C for medium cars with a battery capacity equal to 60kWh.

Moreover, different minimum values of SOC (SOCmin) for the EV bat-

tery were assumed from 40% to 80%, to take into account different possible

driver’s range anxiety [34, 35]. In fact, a lower SOCmin reflects drivers who

do not need a high SOC to be used for traveling. Vice versa, an higher

SOCmin reflects drivers that want preserve battery capacity to be used for

traveling needs. Finally, a limit on the electric power exchanged to the bat-

tery is fixed at 3.3 kW to avoid fast charging operation and a consequent

peak demand. Furthermore, the maximum power exchanged to the grid is

fixed at 4.5 kW equal to the average installed power capacity for an Italian

household.

4. Problem formulation

The management of the EV battery was investigated by means of an

optimization tool named XEMS13 [36, 37] developed in partnership between

the Energy Department of Politecnico di Torino and Fondazione LINKS -

Leading Innovation & Knowledge for Society. The tool is capable to identify

the scheduling of different sources which minimize the energy supply costs

within a multi-energy system.

A Mixed Integer Linear Programming (MILP) formulation is used to

describe the behavior of complex energy system, so all the equations and

constraints representing the energy system are linear or should be linearized.

Two different kind of linear equations can be found for describing the energy
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systems: topological or balance equations depending on the system struc-

ture; component or constitutive equations, representing the energy modules.

When non-linear behavior occurs, the functions are typically approximated

by means of piecewise linear functions. Binary (integer) variables are also

introduced to describe the on/off status of the components and to consider

their operational limits. A detailed description of the models representing

the sources within the household case study (i.e. electric chiller and heat

pump) can be found in [37, 38].

The time horizon of the simulation is discretized by subdividing it in

Ni intervals with equal length ∆t, equal to 5 minutes in this particular

application for exploring V2H operation, since driving pattern has the same

discretization.

4.1. Objective Function

In this paper the complex energy systems is represented by an electricity-

driven single-family building with PV where EV is connected to the house-

hold. Under the linear constraints, the energy supply costs is the objective

function calculated, as follows:

OF =

Ni∑
i=1

[Cp(ti)Pp(ti) − Cs(ti)Ps(ti)] ∆t (8)

where Pp and Ps represent the electric power purchased from and sold

to the grid, respectively. Instead, Cp and Cs are the prices for buying and

selling electricity, respectively.

4.2. Modeling EV battery

The daily time profiles generated by procedure described in Section 2

were integrated within the existing optimization tool designed for the man-
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agement of complex energy systems. In particular, an upgrade of the existing

battery model developed in [39] was implemented to consider the availability

of the EV battery and the SOC variation due to the energy consumed for

traveling by the car. The EV battery is described as a passive components,

so that the energy released by the battery is assumed positive, while the

energy stored is negative. Under this consideration, the energy content of

the EV battery at a time instant t+1 can be expressed by means of a linear

equation, as follows:

SOC(t+ 1) = ηsdSOC(t) +

(
ηcPst,c −

Pst,d

ηd

)
∆t− ccd(t) (9)

where ηsd is the self-discharge efficiency, ηc and ηd are the charge and

discharge efficiencies, Pst,c and Pst,d are the power exchanged with the EV

battery respectively in charge and discharge phase, d is distance travelled

by the car in a given time interval (see Figure 7) and cc is the car energy

consumption described in Table 2. The power exchanged to the EV battery

is then bounded by its technical limits, so that other constraints were also

added, as follows:

0 ≤ Pst,d(t) ≤ δd(t)
Smax

Td
(10)

0 ≤ Pst,c(t) ≤ δc(t)
Smax

Tc
(11)

0 ≤ δd(t) + δc(t) ≤ α(t) (12)

where Smax is the maximum energy stored in the battery, Tc and Td

are the minimum charge and discharge time. δc and δd are instead binary

variables introduced to avoid charge and discharge phase at the same time
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in Eq. 8 and α(t) is the availability in a given time interval as shown in

Figure 6. When the car is parked at home and connected to electric system

of the household α(t) = 1 and consequently d(t) = 0, so Eq. 9 is equivalent

to one used in the stationary application [39]. Otherwise, when α(t) = 0

(i.e. the car is not parked at home) the binary variables δc and δd are forced

to be zero and the SOC variation is only due to the energy consumption of

car trips.

