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Abstract
Cancer is a complex disease that startswithmutations of key genes in one cell or a small
group of cells at a primary site in the body. If these cancer cells continue to grow suc-
cessfully and, at some later stage, invade the surrounding tissue and acquire a vascular
network, they can spread to distant secondary sites in the body. This process, known as
metastatic spread, is responsible for around 90% of deaths from cancer and is one of
the so-called hallmarks of cancer. To shed light on themetastatic process, we present a
mathematical modelling framework that captures for the first time the interconnected
processes of invasion and metastatic spread of individual cancer cells in a spatially
explicit manner—a multigrid, hybrid, individual-based approach. This framework
accounts for the spatiotemporal evolution of mesenchymal- and epithelial-like can-
cer cells, membrane-type-1 matrix metalloproteinase (MT1-MMP) and the diffusible
matrix metalloproteinase-2 (MMP-2), and for their interactions with the extracellular
matrix. Using computational simulations, we demonstrate that our model captures all
the key steps of the invasion-metastasis cascade, i.e. invasion by both heterogeneous
cancer cell clusters and by singlemesenchymal-like cancer cells; intravasation of these
clusters and single cells both via active mechanisms mediated by matrix-degrading
enzymes (MDEs) andvia passive shedding; circulation of cancer cell clusters and single
cancer cells in the vasculature with the associated risk of cell death and disaggregation
of clusters; extravasation of clusters and single cells; and metastatic growth at distant
secondary sites in the body. By faithfully reproducing experimental results, our simu-
lations support the evidence-based hypothesis that the membrane-bound MT1-MMP
is the main driver of invasive spread rather than diffusible MDEs such as MMP-2.
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1 Introduction

Most solid tumours start withmutations of key genes either in one or in a small group of
themore than 1013 healthy cells in the human body (Bianconi et al. 2013). Abnormally
rapid cell proliferation is one of the most notable results of these acquired cancerous
mutations, which can lead to the formation of a small nodule of cancer cells. Over time,
this nodule can expand, while acquiring increasingly aggressive mutations, into a full
avascular tumour with a diameter of up to approximately 0.1–0.2 cm (Folkman 1990),
limited by the diffusion of nutrients (e.g. oxygen). For successful growth beyond this
size, the cancer cells start recruiting new blood vessels by secreting chemicals, which
are collectively known as tumour angiogenic factors (TAFs) (Folkman and Klagsbrun
1987). This neovascularisation process is called (tumour-induced) angiogenesis. The
resulting vasculature serves the tumour’s increased metabolic needs by transporting
the required nutrients. The newly formed blood vessels additionally benefit the tumour
in the subsequent vascular growth phase, when the cancer cells become invasive so that
gradients in nutrients, oxygen and extracellular matrix (ECM) drive cancer cells away
from the primary tumour mass. In the event that cancer cells successfully intravasate
into the newly grown blood vessels and survive in the vessel environment (where they
are exposed to risks such as attacks by the immune system and shear stress in the
blood flow), they can extravasate and relocate at distant sites in the body. At these
new sites, nutrients and space are less of a limiting factor to growth. The described
sequence of steps of successful relocation of cancer cells from a primary location
to a secondary location is known as metastatic spread. It can lead to the formation
of secondary tumours, called metastases, at sites in the body away from the primary
tumour. In the first instance, however, the successfully extravasated cancer cells occur
either as single disseminated tumour cells (DTCs) or as small clusters of cancer cells,
called micrometastases. These DTCs and micrometastases may remain dormant but
have the potential to proliferate into vascularised metastases at the metastatic sites
at some later point in time. The full process we have described here, which is shown
schematically in Fig. 1, is also known as the invasion-metastasis cascade (Fidler 2003;
Talmadge and Fidler 2010).

Expanding and deepening our understanding of the invasion-metastasis cascade is
of vital importance. Only approximately 10% of cancer-related deaths are caused by
primary tumours alone that, for example, have grown to a size at which they affect
organ function by exerting physical pressure. Although this by itself is an incentive to
model cancer growth, the other 90% of cancer-related deaths arise due to metastatic
spread andmetastases growing at distant sites away from the primary tumour (Hanahan
andWeinberg 2000; Gupta andMassagué 2006). Many localised primary tumours can
be treated successfully, e.g. by resection or chemotherapy, but once cancer cells have
begun to spread throughout the body, it becomes increasingly difficult to treat a patient
and prognosis is very poor.
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Fig. 1 Schematic overview of the invasion-metastasis cascade. Single mesenchymal-like cancer cells and
heterogeneous clusters of mesenchymal- and epithelial-like cancer cells break free from the primary tumour
and invade the surrounding tissue (top left). They can intravasate via active MDE-mediated and passive
mechanisms (upper left, along epithelium of the vessel). Once in the vasculature, CTC clusters may disag-
gregate (centre) and CTCs may die. Surviving cells may extravasate via the walls of the microvasculature
to various secondary sites in the body. Successful colonisation there is rare but can result in either DTCs
or micrometastases (bottom right), which have the potential to develop into full-blown metastases (Colour
figure online)

The invasion-metastasis cascade is a complex biological process, and many ques-
tions about its details remain unanswered to date. Mathematical modelling can
therefore be a useful tool to capture and unravel this complexity, and to thereby gain a
better understanding of the invasion-metastasis cascade. Ultimately, predictive mod-
elling may help to advance treatment success through personalised medicine.

While spatial mathematical models of the cancer invasion process alone as well
as non-spatial models of metastatic spread exist, these two processes, both of which
are spatial in nature, have, to our knowledge, not been combined into a unified math-
ematical modelling framework previously. In this paper, we hence propose a first
such framework to model cancer cell invasion and metastatic spread in a explic-
itly spatial manner. We consider two phenotypes of cancer cells—the more motile
mesenchymal-like and the more proliferative epithelial-like cancer cells. Adopting
a multigrid, hybrid, individual-based approach, our mathematical model is capable
of capturing all the key steps of the invasion-metastasis cascade, i.e. invasion by
both heterogeneous cancer cell clusters and by single mesenchymal-like cancer cells;
intravasation of these clusters and single cells both via active mechanisms, which
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are mediated by matrix-degrading enzymes (MDEs), and via passive shedding; cir-
culation of cancer cell clusters and single cancer cells in the vasculature with the
associated disaggregation of clusters and risk of cell death; extravasation of clusters
and single cells; and metastatic growth at distant sites in the body. We verify the bio-
logical accuracy of our model by varying key model parameters and checking results
against biological findings. We specifically find that the co-presence of epithelial-
like and mesenchymal-like cancer cells enhances local tissue invasion and metastatic
spread. Furthermore, by reproducing experimental results, the simulations support the
evidence-based hypothesis that the membrane-boundmembrane-type-1 matrix metal-
loproteinase (MT1-MMP) is the main driver of invasive spread rather than diffusible
MDEs such as matrix metalloproteinase-2 (MMP-2), in particular when we switch
from diffusion-dominated to haptotaxis-dominated cancer cell invasion.

