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Abstract: 

The continuous increment of durability and reliability requirements for many machinery components is 
significantly enhancing the research activity in the Very-High-Cycle Fatigue (VHCF) characterization of 
metallic materials, in particular of high-strength steels for critical structural applications. 

According to the √𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 model, the VHCF strength of high-strength steels can be estimated from the 
projected area of the ‘Optically Dark Area’ (ODA), which plays a key role in the VHCF response of high-
strength steels: more than 95% of the total VHCF life is consumed in the ODA formation, with crack growing 
even though the Stress Intensity Factor (SIF) is below the threshold for crack growth. Following the hydrogen 
embrittlement theory proposed by Murakami, hydrogen is supposed to assist crack growth within the ODA. 

The present paper proposes a general SIF formulation for the analytical model of the hydrogen assisted crack 
growth within the ODA. Starting from the general SIF formulation, a general expression for the material 
fatigue limit is obtained in the paper. The statistical method for the estimation of the parameters involved in 
the proposed model is finally illustrated in the paper and numerically applied to an experimental dataset. 

 

Keywords: VHCF, Hydrogen assistance, Random fatigue limit, P-S-N curves 
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Acronyms and nomenclature 

cdf: cumulative distribution function 

HV: Vickers Hardness 

LEV: Largest Extreme Value 

ODA: Optically Dark Area 

pdf: probability density function 

rv: random variable 

SIF: Stress Intensity Factor 

�𝑎𝑎𝑑𝑑, �𝑎𝑎𝑑𝑑,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, �𝑎𝑎𝑑𝑑,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓,𝑚𝑚𝑓𝑓𝑚𝑚, �𝑎𝑎𝑑𝑑,0, �𝑎𝑎𝑂𝑂𝑂𝑂𝑂𝑂: characteristic defect sizes, deterministic values 

�𝐴𝐴𝑑𝑑,0: initial defect size, rv 

�𝑎𝑎𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓,𝑂𝑂𝑂𝑂𝑂𝑂������, �𝑎𝑎𝑐𝑐, �𝑎𝑎∞,𝑂𝑂𝑂𝑂𝑂𝑂������: threshold defect sizes 

𝐶𝐶𝑓𝑓ℎ: rv function of 𝐾𝐾𝑓𝑓ℎ 

𝑐𝑐𝐻𝐻, 𝑐𝑐𝑠𝑠𝑙𝑙, 𝑐𝑐𝑠𝑠𝑙𝑙,𝛼𝛼𝐻𝐻≥0, 𝑐𝑐𝑠𝑠𝑙𝑙,𝛼𝛼𝐻𝐻<0, 𝑐𝑐𝑓𝑓ℎ, 𝑐𝑐𝑌𝑌, 𝑚𝑚𝑌𝑌, 𝑛𝑛𝑌𝑌, 𝛼𝛼𝐻𝐻, 𝛼𝛼𝑓𝑓ℎ: constant coefficients 

𝐸𝐸[∙]: expectation of a random variable 

𝑓𝑓�𝑂𝑂𝑑𝑑,0
: pdf of �𝐴𝐴𝑑𝑑,0 

𝐹𝐹�𝑂𝑂𝑑𝑑,0
, 𝐹𝐹𝑆𝑆𝑙𝑙, 𝐹𝐹𝑆𝑆𝑙𝑙|�𝑓𝑓𝑑𝑑,0

, 𝐹𝐹𝑋𝑋𝑙𝑙, 𝐹𝐹𝑋𝑋𝑙𝑙|�𝑓𝑓𝑑𝑑,0
, 𝐹𝐹𝑌𝑌, 𝐹𝐹𝑌𝑌|�𝑓𝑓𝑑𝑑,0

, 𝐹𝐹𝑌𝑌𝑓𝑓��𝑓𝑓𝑑𝑑,0
: cdfs 

𝑘𝑘𝑑𝑑, 𝑘𝑘𝐻𝐻, 𝑘𝑘𝑓𝑓ℎ, 𝑘𝑘𝑇𝑇: characteristic SIFs, deterministic values 

𝐾𝐾𝑓𝑓ℎ: threshold SIF, rv 

𝐿𝐿: Likelihood function 

𝑃𝑃[∙]: probability of an event 

𝑠𝑠: applied stress amplitude, deterministic value 

𝑠𝑠𝑓𝑓: fatigue limit, deterministic value 

𝑆𝑆𝑓𝑓: fatigue limit, rv 

𝑆𝑆𝑓𝑓|�𝑎𝑎𝑑𝑑,0: conditional fatigue limit, rv 

𝑠𝑠𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓,𝑂𝑂𝑂𝑂𝑂𝑂������, 𝑠𝑠∞,𝑂𝑂𝑂𝑂𝑂𝑂������: threshold stresses 

𝑻𝑻: design matrix 

𝑥𝑥 = log10[𝑠𝑠]: logarithm of the applied stress amplitude, deterministic value 

𝑥𝑥𝑓𝑓 = log10[𝑠𝑠𝑓𝑓]: logarithm of the fatigue limit, deterministic value 

𝑋𝑋𝑓𝑓 = log10[𝑆𝑆𝑓𝑓]: logarithm of the fatigue limit, rv 

𝑋𝑋𝑓𝑓|�𝑎𝑎𝑑𝑑,0 = log10�𝑆𝑆𝑓𝑓|�𝑎𝑎𝑑𝑑,0�: conditional logarithm of the fatigue limit, rv 
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𝑦𝑦: fatigue life (logarithm of the number of cycles to failure), deterministic value 

𝑌𝑌: fatigue life, rv 

𝑌𝑌|�𝑎𝑎𝑑𝑑,0: conditional fatigue life, rv 

𝑌𝑌𝑓𝑓��𝑎𝑎𝑑𝑑,0: conditional finite fatigue life, rv 

𝑍𝑍: standardized Normal rv 

φ𝐿𝐿𝐿𝐿𝐿𝐿(∙): pdf of a standardized Largest Extreme Value distribution 

Φ𝐺𝐺𝑓𝑓𝐺𝐺𝑠𝑠𝑠𝑠: cdf of a standardized Normal distribution 

Φ𝐺𝐺𝑓𝑓𝐺𝐺𝑠𝑠𝑠𝑠
−1 (∙): inverse cdf of a standardized Normal distribution 

𝜇𝜇√𝑂𝑂, 𝜇𝜇𝑓𝑓𝑙𝑙𝑡𝑡ℎ, 𝜇𝜇𝑓𝑓𝑙𝑙𝑡𝑡ℎ, 𝜇𝜇𝑋𝑋𝑙𝑙, 𝜇𝜇𝑌𝑌, 𝜎𝜎√𝑂𝑂, 𝜎𝜎𝑓𝑓𝑙𝑙𝑡𝑡ℎ, 𝜎𝜎𝑓𝑓𝑙𝑙𝑡𝑡ℎ, 𝜎𝜎𝑋𝑋𝑙𝑙, 𝜎𝜎𝑌𝑌: parameters of the statistical distributions 

𝑠𝑠𝑓𝑓,𝛼𝛼, 𝑠𝑠𝑓𝑓,�𝑓𝑓𝑑𝑑,0,𝛼𝛼, 𝑦𝑦�𝑓𝑓𝑑𝑑,0,𝛼𝛼: 𝛼𝛼-th quantiles 

∙:̃ parameter estimate 

∙| ∙: conditional event 
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1. Introduction 

The continuous enhancement of durability and reliability targets of many machinery components is one of 
the major reasons for the increasing interest in the Very-High-Cycle Fatigue (VHCF) characterization of 
metallic materials. Among the metallic materials, high-strength steels are widely used for critical structural 
applications and, due to this, a particular attention is reserved to them in the VHCF literature (e.g., Refs.1-4). 

According to the literature5, the VHCF response of high-strength steels is strongly affected by the presence 
of internal defects and, in particular, by their size. In this respect, the √𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 model proposed by Murakami5 
is generally adopted to evaluate the effect of the defect size on the VHCF of high-strength steels. 

According to the √𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 model, the VHCF strength of high-strength steels can be estimated from the 
projected area of the ‘Optically Dark Area’ (ODA)1,6. The ODA is a restricted region, dark at the optical 
microscope, which can be seen in the vicinity of the internal defect originating the VHCF failure. In order to 
explain the ODA formation, a number of different theories and corresponding ODA denominations (‘Fine 
Granular Area’ (FGA)7 or ‘Granular Bright Facet’ (GBF)8) have been proposed in the literature (see Ref.9 for a 
review and the recent theory proposed by Hong et al.10). Despite of the different theories concerning the 
ODA formation, it is generally acknowledged in the literature3,4,11,12 that crack grows from the initial defect 
to the boundary of the ODA even if the initial defect size is not large enough to yield a Stress Intensity Factor 
(SIF) value larger than the threshold SIF. In particular, according to the hydrogen embrittlement theory, 
originally proposed by Murakami et al.13 and then confirmed by different researchers14-17, hydrogen assists 
crack growth within the ODA1,3,4, thus inducing crack propagation even below the threshold SIF. 

Hydrogen assisted crack growth has been differently modeled in the literature (see, e.g., the recent review 
volumes18,19 and the references therein). From a macromechanical point of view, the hydrogen assistance 
has been taken into account by modifying the Paris’ law or the threshold SIFs estimated without the hydrogen 
assistance (e.g., Refs.20-29). In some cases (e.g., Refs.21,25,26,27), the acceleration induced by hydrogen in crack 
growth is modeled by vertically translating the Paris’ law or, equivalently, by amplifying the SIF through a 
correction factor. In some other cases (e.g., Refs.23,24,28), hydrogen assistance is modeled by subtracting a 
constant factor to the threshold SIFs. Randomness, which is intrinsically present when dealing with fatigue 
phenomena, is generally not taken into account by the macromechanical models proposed in the literature. 

Recently, Liu et al.17 proposed to model the hydrogen assistance within the ODA by adding a SIF due to the 
hydrogen concentration at the crack tip to the SIF associated to the internal defect size. The model has been 
then used to estimate the fatigue limit of the material30 and to predict the S-N curves in the VHCF region31. 
The additional SIF proposed by Liu et al.17 involves a number of unknown parameters that can be hardly 
estimated, thus preventing from the ease of use of the model. 

The present paper proposes to generalize and simplify the model discussed in17. The general expression for 
the additional SIF includes the model in17, as well as the typical correction factors proposed in the hydrogen 
embrittlement literature (multiplicative correction of the SIF in Paris’ law21,25-27 or subtractive correction of 
the threshold SIFs23,24,28). As a further generalization, the intrinsic randomness associated with VHCF 
phenomena is also introduced and statistically treated. 

2. Methods 

Starting from the hydrogen assistance as a theory for the ODA formation, a general formulation for the SIF 
contributions is proposed in Section 2.1. A general expression for the fatigue limit is then determined in 
Section 2.2. The procedure for the estimation of the fatigue limit statistical distribution is discussed in Section 
2.3. Section 2.4 defines a procedure for the estimation of the Probabilistic-S-N (P-S-N) curves. Finally, the 
method for the estimation of the parameters involved in the P-S-N curves is presented in Section 2.5. 
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2.1. Hydrogen assisted crack growth: a general SIF formulation 

In order to define a mechanistic model for the crack growth in the VHCF region from internal defects, the 
following assumptions are introduced: 

1. According to the √𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 model5, the threshold SIF, referred to as 𝑘𝑘𝑓𝑓ℎ, can be generally expressed as 
follows: 

𝑘𝑘𝑓𝑓ℎ = 10−3𝑐𝑐𝑓𝑓ℎ(𝐻𝐻𝐻𝐻 + 120)�𝑎𝑎𝑑𝑑
𝛼𝛼𝑡𝑡ℎ, (1) 

where 𝑎𝑎𝑑𝑑 (in µm2) denotes the projected area of the defect, 𝐻𝐻𝐻𝐻 (in kgf mm2⁄ ) is the Vickers hardness 
of the material in the vicinity of the defect and 𝑐𝑐𝑓𝑓ℎ and 𝛼𝛼𝑓𝑓ℎ are two material coefficients, being 𝑐𝑐𝑓𝑓ℎ >
0 (according to Ref.5, 𝑐𝑐𝑓𝑓ℎ = 3.3/2; according to Ref.1, 𝑐𝑐𝑓𝑓ℎ = 2.77/2; according to Ref.32, 𝑐𝑐𝑓𝑓ℎ = 1.87; 
according to Ref.17, 𝑐𝑐𝑓𝑓ℎ = 1.8) and 0 < 𝛼𝛼𝑓𝑓ℎ < 1/3 (according to Refs.1,5,17,32, 𝛼𝛼𝑓𝑓ℎ = 1/3; according to 
Refs.4,8,12,33, 𝛼𝛼𝑓𝑓ℎ = 0). 

2. According to the √𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 model5, the SIF associated to the defect size, referred to as 𝑘𝑘𝑑𝑑, is given by 
the following expression: 

𝑘𝑘𝑑𝑑 = 10−30.5𝑠𝑠√𝜋𝜋�𝑎𝑎𝑑𝑑
1 2⁄

, (2) 
where 𝑠𝑠 (in MPa) denotes the local stress amplitude in the vicinity of the crack tip. 