4.3. Energy balance of household

According to the definitions and the modellng of the different compo-

nents within XEMS13, the energy balances in the household can be expressed,

as follows:

Pp(ti) − Ps(ti) + Ppv(ti) − Php,in(ti) − Ein(ti) + Pst,d(ti) − Pst,c(ti) = Ue(ti)

(13)

Php,out(ti) = Ut(ti) (14)

Eout(ti) = Uc(ti) (15)

Equations (13), (14) and (15) represent the electricity, the heating and

the cooling balance, respectively. In (15), the cooling generation by the

electric chiller Eout must equate the demand of the space cooling Uc of

the household in each time interval. Equation (14) shows that the heat

produced by the heat pump Php,out can be used to supply the space heating

and DHW demand Ut of the household. Finally, (13) highlights that the

electricity bought from the grid Pp, produced by PV Ppv and from the EV
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battery Pst,d can feed the electric demand of the household appliances Ue as

well as the electric demand required by the heat pump Php,in and the chiller

Ein. Moreover, EV battery can be charged by electricity bought from the

grid and from PV.

As already observed EV battery can not be charged and discharged si-

multaneously due to the constraint in Equation 12. Similarly, binary variable

are also introduced to avoid that household can contemporarily purchase

electricity from the grid and sold electricity Ps to the grid.

5. Simulations and Results

The optimal management of the EV battery was applied through the

XEMS13 tool considering the different time profiles defined in the previous

Section. A Monte Carlo approach was used here for considering the dif-

ferent possible driving patterns of Italian driver’s living in small town and

rural area. So, 1000 time profiles describing different driver’s habits were

randomly extrapolated following the approach in Section 2.2.

For each driving patterns, simulations with XEMS13 were performed for

three days in different seasons: winter, mid and summer. The results of the

daily energy supply costs obtained by the optimization procedure were then

aggregated according to the season distribution in Table 4 to calculate the

yearly costs Y C potentially achievable by the household by using the EV as

a storage unit to perform V2G and V2H operation. As a general remark, it

can be observed that winter days marginally contribute to the yearly cost

saving, because of lower PV production and higher electricity demand of the

heat pump for space heating. This combination of factors reduces, in fact,

possible PV overproduction storable in EV battery. Differently, mid and
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summer days can instead significantly promote the V2H operation, since

higher PV overproduction is expected. The yearly result of each Monte

Carlo simulations was finally compared to the yearly electricity cost Y C∗

for an household where V2H/V2G operations are not considered. Thus, the

yearly cost saving obtained in each simulation was calculated, as follows:

Y CS =

(
1 − Y CV 2H

Y C∗

)
∗ 100 (16)

In addition, energy aspects were analyzed by considering and calculat-

ing the Self-Consumption level SC in each Monte Carlo simulations. The

SC was compared to one where V2H/V2G operations are not allowed for

highlighting possible additional energy benefits due to V2H and V2G op-

erations. The energy indicator SC, is calculated as the ratio between the

self-consumed PV production and the yearly electricity generated by the PV

installation [40], as follows:

SC =

(
Esc

Epv

)
∗ 100 (17)

When the optimal management by XEMS13 finds solution oriented to-

wards V2H operations, the corresponding SC level is strongly increased.

Otherwise, if SC level remains unchanged or it has a limited variation, the

battery management either does not consider V2H operation or V2G is acted

greater than V2H, respectively.

Table 4: Season assignement during the year

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

winter ! ! ! - - - - - - - ! !

mid - - - ! ! - - - ! ! - -

summer - - - - - ! ! ! - - - -

26



The two most widely diffused technologies for EV battery were con-

sidered for V2G and V2H operations in the simulations [41]: nickel-metal

hydride (Ni-MH) and lithium-ion (Li-ion). The main operational character-

istics of these technologies are summarized in Table 5, where the relevant

difference, in energy terms, is the charge/discharge efficiency. In fact, typ-

ically the Li-ion EV battery has a roundtrip efficiency substantially higher

than Ni-MH one. Self-discharge effect is instead substantially negligible in

both cases.

Table 5: Charge and discharge efficiency for EV battery [42, 43].

Technology Charge, Discharge efficiency (ηc, ηd)

Ni-MH 0.85

Li-ion 0.975

Figure 11 shows an example of the scheduling for the different sources

within household with EV in a summer day with the same driving pattern.