The remainder of the paper is organised as follows. In Sect. 2, we summarise
the key steps of the invasion-metastasis cascade and the roles of different cancer cell
phenotypes inmore detail. In Sect. 3,we introduce our generalmathematicalmodelling
framework ofmetastatic spread. As part of introducing this newmodelling framework,
we give an overview of previous models of both cancer invasion and metastasis at the
beginning of this section. In Sect. 4, we explain how we set up the computational
simulations and how we calibrated the model. In Sect. 5, we present the simulation
results. Finally, in Sect. 6, we discuss the biological implications of our results as well
as future work.

2 Biological Background

In this section,wedescribe themain steps of the invasion-metastasis cascade (cf.Wein-
berg 2013) that can enable a small primary nodule of cancer cells to spread to distant
sites throughout the body and then colonise at these secondary sites.

2.1 Local Cancer Cell Invasion

When the cancer cells are invading the tissue surrounding the primary tumour, they
have to overcome structural obstacles. The cells need to make their way through the
fairly rigid ECM, which mainly consists of various tissue-bound macromolecules
such as structure-providing collagens (mainly of type-I), as well as of fibronectin, vit-
ronectin and laminin, which influence the spreading, motility and adhesion of cancers
cells. Often, the cancer cells additionally have to penetrate the even more rigid basal
laminae of blood vessels and potentially of the primary sites they originate from.

The two main mechanisms used by cancer cells to overcome these hurdles, which
have been discussed in detail by, for example, Friedl and Wolf (2003), are protease-
dependent and protease-independent invasions. Protease-dependent invasion earns its
name from collagen-cleaving proteinases, and more specifically MDEs, which are
secreted by some cancer cell types. The cleaving of collagen allows all types of cancer
cells to subsequently invade along the paths created. Protease-independent invasion
relies on cancer cells changing from amesenchymal-like to an amoeboid-like shape—
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a process called mesenchymal-amoeboid transition. This increases the morphological
plasticity of the cells and enables them to squeeze through the collagen-like pores,
instead of solely relying on ECM degradation for invasion.

However, it has been shown by Sabeh et al. (2009) that cancer cells cannot migrate
unless the proteinases have cleared the collagen prevalent in normal tissue of its cova-
lent cross-links, and that protease-dependent invasion on its own is a sufficient invasion
mechanism. Therefore, we focus only on the mechanism of protease-dependent inva-
sion throughout the rest of this paper.

We distinguish between two cancer cell phenotypes—epithelial-like cancer cells
and mesenchymal-like cancer cells. These cancer cell types arise due to an observed
trade-off between a cell’s invasiveness and its ability to proliferate—this is also known
as the go-or-grow dichotomy (Giese et al. 1996). The mesenchymal-like cancer cells
resemble mobile cells in embryo development and are therefore more motile. The
mesenchymal-like cancer cells can also invade and intravasate as single cells. This is
due to their loss of cell–cell adhesion as well as their expression of MDEs, such as the
membrane-bound MT1-MMP and the diffusible MMP-2. Epithelial-like cancer cells,
on the other hand, cannot invade effectively without the coexistence ofMDE-secreting
mesenchymal-like cancer cells. This is because the cancer cells with an epithelial-like
phenotype do not express MDEs. They are also comparatively less motile. How-
ever, the epithelial-like cell type is more proliferative and its role should not to be
ignored in the invasion-metastasis cascade. Also, mesenchymal-like cancer cells have
been suggested to be able to develop from epithelial-like cancer cells via a process
termed epithelial-mesenchymal transition (EMT) (Kalluri andWeinberg 2009), which
is shown schematically in Fig. 2. The reverse process, mesenchymal-epithelial transi-
tion (MET), has additionally been suggested to be involved in metastatic spread, for
instance by contributing to the colonisation of DTCs at secondary sites (Gunasinghe
et al. 2012).

Mesenchymal-like and epithelial-like cancer cells have been observed to invade
most effectively in a setting where both cancer cell types are present. This gives rise
to the hypothesis of a second protease-dependent invasion mechanism in addition to
mesenchymal-like cancer cells invading individually.Collective migration of cohesive
cell cohorts has been shown to be important for the invasion of cancer cells by Friedl
et al. (2012), amongst others. The theory is that clusters consisting of cancer cells of
heterogeneous phenotypes may invade the ECM together. Figure 1 provides a scheme
of the invasion of single mesenchymal-like cells versus collective groups of cells.

2.2 Intravasation

Once suitably mutated cancer cells—whether in the form of oligoclonal clusters
derived from the same primary tumour (Aceto et al. 2014) or individually—have
managed to invade the tissue far enough to find themselves adjacent to a lymph or
blood vessel, they can potentially intravasate into the blood system through the basal
laminae of these vessels.While there is experimental evidence suggesting that a subset
of cancer cell lines may only be able to access the blood vessels indirectly via prior
intravasation into the lymph vessels, the spread to distant sites in the body ultimately
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Fig. 2 Schematic representation of the EMT. As an outcome of EMT, the cell–cell adhesion between
formerly epithelial-like cancer cells is reduced, while the cancer cells express more cell–matrix adhesion
enhancing molecules such as cadherin. This combination of changes enhances invasiveness. Further, cancer
cells becomemore potent at degrading the underlying basement membranes of organs and vessels, as shown
towards the right of the figure, as well as the ECM in general. This allows the mesenchymal-like cancer
cells to invade into the surrounding stroma. Reproduced from Micalizzi et al. (2010) with permission from
Springer (Colour figure online)

happens by dissemination through the blood vessels (Wong and Hynes 2006; Lambert
et al. 2017).

The exact mechanism of intravasation into the vasculature is still unclear. How-
ever, the two main proposed biological intravasation modes—active versus passive
intravasation—are likely not mutually exclusive, as suggested for instance by Caval-
laro and Christofori (2001), Bockhorn et al. (2007) and Jie et al. (2017). The active
intravasation hypothesis postulates that cancer cells crawl towards and into vessels
actively with help of MDEs. Passive intravasation, on the other hand, implies a more
accidental shedding of cancer cells via newly formed, immature vessels, which are
fragile and may collapse due to trauma or under the physical pressure caused by rapid
tumour expansion.

The above-explained difference between more mesenchymal-like and more
epithelial-like cancer cells together with this differentiation between active and pas-
sive intravasation gives rise to three entry modes of cancer cells into the vasculature,
which are further explained in Francart et al. (2018):

1. Single MDE-expressing mesenchymal-like cancer cells actively enter the blood
vessels and thereafter disseminate as single circulating tumour cells (CTCs).