3. The hydrogen assistance is modeled through a SIF, referred to as 𝑘𝑘𝐻𝐻, which has the easiest 
formulation able to fulfill: 

i. The principle of dimensional homogeneity, which states that 𝑘𝑘𝐻𝐻 must be proportional to the 
stress and to the square-root of the defect size: 

𝑘𝑘𝐻𝐻 = 𝑐𝑐𝐻𝐻𝑠𝑠�𝑎𝑎𝑑𝑑
1/2

. (3) 
ii. The initial conditions, which state that, when crack starts growing, 𝑘𝑘𝐻𝐻 must be given by: 

𝑘𝑘𝐻𝐻 = 10−3𝑐𝑐𝐻𝐻𝑠𝑠�𝑎𝑎𝑑𝑑,0
1/2

, (4) 
where �𝑎𝑎𝑑𝑑,0 (in µm) denotes the initial defect size. 

iii. The defect size dependence, which states that 𝑘𝑘𝐻𝐻 may vary with the defect size. 
According to the three conditions i)-iii), the most general expression for 𝑘𝑘𝐻𝐻 is finally given by: 

𝑘𝑘𝐻𝐻 = 10−3𝑐𝑐𝐻𝐻𝑠𝑠�𝑎𝑎𝑑𝑑,0
1 2⁄ −𝛼𝛼𝐻𝐻�𝑎𝑎𝑑𝑑

𝛼𝛼𝐻𝐻, (5) 
where 𝛼𝛼𝐻𝐻 is a constant coefficient. 
It is worth noting that Eq. (5) reduces to Eq. (4) when �𝑎𝑎𝑑𝑑 = �𝑎𝑎𝑑𝑑,0 and to Eq. (3) if 𝛼𝛼𝐻𝐻 = 1 2⁄ . 
Furthermore, Eq. (5) can model any dependence of 𝑘𝑘𝐻𝐻 with respect to the defect size: if 𝛼𝛼𝐻𝐻 = 0, 𝑘𝑘𝐻𝐻 

does not depend on �𝑎𝑎𝑑𝑑 (i.e., 𝑘𝑘𝐻𝐻 = 10−3𝑐𝑐𝐻𝐻𝑠𝑠�𝑎𝑎𝑑𝑑,0
1 2⁄

); if 𝛼𝛼𝐻𝐻 > 0, 𝑘𝑘𝐻𝐻 increases with respect to �𝑎𝑎𝑑𝑑; 

if 𝛼𝛼𝐻𝐻 < 0, 𝑘𝑘𝐻𝐻 decreases with respect to �𝑎𝑎𝑑𝑑. 
4. The SIF associated to the defect size and the SIF associated to the hydrogen assistance contribute to 

the total SIF at the crack tip, referred to as 𝑘𝑘𝑇𝑇, through the following additive model17: 
𝑘𝑘𝑇𝑇 = 𝑘𝑘𝑑𝑑 + 𝑘𝑘𝐻𝐻. (6) 

5. Crack growth occurs only if 𝑘𝑘𝑇𝑇 > 𝑘𝑘𝑓𝑓ℎ; vice-versa, crack growth is stopped if 𝑘𝑘𝑇𝑇 ≤ 𝑘𝑘𝑓𝑓ℎ. 
6. Hydrogen assistance occurs only if 𝑘𝑘𝑑𝑑 ≤ 𝑘𝑘𝑓𝑓ℎ: 

𝑘𝑘𝑇𝑇 = �
𝑘𝑘𝑑𝑑 + 𝑘𝑘𝐻𝐻 , 𝑖𝑖𝑓𝑓 𝑘𝑘𝑑𝑑 ≤ 𝑘𝑘𝑓𝑓ℎ
𝑘𝑘𝑑𝑑 , 𝑖𝑖𝑓𝑓 𝑘𝑘𝑑𝑑 > 𝑘𝑘𝑓𝑓ℎ

. (7) 

If 𝑘𝑘𝑑𝑑 ≤ 𝑘𝑘𝑓𝑓ℎ and according to Eqs. (5)-(7), 𝑘𝑘𝑇𝑇 can be expressed as follows: 

𝑘𝑘𝑇𝑇 = 10−30.5𝑠𝑠√𝜋𝜋�𝑎𝑎𝑑𝑑
1 2⁄

+ 10−3𝑐𝑐𝐻𝐻𝑠𝑠�𝑎𝑎𝑑𝑑,0
1 2⁄ −𝛼𝛼𝐻𝐻�𝑎𝑎𝑑𝑑

𝛼𝛼𝐻𝐻. (8) 
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In case 𝛼𝛼𝐻𝐻 = 1 2⁄ , Eq. (8) yields 𝑘𝑘𝑇𝑇 = �1 + 𝑐𝑐𝐻𝐻
0.5√𝜋𝜋

�𝑘𝑘𝑑𝑑, which shows that the hydrogen assistance is modeled 

as an amplifying multiplicative factor of 𝑘𝑘𝑑𝑑 (SIF without the hydrogen assistance). In this respect, the case 
𝛼𝛼𝐻𝐻 = 1 2⁄  can be considered equivalent to the multiplicative models proposed in Refs.21,25-27 for modeling 
the hydrogen assisted crack growth above the threshold SIF. It is worth noting that, according to Refs.12,32, 
the Paris’ law can be properly adopted to model crack growth even below the threshold SIF. Therefore, the 
multiplicative models proposed in Refs.21,25-27 can be reasonably applied to the ODA region, where the SIF 
values are below the threshold SIF. 

In case 𝛼𝛼𝐻𝐻 = 0, Eq. (8) yields 𝑘𝑘𝑇𝑇 = 𝑘𝑘𝑑𝑑 + 𝑐𝑐𝑐𝑐𝑛𝑛𝑠𝑠𝑐𝑐𝑎𝑎𝑛𝑛𝑐𝑐, which shows that the hydrogen assistance is modeled as 
an additional constant value to 𝑘𝑘𝑑𝑑 (SIF without the hydrogen assistance). Since the critical condition for crack 
growth is 𝑘𝑘𝑇𝑇 = 𝑘𝑘𝑓𝑓ℎ, to add a constant value to 𝑘𝑘𝑑𝑑 is equivalent to subtracting a constant value to 𝑘𝑘𝑓𝑓ℎ (i.e., 
the equation 𝑘𝑘𝑇𝑇 = 𝑘𝑘𝑑𝑑 + 𝑐𝑐𝑐𝑐𝑛𝑛𝑠𝑠𝑐𝑐𝑎𝑎𝑛𝑛𝑐𝑐 = 𝑘𝑘𝑓𝑓ℎ can be rearranged as 𝑘𝑘𝑑𝑑 = 𝑘𝑘𝑓𝑓ℎ − 𝑐𝑐𝑐𝑐𝑛𝑛𝑠𝑠𝑐𝑐𝑎𝑎𝑛𝑛𝑐𝑐 < 𝑘𝑘𝑓𝑓ℎ). In this respect, 
the case 𝛼𝛼𝐻𝐻 = 0 can be considered equivalent to the subtractive model proposed in Refs.23,24,28 for taking 
into account the hydrogen assistance. 

In case 𝛼𝛼𝐻𝐻 = −5 2⁄ , Eq. (8) yields 𝑘𝑘𝑇𝑇 = 10−30.5𝑠𝑠√𝜋𝜋�𝑎𝑎𝑑𝑑
1 2⁄

+ 10−3𝑐𝑐𝐻𝐻𝑠𝑠�𝑎𝑎𝑑𝑑,0
3
�𝑎𝑎𝑑𝑑

5 2⁄
� , which is 

equivalent to the model proposed in Ref.17 for taking into account the hydrogen assistance. 

2.2. Hydrogen assisted crack growth: a general fatigue limit expression 

The total SIF in Eq (8) depends on the values assumed by the exponent 𝛼𝛼𝐻𝐻. Let us first consider 𝛼𝛼𝐻𝐻 ≥ 0. Three 
possible cases may occur when 𝛼𝛼𝐻𝐻 ≥ 0 (i.e., 𝑘𝑘𝑇𝑇 increases with the defect size): 

a. The initial defect size is such that 𝑘𝑘𝑑𝑑��𝑎𝑎𝑑𝑑,0� > 𝑘𝑘𝑓𝑓ℎ��𝑎𝑎𝑑𝑑,0�. Failure occurs and fatigue life is finite. 
In this case, crack starts growing according to the Paris’ law without the hydrogen assistance from 
the initial defect size up to failure. 
No ODA appears on the fracture surface. 

b. The initial defect size is such that 𝑘𝑘𝑑𝑑��𝑎𝑎𝑑𝑑,0� ≤ 𝑘𝑘𝑓𝑓ℎ��𝑎𝑎𝑑𝑑,0� and 𝑘𝑘𝑇𝑇��𝑎𝑎𝑑𝑑,0� > 𝑘𝑘𝑓𝑓ℎ��𝑎𝑎𝑑𝑑,0�. Failure 
occurs and fatigue life is finite. 
In this case, crack starts growing with the hydrogen assistance up to the threshold value for a crack 
growth without the hydrogen assistance. When the threshold value, referred to as �𝑎𝑎𝑂𝑂𝑂𝑂𝑂𝑂, is 
reached, then crack grows up to failure according to the Paris’ law and without the hydrogen 
assistance. 
An ODA with size equal to the threshold value appears on the fracture surface. 
The 𝑘𝑘𝐻𝐻 is larger than zero just before the threshold value is reached (crack growth must proceed 
with the hydrogen assistance) and it zeroes when the threshold is reached (crack growth can proceed 
without the hydrogen assistance). As a consequence, 𝑘𝑘𝑇𝑇 is larger than 𝑘𝑘𝑓𝑓ℎ just before the threshold 
value is reached and 𝑘𝑘𝑑𝑑��𝑎𝑎𝑂𝑂𝑂𝑂𝑂𝑂� = 𝑘𝑘𝑓𝑓ℎ��𝑎𝑎𝑂𝑂𝑂𝑂𝑂𝑂� when the threshold is reached. 

c. The initial defect size is such that 𝑘𝑘𝑇𝑇��𝑎𝑎𝑑𝑑,0� ≤ 𝑘𝑘𝑓𝑓ℎ��𝑎𝑎𝑑𝑑,0�. No failure occurs and fatigue life is 
infinite. 
In this case, crack does not grow at all since the hydrogen assistance is not sufficient to induce the 
crack growth. 
The ODA does not form and the final defect size is equal to the initial defect size. 

For a given initial defect size �𝑎𝑎𝑑𝑑,0, the three possible cases a)-c) are separated by two different stress 
thresholds. 
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Case a) and case b) are separated by a first stress threshold, referred to as 𝑠𝑠𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓,𝑂𝑂𝑂𝑂𝑂𝑂������, that represents the 
stress above which the ODA does not start forming in failed specimens. By taking into account Eqs. (1) and 
(2) and the condition 𝑘𝑘𝑑𝑑��𝑎𝑎𝑑𝑑,0� = 𝑘𝑘𝑓𝑓ℎ��𝑎𝑎𝑑𝑑,0�, it can be shown that 𝑠𝑠𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓,𝑂𝑂𝑂𝑂𝑂𝑂������ takes the following form: 

𝑠𝑠𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓,𝑂𝑂𝑂𝑂𝑂𝑂������ =
𝑐𝑐𝑡𝑡ℎ
0.5√𝜋𝜋

(𝐻𝐻𝐿𝐿+120)

�𝑓𝑓𝑑𝑑,0
1 2⁄ −𝛼𝛼𝑡𝑡ℎ

. (9) 

Case b) and case c) are separated by a second stress threshold, referred to as 𝑠𝑠𝑓𝑓, that distinguishes between 
finite and infinite fatigue life (i.e., the material fatigue limit). By taking into account Eqs. (1) and (8) and the 
condition 𝑘𝑘𝑇𝑇��𝑎𝑎𝑑𝑑,0� = 𝑘𝑘𝑓𝑓ℎ��𝑎𝑎𝑑𝑑,0�, it can be shown that 𝑠𝑠𝑓𝑓 takes the following form: 

𝑠𝑠𝑓𝑓 =
1

0.5√𝜋𝜋+𝑐𝑐𝐻𝐻
𝑐𝑐𝑡𝑡ℎ(𝐻𝐻𝐿𝐿+120)

�𝑓𝑓𝑑𝑑,0
1 2⁄ −𝛼𝛼𝑡𝑡ℎ

=
𝑐𝑐𝑠𝑠𝑙𝑙,𝛼𝛼𝐻𝐻≥0𝑐𝑐𝑡𝑡ℎ(𝐻𝐻𝐿𝐿+120)

�𝑓𝑓𝑑𝑑,0
1 2⁄ −𝛼𝛼𝑡𝑡ℎ

, (10) 

where 𝑐𝑐𝑠𝑠𝑙𝑙,𝛼𝛼𝐻𝐻≥0 is a constant coefficient, which depends on the value assumed by 𝑐𝑐𝐻𝐻. 

Let us now consider 𝛼𝛼𝐻𝐻 < 0 (i.e., 𝑘𝑘𝑇𝑇 decreases with the defect size). 