Since, the technologies considered for EV battery have different efficiency,

the observed results can differ. In general, it is noticeable that the optimal

scheduling of EV battery stores part of the PV production (Ppv) during

daytime. The power injected into the batteries (Pst,c) is used later (Pst,d)

to cover the household electric demand (Ue) during nighttime due to the

appliances, the electric chiller (Ein) and heat pump (Php,in) demand, where

the latter operates during summer only for DHW production. The PV

overproduction stored in the Li-ion batteries is also sold (Ps) to the grid

(see Figure 11b) for V2G opeartion, because of its higher charge/discharge

efficiency compared to Ni-MH technology.
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(a)

(b)

Figure 11: Scheduling of the sources with EV equipped by battery capacity of 60kWh and

SOCmin=40% for a) Ni-MH and b) Li-Ion technologies.

5.1. Economic results

Figure 12, 13 and 14 show the different frequency distribution of cost

savings resulting by the Monte Carlo simulation when Ni-MH technology

and different EV battery sizes are considered. As expected, higher SOCmin,

that correspond to lower battery capacity available for V2H/V2G opera-

tion, reflects reduced cost saving. In general, it can be noticed that the

energy consumption for mobility needs strongly influences the battery us-
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age, since around 50-55% of the results highlights cost savings lower than

5% due to the driver’s habits. In particular, when small car is considered

(i.e. SOCmax=20kWh) and SOCmin is set to 80%, the cost saving is always

lower than 5% (see Figure 12c).

(a) (b)

(c)

Figure 12: Frequency distribution of cost saving for a 20 kWh Ni-MH EV battery with a)

40% of SOCmin, b) 60% of SOCmin and c) 80% of SOCmin.

When battery capacity increases (i.e. SOCmax=40kWh or 60 kWh),

V2H operation ensures in general higher cost saving. In fact, it can grow up

to 15-20% in around 30% of the Monte Carlo simulations. The cost saving

can be further increased up to 30% when medium cars are analyzed (see

Figure 14).
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(a) (b)

(c)

Figure 13: Frequency distribution of cost saving for a 40 kWh Ni-MH EV battery with a)

40% of SOCmin, b) 60% of SOCmin and c) 80% of SOCmin.

Similarly, economic results are also highlighted in Figure 15, 16 and

17 for Li-ion technology. Li-ion EV battery can ensure an increased costs

saving due to the higher efficiency shown in Table 5 capable to explore both

V2H and V2G operations. In fact, the frequency distribution for low cost

saving (i.e. ≤ 5%) is generally reduced down to 40-45% of the Monte Carlo

simulations, if compared to Ni-MH battery where the frequency reach 50-

55%. Contemporarily, the maximum cost saving potentially achievable also

increased up to 35%. Only small battery size (see Figure 15c) with stringent

range anxiety (i.e. SOCmin = 80%), that are related to the A market
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(a) (b)

(c)

Figure 14: Frequency distribution of cost saving for a 60 kWh Ni-MH EV battery with a)

40% of SOCmin, b) 60% of SOCmin and c) 80% of SOCmin.

segmentation, still shows not enough battery capacity for fully exploiting

V2H and V2G operations.

Again, the increase of battery capacity (i.e. SOCmax=40kWh or 60

kWh),corresponds to higher cost saving where around 20-25% of the Monte

Carlo simulations reflect cost saving within a range between 10% and 20%.

Summarizing, the results exposed above underline that economic bene-

fits, in terms of costs saving, are strongly influenced by the combination of

two different effects. Firstly, the driving pattern modifies the energy con-

sumption for covering the mobility needs and consequently it strongly limits
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(a) (b)

(c)

Figure 15: Frequency distribution of cost saving for a 20 kWh Li-ion EV battery with a)

40% of SOCmin, b) 60% of SOCmin and c) 80% of SOCmin.

the availability of battery capacity for storing PV overproduction. Secondly,

the range anxiety, that is represented by different level of SOCmin, limits

the V2H and V2G operation, since high SOCmin (i.e. kept high to preserve

battery capacity for covering mobility needs) reduce the band of battery ca-

pacity potentially available for V2H. Moreover, it can be noticed that Li-ion

technology is more suitable for exploring both V2H and V2G operation due

to its high round trip efficiency (i.e. around 95%). While Ni-MH battery

seems to be more suitable only for V2H operation due to its limited round

trip efficiency (i.e. around 75%).
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(a) (b)

(c)

Figure 16: Frequency distribution of cost saving for a 40 kWh Li-ion EV battery with a)

40% of SOCmin, b) 60% of SOCmin and c) 80% of SOCmin.