2. Cancer cells of epithelial and of mesenchymal phenotypes cooperate in the sense
that mesenchymal-like cells allow epithelial-like cells to enter the vasculature
together with them, or shortly after them. Mesenchymal-like cells express the
MDEs required to degrade the vessels’ basal laminae. This allows for co-invasion
of the epithelial-like cancer cells in the vicinity. Thus, both mesenchymal-like and
epithelial-like cancer cells enter the blood system jointly as a cluster.

3. Any single cancer cells or cancer cell clusters near a ruptured blood vessel
intravasate via the passive entry mode.

These entry mechanisms are depicted—left to right—along the upper left blood
vessel wall in Fig. 1.
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Fig. 3 Cancer cells in the blood system. Once single cancer cells or cancer cell clusters have intravasated,
a number of mechanisms—both to aid the cancer cells (e.g. platelets covering cell surface, neutrophils that
enhance extravasation through NET expression, and MMP secretion) and to destroy them (e.g. physical
stresses; attacks by NK cells)—come into action. Reproduced from Lambert et al. (2017) with permission
from Elsevier Inc (Colour figure online)

2.3 Travel Through theVasculature and Extravasation

Successful intravasation into the vasculature by no means implies that the respective
cancer cells will succeed in metastasising. Cancer cells encounter further obstacles in
the bloodstream. In fact, as Fig. 3 shows, single CTCs and CTC clusters are exposed
to physical stresses and are attacked by natural killer (NK) cells. This causes cancer
cell clusters to disaggregate, as shown in the centre of Fig. 1, leading to smaller CTC
clusters and an increased number of single CTCs. Also, it further leads to a significant
decrease in the number of cancer cells that reach the metastatic site from the primary
tumour.

Other cells in the bloodstream assist the cancer cells. Platelets coat the surfaces of
the cancer cells, which prevents NK cells from recognising and destroying them. Neu-
trophils have a similar effect and additionally support metastatic seeding. As depicted
in the middle of the lower vessel wall shown in Fig. 3, neutrophils can express neu-
trophil extracellular traps (NETs), which entangle cancer cells. This is suggested to
enhance the survival potential of the cancer cells, aswell as the probability that theywill
adhere to endothelial cells and extravasate. Neutrophils also secret variousmetallopro-
teases (MMPs) upon arrest, which aid extravasation of the cancer cells by cleaving the
vessel wall. Transendothelial migration (TEM) is further provoked by bioactive fac-
tors (e.g. vascular endothelial growth factor (VEGF), MMPs and ADAM12), which
are secreted by activated platelets and by cancer cells. These factors can act on cancer
cells themselves, on monocytes and on endothelial cells. Inflammatory monocytes
promote TEM by differentiating into metastasis-associated macrophages that reside
in the parenchyma of the potential secondary sites. Finally, it has recently been found
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by Strilic et al. (2016) that cancer cells can induce necroptosis of healthy endothe-
lial cells, as shown on the bottom right of Fig. 3, which allows the cancer cells to
extravasate without TEM. More in-depth information on the biological background
of extravasation can be found in Lambert et al. (2017).

2.4 Metastatic Spread and Colonisation

A successfully extravasated single cancer cell or cluster of cancer cells can either
contribute to self-seeding to an existing metastasis or to the primary tumour, or it
can settle as a potential initial seed of a new metastasis (Pantel and Speicher 2016).
However, even if a cancer cell has extravasated successfully into the parenchyma of a
potential new metastatic site, success in growing into a full-blown secondary tumour
is not guaranteed. In fact, to give a rough idea of the probability that a cancer cell,
which has already intravasated successfully, will ultimately develop into a micro-
or macrometastasis, we can quote the result of an experimental study by Luzzi et al.
(1998). The authors investigated the proportions of melanoma cells that formedmicro-
and macrometastases after the cells were injected intraportally to target mouse livers.
They found that 2.04% of the injected cancer cells formed micrometastases after 3
days but that after 13 days only 0.07% of the initially injected cancer cells were still
present asmicrometastases.Additionally, 0.018%±0.017%of initially injected cancer
cells had formedmacrometastases after 13 days. These survival probabilities for single
CTCs, may, according to Valastyan and Weinberg (2011), even be an overestimation.
CTC clusters were described to have between 23 and 50 times the metastatic potential
of singleCTCs (Aceto et al. 2014). Note, however, that this is only a rough estimate and
will depend on other factors such as the particular cancer cell lines and the secondary
sites involved, as explained in detail below.

The main mechanisms by which successfully extravasated cancer cells are pre-
vented from forming malignant secondary tumours are related to them being
maladapted to their new microenvironment, as first suggested by the “seed and soil
hypothesis” of Paget (1889). Hence, most cancer cells will be eliminated from the
parenchyma at the secondary site. Others will stay at the distant site for periods lasting
up to decades but will remain in a dormant state. They fail to proliferate at the sec-
ondary site as they are, for example, actively inhibited by the immune system or fail
to induce angiogenesis. These—at least transiently—indolent cancer cells can exist
either as single DTCs or in the form of micrometastases.

The mechanisms of and the reasons for cancerous spread to specific metastatic
sites are largely unknown. However, there are studies that can provide insight into
typical patterns of metastatic tumour spread of a certain primary cancer type. To tie
in with Paget’s more than 100-year-old observation that breast cancer spread does not
occur randomly (Paget 1889), we can, for example, consult data on the metastatic
spread of primary breast cancer that were collected from 4181 breast cancer patients
(3735 early stage breast cancer patients diagnosed atMDAnderson Cancer Center and
446 breast cancer patients at Memorial Sloan Kettering Cancer Center, who had no
detectablemetastases upondiagnosis but all developed someeventually) andvisualised
in interactive graphs by Kuhn Laboratory (2017). Figure 4 presents a snapshot of such
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Fig. 4 Metastatic progression of breast cancer. Circular chord diagram showing Markov chain network of
data on metastatic spread from 4181 breast cancer patients over a 10-year period. Primary breast cancer
is located on top with metastatic sites—including bone, lung and brain—ordered clockwise according
to decreasing transition probability from the primary breast tumour. Chord widths at the ‘breast’ starting
location represents one-step transitionprobabilities from the locationof the breast to the respective secondary
site. Further information on the exact data origin and patient criteria can be found at http://kuhn.usc.edu/
breast_cancer/. Courtesy of Dr. Jeremy Mason, University of Southern California using the interactive
tool published at http://kuhn.usc.edu/forecasting—the corresponding publication is Newton et al. (2013)
(Colour figure online)

an interactive figure, which shows typical metastatic spread patterns of a primary
breast tumour after 10 years.