Four distinct cases may occur when 𝛼𝛼𝐻𝐻 < 0: 

a. The initial defect size is such that 𝑘𝑘𝑑𝑑��𝑎𝑎𝑑𝑑,0� > 𝑘𝑘𝑓𝑓ℎ��𝑎𝑎𝑑𝑑,0�. Failure occurs and fatigue life is finite. 
The same considerations of case a), for 𝛼𝛼𝐻𝐻 ≥ 0, apply. 

b. The initial defect size is such that 𝑘𝑘𝑑𝑑��𝑎𝑎𝑑𝑑,0� ≤ 𝑘𝑘𝑓𝑓ℎ��𝑎𝑎𝑑𝑑,0� and 𝑘𝑘𝑇𝑇��𝑎𝑎𝑑𝑑,0� > 𝑘𝑘𝑓𝑓ℎ��𝑎𝑎𝑑𝑑,0�. Failure 
occurs and fatigue life is finite. 
The same considerations of case b), for 𝛼𝛼𝐻𝐻 ≥ 0, apply. 

c. The initial defect size is such that 𝑘𝑘𝑑𝑑��𝑎𝑎𝑑𝑑,0� ≤ 𝑘𝑘𝑓𝑓ℎ��𝑎𝑎𝑑𝑑,0� and 𝑘𝑘𝑇𝑇��𝑎𝑎𝑑𝑑,0� > 𝑘𝑘𝑓𝑓ℎ��𝑎𝑎𝑑𝑑,0�. No failure 
occurs and fatigue life is infinite. 
In this case, crack starts growing with the hydrogen assistance but it finally arrests. 
The ODA does not reach �𝑎𝑎𝑂𝑂𝑂𝑂𝑂𝑂. 
At the end of the ODA formation, the defect size reaches a value, referred to as �𝑎𝑎𝑑𝑑,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, such that 
𝑘𝑘𝑇𝑇��𝑎𝑎𝑑𝑑,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓� = 𝑘𝑘𝑓𝑓ℎ��𝑎𝑎𝑑𝑑,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓�. 

d. The initial defect size is such that 𝑘𝑘𝑇𝑇��𝑎𝑎𝑑𝑑,0� ≤ 𝑘𝑘𝑓𝑓ℎ��𝑎𝑎𝑑𝑑,0�. No failure occurs and fatigue life is 
infinite. 
The same considerations of case c), for 𝛼𝛼𝐻𝐻 ≥ 0, apply. 

For a given initial defect size �𝑎𝑎𝑑𝑑,0, the four possible cases a)-d) are separated by three different stress 
thresholds. 

Case a) and case b) are separated by the 𝑠𝑠𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓,𝑂𝑂𝑂𝑂𝑂𝑂������ given in Eq. (9). 

Case c) and case d) are separated by a stress threshold, referred to as 𝑠𝑠∞,𝑂𝑂𝑂𝑂𝑂𝑂������, that represents, for an infinite 
fatigue life, the stress below which the ODA does not start forming. With few passages, it can be shown that 
𝑠𝑠∞,𝑂𝑂𝑂𝑂𝑂𝑂������ takes the following form: 

𝑠𝑠∞,𝑂𝑂𝑂𝑂𝑂𝑂������ =
1

0.5√𝜋𝜋+𝑐𝑐𝐻𝐻
𝑐𝑐𝑡𝑡ℎ(𝐻𝐻𝐿𝐿+120)

�𝑓𝑓𝑑𝑑,0
1 2⁄ −𝛼𝛼𝑡𝑡ℎ

, (11) 

which is equivalent to the expression of 𝑠𝑠𝑓𝑓 for 𝛼𝛼𝐻𝐻 ≥ 0 (Eq. (10)). 
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Finally, case b) and case c) are separated by the material fatigue limit 𝑠𝑠𝑓𝑓. In order to find an expression for 𝑠𝑠𝑓𝑓, 
the function ∆𝑘𝑘 = 𝑘𝑘𝑇𝑇 − 𝑘𝑘𝑓𝑓ℎ must be taken into account and analyzed. In particular, the two following 
conditions must be fulfilled at the transition from infinite to finite fatigue life: 

�
∆𝑘𝑘��𝑎𝑎𝑑𝑑� = 0
𝜕𝜕∆𝑘𝑘��𝑓𝑓𝑑𝑑�
𝜕𝜕�𝑓𝑓𝑑𝑑

= 0
. (12) 

Eq. (12) states that, in the �∆𝑘𝑘 − �𝑎𝑎𝑑𝑑� plane (Fig. 1), the transition from infinite to finite fatigue life occurs 
when, for a given stress amplitude 𝑠𝑠, the ∆𝑘𝑘 curve is tangent to the �𝑎𝑎𝑑𝑑 axis. In particular, the transition 
from infinite to finite fatigue life occurs when the initial defect size �𝑎𝑎𝑑𝑑,0 equals the critical value �𝑎𝑎𝑐𝑐 

(dashed grey line in Fig. 1). If the �𝑎𝑎𝑑𝑑,0 value is larger than �𝑎𝑎𝑐𝑐, failure occurs and the ∆𝑘𝑘 curve does not 

intersect the �𝑎𝑎𝑑𝑑 axis (dotted black line in Fig. 1); while, if the �𝑎𝑎𝑑𝑑,0 value is smaller than �𝑎𝑎𝑐𝑐, no failure 

occurs and the ∆𝑘𝑘 curve intersects the �𝑎𝑎𝑑𝑑 axis at �𝑎𝑎𝑑𝑑,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (continuous black line in Fig. 1). The largest 

�𝑎𝑎𝑑𝑑,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, referred to as �𝑎𝑎𝑑𝑑,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓,𝑚𝑚𝑓𝑓𝑚𝑚, occurs at the transition from infinite to finite fatigue life. In case of 
finite fatigue life, the hydrogen assistance is present until 𝑘𝑘𝑑𝑑 reaches 𝑘𝑘𝑓𝑓ℎ and the defect size attains the 
threshold defect size �𝑎𝑎𝑂𝑂𝑂𝑂𝑂𝑂, according to assumption 6). 

Figure 1 

It can be shown (see Appendix A) that, by solving the system in Eq. (12), the value of the fatigue limit takes 
the following form: 

𝑠𝑠𝑓𝑓 =
𝑐𝑐𝑠𝑠𝑙𝑙,𝛼𝛼𝐻𝐻<0𝑐𝑐𝑡𝑡ℎ(𝐻𝐻𝐿𝐿+120)

�𝑓𝑓𝑑𝑑,0
1 2⁄ −𝛼𝛼𝑡𝑡ℎ

, (13) 

where 𝑐𝑐𝑠𝑠𝑙𝑙,𝛼𝛼𝐻𝐻<0 is a constant coefficient, which depends on the values assumed by 𝑐𝑐𝐻𝐻, 𝛼𝛼𝑓𝑓ℎ and 𝛼𝛼𝐻𝐻. It is worth 
noting that Eq. (13) differs from the fatigue limit expression proposed by Liu et al.30 even if 𝛼𝛼𝐻𝐻 = −5 2⁄  and 
𝛼𝛼𝑓𝑓ℎ = 1 3⁄ , as in Refs.17,30 (see Appendix B). 

Eq. (13) show that 𝑠𝑠𝑓𝑓 is inversely proportional to �𝑎𝑎𝑑𝑑,0
1 2⁄ −𝛼𝛼𝑡𝑡ℎ as in Eq. (10), for the 𝛼𝛼𝐻𝐻 ≥ 0 case. Therefore, 

it can be concluded that, according to the assumptions 1)-6), the fatigue limit takes the following general 
expression: 

𝑠𝑠𝑓𝑓 =
𝑐𝑐𝑠𝑠𝑙𝑙𝑐𝑐𝑡𝑡ℎ(𝐻𝐻𝐿𝐿+120)

�𝑓𝑓𝑑𝑑,0
1 2⁄ −𝛼𝛼𝑡𝑡ℎ

, (14) 

where 𝑐𝑐𝑠𝑠𝑙𝑙  is a constant coefficient that must be properly estimated from the experimental dataset. It is worth 
noting that Eq. (14) reduces to the well-known formulation proposed by Murakami5, if 𝛼𝛼𝑓𝑓ℎ = 1 3⁄  and can 
be thus considered as a generalization of the Murakami’s model5. 

Fig. 2 shows, for the 𝛼𝛼𝐻𝐻 < 0 case, the three threshold stresses, 𝑠𝑠𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓,𝑂𝑂𝑂𝑂𝑂𝑂������ (Eq. (9)), 𝑠𝑠∞,𝑂𝑂𝑂𝑂𝑂𝑂������ (Eq. (11)) and 𝑠𝑠𝑓𝑓 
(Eq. (14)), as well as a schematic of the four regions a)-d) in a �log10[𝑠𝑠] − log10��𝑎𝑎𝑑𝑑,0�� plot. In the 𝛼𝛼𝐻𝐻 ≥ 0 
case, the 𝑠𝑠𝑓𝑓 curve overlaps the 𝑠𝑠∞,𝑂𝑂𝑂𝑂𝑂𝑂������ curve and case c) overlaps case d). 

Figure 2 

Fig. 2 also shows the maximum attainable limit for the fatigue strength under VHCF, which is equal to 1.6𝐻𝐻𝐻𝐻, 
according to Murakami5. 

2.3. Statistical distribution of the fatigue limit 



10 
 

If, according to the literature (e.g., Refs.34,35), log10[𝐾𝐾𝑓𝑓ℎ] is assumed to be Normal with mean 𝜇𝜇𝑓𝑓𝑙𝑙𝑡𝑡ℎ and 
standard deviation 𝜎𝜎𝑓𝑓𝑙𝑙𝑡𝑡ℎ, log10[𝐾𝐾𝑓𝑓ℎ] can be expressed in terms of the distribution parameters as follows: 

log10[𝐾𝐾𝑓𝑓ℎ] = 𝜇𝜇𝑓𝑓𝑙𝑙𝑡𝑡ℎ + 𝜎𝜎𝑓𝑓𝑙𝑙𝑡𝑡ℎ𝑍𝑍, (15) 

where 𝑍𝑍 is a standardized Normal random variable (rv). The mean value of log10[𝐾𝐾𝑓𝑓ℎ] must be consistent 
with the deterministic model proposed in Eq. (1). Therefore, according to Eq. (1), 𝜇𝜇𝑓𝑓𝑙𝑙𝑡𝑡ℎ is given by: 

𝜇𝜇𝑓𝑓𝑙𝑙𝑡𝑡ℎ = log10 �10−3𝑐𝑐𝑓𝑓ℎ(𝐻𝐻𝐻𝐻 + 120)�𝑎𝑎𝑑𝑑
𝛼𝛼𝑡𝑡ℎ�. (16) 

If, in Eq. (1), the deterministic 𝑘𝑘𝑓𝑓ℎ is substituted with the corresponding rv 𝐾𝐾𝑓𝑓ℎ, the deterministic 𝑐𝑐𝑓𝑓ℎ becomes 
a rv, too. By inverting Eq. (1) and by substituting the deterministic values with the corresponding rvs, it is 
possible to obtain an expression for the rv 𝐶𝐶𝑓𝑓ℎ: 

𝐶𝐶𝑓𝑓ℎ = 𝐾𝐾𝑓𝑓ℎ �10−3(𝐻𝐻𝐻𝐻 + 120)�𝑎𝑎𝑑𝑑
𝛼𝛼𝑡𝑡ℎ�

−1
. (17) 

By taking the logarithm of Eq. (17) and by taking into account Eq. (15), the rv log10[𝐶𝐶𝑓𝑓ℎ] becomes: 

log10[𝐶𝐶𝑓𝑓ℎ] = �𝜇𝜇𝑓𝑓𝑙𝑙𝑡𝑡ℎ + 𝜎𝜎𝑓𝑓𝑙𝑙𝑡𝑡ℎ𝑍𝑍� − �log10 �10−3(𝐻𝐻𝐻𝐻 + 120)�𝑎𝑎𝑑𝑑
𝛼𝛼𝑡𝑡ℎ��. (18) 

If Eq. (16) is substituted in Eq. (18), log10[𝐶𝐶𝑓𝑓ℎ] finally becomes: 

log10[𝐶𝐶𝑓𝑓ℎ] = log10[𝑐𝑐𝑓𝑓ℎ] + 𝜎𝜎𝑓𝑓𝑙𝑙𝑡𝑡ℎ𝑍𝑍 = 𝜇𝜇𝑓𝑓𝑙𝑙𝑡𝑡ℎ + 𝜎𝜎𝑓𝑓𝑙𝑙𝑡𝑡ℎ𝑍𝑍, (19) 

which shows that log10[𝐶𝐶𝑓𝑓ℎ] is a Normal rv with mean 𝜇𝜇𝑓𝑓𝑙𝑙𝑡𝑡ℎ = log10[𝑐𝑐𝑓𝑓ℎ] and standard deviation 
𝜎𝜎𝑓𝑓𝑙𝑙𝑡𝑡ℎ = 𝜎𝜎𝑓𝑓𝑙𝑙𝑡𝑡ℎ. 