5.2. Energy results

The increase of self-consumption level is shown in Figure 18, 19 and 20

for different Ni-MH EV battery sizes. When small cars are considered, the

limited availability of the EV battery to V2H and V2G operations affects

the increase of self-consumption level, that generally is lower than 5% for

around 35% of Monte Carlo simulation (see Figure 18a and 18b). A relevant

range anxiety effect (see Figure 18c) further contributes to strongly limits

the self-consumption increase. However, for example, an increase of SC level

close to 20-25 % can be observed in around 20% of Monte Carlo simulations
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(a) (b)

(c)

Figure 17: Frequency distribution of cost saving for a 60 kWh Li-ion EV battery with a)

40% of SOCmin, b) 60% of SOCmin and c) 80% of SOCmin.

with lower range anxiety (i.e. SOCmin=40% and 60%).

If larger battery sizes is considered, the SC level increases as well also in

case of higher range anxiety effect (i.e. SOCmin=80%). However, in around

40% of Monte Carlo simulations, the increased level of self-consumed PV

production still remains lower than 5% due to the significant impact of

energy consumption for mobility needs, similarly to the trends shown for

the cost savings. Figure 19a, 20b and 20c finally show that an increase of

self-consumption level up to 50% can be reached in a small number of cases.

The energy results for Li-ion EV battery are instead shown in Figure 21,
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(a) (b)

(c)

Figure 18: Frequency distribution of Self-Consumption increase for a 20 kWh Ni-MH EV

battery with a) 40% of SOCmin, b) 60% of SOCmin and c) 80% of SOCmin.

22 and 23. In general, the increase of self-consumption seems to be lower

if compared to Ni-MH techology, even if the roundtrip efficiency is higher.

This result is mainly due to the optimal management of the EV battery for

reducing household electricity costs. The high efficiency of Li-ion EV battery

seems lead to solutions where part of the stored PV overproduction can be

profitably sold the grid, enabling both V2H and V2G operations for the

EV. As a consequence, the self-consumption level appears reduced instead

of increased, in contrast to one observed for Ni-MH technology where only

V2H operation occur.
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(a) (b)

(c)

Figure 19: Frequency distribution of Self-Consumption increase for a 40 kWh Ni-MH EV

battery with a) 40% of SOCmin, b) 60% of SOCmin and c) 80% of SOCmin.

More in details, the increase of self-consumption level is generally lower

than 5% for around 35-40% of Monte Carlo simulation due again to the

energy consumption for mobility needs. Similarly to Ni-MH technology,

when lower battery size is considered, the range anxiety effect (see Figure

18c) further contributes to strongly limit the self-consumption increase. If

larger battery size is analyzed, a general increase of SC can be observed, but

it is lower if compared to Ni-MH technology according to the V2G operation

described above.
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(a) (b)

(c)

Figure 20: Frequency distribution of Self-Consumption increase for a 60 kWh Ni-MH EV

battery with a) 40% of SOCmin, b) 60% of SOCmin and c) 80% of SOCmin.

6. Conclusions

The implementation of V2H and V2G operation represents an interesting

option for reducing energy costs and increasing RES exploitation at house-

hold level. This paper presents an example of possible applications of V2H

and V2G operation based on a optimal management of EV battery in an

Italian electricity-driven household with PV. Driver’s behaviour has been

taken into account and analyzed from an EU database to better identify

when EV is available and parked at home for operating as an equivalent
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(a) (b)

(c)

Figure 21: Frequency distribution of Self-Consumption increase for a 20 kWh Li-ion EV

battery with a) 40% of SOCmin, b) 60% of SOCmin and c) 80% of SOCmin.

stationary storage unit. So, an availability time profile, that is randomly

generated according to statistical data, was used to represent the unsys-

tematic mobility habitudes of Italian people living in small town and rural

area. Moreover, different minimum SOC were considered to highlight dif-

ferent driver’s range anxiety. A Monte Carlo approach was used here for

considering the statistical variation of driving patterns to evaluate economic

and energy benefits of V2H and V2G operation by considering two main EV

battery technologies: Ni-MH and Li-ion.

The results obtained from the application of the optimal management
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(a) (b)

(c)

Figure 22: Frequency distribution of Self-Consumption increase for a 40 kWh Li-ion EV

battery with a) 40% of SOCmin, b) 60% of SOCmin and c) 80% of SOCmin.

of the EV battery, within the Monte Carlo approach, show that, in gen-

eral, a lower range anxiety (i.e. lower SOCmin) allows to better exploit

the PV production increasing the self-consumption of RES generation and

consequently reducing the household energy supply costs. On the other

hand, higher range anxiety leads to a reduction of the benefits. The statis-

tical analysis underlines how the driving patterns for Italian people living

in small town and rural area have a significant effect on the economic and

energy benefits. In fact, around 50% of the Monte Carlo simulations reveals

a significant energy consumption for covering mobility needs, so just a re-
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(a) (b)

(c)

Figure 23: Frequency distribution of Self-Consumption increase for a 60 kWh Li-ion EV

battery with a) 40% of SOCmin, b) 60% of SOCmin and c) 80% of SOCmin.

duced band of EV battery capacity is available for V2H and V2G operation

with a corresponding cost saving lower than 5%. Nevertheless, yearly cost

saving up to 20-30% may be potentially reached in 25/30% of the scenarios

of the Monte Carlo simulations. As a consequence, the self-consumption of

PV production is increased as well.