3 TheMathematical Modelling Framework

In this section, we introduce our general spatial modelling framework of themetastatic
spread of cancer.Webegin bygiving anoverviewof previousmodels of cancer invasion
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and subsequently of metastasis. Throughout, we distinguish models which include
only local interactions between cancer cells and their environment and those that
additionally capture interactions that are non-local in space.

Several continuous local models formulated in terms of differential equations have
beenproposed. Following earlyordinary differential equation (ODE)models (Gatenby
1991, 1995a, b), a first one-dimensional spatially explicit model was introduced in the
seminal work byGatenby andGawlinski (1996). Their paper described spatiotemporal
acid-mediated invasion using a system of reaction-diffusion-taxis partial differential
equations (PDEs). Perumpanani et al. (1996) published a first model of several that
considered randommotility, haptotaxis and chemotaxis in the context of invasive can-
cer cells interacting with MDEs, ECM proteins, normal cells and non-invasive cancer
cells. The model examined how deeply and at which speed cancer cells invaded the
ECMwhen led by hapto- and chemotactic cues. Ambrosi and Preziosi (2002) proposed
a model, in which a tumour spheroid was seen as a growing and deformable porous
medium. Using this approach, they introduced a multiphase mechanical framework of
tumour growth. A much-cited model focussing on haptotaxis is the continuum PDE
model by Anderson et al. (2000), which to our knowledge was the first of its kind
to extend modelling to a 2D setting. A number of subsequent continuum reaction-
diffusion-taxis PDE models focussed on specific MDEs. An example is the work by
Chaplain and Lolas (2005, 2006), who studied the role of urokinase-type plasminogen
activator, which is one of the proteolytic enzymes over-expressed in cancer cells, in
cancer invasion. Work by Andasari et al. (2011) extended this modelling approach.
Further, Deakin and Chaplain (2013) took a spatial approach to investigating the roles
of membrane-bound MMPs such as MT1-MMP and of soluble MMPs like MMP-2.

Local models relying on discrete and hybrid approaches have also been proposed:
for instance, individual-based models (IBMs) in Anderson and Chaplain (1998),
Anderson et al. (2000) andZhang et al (2009), cellular automatamodels inKansal et al.
(2000), Deutsch and Dormann (2005), Hatzikirou and Deutsch (2008) and Enderling
et al. (2009), cellular Potts model approaches in Turner and Sherratt (2002), Popławski
et al. (2009), Scianna et al. (2013), Kabla (2012), and Hallou et al. (2017), and hybrid-
discrete continuum models in Anderson (2005), Rejniak and Anderson (2011) and
Sfakianakis et al. (2018).

Further, non-local PDEmodels in the form of integro-differential equations, which
incorporate cell–cell adhesion using integral terms, have been developed.A continuum
model of adhesion forces and their influence on cell movement were proposed by
Armstrong et al. (2006). They accounted for adhesion by an integral term, which
modelled non-local interactions in the PDEmodel. Their model was the first of its kind
to include cell–cell adhesion in a continuummodel of interacting cell populations. Two
years later, Gerisch and Chaplain (2008) based their first non-local cancer invasion
PDE model on Armstrong et al. (2006). They represented one or more cancer cell
populations by a PDE each and additionally considered a PDE to represent the ECM,
which was modelled to be fixed in space. In this way, cancer cell–cell and cancer
cell–matrix adhesion were modelled. Sherratt et al. (2009) proposed a similar non-
local PDE model of cancer invasion based on the same work by Armstrong et al.
(2006). Chaplain et al. (2011) studied the nature of the proliferative properties of non-
local PDE models analytically by proving some results on the basis of the paper by
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Gerisch and Chaplain (2008). Furthermore, they provided computational simulations
illustrating the relative effects of cell–cell and cell–matrix adhesion on cancer invasion.
Domschke et al. (2014) further developed the model by Gerisch and Chaplain (2008)
to study the influence of cell–cell and cell–matrix adhesion on tumour growth and
development in more depth. In particular, they introduced a subpopulation of cancer
cells of a second type that was assumed to have grown to become more aggressive
over time through mutations. A non-local multiscale PDE model for glioma invasion,
which considered the clinically observed migration pathways of invading cancer cells
along neural fibre tracts, was presented by Painter and Hillen (2013). This model made
it possible to study the impact of fibre alignment on the cancer cells’ invasion pathways
and to connect diffusion tensor imaging data to the model’s parameters.

Metastasis involves a variety of sub-processes at multiple temporal and spatial
scales, as discussed in Sect. 2. Hence, different models are appropriate to shed light
on the various sub-processes. These models can broadly be categorised into those
describing how successful metastatic phenotypes evolve by epigenetic and genetic
mutations—such as Moran process models by Michor et al. (2006) or by Michor
and Iwasa (2006), or the time-branching process model by Dingli et al. (2007)—
and those modelling the growth dynamics of metastases. In what follows, we will
give an overview of the latter modelling approaches. Saidel et al. (1976) proposed
a compartmentalised translational ODE model of metastasis distribution over time.
Consecutively, a Markov Chain model by Liotta et al. (1976); Liotta et al (1977)
considered a subset of the compartments in Saidel et al. (1976) to predict metastatic
formation. Iwata et al. (2000) introduced a hyperbolic PDE model for the colony
size distribution of multiple metastatic tumours that form from an untreated tumour,
which many subsequent papers used as a basis for their work. For instance, the model
by Iwata et al. (2000) was further analysed and solved numerically by Barbolosi
et al. (2009) and Devys et al. (2009). It was then used in Benzekry (2011) to model
metastasis density, while tumour growth and angiogenesis were accounted for by an
ODE model by Hahnfeldt et al. (1999). The paper by Iwata et al. (2000) additionally
formed the basis for amathematical model by Benzekry et al. (2016), which connected
presurgical primary tumour volume and post-surgical metastatic burden. Finally, an
in vivo human xenograft model by Hartung et al. (2014) was also based on Iwata et al.
(2000). This described primary tumour growth by a set of phenomenological models,
and metastatic growth by a transport equation that was endowed with a boundary
condition for metastatic emission. Other models of metastatic dynamics include: fully
stochastic mechanistic models (Xu and Prorok 1998; Bartoszyński et al. 2001; Hanin
et al. 2006) that used similar growth laws to those proposed by Iwata et al. (2000) to
predict the probability that a certain given distribution of metastatic colony size occurs
at a given time; another stochastic model by Haeno and Michor (2010); and time-
branching models by Iwasa et al. (2006) and Haeno et al. (2007). The latter three are
all of similar type to the aforementioned, phenotype-focussed models by Michor et al.
(2006),Michor and Iwasa (2006) andDingli et al. (2007) but examine an exponentially
expanding rather than a constant cancer cell population. Out of these three, the models
by Iwasa et al. (2006) and Haeno et al. (2007) studied the dynamics of one or two
mutations in metastasis-suppressor genes to investigate the probability that a tumour
becomes resistant to therapy. Haeno and Michor (2010) aimed to provide a theoretical
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example of how to use a mathematical model to examine the effects of the choice
of treatment (chemotherapy and/or tumour resection) and of its timing. Scott et al.
(2013) proposed amodel of self-seeding to study the relative likelihood of primary and
secondary seeding by assuming that a primary tumour consists of a set of independent
loci, on which tumours undergo saturating growth according to a logistic law. From
these loci, cancer cells are shed and potentially return to their original loci or form new
loci. Newton et al. (2013) presented a stochastic Markov Chain/Monte Carlo model to
study multidirectional metastatic spread of lung cancer while distinguishing between
spreader and sponge metastatic sites, which was extended to be used in breast cancer
in Newton et al. (2015). Cisneros and Newman (2014) proposed another stochastic
model that used a birth–death process to investigate whether metastasis occurs from
many poorly adapted cancer cells or from a few well-adapted cancer cells. Finally,
Margarit and Romanelli (2016) developed a patient-statistics-based absorbingMarkov
Chain model to analyse the metastatic routes between principal organs.