If, in Eq. (14), the deterministic 𝑐𝑐𝑓𝑓ℎ is substituted with the rv 𝐶𝐶𝑓𝑓ℎ, the deterministic 𝑠𝑠𝑓𝑓 becomes the conditional 
rv 𝑆𝑆𝑓𝑓|�𝑎𝑎𝑑𝑑,0 (i.e., fatigue limit given the initial defect size): 

𝑆𝑆𝑓𝑓|�𝑎𝑎𝑑𝑑,0 = 𝐶𝐶𝑓𝑓ℎ
𝑐𝑐𝑠𝑠𝑙𝑙(𝐻𝐻𝐿𝐿+120)

�𝑓𝑓𝑑𝑑,0
1 2⁄ −𝛼𝛼𝑡𝑡ℎ

. (20) 

By taking the logarithm of Eq. (20) and by taking into account Eq. (19), the rv log10�𝑆𝑆𝑓𝑓|�𝑎𝑎𝑑𝑑,0�, referred to as 
𝑋𝑋𝑓𝑓|�𝑎𝑎𝑑𝑑,0, finally becomes: 

𝑋𝑋𝑓𝑓|�𝑎𝑎𝑑𝑑,0 = log10 �
𝑐𝑐𝑡𝑡ℎ𝑐𝑐𝑠𝑠𝑙𝑙(𝐻𝐻𝐿𝐿+120)

�𝑓𝑓𝑑𝑑,0
1 2⁄ −𝛼𝛼𝑡𝑡ℎ

�+ 𝜎𝜎𝑓𝑓𝑙𝑙𝑡𝑡ℎ𝑍𝑍 = 𝜇𝜇𝑋𝑋𝑙𝑙��𝑎𝑎𝑑𝑑,0�+ 𝜎𝜎𝑋𝑋𝑙𝑙𝑍𝑍. (21) 

Eq. (21) shows that 𝑋𝑋𝑓𝑓|�𝑎𝑎𝑑𝑑,0 is a Normal rv with mean 𝜇𝜇𝑋𝑋𝑙𝑙��𝑎𝑎𝑑𝑑,0� = log10 �
𝑐𝑐𝑡𝑡ℎ𝑐𝑐𝑠𝑠𝑙𝑙(𝐻𝐻𝐿𝐿+120)

�𝑓𝑓𝑑𝑑,0
1 2⁄ −𝛼𝛼𝑡𝑡ℎ

� and standard 

deviation 𝜎𝜎𝑋𝑋𝑙𝑙 = 𝜎𝜎𝑓𝑓𝑙𝑙𝑡𝑡ℎ. According to Eq. (21), the cumulative distribution function (cdf) of 𝑋𝑋𝑓𝑓|�𝑎𝑎𝑑𝑑,0 is 
therefore given by: 

𝐹𝐹𝑋𝑋𝑙𝑙|�𝑓𝑓𝑑𝑑,0
�𝑥𝑥𝑓𝑓;�𝑎𝑎𝑑𝑑,0� = Φ𝐺𝐺𝑓𝑓𝐺𝐺𝑠𝑠𝑠𝑠 �

𝑚𝑚𝑙𝑙−𝜇𝜇𝑋𝑋𝑙𝑙��𝑓𝑓𝑑𝑑,0�

𝜎𝜎𝑋𝑋𝑙𝑙
�, (22) 

where 𝐹𝐹𝑋𝑋𝑙𝑙|�𝑓𝑓𝑑𝑑,0
 denotes the cdf of 𝑋𝑋𝑓𝑓|�𝑎𝑎𝑑𝑑,0 and Φ𝐺𝐺𝑓𝑓𝐺𝐺𝑠𝑠𝑠𝑠(∙) is a standardized Normal cdf. 

According to Eq. (22), the 𝛼𝛼-th quantile of the conditional rv 𝑆𝑆𝑓𝑓|�𝑎𝑎𝑑𝑑,0, referred to as 𝑠𝑠𝑓𝑓,�𝑓𝑓𝑑𝑑,0,𝛼𝛼, takes the 

following form: 

𝑠𝑠𝑓𝑓,�𝑓𝑓𝑑𝑑,0,𝛼𝛼 = 10𝜇𝜇𝑋𝑋𝑙𝑙��𝑓𝑓𝑑𝑑,0�+𝜎𝜎𝑋𝑋𝑙𝑙Φ𝐺𝐺𝐺𝐺𝐺𝐺𝑠𝑠𝑠𝑠
−1 (𝛼𝛼) =

𝑐𝑐𝑡𝑡ℎ𝑐𝑐𝑠𝑠𝑙𝑙(𝐻𝐻𝐿𝐿+120)

�𝑓𝑓𝑑𝑑,0
1 2⁄ −𝛼𝛼𝑡𝑡ℎ

10𝜎𝜎𝑙𝑙𝑙𝑙𝑡𝑡ℎΦ𝐺𝐺𝐺𝐺𝐺𝐺𝑠𝑠𝑠𝑠
−1 (𝛼𝛼), (23) 
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where Φ𝐺𝐺𝑓𝑓𝐺𝐺𝑠𝑠𝑠𝑠
−1 (∙) denotes the inverse of a standardized Normal cdf. 

In order to define the statistical distribution of 𝑋𝑋𝑓𝑓  (no more conditioned to the value assumed by �𝑎𝑎𝑑𝑑,0), the 
randomness of the initial defect size must be taken into account. Since, following the literature5, the initial 
defect size can be considered as the size of the largest defect present in the specimen, it can be assumed 
that the initial defect size rv, referred to as �𝐴𝐴𝑑𝑑,0, follows a Type I Largest Extreme Value (LEV) distribution5 
with probability density function (pdf): 

𝑓𝑓�𝑂𝑂𝑑𝑑,0
��𝑎𝑎𝑑𝑑,0� =

φ𝐿𝐿𝐿𝐿𝐿𝐿�
�𝐺𝐺𝑑𝑑,0−𝜇𝜇√𝐴𝐴

𝜎𝜎√𝐴𝐴
�

𝜎𝜎√𝐴𝐴
= 𝑓𝑓

−
�𝐺𝐺𝑑𝑑,0−𝜇𝜇√𝐴𝐴

𝜎𝜎√𝐴𝐴
−𝑒𝑒

−
�𝐺𝐺𝑑𝑑,0−𝜇𝜇√𝐴𝐴

𝜎𝜎√𝐴𝐴

𝜎𝜎√𝐴𝐴
, (24) 

where 𝑓𝑓�𝑂𝑂𝑑𝑑,0
 denotes the pdf of �𝐴𝐴𝑑𝑑,0, φ𝐿𝐿𝐿𝐿𝐿𝐿(∙) is a standardized LEV pdf and 𝜇𝜇√𝑂𝑂 and 𝜎𝜎√𝑂𝑂 are the two 

constant parameters of the distribution. 

The cdf of 𝑋𝑋𝑓𝑓  can be obtained from the definition of marginal cdf: 

𝐹𝐹𝑋𝑋𝑙𝑙(𝑥𝑥𝑓𝑓) = ∫𝐹𝐹𝑋𝑋𝑙𝑙|�𝑓𝑓𝑑𝑑,0
�𝑥𝑥𝑓𝑓;�𝑎𝑎𝑑𝑑,0�𝑓𝑓�𝑂𝑂𝑑𝑑,0

��𝑎𝑎𝑑𝑑,0�𝑑𝑑�𝑎𝑎𝑑𝑑,0, (25) 

where 𝐹𝐹𝑋𝑋𝑙𝑙  denotes the cdf of 𝑋𝑋𝑓𝑓. 

Therefore, by taking into account the assumed distributions (i.e., Eqs. (22) and (24)), Eq. (25) finally becomes: 

𝐹𝐹𝑋𝑋𝑙𝑙(𝑥𝑥𝑓𝑓) = ∫ Φ𝐺𝐺𝑓𝑓𝐺𝐺𝑠𝑠𝑠𝑠 �
𝑚𝑚𝑙𝑙−𝜇𝜇𝑋𝑋𝑙𝑙��𝑓𝑓𝑑𝑑,0�

𝜎𝜎𝑋𝑋𝑙𝑙
�
φ𝐿𝐿𝐿𝐿𝐿𝐿�

�𝐺𝐺𝑑𝑑,0−𝜇𝜇√𝐴𝐴
𝜎𝜎√𝐴𝐴

�

𝜎𝜎√𝐴𝐴
𝑑𝑑�𝑎𝑎𝑑𝑑,0

∞
0 . (26) 

The 𝛼𝛼-th quantile of the logarithm of the fatigue limit can be obtained by substituting 𝐹𝐹𝑋𝑋𝑙𝑙(𝑥𝑥𝑓𝑓) with 𝛼𝛼 and by 
solving Eq. (26) with respect to 𝑥𝑥𝑓𝑓. 

An approximate cdf of 𝑆𝑆𝑓𝑓, which would avoid the numerical computation of the integral in Eq. (26), can be 
obtained by assuming the rv log10��𝐴𝐴𝑑𝑑,0� as approximately Normal with mean 𝜇𝜇√𝑂𝑂 and standard deviation 
𝜎𝜎√𝑂𝑂: 

log10��𝐴𝐴𝑑𝑑,0� ≅ 𝜇𝜇√𝑂𝑂 + 𝜎𝜎√𝑂𝑂𝑍𝑍. (27) 

By substituting Eq. (27) in Eq. (21), the rv 𝑋𝑋𝑓𝑓  becomes: 

𝑋𝑋𝑓𝑓 ≅ 𝜇𝜇𝑋𝑋𝑙𝑙�10𝜇𝜇√𝐴𝐴+𝑍𝑍𝜎𝜎√𝐴𝐴� + 𝜎𝜎𝑋𝑋𝑙𝑙𝑍𝑍 = log10 �
𝑐𝑐𝑡𝑡ℎ𝑐𝑐𝑠𝑠𝑙𝑙(𝐻𝐻𝐿𝐿+120)

10�1 2⁄ −𝛼𝛼𝑡𝑡ℎ��𝜇𝜇√𝐴𝐴+𝑍𝑍𝜎𝜎√𝐴𝐴�
� + 𝜎𝜎𝑓𝑓𝑙𝑙𝑡𝑡ℎ𝑍𝑍, (28) 

where the deterministic �𝑎𝑎𝑑𝑑,0 has been substituted with the rv �𝐴𝐴𝑑𝑑,0. 

Eq. (28) can be further rearranged as follows: 

𝑋𝑋𝑓𝑓 ≅ �log10�𝑐𝑐𝑓𝑓ℎ𝑐𝑐𝑠𝑠𝑙𝑙(𝐻𝐻𝐻𝐻 + 120)� − (1 2⁄ − 𝛼𝛼𝑓𝑓ℎ)𝜇𝜇√𝑂𝑂�+ �(1 2⁄ − 𝛼𝛼𝑓𝑓ℎ)2𝜎𝜎√𝑂𝑂
2 + 𝜎𝜎𝑓𝑓𝑙𝑙𝑡𝑡ℎ

2 𝑍𝑍, (29) 

by exploiting the well-known properties of a sum of independent Normal rvs. 

According to Eq. (29), an approximate 𝛼𝛼-th quantile of the rv 𝑆𝑆𝑓𝑓, referred to as 𝑠𝑠𝑓𝑓,𝛼𝛼, is finally given by: 

𝑠𝑠𝑓𝑓,𝛼𝛼 ≅
𝑐𝑐𝑡𝑡ℎ𝑐𝑐𝑠𝑠𝑙𝑙(𝐻𝐻𝐿𝐿+120)

10�1 2⁄ −𝛼𝛼𝑡𝑡ℎ�𝜇𝜇√𝐴𝐴
10

�(1 2⁄ −𝛼𝛼𝑡𝑡ℎ)2𝜎𝜎√𝐴𝐴
2 +𝜎𝜎𝑙𝑙𝑙𝑙𝑡𝑡ℎ

2 Φ𝐺𝐺𝐺𝐺𝐺𝐺𝑠𝑠𝑠𝑠
−1 (𝛼𝛼)

. (30) 

2.4. P-S-N curves 
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The Probabilistic-S-N (P-S-N) curves statistically model the VHCF material response in the fatigue limit region 
and in the finite fatigue life region. 

The cdfs in Eqs. (22) and (26) model the randomness in the fatigue limit region. As for the finite fatigue life 
region, different types of continuous distribution have been proposed in the literature (see, e.g., Ref.36 and 
the references therein) for the number of cycles to failure, referred to as 𝑁𝑁𝑓𝑓. Without loss of generality, the 
finite fatigue life rv, referred to as 𝑌𝑌𝑓𝑓 = log10�𝑁𝑁𝑓𝑓�, is supposed to be Normal distributed. Therefore, let us 
suppose that the conditional finite fatigue life, referred to as 𝑌𝑌𝑓𝑓��𝑎𝑎𝑑𝑑,0 (i.e., finite fatigue life given the initial 
defect size), has mean 𝜇𝜇𝑌𝑌 and standard deviation 𝜎𝜎𝑌𝑌, then: 

𝐹𝐹𝑌𝑌𝑓𝑓��𝑓𝑓𝑑𝑑,0
= Φ𝐺𝐺𝑓𝑓𝐺𝐺𝑠𝑠𝑠𝑠 �

𝑦𝑦−𝜇𝜇𝑌𝑌 
𝜎𝜎𝑌𝑌

�, (31) 

where 𝐹𝐹𝑌𝑌𝑓𝑓��𝑓𝑓𝑑𝑑,0
 denotes the cdf of 𝑌𝑌𝑓𝑓��𝑎𝑎𝑑𝑑,0. 