Moreover, the EV battery technologies considered in this study show

some differences. The higher roundtrip efficiency of Li-ion battery, com-

pared to Ni-MH, reflects the ability of this system to act both V2H and

V2G operation for minimizing household electricity cost. While, the lower
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efficiency for storing electricity in Ni-MH technology, combined to a context

with low electricity selling price, forces the EV battery to be used only for

V2H operation.

However, the impacts of V2H and V2G operation on battery aging and

deterioration are not considered here. So future work, where also different

contexts and countries are considered, will be developed to include also these

aspects within the optimal management.
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[20] C. C. Rolim, G. N. Gonçalves, T. L. Farias, O. Rodrigues, Impacts of

electric vehicle adoption on driver behavior and environmental perfor-

mance, Procedia - Social and Behavioral Sciences (2012) 706–715.

[21] C. I. Chatzikomis, K. N. Spentzas, A. G. Mamalis, Environmental

and economic effects of widespread introduction of electric vehicles in

Greece, European Transport Research Review 6 (2014) 365–376.

43



[22] M. Bianchi, A. D. Pascale, F. Melino, Performance analysis of an inte-

grated CHP system with thermal and electric energy storage for resi-

dential application, Applied Energy 112 (2013) 928–938.

[23] P. D. Liddo, P. Lazzeroni, S. Olivero, M. Repetto, V. A. Ricci, Ap-

plication of optimization procedure to the management of renewable

based household heating & cooling systems, Energy Procedia 62 (2014)

329–336.

[24] Decreto Ministeriale 26/6/2009 – Ministero dello Sviluppo Economico

, ”Linee guida nazionali per la certificazione energetica degli edifici”.

[25] E. Macchi, S. Campanari, P. Silva, La microcogenerazione a gas natu-

rale, Polipress, 2006.

[26] M. Vio, Impianti di cogenerazione, Editoriale Delfino, 2007.

[27] S. Sibilio, A. D’Agostino, M. Fatigati, M. Citterio, Valutazione dei

consumi nell’edilizia esistente e benchmark mediante codici semplificati:

analisi di edifici residenziali, Tech. rep., ENEA (2009).

[28] Arera - Autorita’ di regolazione per energia reti e ambiente.

URL https://www.arera.it/it/dati/ees5.htm

[29] Photovoltaic Geographical Information System (PVGIS).

URL http://re.jrc.ec.europa.eu/pvgis/apps4/pvest.php

[30] P. Lazzeroni, S. Olivero, M. Repetto, Economic perspective for PV

under new Italian regulatory framework, Renewable and Sustainable

Energy Reviews 71 (2017) 283–295.

44



[31] Eurostat, Electricity price statistics.

URL https://ec.europa.eu/eurostat/statistics-explained/

index.php/Electricity-price-statistics

[32] GME - Gestore dei Mercati Energetici.

URL http://www.mercatoelettrico.org/It/Default.aspx

[33] C. Thiel, J. Schmidt, A. V. Zyl, E. Schmid, Cost and well-to-wheel im-

plications of the vehicle fleet CO2 emission regulation in the European

Union, Transportation Research Part A 63 (2014) 25–42.

[34] M. Esmaili, H. Shafiee, J. Aghaei, Range anxiety of electric vehicles in

energy management of microgrids with controllable loads, Journal of

Energy Storage 20 (2018) 57–66.

[35] L. Noel, G. Z. de Rubens, B. K. Sovacool, J. Kester, Fear and loathing

of electric vehicles: The reactionary rhetoric of range anxiety, Energy

Research & Social Science 48 (2019) 96–107.

[36] N. Perez-Mora, P. Lazzeroni, M. Repetto, XEMS13: An hybrid-energy

generation management system, in: IEEE International Conference on

Smart Grid Communications (SmartGridComm), 2016.

[37] E. Carpaneto, P. Lazzeroni, M. Repetto, Optimal integration of solar

energy in a district heating network, Renewable Energy 74 (2015) 714–

721.
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