While all processes in the invasion-metastatic cascade are inherently spatial, we
conclude that, to our knowledge, no spatially explicit model to describe metastasis
and metastatic spread exists, not to mention a model that combines all of the steps
of the invasion-metastasis cascade—i.e. cancer cell invasion, intravasation, vascular
travel, extravasation and regrowth at new sites in the body—in a spatial manner. With
the aim of closing this gap in the existing literature, we propose a novel spatially
explicit hybrid modelling framework that describes the invasive growth dynamics
both of the primary tumour and at potential secondary metastatic sites as well as the
transport from primary to secondary sites. In what follows, we introduce the ideas and
assumptions that our modelling framework builds on. The corresponding modelling
algorithm is described in Fig. 5 in the form of a flow chart.

In order to account for cancer cell metastasis in a spatially explicit manner, we
consider G + 1 spatial domains. These consist of the spatial domain representing the
primary tumour site, ΩP , as well as the G ∈ N spatial domains representing the sites
of potential secondary metastatic spread, Ωa

S
, where a = 1, 2, ...,G. In these spatial

domains, we represent the MMP-2 concentration and the ECM density at position
(x, y) at time t by the continuous functions m(t, x, y) and w(t, x, y), respectively,
while capturing the spatiotemporal evolution of epithelial-like and mesenchymal-like
cancer cells individually. We model the local cancer cell invasion by expanding the
modelling approach used in Anderson and Chaplain (1998) and Anderson et al. (2000)
to our specific biological problem. We include a second cancer cell phenotype and
also additionally consider MT1-MMP, which is taken to be bound to the membranes
of the mesenchymal-like cancer cells and thus follows their discrete spatiotemporal
dynamics. We designate locations in the primary spatial domain to function as entry
points into the vasculature and, similarly, impose a spatial map of exit locations from
the vasculature onto the secondary metastatic domains. This allows cancer cells to
travel from the primary tumour site to secondary sites via blood vessels.

We next consider one key step of the invasion-metastasis cascade after the other.
To make the key steps more recognisable, we begin each paragraph by printing the
description of the corresponding step in the invasion-metastasis cascade (cf. Sects.
2.1–2.4) in bold. Further, the same step descriptions can be found on the left of the
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Fig. 5 Flow chart of the metastatic algorithm in our hybrid model. At each time step, each cancer cell on
the primary grid moves and proliferates according the ‘Movement & cell proliferation algorithm’ explained
in detail in the text. A cancer cell remains on the primary grid during the respective time step, unless it is
placed on a grid point of the primary grid that represents a blood vessel. In the latter case, single CTCs
and CTC clusters may enter the vasculature. They spend some number of time steps in the circulation and
survive with a probability of PS in the case of single CTCs and with a probability of PC in the case of
CTC clusters. Cancer cells that do not survive are removed from the simulation. Surviving CTCs and CTC
clusters are placed onto one of the G secondary grids with the respective probability E1,E2, ...,EG . Cancer
cells on the secondary grids perform the same ‘Movement & cell proliferation algorithm’ as cancer cells
on the primary grid. For better orientation, the red boxes with their labels on the left correspond to Sects.
2.1–2.4 as well as to the steps indicated in bold in Sect. 3 of the text (Colour figure online)
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flow chart in Fig. 5. This highlights which parts of our algorithm correspond to which
sections in the text.

Local cancer cell invasion The movement of the individual epithelial-like and
mesenchymal-like cancer cells in the spatial domains of our model is derived from the
coupledPDEs (1) and (2) below.These equations describe the continuous spatiotempo-
ral evolution of epithelial-like and mesenchymal-like cancer cell densities cE(t, x, y)
and cM(t, x, y), respectively. Both cancer cell types are assumed to move via a combi-
nation of diffusive movement and haptotactic movement up the gradient of the ECM
density w(t, x, y). Hence, the evolution of the density of epithelial-like cancer cells
cE(t, x, y) is governed by the following diffusion-haptotaxis equation:

∂cE
∂t

= DE∇2cE − ΦE∇ · (cE∇w),

diffusion haptotaxis

(1)

along with zero-flux boundary conditions. Here, DE > 0 is the constant cancer cell
diffusion coefficient for epithelial-like cancer cells and ΦE > 0 is their constant
haptotactic sensitivity coefficient. Similarly, the mesenchymal-like cancer cell density
cM(t, x, y) evolves according to:

∂cM
∂t

= DM∇2cM − ΦM∇ · (cM∇w),

diffusion haptotaxis

(2)

along with zero-flux boundary conditions. Here, DM > 0 is the constant cancer cell
diffusion coefficient for mesenchymal-like cancer cells and ΦM > 0 is their constant
haptotactic sensitivity coefficient.

By discretising the spatial domains of ourmodel using a uniformmesh, as described
in Appendix B, we derive the movement probabilities of the individual epithelial-like
and mesenchymal-like cancer cells to be those in Eq. (15). Modelling the cancer
cells individually allows us to track the evolution of single mesenchymal-like and
epithelial-like cancer cells with different phenotypes and their evolution.

The algorithm we described so far accounts for the movement of our cancer cells
only. We thus need to additionally account for the proliferation of cancer cells in
our model. The two cancer cell types included in our model proliferate at different
frequencies. The more proliferative epithelial-like cancer cells perform mitosis after
TE ∈ N time steps, the less proliferative mesenchymal-like cell types after TM ∈ N

time steps (with TM > TE).When proliferating, the cancer cells pass on their respective
phenotype as well as their location so that a proliferating cancer cell is replaced by two
daughter cells after the proliferative step has been performed. However, to account for
competition for space and resources, the cancer cells on the respective grid point do not
proliferate if there are Q ∈ N cancer cells on a grid point at the time of proliferation.