It is well-known that the parameters of 𝐹𝐹𝑌𝑌𝑓𝑓��𝑓𝑓𝑑𝑑,0
 depend on the applied stress amplitude and on the initial 

defect size37-39. In particular, any monotonic decreasing function of 𝑠𝑠 and �𝑎𝑎𝑑𝑑,0 can be adopted for the mean 
and any positive function can be used for the standard deviation. In the most simple case, the standard 
deviation is constant and the mean is a linear function of both the logarithm of the applied stress amplitude 
(Basquin’s model), referred to as 𝑥𝑥 = log10[𝑠𝑠], and the logarithm of the initial defect size, log10��𝑎𝑎𝑑𝑑,0�: 

𝜇𝜇𝑌𝑌�𝑥𝑥,�𝑎𝑎𝑑𝑑,0� = 𝑐𝑐𝑌𝑌 + 𝑚𝑚𝑌𝑌𝑥𝑥 + 𝑛𝑛𝑌𝑌 log10��𝑎𝑎𝑑𝑑,0�, (32) 

where 𝑐𝑐𝑌𝑌, 𝑚𝑚𝑌𝑌 and 𝑛𝑛𝑌𝑌 are three constant parameters. 

According to the probabilistic model “One failure mode due to one cause with fatigue limit” described in 
Ref.36, when the logarithm of the applied stress is equal to 𝑥𝑥 and the initial defect size is equal to �𝑎𝑎𝑑𝑑,0, the 
cdf of the conditional fatigue life 𝑌𝑌|�𝑎𝑎𝑑𝑑,0 is given by: 

𝐹𝐹𝑌𝑌|�𝑓𝑓𝑑𝑑,0
�𝑦𝑦; 𝑥𝑥,�𝑎𝑎𝑑𝑑,0� = 𝐹𝐹𝑋𝑋𝑙𝑙|�𝑓𝑓𝑑𝑑,0

�𝑥𝑥,�𝑎𝑎𝑑𝑑,0�𝐹𝐹𝑌𝑌𝑓𝑓��𝑓𝑓𝑑𝑑,0
�𝑦𝑦;�𝑎𝑎𝑑𝑑,0�, (33) 

where 𝐹𝐹𝑌𝑌|�𝑓𝑓𝑑𝑑,0
 denotes the cdf of 𝑌𝑌|�𝑎𝑎𝑑𝑑,0. 

By taking into account the assumed distributions (Eqs. (22) and (31)), Eq. (33) becomes: 

𝐹𝐹𝑌𝑌|�𝑓𝑓𝑑𝑑,0
�𝑦𝑦; 𝑥𝑥,�𝑎𝑎𝑑𝑑,0� = Φ𝐺𝐺𝑓𝑓𝐺𝐺𝑠𝑠𝑠𝑠 �

𝑚𝑚−𝜇𝜇𝑋𝑋𝑙𝑙��𝑓𝑓𝑑𝑑,0�

𝜎𝜎𝑋𝑋𝑙𝑙
�Φ𝐺𝐺𝑓𝑓𝐺𝐺𝑠𝑠𝑠𝑠 �

𝑦𝑦−𝜇𝜇𝑌𝑌�𝑚𝑚,�𝑓𝑓𝑑𝑑,0�
𝜎𝜎𝑌𝑌

�. (34) 

The 𝛼𝛼-th quantile of the conditional fatigue life, referred to as 𝑦𝑦�𝑓𝑓𝑑𝑑,0,𝛼𝛼, can be obtained by substituting 

𝐹𝐹𝑌𝑌|�𝑓𝑓𝑑𝑑,0
�𝑦𝑦; 𝑥𝑥,�𝑎𝑎𝑑𝑑,0� with 𝛼𝛼 and by solving the equation with respect to 𝑦𝑦 for different values of 𝑥𝑥: 

𝑦𝑦�𝑓𝑓𝑑𝑑,0,𝛼𝛼 = 𝜇𝜇𝑌𝑌�𝑥𝑥,�𝑎𝑎𝑑𝑑,0�+ 𝜎𝜎𝑌𝑌Φ𝐺𝐺𝑓𝑓𝐺𝐺𝑠𝑠𝑠𝑠
−1 �𝛼𝛼 Φ𝐺𝐺𝑓𝑓𝐺𝐺𝑠𝑠𝑠𝑠 �

𝑚𝑚−𝜇𝜇𝑋𝑋𝑙𝑙��𝑓𝑓𝑑𝑑,0�

𝜎𝜎𝑋𝑋𝑙𝑙
�� �, (35) 

where 𝑥𝑥 must be larger than 𝜇𝜇𝑋𝑋𝑙𝑙��𝑎𝑎𝑑𝑑,0� + 𝜎𝜎𝑋𝑋𝑙𝑙Φ𝐺𝐺𝑓𝑓𝐺𝐺𝑠𝑠𝑠𝑠
−1 (𝛼𝛼) in order to have finite values of 𝑦𝑦�𝑓𝑓𝑑𝑑,0,𝛼𝛼. Eq. (35) 

thus provides the P-S-N curves given the initial defect size. 

In order to define the statistical distribution of 𝑌𝑌 (no more conditioned to the value assumed by �𝑎𝑎𝑑𝑑,0), the 
pdf of the initial defect size in Eq. (24) must be taken into account. 

The cdf of 𝑌𝑌 can be obtained from the definition of marginal cdf: 

𝐹𝐹𝑌𝑌(𝑦𝑦; 𝑥𝑥) = ∫𝐹𝐹𝑌𝑌|�𝑓𝑓𝑑𝑑,0
�𝑦𝑦; 𝑥𝑥,�𝑎𝑎𝑑𝑑,0�𝑓𝑓�𝑂𝑂𝑑𝑑,0

��𝑎𝑎𝑑𝑑,0�𝑑𝑑�𝑎𝑎𝑑𝑑,0. (36) 
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Therefore, by taking into account the assumed distributions (Eqs. (24) and Eq. (34)), Eq. (36) finally becomes: 

𝐹𝐹𝑌𝑌(𝑦𝑦; 𝑥𝑥) = ∫ Φ𝐺𝐺𝑓𝑓𝐺𝐺𝑠𝑠𝑠𝑠 �
𝑚𝑚−𝜇𝜇𝑋𝑋𝑙𝑙��𝑓𝑓𝑑𝑑,0�

𝜎𝜎𝑋𝑋𝑙𝑙
�Φ𝐺𝐺𝑓𝑓𝐺𝐺𝑠𝑠𝑠𝑠 �

𝑦𝑦−𝜇𝜇𝑌𝑌�𝑚𝑚,�𝑓𝑓𝑑𝑑,0�
𝜎𝜎𝑌𝑌

�
φ𝐿𝐿𝐿𝐿𝐿𝐿�

�𝐺𝐺𝑑𝑑,0−𝜇𝜇√𝐴𝐴
𝜎𝜎√𝐴𝐴

�

𝜎𝜎√𝐴𝐴
𝑑𝑑�𝑎𝑎𝑑𝑑,0

∞
0 . (37) 

The 𝛼𝛼-th quantile of the fatigue life can be obtained by substituting 𝐹𝐹𝑌𝑌(𝑦𝑦; 𝑥𝑥) with 𝛼𝛼 and by solving the 
equation with respect to 𝑥𝑥 for different values of 𝑦𝑦. Eq. (37) thus provides the P-S-N curves of the material. 

2.5. Parameter estimation 

The cdf of the conditional rv 𝑋𝑋𝑓𝑓|�𝑎𝑎𝑑𝑑,0 in Eq. (22) depends on the coefficients 𝑐𝑐𝑓𝑓ℎ, 𝛼𝛼𝑓𝑓ℎ, 𝜎𝜎𝑓𝑓𝑙𝑙𝑡𝑡ℎ and 𝑐𝑐𝑠𝑠𝑙𝑙. The 
coefficients 𝑐𝑐𝑓𝑓ℎ, 𝛼𝛼𝑓𝑓ℎ and 𝜎𝜎𝑓𝑓𝑙𝑙𝑡𝑡ℎ can be estimated by considering that, for each failed specimen exhibiting an 
ODA with projected area 𝑎𝑎𝑂𝑂𝑂𝑂𝑂𝑂, 𝑘𝑘𝑑𝑑��𝑎𝑎𝑂𝑂𝑂𝑂𝑂𝑂� = 𝑘𝑘𝑓𝑓ℎ��𝑎𝑎𝑂𝑂𝑂𝑂𝑂𝑂� when failure occurs. In particular, let 𝑎𝑎𝑂𝑂𝑂𝑂𝑂𝑂,𝑓𝑓 
denote the projected ODA area of the 𝑖𝑖-th specimen tested at 𝑠𝑠𝑓𝑓 then, according to Eq. (1) and Eq. (2): 

0.5𝑠𝑠𝑓𝑓√𝜋𝜋�𝑎𝑎𝑂𝑂𝑂𝑂𝑂𝑂,𝑓𝑓
1/2

= 𝑐𝑐𝑓𝑓ℎ(𝐻𝐻𝐻𝐻 + 120)�𝑎𝑎𝑂𝑂𝑂𝑂𝑂𝑂,𝑓𝑓
𝛼𝛼𝑡𝑡ℎ. (38) 

The coefficients 𝑐𝑐𝑓𝑓ℎ, 𝛼𝛼𝑓𝑓ℎ and 𝜎𝜎𝑓𝑓𝑙𝑙𝑡𝑡ℎ can be estimated from the model in Eq. (38) through application of the 
Least Squares method. By taking the logarithm of Eq. (38) and by considering log10[𝐾𝐾𝑓𝑓ℎ] as the experimental 
response and log10��𝑎𝑎𝑂𝑂𝑂𝑂𝑂𝑂� as the explanatory variable, the linear model for the expectation of log10[𝐾𝐾𝑓𝑓ℎ] 
is given by: 

𝐸𝐸[log10[𝐾𝐾𝑓𝑓ℎ]] = 𝑐𝑐𝑇𝑇 + 𝛼𝛼𝑓𝑓ℎ log10��𝑎𝑎𝑂𝑂𝑂𝑂𝑂𝑂�, (39) 

where 𝐸𝐸[∙] denotes the expectation of the experimental response and 𝑐𝑐𝑇𝑇 = log10[𝑐𝑐𝑓𝑓ℎ(𝐻𝐻𝐻𝐻 + 120)]. As an 
easy application of the Least Squares method, 𝑐𝑐𝑇𝑇, 𝛼𝛼𝑓𝑓ℎ and 𝜎𝜎𝑓𝑓𝑙𝑙𝑡𝑡ℎ can be estimated from the 𝑛𝑛𝑓𝑓 failures and, 
finally, the estimates of 𝛼𝛼𝑓𝑓ℎ, 𝑐𝑐𝑓𝑓ℎ and 𝜎𝜎𝑓𝑓𝑙𝑙𝑡𝑡ℎ can be obtained through the following expressions: 

⎩
⎪
⎪
⎨

⎪
⎪
⎧𝛼𝛼𝑓𝑓ℎ� =

∑ �log10�𝑘𝑘𝑡𝑡ℎ,𝑖𝑖�−log10[𝑘𝑘𝑡𝑡ℎ]����������������log10��𝑓𝑓𝑂𝑂𝑂𝑂𝐴𝐴,𝑖𝑖�−log10��𝑓𝑓𝑂𝑂𝑂𝑂𝐴𝐴�
���������������������

𝑛𝑛𝑓𝑓
𝑖𝑖=1

∑ �log10��𝑓𝑓𝑂𝑂𝑂𝑂𝐴𝐴,𝑖𝑖�−log10��𝑓𝑓𝑂𝑂𝑂𝑂𝐴𝐴�
���������������������

2𝑛𝑛𝑓𝑓
𝑖𝑖=1

𝑐𝑐𝑓𝑓ℎ� = 10𝑐𝑐𝑇𝑇�

𝐻𝐻𝐿𝐿+120
= 10log10�𝑘𝑘𝑡𝑡ℎ�

����������������−𝛼𝛼𝑡𝑡ℎ�log10��𝐺𝐺𝑂𝑂𝑂𝑂𝐴𝐴�
����������������������

𝐻𝐻𝐿𝐿+120

𝜎𝜎𝑓𝑓𝑙𝑙𝑡𝑡ℎ� = �∑ �log10�𝑘𝑘𝑡𝑡ℎ,𝑖𝑖�−log10�𝑐𝑐𝑡𝑡ℎ� (𝐻𝐻𝐿𝐿+120)�𝑓𝑓𝑂𝑂𝑂𝑂𝐴𝐴,𝑖𝑖
𝛼𝛼𝑡𝑡ℎ�

��
2𝑛𝑛𝑓𝑓

𝑖𝑖=1
𝑓𝑓𝑓𝑓−2

, (40) 

where ∙ ̃denotes the parameter estimate, 𝑘𝑘𝑓𝑓ℎ,𝑓𝑓 = 0.5𝑠𝑠𝑓𝑓√𝜋𝜋�𝑎𝑎𝑂𝑂𝑂𝑂𝑂𝑂,𝑓𝑓
1/2

, log10[𝑘𝑘𝑓𝑓ℎ]������������� = ∑ log10�𝑘𝑘𝑓𝑓ℎ,𝑓𝑓�
𝑓𝑓𝑓𝑓
𝑓𝑓=1 𝑛𝑛𝑓𝑓�  and 

log10��𝑎𝑎𝑂𝑂𝑂𝑂𝑂𝑂�
������������������ = ∑ log10��𝑎𝑎𝑂𝑂𝑂𝑂𝑂𝑂,𝑓𝑓�

𝑓𝑓𝑓𝑓
𝑓𝑓=1 𝑛𝑛𝑓𝑓� . 

As for the parameter 𝑐𝑐𝑠𝑠𝑙𝑙, the Maximum Likelihood Principle can be adopted as estimation method. In order 
to define the Likelihood function, the probability associated to the experimental dataset must be defined. 
Let us first consider the probability of having a failure. If a failure occurs at 𝑠𝑠 when the initial defect size is 
�𝑎𝑎𝑑𝑑,0, then the applied stress 𝑠𝑠 is necessarily larger than the conditional fatigue limit 𝑆𝑆𝑓𝑓|�𝑎𝑎𝑑𝑑,0. Therefore, 
by taking the logarithm, when a failure occurs the event 𝑋𝑋𝑓𝑓|�𝑎𝑎𝑑𝑑,0 < 𝑥𝑥 occurs and the probability of having a 
failure at 𝑠𝑠 when the initial defect size is �𝑎𝑎𝑑𝑑,0 is finally given by: 

𝑃𝑃�failure at 𝑠𝑠, given �𝑎𝑎𝑑𝑑,0� = 𝑃𝑃�𝑋𝑋𝑓𝑓|�𝑎𝑎𝑑𝑑,0 < 𝑥𝑥� = 𝐹𝐹𝑋𝑋𝑙𝑙|�𝑓𝑓𝑑𝑑,0
(𝑥𝑥). (41) 

Otherwise, two possible causes may originate a runout at 𝑦𝑦𝑟𝑟 when the initial defect size is �𝑎𝑎𝑑𝑑,0 and the 
specimen is tested at 𝑠𝑠: either the conditional fatigue life is infinite or the conditional fatigue life is finite but 
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the test is stopped at 𝑦𝑦𝑟𝑟 before failure occurs. From a probabilistic point of view, a runout at 𝑦𝑦𝑟𝑟 when the 
initial defect size is �𝑎𝑎𝑑𝑑,0 and the specimen is tested at 𝑠𝑠 can be described as follows: 

𝑃𝑃�runout at (𝑦𝑦𝑟𝑟; 𝑠𝑠), given �𝑎𝑎𝑑𝑑,0� = 𝑃𝑃��𝑋𝑋𝑓𝑓|�𝑎𝑎𝑑𝑑,0 < 𝑥𝑥� ∩ �𝑌𝑌𝑓𝑓��𝑎𝑎𝑑𝑑,0 > 𝑦𝑦𝑟𝑟�� + 𝑃𝑃�𝑋𝑋𝑓𝑓|�𝑎𝑎𝑑𝑑,0 ≥ 𝑥𝑥�. (42) 

By taking into account the definition of cdf of 𝑋𝑋𝑓𝑓|�𝑎𝑎𝑑𝑑,0 and 𝑌𝑌𝑓𝑓��𝑎𝑎𝑑𝑑,0, Eq. (42) becomes: 

𝑃𝑃�runout at (𝑦𝑦𝑟𝑟; 𝑠𝑠), given �𝑎𝑎𝑑𝑑,0� = 𝐹𝐹𝑋𝑋𝑙𝑙|�𝑓𝑓𝑑𝑑,0
(𝑥𝑥) �1 − 𝐹𝐹𝑌𝑌𝑓𝑓��𝑓𝑓𝑑𝑑,0

(𝑦𝑦𝑟𝑟)� + �1 − 𝐹𝐹𝑋𝑋𝑙𝑙|�𝑓𝑓𝑑𝑑,0
(𝑥𝑥)�. (43) 

With few passages, Eq. (43) can be finally rearranged as follows: 

𝑃𝑃�runout at (𝑦𝑦𝑟𝑟; 𝑠𝑠), given �𝑎𝑎𝑑𝑑,0� = 1 − 𝐹𝐹𝑋𝑋𝑙𝑙|�𝑓𝑓𝑑𝑑,0
(𝑥𝑥)𝐹𝐹𝑌𝑌𝑓𝑓��𝑓𝑓𝑑𝑑,0

(𝑦𝑦𝑟𝑟). (44) 

The Likelihood function 𝐿𝐿 associated to the experimental dataset can be finally computed from the failure 
(Eq. (41)) and runout (Eq. (44)) probabilities of each specimen as follows: 

𝐿𝐿 = ∏ 𝑃𝑃�failure at 𝑠𝑠𝑓𝑓, given �𝑎𝑎𝑑𝑑,0,𝑓𝑓�
𝑓𝑓𝑓𝑓
𝑓𝑓=1 ∙ ∏ 𝑃𝑃�runout at �𝑦𝑦𝑟𝑟; 𝑠𝑠𝑗𝑗�, given �𝑎𝑎𝑑𝑑,0,𝑗𝑗�

𝑓𝑓𝑟𝑟
𝑗𝑗=1 , (45) 

where 𝑛𝑛𝑟𝑟 is the number of runout specimens, �𝑠𝑠𝑓𝑓,�𝑎𝑎𝑑𝑑,0,𝑓𝑓� is the couple associated to the 𝑖𝑖-th failed specimen 
and �𝑦𝑦𝑟𝑟; 𝑠𝑠𝑗𝑗,�𝑎𝑎𝑑𝑑,0,𝑗𝑗� is the triplet associated to the 𝑗𝑗-the runout specimen. It is worth noting that, for the 𝑛𝑛𝑟𝑟 
runout specimens, the fracture surfaces cannot be analyzed and, consequently, the initial defect size is not 
known at the end of test. However, �𝑎𝑎𝑑𝑑,0,𝑗𝑗 must be measured for the computation of the Likelihood function. 
Therefore, in order to have a measure of the initial defect size in runout specimens, the specimens must be 
subsequently tested up to failure at a larger stress amplitude. 

By taking into account the assumed distributions (Eq. (22) and Eq. (31)), the Likelihood function in Eq. (45) 
becomes: 

𝐿𝐿�𝑐𝑐𝑠𝑠𝑙𝑙� = ∏ Φ𝐺𝐺𝑓𝑓𝐺𝐺𝑠𝑠𝑠𝑠 �
𝑚𝑚𝑖𝑖−𝜇𝜇𝑋𝑋𝑙𝑙�𝑐𝑐𝑠𝑠𝑙𝑙;�𝑓𝑓𝑑𝑑,0,𝑖𝑖�

𝜎𝜎𝑋𝑋𝑙𝑙�
�𝑓𝑓𝑓𝑓

𝑓𝑓=1 ∏ �1 −Φ𝐺𝐺𝑓𝑓𝐺𝐺𝑠𝑠𝑠𝑠 �
𝑚𝑚𝑗𝑗−𝜇𝜇𝑋𝑋𝑙𝑙�𝑐𝑐𝑠𝑠𝑙𝑙;�𝑓𝑓𝑑𝑑,0,𝑗𝑗�

𝜎𝜎𝑋𝑋𝑙𝑙�
�Φ𝐺𝐺𝑓𝑓𝐺𝐺𝑠𝑠𝑠𝑠 �

𝑦𝑦𝑟𝑟−𝜇𝜇𝑌𝑌��𝑚𝑚𝑗𝑗,�𝑓𝑓𝑑𝑑,0,𝑗𝑗�

𝜎𝜎𝑌𝑌�
��𝑓𝑓𝑟𝑟

𝑗𝑗=1 , (46) 

where, according to the plug-in principle (see, e.g., Ref.40 and the references therein), 𝜇𝜇𝑌𝑌��𝑥𝑥𝑗𝑗,�𝑎𝑎𝑑𝑑,0,𝑗𝑗�, 𝜎𝜎𝑌𝑌� and 
𝜎𝜎𝑋𝑋𝑙𝑙�  are the Least Squares estimates of 𝜇𝜇𝑌𝑌�𝑥𝑥𝑗𝑗,�𝑎𝑎𝑑𝑑,0,𝑗𝑗�, 𝜎𝜎𝑌𝑌 and 𝜎𝜎𝑋𝑋𝑙𝑙  and 𝜇𝜇𝑋𝑋𝑙𝑙�𝑐𝑐𝑠𝑠𝑙𝑙 ;�𝑎𝑎𝑑𝑑,0,∙� =

log10 �𝑐𝑐𝑠𝑠𝑙𝑙
𝑐𝑐𝑡𝑡ℎ� (𝐻𝐻𝐿𝐿+120)

�𝑓𝑓𝑑𝑑,0,∙
1 2⁄ −𝛼𝛼𝑡𝑡ℎ��, being 𝑐𝑐𝑓𝑓ℎ�  and 𝛼𝛼𝑓𝑓ℎ�  the Least Squares estimates of 𝑐𝑐𝑓𝑓ℎ and 𝛼𝛼𝑓𝑓ℎ. 

The estimates of 𝜇𝜇𝑌𝑌�𝑥𝑥𝑗𝑗,�𝑎𝑎𝑑𝑑,0,𝑗𝑗� and 𝜎𝜎𝑌𝑌 can be obtained by applying the Least Squares estimation method 
to the failure data. In particular, let 𝑌𝑌𝑓𝑓��𝑎𝑎𝑑𝑑,0 be considered as the response variable and 𝑥𝑥 and log10��𝑎𝑎𝑑𝑑,0� 
the two explanatory variables of the model (Eq. (32)), then: 

𝐸𝐸�𝑌𝑌𝑓𝑓��𝑎𝑎𝑑𝑑,0� = 𝑐𝑐𝑌𝑌 + 𝑚𝑚𝑌𝑌𝑥𝑥 + 𝑛𝑛𝑌𝑌 log10��𝑎𝑎𝑑𝑑,0�. (47) 

The parameters 𝑐𝑐𝑌𝑌, 𝑚𝑚𝑌𝑌 and 𝑛𝑛𝑌𝑌 of the multiple linear regression in Eq. (47) can be estimated from the 𝑛𝑛𝑓𝑓 
failures, through the Least Squares Method: 

�
𝑐𝑐𝑌𝑌�
𝑚𝑚𝑌𝑌�
𝑛𝑛𝑌𝑌�
� = (𝑻𝑻′𝑻𝑻)−1𝑻𝑻′𝒀𝒀, (48) 
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where 𝑻𝑻 = �
1 𝑥𝑥1 log10��𝑎𝑎𝑑𝑑,0,1�
… … …
1 𝑥𝑥𝑓𝑓𝑓𝑓 log10 ��𝑎𝑎𝑑𝑑,0,𝑓𝑓𝑓𝑓�

� is the design matrix of the multiple linear regression, 𝑻𝑻′ is the 

transpose of 𝑻𝑻 and 𝒀𝒀 = �
𝑦𝑦1
…
𝑦𝑦𝑓𝑓𝑓𝑓

� is the vector of the experimental responses, being 𝑦𝑦𝑓𝑓  (𝑖𝑖 = 1, … ,𝑛𝑛𝑓𝑓) the fatigue 

life of the 𝑖𝑖-th failed specimen. According to the plug-in principle, the parameter estimate of 𝜇𝜇𝑌𝑌�𝑥𝑥𝑗𝑗,�𝑎𝑎𝑑𝑑,0,𝑗𝑗� 
is therefore given by: 

𝜇𝜇𝑌𝑌��𝑥𝑥𝑗𝑗,�𝑎𝑎𝑑𝑑,0,𝑗𝑗� = 𝑐𝑐𝑌𝑌� + 𝑚𝑚𝑌𝑌� 𝑥𝑥𝑗𝑗 + 𝑛𝑛𝑌𝑌� log10��𝑎𝑎𝑑𝑑,0,𝑗𝑗�. (49) 

The Least Squares estimate of 𝜎𝜎𝑌𝑌 is the Root Mean Square Error associated to the regression model: 

𝜎𝜎𝑌𝑌� = �∑ �𝑦𝑦𝑖𝑖−𝜇𝜇𝑌𝑌��𝑚𝑚𝑖𝑖,�𝑓𝑓𝑑𝑑,0,𝑖𝑖��
2𝑛𝑛𝑓𝑓

𝑖𝑖=1
𝑓𝑓𝑓𝑓−3

. (50) 

The value of 𝑐𝑐𝑠𝑠𝑙𝑙  that maximizes the Likelihood function 𝐿𝐿�𝑐𝑐𝑠𝑠𝑙𝑙� in Eq. (46) provides the Maximum Likelihood 
estimate 𝑐𝑐𝑠𝑠𝑙𝑙� and also permits the estimation of 𝜇𝜇𝑋𝑋𝑙𝑙: 

𝜇𝜇𝑋𝑋𝑙𝑙� ��𝑎𝑎𝑑𝑑,0� = log10 �
𝑐𝑐𝑠𝑠𝑙𝑙�  𝑐𝑐𝑡𝑡ℎ� (𝐻𝐻𝐿𝐿+120)

�𝑓𝑓𝑑𝑑,0
1/2−𝛼𝛼𝑡𝑡ℎ� �. (51) 

According to the plug-in principle, the 𝛼𝛼-th quantiles in Eqs. (23) and (35) can be estimated by substituting 
the parameters with the corresponding estimates. 