With reference to the flow chart shown in Fig. 5, the part of our approach described
so far is summarised in the Movement & cell proliferation algorithm, which, for the
primary site, is depicted in the upper region of the flow chart.
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The mesenchymal-like cancer cells in our model have the ability to express dif-
fusible MMP-2. The MMP-2 concentration m(t, x, y) hence develops according to
the equation:

∂m

∂t
= Dm∇2m + ΘcM − Λm ,

diffusion expression decay

(3)

along with zero-flux boundary conditions. Here, Dm > 0 is the constant MMP-2
diffusion coefficient, Θ > 0 is the constant rate of MMP-2 concentration provided
by mesenchymal-like cancer cells, and Λ > 0 is the constant rate at which MMP-2
decays. Note that the mesenchymal-like cancer cells also express MT1-MMP. How-
ever, MT1-MMP acts locally only where it is bound to the cancer cell membrane and
its spatiotemporal evolution is hence congruent to that of themesenchymal-like cancer
cells. Therefore, we do not include a separate equation.

The diffusible MMP-2 degrades the ECM with a degradation rate of Γ2 > 0. The
MT1-MMP expressed on the membrane of the mesenchymal-like cancer cells also
degrades the ECM, which is expressed through the degradation rate Γ1 > 0. Hence,
given that we are disregarding ECM-remodelling for simplicity, the evolution of the
ECM density m(t, x, y) is governed by the following PDE:

∂w

∂t
= − (Γ1cM + Γ2m)w,

degradation

(4)

along with zero-flux boundary conditions.
Since the continuous evolution of the MMP-2 concentration and the ECM density

is governed by Eqs. 3 and 4 , while the spatiotemporal evolution of the cancer cells
(and, intrinsically, of the membrane-bound MT1-MMP) is captured by an individual-
based model, we model cancer cell invasion in a hybrid–discrete continuum approach.
Because themovement probabilities are derived fromEqs. 1 and 2 , which are obtained
usingEqs. 3 and 4 , the hybrid approach is of the kind pioneered byAnderson andChap-
lain (1998) to model tumour-angiogenesis, which was subsequently used to model
tissue invasion by cancer cells (Anderson et al. 2000; Anderson 2005) and spatial
evolutionary games (Burgess et al. 2016, 2017).

IntravasationWith the model set-up we have described so far, the cancer cells can
invade the tissue locally in the primary spatial domain but cannot reach the spatially
separated secondary domains. In order to allow for metastatic spread, we account for
the connection of the primary spatial domain to the secondary spatial domains by
incorporating blood vessels in our modelling framework. Examples of primary and
secondary domains are presented in Fig. 6. To represent the entry points into the blood
vessels, a number ofUP ∈ N0 normal blood vessels as well as VP ∈ N0 ruptured blood
vessels are distributedon theprimarygrid.Thenormal bloodvessels take the size of one
grid point, while ruptured vessels consist of a group of Ab ∈ N, where b = 1, 2, ..., VP ,
adjacent grid points and can thus have different shapes. Each secondary grid Ωa

S
also

has, respectively, Ua
S

∈ N normal blood vessels, where a = 1, 2, ...,G as before, that
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Fig. 6 Primary and metastatic sites. To give an example of how the general modelling framework can be
applied to a specific clinical setting, in our simulations we chose the primary site ΩP , which is shown on

the left, to represent the breast, and potential secondary metastatic sites Ω1
S
, Ω2

S
, Ω3

S
, which are shown on

the right, to represent the bones, the lungs and the liver, respectively. Cancer cells can reach the secondary
sites by travelling through the blood system (Colour figure online)

take the form of a single grid point each. On the primary grid, the grid points where
the vessels are located allow the cancer cells to intravasate, while the respective grid
points on the secondary grid allow for extravasation.

If, by themovement algorithmdescribed inAppendixB, a cancer cell on the primary
grid is placed on a grid point that represents a blood vessel, it may leave the grid and
enter the vasculature.Whether or not a cancer cell can successfully intravasate depends
both on its own phenotype and on the type of vessel it is placed on.

Whenever a mesenchymal-like cancer cell is moved to a grid point (xi , y j ) ∈
ΩP ,

1 on which a normal single blood vessel is located, it will successfully enter the
vasculature. Further, to represent collective invasion in the form of co-presence of
mesenchymal-like and epithelial-like cancer cells, cancer cells of any type on the four
neighbouring primary grid points (xi+1, y j ), (xi−1, y j ), (xi , y j+1) and (xi , y j−1) are
forced into the vasculature together with the mesenchymal-like cancer cell on (xi , y j ).
Hence, amesenchymal-like cancer cell moving to a grid point onwhich a normal blood
vessel is located results in either a single mesenchymal-like cancer cell or a cluster
consisting of up to 5Q cancer cells of any phenotype intravasating. However, if an
epithelial-like cancer cell is moved to a grid point (xi , y j ) ∈ ΩP where a normal single
vessel is located without a mesenchymal-like cell being present there, the epithelial-
like cancer cell will not intravasate and the grid point (xi , y j ) will be treated like any
other grid point. This is to model the fact that epithelial-like cancer cells have been
shown to be unable to actively intravasate on their own.

1 The notation (xi , y j ) ∈ ΩP is a result of the discretisation of the grids in our model, as described in detail
in Appendix B.
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Further, a cancer cell on the primary grid can move to one of the grid points where
a ruptured vessel is located. Contrary to the above-described scenario of entering a
normal vessel, a cancer cell of any type, which is placed on a grid point representing
part of a ruptured vessel, can enter the circulation. The respective cancer cell takes with
it any other cancer cells residing both on the grid points representing the ruptured blood
vessel andon the regular grid points bordering the rupturedvessel.Biologically, the fact
that cancer cells of any phenotype can intravasate mirrors that these blood vessels are
already ruptured due to trauma or pressure applied by the expanding tumour, making
the requirement of MDE-mediated degradation of the vessel wall redundant. The fact
that other cancer cells on bordering grid points will enter the circulation together with
cancer cells placed on grid points representing blood vessels captures some degree of
the cell–cell adhesion found in collectively invading cancer cell clusters.

Travel through the vasculature If a cancer cell of either phenotype or a cluster of
cancer cells successfully enters the vasculature either through a ruptured or a normal
vessel, it will be removed from the primary grid and moved to the vasculature. Cancer
cells and cancer cell clusters remain in the vasculature for some number of time
steps TV ∈ N, which biologically represents the average time the cancer cells spend
in the blood system. Any cancer cells that enter a particular vessel at the same time
are treated as one cluster and hence as a single entity once they are located in the
vasculature. However, each cancer cell that is part of a cancer cell cluster disaggregates

from its cluster with some probabilityPd after
⌈
TV
2

⌉
time steps. At the end of TV time

steps, the single cancer cells and the remaining cancer cell clusters are removed from
the simulation unless they are randomlydetermined to survive. The survival probability
is PS for single cancer cells and PC for cancer cell clusters.

Extravasation Any surviving cancer cells and cancer cell clusters are placed on
one of theG secondary gridsΩa

S with probability E1, E2, ..., EG , where
∑G

a=1 Ea = 1.
Also, on each specific secondary grid, the cancer cells extravasate through one of the
randomly chosenUa

S grid points that represent a blood vessel with equal probability. If
the respective grid point cannot accommodate all of the entering cancer cells without
violating the carrying capacityQ, the remaining cancer cells are randomly distributed
onto the four non-diagonally neighbouring grid points until these are filled to carrying
capacityQ. If there are further cancer cells to be placed onto the respective grid point
at this instance, such cancer cells are killed to capture the influence of competition for
space in combination with vascular flow dynamics.

Metastatic growth If and when cancer cells reach a secondary grid, they behave
(i.e. replicate, move, produce MDEs etc.) there according to the same rules as on the
primary grid, as indicated on the bottom of the flow chart in Fig. 5.

4 Set-up of Computational Simulations andModel Calibration

To perform numerical simulations, we non-dimensionalised the system of Eqs. (1)–
(4) as described in Appendix A. Like Anderson et al. (2000), we chose to rescale
distance with an appropriate length scale L = 0.2 cm (since 0.1–1cm is estimated to
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be the maximum invasion distance of cancer cells at an early stage of cancer invasion)
and time with an appropriate scaling parameter τ = L2

D . Here D = 10−6cm2s−1

is a reference chemical diffusion coefficient suggested by Bray (1992), such that
τ = 4 × 104s, which corresponds to approximately 11 h.

We considered spatial domains of size [0, 1]×[0, 1], which corresponds to physical
domains of size [0, 0.2] cm × [0, 0.2] cm. In particular, we let the spatial domain ΩP

represent the primary site and the spatial domains Ω1
S
, Ω2

S
and Ω3

S
describe three

metastatic sites. These spatial domains could represent any primary and secondary
carcinoma sites.However, to give an example of a particular application,we considered
a study of 4181 breast cancer patients atMemorial SloanKetteringCancerCenter. Data
and graphs from this study can be found at http://kuhn.usc.edu/breast_cancer (Kuhn
Laboratory 2017).We accordingly choseΩP to represent the primary site of the breast,
and Ω1

S
, Ω2

S
and Ω3

S
to correspond to the common metastatic sites of bones, lungs

and liver, respectively. Disregarding potential spread to any other metastatic sites, the
data from Kuhn Laboratory (2017) provided us with an extravasation probability of
E1 ≈ 0.5461 to the bones, of E2 ≈ 0.2553 to the lungs, and of E3 ≈ 0.1986 to the
liver.

We discretised the four spatial domains to contain 201×201 grid points each. This
corresponds to a non-dimensionalised space step of Δx = Δy = 5 × 10−3, which
results in a dimensional space step of 1 × 10−3cm, and thus roughly corresponds
to the diameter of a breast cancer cell (Vajtai 2013). We then chose a time step of
Δt = 1× 10−3, corresponding to 40s, to comply with the Courant–Friedrichs–Lewy
condition (Anderson et al. 2000). We ran our simulation for 48,000Δt time steps,
which corresponds to ∼22 days.

On each secondary grid, we chose U 1
S

= U 2
S

= U 3
S

= 10 distinct grid points,
on which blood vessels are located. For each grid, these blood vessels were placed
randomly but at least two grid step widths away from the respective grid’s boundary.
The same applies to the primary grid ΩP but with the additional condition that the
UP = 8 single grid points, where normal blood vessels are located, and the VP = 2
sets of five grid points, where ruptured blood vessels are placed, are located outside
a quasi-circular region containing the 200 centre-most grid points. While these 10
randomly placed vessels are modelled to exist from the beginning, they represent
those vessels that grow as a result of tumour-induced angiogenesis in the vascular
tumour growth phase.

To represent a two-dimensional cross section of a small avascular primary tumour,
we placed a nodule that consisted of 388 randomly distributed cancer cells in the
quasi-circular region of the 97 centre-most grid points of the primary grid, with no
more thanQ = 4 cancer cells on any grid point to account for competition for space.
This carrying capacity of Q = 4 was applied throughout the simulation. A randomly
chosen 40% of these cancer cells were of epithelial-like phenotype, and the remaining
60% of mesenchymal-like phenotype. The described initial condition ensures that the
cancer cells are placed away from any pre-existing vessels to match the biology of an
avascular tumour. Figure 7 gives an example of a typical initial cancer cell placement
and vessel distribution on the primary grid.
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Fig. 7 Vessel distribution and initial condition of cancer cells. The plot shows (in red) ten randomly dis-
tributed blood vessels on the primary grid, two of which are so-called ruptured vessels that consist of five
rather than one grid point. In the centre of the grid, the initial cancer cell distribution is shown. There
are between 0 (white) and 4 (black) cancer cells on a grid point. As the initial distribution of cancer cells
represents a 2D section through an avascular tumour, the blood vessels are placed at some distance away
from the initial nodule of cancer cells. The scale bar denotes 0.02 cm (Colour figure online)

In accordance with the ranges provided in Table 1, we chose the mesenchymal-
like cancer cell diffusion coefficient to be DM = 1 × 10−4, the epithelial-like cancer
cell diffusion coefficient to be DE = 5 × 10−5, and the mesenchymal and epithelial
haptotactic sensitivity coefficients to be ΦM = ΦE = 5 × 10−4.

We further assumed that, once in the vasculature, a single CTC had a survival
probability ofPS = 5×10−4, which is of the order of the micro- and macrometastatic
growth success rates proposed in Luzzi et al. (1998). We chose the success rate for
metastatic growth to be our survival probability because our model in its current state
disregards cancer cell death at secondary sites so that any successfully extravasated
cancer cell will initiate micrometastatic growth over time. CTC clusters had a survival
probability PC = 50PS = 2.5× 10−2, in accordance with the finding by Aceto et al.
(2014) that the survival probability of CTC clusters is between 23 and 50 times higher
than that of single CTCs. Surviving single CTCs and CTC clusters exited onto the
secondary grids after spending TV = 0.18 in the blood system, which corresponds to
2h and hence to the breast cancer-specific clinical results in Meng et al. (2004).