The approximate 𝛼𝛼-th quantile in Eq. (30) requires the estimation of the parameters 𝜇𝜇√𝑂𝑂 and 𝜎𝜎√𝑂𝑂. Since the 
rv log10��𝐴𝐴𝑑𝑑,0� is approximately assumed to be Normal, the estimates 𝜇𝜇√𝑂𝑂�  and 𝜎𝜎√𝑂𝑂�  are respectively given 
by the sample mean and sample standard deviation of the logarithm of the initial defect sizes. By substituting 
in Eq. (30) the parameters 𝜇𝜇√𝑂𝑂 and 𝜎𝜎√𝑂𝑂 with the corresponding estimates, the approximate 𝛼𝛼-th quantile of 
𝑆𝑆𝑓𝑓 can be finally estimated. 

In order to estimate the cdfs in Eqs. (26) and (37), the parameters 𝜇𝜇√𝑂𝑂 and 𝜎𝜎√𝑂𝑂 must be estimated through 
a Gumbel plot of the initial defect sizes5. By substituting in Eqs. (26) and (37) the parameters with the 
corresponding estimates, the 𝛼𝛼-th quantiles of 𝑋𝑋𝑓𝑓  and 𝑌𝑌 can be finally estimated. 

3. Numerical application to an experimental dataset 

In order to show the steps that must be followed to estimate the model parameters and the 𝛼𝛼-th quantiles, 
the procedure explained in Section 2.5 will be applied to an experimental dataset. 

VHCF tests have been carried out on Gaussian specimens41 made of an AISI H13 steel with Vickers hardness 
560 kgf mm2⁄ . Details on the testing setup and on the tested material are reported in Refs.42,43 and will not 
be recalled here for the sake of brevity. Specimens were loaded at a constant stress amplitude until failure 
or up to 1010 cycles (runout specimens). Eighteen out of twenty Gaussian specimens failed during the VHCF 
tests at a number of cycles to failure ranging from 4.2 ∙ 107 to 9.6 ∙ 109 cycles. After the VHCF test, the two 
runout specimens were subsequently tested up to failure at larger stress amplitudes in order to reveal the 
possible presence of defects. Fracture surfaces were seen through a Scanning-Electron-Microscope (SEM) in 
order to measure the initial defect size in each specimen and through an optical microscope in order to 
measure the ODA size in failed specimens. From the SEM analysis, all the fatigue fractures nucleated from 
non-metallic inclusions (oxide-type inclusions). 
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The location of the initial defects in the specimens was taken into consideration, in order to assess the local 
stress amplitude in the vicinity of the initial defect. Fig. 3 shows the distribution of the initial defects with 
respect to the longitudinal axis of the specimen. From the initial defect locations, it is possible to estimate 
the normalized local stress amplitudes 𝑠𝑠𝑓𝑓𝑙𝑙𝑐𝑐𝑓𝑓𝑓𝑓 𝑠𝑠𝑚𝑚𝑓𝑓𝑚𝑚⁄ , being 𝑠𝑠𝑚𝑚𝑓𝑓𝑚𝑚 the nominal maximum stress amplitude 
applied during the test. As shown in Fig. 3, all the failures occurred for stress amplitudes larger than the 96% 
of the nominal maximum stress amplitude applied during the test. The maximum volume of material in which 
failures occurred was estimated to be equal to 2013 mm3, more than two times larger than the maximum 
risk-volume investigated in the VHCF literature44. 

Figure 3 

In the following, the local stress amplitude in the vicinity of the initial defect will be considered as the stress 
amplitude applied during the test. As shown in the S-N plot of the experimental dataset (Fig. 4), the local 
stress amplitudes are in the range 473 − 630 MPa. 

Figure 4 

As a first step, the parameters 𝛼𝛼𝑓𝑓ℎ, 𝑐𝑐𝑓𝑓ℎ and 𝜎𝜎𝑋𝑋𝑙𝑙  are estimated from the ODA sizes measured in failed 
specimens. As shown in Fig. 5, the linear model of Eq. (39) is in good agreement with the experimental data. 
In particular, according to Eq. (39), the Least Squares estimates of 𝛼𝛼𝑓𝑓ℎ, 𝑐𝑐𝑓𝑓ℎ and 𝜎𝜎𝑋𝑋𝑙𝑙  are given by: 

�
𝛼𝛼𝑓𝑓ℎ� = 0.2965
𝑐𝑐𝑓𝑓ℎ� = 1.9054

𝜎𝜎𝑋𝑋𝑙𝑙� = 𝜎𝜎𝑓𝑓𝑙𝑙𝑡𝑡ℎ� = 0.0214
, (52) 

where the 𝛼𝛼𝑓𝑓ℎ�  and 𝑐𝑐𝑓𝑓ℎ�  values are close to the values proposed in the literature for 𝛼𝛼𝑓𝑓ℎ (i.e., 1/3 according to 
Refs.1,5,17,32) and for 𝑐𝑐𝑓𝑓ℎ (i.e., 1.87 according to Ref.32, and 1.8 according to Ref.17). 

Figure 5 

As a second step, the parameters 𝑐𝑐𝑌𝑌, 𝑚𝑚𝑌𝑌, 𝑛𝑛𝑌𝑌 and 𝜎𝜎𝑌𝑌 are estimated from the triplet �𝑦𝑦; 𝑠𝑠,�𝑎𝑎𝑑𝑑,0� associated 

to every failed specimen. Fig. 6 shows the number of cycles as a function of the variable 𝑠𝑠 ∙ �𝑎𝑎𝑑𝑑,0
𝑓𝑓𝑌𝑌 𝑚𝑚𝑌𝑌⁄

 in a 
double-logarithmic plot. As shown in Fig. 6, the assumed linear model of Eq. (47) is in good agreement with 
the experimental data. In particular, according to Eqs. (48) and (50), the Least Squares estimates of 𝑐𝑐𝑌𝑌, 𝑚𝑚𝑌𝑌, 
𝑛𝑛𝑌𝑌 and 𝜎𝜎𝑌𝑌 are given by: 

�

𝑐𝑐𝑌𝑌� = 56.9259
𝑚𝑚𝑌𝑌� = −16.4492
𝑛𝑛𝑌𝑌� = −1.7990
𝜎𝜎𝑌𝑌� = 0.3559

, (53) 

where the ratio 𝑛𝑛𝑌𝑌� 𝑚𝑚𝑌𝑌�⁄ ≅ 1/9 is close to the 1/6 value proposed by Murakami5. 

Figure 6 

As a third step, the parameter 𝑐𝑐𝑠𝑠𝑙𝑙, is estimated through the Maximum Likelihood Principle, by maximizing the 
Likelihood function in Eq. (46). The numerical maximization is carried out in Matlab® and provides for 𝑐𝑐𝑠𝑠𝑙𝑙  the 
following estimate: 

𝑐𝑐𝑠𝑠𝑙𝑙� = 0.7278, (54) 

which finally permits the estimation of 𝜇𝜇𝑋𝑋𝑙𝑙��𝑎𝑎𝑑𝑑,0�, according to Eq. (51): 
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𝜇𝜇𝑋𝑋𝑙𝑙� ��𝑎𝑎𝑑𝑑,0� = log10 �
1.3868∙(𝐻𝐻𝐿𝐿+120)

�𝑓𝑓𝑑𝑑,0
0.2035 �. (55) 

Eq. (55) has a structure similar to the expression of fatigue limit proposed by Murakami5. Moreover, the 
exponent 0.2035 ≅ 1/5 is close to the 1/6 proposed by Murakami5. 

The estimates 𝜎𝜎𝑋𝑋𝑙𝑙�  and 𝜇𝜇𝑋𝑋𝑙𝑙� ��𝑎𝑎𝑑𝑑,0� can be used for estimating the 𝛼𝛼-th quantile of the conditional rv 𝑆𝑆𝑓𝑓|�𝑎𝑎𝑑𝑑,0 
from Eq. (23-25), according to the plug-in principle. Fig. 7 shows a plot of the estimated 0.1-th, 0.5-th and 
0.9-th quantiles of the conditional fatigue limit, as a function of the initial defect size �𝑎𝑎𝑑𝑑,0. As shown in Fig. 
7, all failure data are above the 0.9 quantile of the conditional fatigue limit, in agreement with the definition 
of fatigue limit. 

Figure 7 

The median S-N curve for a given initial defect size can be estimated from Eq. (35), by substituting the 
parameter with the corresponding estimates and 𝛼𝛼 with 0.5. Fig. 8 shows a plot of the estimated median S-
N curves, for values of the initial defect size ranging from 18.6 µm to 56.3 µm. As shown in Fig. 8, for each 
initial defect size a specific finite life and a specific fatigue limit can be estimated. In particular, the larger the 
initial defect size the smaller the median fatigue strength. 

Figure 8 

For a given initial defect size, the S-N curves can be also estimated at failure probabilities different from the 
median from Eq. (35). As an example, Fig. 9 shows a plot of the estimated 0.1-th, 0.5-th and 0.9-th S-N curves 
for an initial defect size equal to 32.4 µm. 

Figure 9 

In order to estimate the marginal fatigue limit distribution and the marginal P-S-N curves, the statistical 
distribution of the initial defect size must be estimated through a Gumbel plot. Fig. 10 shows the Gumbel 
plot of the initial defect sizes. According to the procedure suggested in Ref.5, the two parameters of the LEV 
distribution can be easily estimated as follows: 

�
𝜇𝜇√𝑂𝑂� = 32.1697
𝜎𝜎√𝑂𝑂� = 9.7799 , (56) 

Figure 10 

Given the statistical distribution of the initial defect size, it is finally possible to estimate the P-S-N curves for 
different values of the failure probability. Fig. 11 shows the estimated 0.1-th, 0.5-th and 0.9-th S-N curves 
for the tested specimens. As shown in Fig. 11 the region between the 0.1-th and the 0.9-th S–N curve includes 
about the 88% (which is close to the expected 80%) of the failure data; while the 0.5-th S–N curve is almost 
median between failure data at each stress amplitude. 

Figure 11 

By taking into account Eqs. (26) and (30), it is also possible to estimate the fatigue limit for the tested 
specimens. As shown in Fig. 12, the two expressions provide very similar results in terms of interval plot: 
according to Eq. (26), the 80% interval plot is [410; 505] MPa with median 455 MPa; according to Eq. (30), 
the 80% interval plot is [412; 503] MPa with median 455 MPa. It is worth noting that the approximate 
expression of Eq. (30) is computed without any numerical integration: the parameters of the approximate 
distribution of the initial defect size are estimated by computing the sample mean and standard deviation of 
the logarithm of the initial defect sizes: 
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�
𝜇𝜇√𝑂𝑂� = 1.5544
𝜎𝜎√𝑂𝑂� = 0.1282, (57) 

Figure 12 

For the sake of comparison, Fig. 12 also shows the interval plots computed for two different fatigue limit 
models proposed in the VHCF literature. Differently from the models proposed in the present paper and from 
the Murakami’s model1, which are in good agreement with the experimental data, the model proposed by 
Liu et al.30 provides risky non-conservative results. In particular, all failed specimens are above the upper 
confidence limit computed from Eqs. (26) and (30), 15 out of 18 failed specimens are above the upper 
confidence limit computed according from the Murakami’s model1, and no failed specimen is above the 
upper confidence limit computed from the model proposed by Liu et al.30. 
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4. Conclusions 

A general SIF formulation for the analytical model of the hydrogen assisted crack growth was defined in the 
paper. The proposed formulation is based on general basic assumptions related to the hydrogen assistance 
in ODA formation and includes different models proposed in the Very-High-Cycle Fatigue literature and in 
the hydrogen embrittlement literature. 

Starting from the general SIF formulation, a general expression for the material fatigue limit was obtained in 
the paper. 

The procedures for modeling the randomness of the fatigue limit and the Probabilistic-S-N (P-S-N) curves 
were also provided. The statistical method for the estimation of the parameters involved in the proposed 
model was finally illustrated in the paper and numerically applied to an experimental dataset. 

The numerical application showed the potentialities of the proposed approach in terms of estimated 
statistical results (P-S-N curves and fatigue limit distribution). It also highlighted the ease of application of 
the method: it was shown that model parameters can be easily estimated step by step through 
straightforward applications of the Least Squares Method and of the Maximum Likelihood Principle to 
experimental data. 
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Appendix A: Solution of the system in Equation (12) 

By substituting Eqs. (1), (2) and (5) in Eq. (12), the system of equations becomes: 

�
�0.5√𝜋𝜋�𝑎𝑎𝑑𝑑

1 2⁄
+ 𝑐𝑐𝐻𝐻�𝑎𝑎𝑑𝑑,0

1 2⁄ −𝛼𝛼𝐻𝐻�𝑎𝑎𝑑𝑑
𝛼𝛼𝐻𝐻� 𝑠𝑠 − 𝑐𝑐𝑓𝑓ℎ(𝐻𝐻𝐻𝐻 + 120)�𝑎𝑎𝑑𝑑

𝛼𝛼𝑡𝑡ℎ = 0

�1 2⁄ 0.5√𝜋𝜋�𝑎𝑎𝑑𝑑
−1 2⁄

+ 𝛼𝛼𝐻𝐻𝑐𝑐𝐻𝐻�𝑎𝑎𝑑𝑑,0
1 2⁄ −𝛼𝛼𝐻𝐻�𝑎𝑎𝑑𝑑

𝛼𝛼𝐻𝐻−1� 𝑠𝑠 − 𝑐𝑐𝑓𝑓ℎ(𝐻𝐻𝐻𝐻 + 120)𝛼𝛼𝑓𝑓ℎ�𝑎𝑎𝑑𝑑
𝛼𝛼𝑡𝑡ℎ−1 = 0

. (A.1) 

The stress amplitude can be expressed as a function of the defect size from the first of the two equations in 
Eq. (A.1): 

𝑠𝑠 = 𝑐𝑐𝑡𝑡ℎ(𝐻𝐻𝐿𝐿+120)

0.5√𝜋𝜋�𝑓𝑓𝑑𝑑
1 2⁄ −𝛼𝛼𝑡𝑡ℎ+𝑐𝑐𝐻𝐻�𝑓𝑓𝑑𝑑,0

1 2⁄ −𝛼𝛼𝐻𝐻�𝑓𝑓𝑑𝑑
𝛼𝛼𝐻𝐻−𝛼𝛼𝑡𝑡ℎ

. (A.2) 

If Eq. (A.2) is substituted in the second of the two equations in Eq. (A.1), it yields: 
1 2⁄ 0.5√𝜋𝜋�𝑓𝑓𝑑𝑑

−1 2⁄
+𝛼𝛼𝐻𝐻𝑐𝑐𝐻𝐻�𝑓𝑓𝑑𝑑,0

1 2⁄ −𝛼𝛼𝐻𝐻�𝑓𝑓𝑑𝑑
𝛼𝛼𝐻𝐻−1

0.5√𝜋𝜋�𝑓𝑓𝑑𝑑
1 2⁄ −𝛼𝛼𝑡𝑡ℎ+𝑐𝑐𝐻𝐻�𝑓𝑓𝑑𝑑,0

1 2⁄ −𝛼𝛼𝐻𝐻�𝑓𝑓𝑑𝑑
𝛼𝛼𝐻𝐻−𝛼𝛼𝑡𝑡ℎ

= 𝛼𝛼𝑓𝑓ℎ�𝑎𝑎𝑑𝑑
𝛼𝛼𝑡𝑡ℎ−1. (A.3) 

With few passages, the largest final defect size can be obtained from Eq. (A.3): 

�𝑎𝑎𝑑𝑑,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓,𝑚𝑚𝑓𝑓𝑚𝑚 = � (𝛼𝛼𝑡𝑡ℎ−𝛼𝛼𝐻𝐻)𝑐𝑐𝐻𝐻
(1 2⁄ −𝛼𝛼𝑡𝑡ℎ)0.5√𝜋𝜋

�
1

1 2⁄ −𝛼𝛼𝐻𝐻 �𝑎𝑎𝑑𝑑,0, (A.4) 

which shows that the largest final defect size is proportional to the initial defect size. 
Finally, by substituting Eq. (A.4) in Eq. (A.2) it is possible to show that the fatigue limit takes the following 
form: 

𝑠𝑠𝑓𝑓 =
��1 2⁄ −𝛼𝛼𝑡𝑡ℎ�0.5√𝜋𝜋

�𝛼𝛼𝑡𝑡ℎ−𝛼𝛼𝐻𝐻�𝑐𝑐𝐻𝐻
�

1 2⁄ −𝛼𝛼𝑡𝑡ℎ
1 2⁄ −𝛼𝛼𝐻𝐻 𝛼𝛼𝑡𝑡ℎ−𝛼𝛼𝐻𝐻

0.5√𝜋𝜋�1 2⁄ −𝛼𝛼𝐻𝐻�
𝑐𝑐𝑡𝑡ℎ(𝐻𝐻𝐿𝐿+120)

�𝑓𝑓𝑑𝑑,0
1 2⁄ −𝛼𝛼𝑡𝑡ℎ

=
𝑐𝑐𝑠𝑠𝑙𝑙,𝛼𝛼𝐻𝐻<0𝑐𝑐𝑡𝑡ℎ(𝐻𝐻𝐿𝐿+120)

�𝑓𝑓𝑑𝑑,0
1 2⁄ −𝛼𝛼𝑡𝑡ℎ

, (A.5) 

where 𝑐𝑐𝑠𝑠𝑙𝑙,𝛼𝛼𝐻𝐻<0 is a constant coefficient, which depends on the values assumed by 𝑐𝑐𝑓𝑓ℎ, 𝑐𝑐𝐻𝐻, 𝛼𝛼𝑓𝑓ℎ and 𝛼𝛼𝐻𝐻. 
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Appendix B: Numerical difference between Equation (13) and the fatigue limit expression in 
Liu30 

According to Liu’s model17,30, 𝛼𝛼𝐻𝐻 = −5 2⁄ . By substituting 𝛼𝛼𝐻𝐻 = −5 2⁄  in Eq. (13), the fatigue limit 
expression becomes: 

𝑠𝑠𝑓𝑓 =
��1 2⁄ −𝛼𝛼𝑡𝑡ℎ�0.5√𝜋𝜋

�𝛼𝛼𝑡𝑡ℎ+5 2⁄ �𝑐𝑐𝐻𝐻
�

1 2⁄ −𝛼𝛼𝑡𝑡ℎ
3 𝛼𝛼𝑡𝑡ℎ+5 2⁄

1.5√𝜋𝜋
𝑐𝑐𝑡𝑡ℎ(𝐻𝐻𝐿𝐿+120)

�𝑓𝑓𝑑𝑑,0
1 2⁄ −𝛼𝛼𝑡𝑡ℎ

. (B.1) 

It is worth noting that the fatigue limit expression in Eq. (B.1) differs from the expression proposed by Liu et 
al.30. The difference is due to a different fatigue limit condition considered in Ref.30: in Ref.30 the critical 
transition between finite and infinite fatigue life occurs when the condition 𝑘𝑘𝑑𝑑��𝑎𝑎𝑂𝑂𝑂𝑂𝑂𝑂� = 𝑘𝑘𝑓𝑓ℎ��𝑎𝑎𝑂𝑂𝑂𝑂𝑂𝑂� is 
fulfilled with a 𝑘𝑘𝐻𝐻 negligible and equal to a small quantity. Liu et al.30 considered as negligible a value of 𝑘𝑘𝐻𝐻 
equal to 0.01𝑘𝑘𝑑𝑑. According to Liu et al.30, the fatigue limit must thus fulfill the following system of equations: 

�
𝑘𝑘𝑑𝑑��𝑎𝑎𝑂𝑂𝑂𝑂𝑂𝑂� = 𝑘𝑘𝑓𝑓ℎ��𝑎𝑎𝑂𝑂𝑂𝑂𝑂𝑂�

𝑘𝑘𝐻𝐻��𝑎𝑎𝑂𝑂𝑂𝑂𝑂𝑂� = 0.01𝑘𝑘𝑑𝑑��𝑎𝑎𝑂𝑂𝑂𝑂𝑂𝑂�
. (B.2) 

By substituting Eqs. (1), (2) and (5) in Eq. (B.2), the system of equations becomes after few passages: 

�
0.5𝑠𝑠√𝜋𝜋�𝑎𝑎𝑂𝑂𝑂𝑂𝑂𝑂

1 2⁄ −𝛼𝛼𝑡𝑡ℎ = 𝑐𝑐𝑓𝑓ℎ(𝐻𝐻𝐻𝐻 + 120)

𝑐𝑐𝐻𝐻�𝑎𝑎𝑑𝑑,0
3

= 5 ∙ 10−3√𝜋𝜋�𝑎𝑎𝑂𝑂𝑂𝑂𝑂𝑂
3 , (B.2) 

where 𝛼𝛼𝐻𝐻 has been substituted with −5 2⁄ . 

The �𝑎𝑎𝑂𝑂𝑂𝑂𝑂𝑂 can be expressed as a function of �𝑎𝑎𝑑𝑑,0 from the second of the two equations in Eq. (B.2): 

�𝑎𝑎𝑂𝑂𝑂𝑂𝑂𝑂 = � 𝑐𝑐𝐻𝐻
5∙10−3√𝜋𝜋

�
1
3 �𝑎𝑎𝑑𝑑,0. (B.3) 

If Eq. (B.3) is substituted in the first of the two equations in Eq. (B.2), it yields: 

0.5𝑠𝑠√𝜋𝜋 � 𝑐𝑐𝐻𝐻
5∙10−3√𝜋𝜋

�
1 2⁄ −𝛼𝛼𝑡𝑡ℎ

3 �𝑎𝑎𝑑𝑑,0
1 2⁄ −𝛼𝛼𝑡𝑡ℎ = 𝑐𝑐𝑓𝑓ℎ(𝐻𝐻𝐻𝐻 + 120), (B.4) 

With few passages, the fatigue limit expression according to Liu et al.30 can be obtained from Eq. (B.4): 

𝑠𝑠𝑓𝑓,𝐿𝐿𝑓𝑓𝐺𝐺 =

�5∙10
−3√𝜋𝜋
𝑐𝑐𝐻𝐻

�

1 2⁄ −𝛼𝛼𝑡𝑡ℎ
3

0.5√𝜋𝜋
𝑐𝑐𝑡𝑡ℎ(𝐻𝐻𝐿𝐿+120)

�𝑓𝑓𝑑𝑑,0
1 2⁄ −𝛼𝛼𝑡𝑡ℎ

. (B.5) 

By taking the ratio of Eqs. (B.1) and (B.5), it can be shown that: 

𝑠𝑠𝑙𝑙
𝑠𝑠𝑙𝑙,𝐿𝐿𝑖𝑖𝐺𝐺

= �0.01−1 1/2−𝛼𝛼𝑡𝑡ℎ
5/2+𝛼𝛼𝑡𝑡ℎ

�
1/2−𝛼𝛼𝑡𝑡ℎ

3 5/2+𝛼𝛼𝑡𝑡ℎ
3

, (B.6) 

which is larger than 1 for any positive value of 𝛼𝛼𝑓𝑓ℎ below 1/3. In particular, the maximum value (equal to 
1.37) of the ratio in Eq. (B.6) is reached when 𝛼𝛼𝑓𝑓ℎ = 0 and the minimum value (equal to 1.04) is reached 
when 𝛼𝛼𝑓𝑓ℎ = 1/3. In any case, 𝑠𝑠𝑓𝑓,𝐿𝐿𝑓𝑓𝐺𝐺 is below 𝑠𝑠𝑓𝑓. In this respect, 𝑠𝑠𝑓𝑓,𝐿𝐿𝑓𝑓𝐺𝐺 is a conservative estimate of the fatigue 
limit that can be directly computed from the model proposed in Ref.17. The conservativeness of the 
estimation proposed in Ref.30 probably descends from the arbitrary negligible value of 𝑘𝑘𝐻𝐻 assumed in Ref.30. 
If, rather than equal to 0.01𝑘𝑘𝑑𝑑, 𝑘𝑘𝐻𝐻 is more generally assumed equal to 𝛿𝛿𝑘𝑘𝑑𝑑, Eq. (B.6) becomes: 

𝑠𝑠𝑙𝑙
𝑠𝑠𝑙𝑙,𝐿𝐿𝑖𝑖𝐺𝐺

= �𝛿𝛿−1 1/2−𝛼𝛼𝑡𝑡ℎ
5/2+𝛼𝛼𝑡𝑡ℎ

�
1/2−𝛼𝛼𝑡𝑡ℎ

3 5/2+𝛼𝛼𝑡𝑡ℎ
3

, (B.7) 
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which can be exploited to compute the expression of 𝛿𝛿 that verifies 𝑠𝑠𝑓𝑓,𝐿𝐿𝑓𝑓𝐺𝐺 = 𝑠𝑠𝑓𝑓. In particular, it can be shown 
form Eq. (B.7) that the expression of 𝛿𝛿 that verifies 𝑠𝑠𝑓𝑓,𝐿𝐿𝑓𝑓𝐺𝐺 = 𝑠𝑠𝑓𝑓 takes the following form: 

𝛿𝛿 = 1/2−𝛼𝛼𝑡𝑡ℎ
5/2+𝛼𝛼𝑡𝑡ℎ

�5/2+𝛼𝛼𝑡𝑡ℎ
3

�
3

1/2−𝛼𝛼𝑡𝑡ℎ, (B.8) 

which is in the range [0.021; 0.067] (larger than 0.01) for any positive value of 𝛼𝛼𝑓𝑓ℎ below 1/3. 
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