Further, we assumed a uniform initial ECM density of w(t, x, y) = 1 across all the
spatial domains, while the initial MMP-2 concentration wasm(t, x, y) = 0. We chose
the other parameters as shown in Table 1 and assumed that epithelial-like cancer cells
divide bymitosis every TE = 2000 time steps andmesenchymal-like cancer cells every
TM = 3000 time steps. This corresponds to approximately 22 h and 33 h, respectively,
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which is consistent with the average doubling times found in breast cancer cell lines
(Milo et al. 2009).

5 Computational Simulation Results

To verify that our modelling framework is suitable to capture the key steps of the
invasion-metastasis cascade, we first ran simulations with the base parameters shown
in Table 1. As indicated by the headings throughout this section, we then varied
these base parameters across biologically realistic ranges to further confirm that our
framework delivers biologically realistic results and to gain insight into the underlying
biology. For each of the parameter studies, we took the average results from running the
simulation three times—unless stated otherwise—and indicated error bars to display
the standard deviation in the corresponding plots. This way, we studied the effect
that changing the initial ratio of epithelial-like to mesenchymal-like cancer cells, the
number of blood vessels in the primary site, and the survival probability of cancer cells
had on the overall cancer dynamics. We investigated the roles of MMP-2 and MT1-
MMP as well as their role in comparison with one another. Finally, we changed the
parameters to describe haptotaxis-dominated rather than diffusion-dominated cancer
cell movement at the end of this section to re-examine the role of membrane-bound
versus diffusible MDEs. We compared the outcomes of these simulations to a range
of experimental and clinical results.

5.1 Simulations with Base Parameters

When using the settings outlined in the previous section, we observed in our simu-
lations that both epithelial-like and mesenchymal-like cancer cells invaded the tissue
surrounding the primary tumour, which is represented by the primary grid, over a 22
day period. This is shown in the simulation results in the two upper rows of pan-
els in Fig. 8, respectively. The epithelial-like cancer cells formed the bulk of the
central tumour mass, while the mesenchymal-like cancer cells were predominantly
found at the outermost tissue-invading edge. The maximum observed invasion dis-
tance of the cancer cells over this time span was approximately 0.13 cm. The pattern
of MMP-2 concentration for the same simulation roughly followed the distribution
of the mesenchymal-like cancer cells as shown in the third row of panels in Fig. 8.
The ECM density, which is depicted in the bottom row of Fig. 8, also followed the
evolution of the MMP-2 concentration but in a more uniform fashion.

In addition to the cancer cell invasion on the primary grid, we also observed
metastatic spread of single cancer cells, as well as of homogeneous and heteroge-
neous cancer cell clusters, to the grids representing the secondary sites of the bones
(Fig. 9), the lungs (Fig. 10) and the liver (Fig. 11). The results obtained here showed
that the first metastatic spread occurred at the site of the bones. As shown in the panel
on the top left of Fig. 9, after 11 days we already observed a micrometastatic lesion
of epithelial-like cancer cells with an approximate diameter of 0.04 cm on the grid
that represented the bones, but in none of the other locations. Yet, after 22 days we
discovered metastatic spread at all three of the secondary locations in the body that we
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Fig. 8 Simulation results on the primary grid. Primary tumour dynamics at times 0, 24,000Δt and 48,000Δt
(left to right), corresponding to 0 days, ∼11 days and ∼22 days. For each time step, the distribution of
epithelial-like cancer cells (top row) and mesenchymal-like cancer cells (second row) is shown, with the
discrete number of cancer cells per grid point ranging from 0 (white) to 4 (black) on each of the panels.
The MMP-2 concentration (third row) continuously varies between 0 (white) and 3.0936 (black), and the
ECM density (bottom row) between 0 and 1. Red dots represent blood vessels. There are eight normal blood
vessels of the size of one grid point as well as two ruptured blood vessels, which extend over five grid points
each. If cancer cells are moved to these grid points, they may enter the vasculature and can potentially
extravasate at secondary sites. The dynamics of the cancer cells at the secondary sites are presented in
Figs. 9–11. The scale bar denotes 0.02 cm and applies to all of the panels (Colour figure online)

considered in our simulations.On the grid representing the bones,we found that the ear-
liest micrometastasis, which consisted of epithelial-like cancer cells only, had rapidly
increased in diameter to approximately 0.1 cm (see top right panel of Fig. 9). Addition-
ally, a secondmicrometastasis consisting of both epithelial-like andmesenchymal-like
cancer cells had formed at the top right of the same grid. Finally, we observed a set
of four epithelial-like and two mesenchymal-like DTCs at the bottom right of the grid
corresponding to the bones. The latter two formations were results of heterogeneous
cancer cell clusters spreading to the bones. While the secondary site that represented
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Fig. 9 Simulation results on secondary grid representing the bones. Distribution of epithelial-like cancer
cells (upper panels) and mesenchymal-like cancer cells (lower panels) at the secondary site representing
the bones is shown at times 24,000Δt (left) and 48,000Δt (right), which corresponds to ∼11 days and
∼22 days. The number of cancer cells per grid point varies between 0 (white) and 4 (black) in the upper
panels and between 0 (white) and 2 (black) in the lower panels. The corresponding MMP-2 concentration
and ECM density plots are presented in Fig. 18 of Appendix C. The scale bar denotes 0.02 cm and applies
to all panels (Colour figure online)

the bones showed by far the largest cancer cell load after 22 days, we detected a fur-
ther two micrometastases at the secondary site of the lungs, as shown in the panels on
the right of Fig. 10. Here, the micrometastasis at the bottom of the grid consisted of
epithelial-like cancer cells only, while the top micrometastasis contained both cancer
cell types as it had grown out of a heterogeneous cancer cell cluster. Finally, the liver
showed the least secondary spread in the form of three mesenchymal-like DTCs that
arrived as a single cluster, as shown in the panel on the bottom right of Fig. 11.

5.2 Changing the Initial Ratio of Epithelial- to Mesenchymal-Like Cancer Cells

By keeping the total initial amount of cancer cells constant at 388 but varying the
initial percentage of epithelial-like cancer cells between 0% and 100% in steps of
10%, we found that having solely epithelial-like cells at the start of the simulation
had a significant negative impact on tumour growth. We counted an average of 62,932
cancer cells at the end of our simulation timespan of 22 days as compared to about 48%
more cancer cells (i.e. 93,115 cancer cells) in the case of an even initial distribution.

Starting the simulation solely with mesenchymal-like cancer cells had a similar, yet
weaker, dampening effect: compared to simulation with an even initial distribution, it
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Fig. 10 Simulation results on secondary grid representing the lungs. Distribution of epithelial-like cancer
cells (upper panels) and mesenchymal-like cancer cells (lower panels) at the secondary site representing
the lungs is shown at times 24,000Δt (left) and 48,000Δt (right), which corresponds to ∼11 days and ∼22
days, respectively. The number of cancer cells per grid point varies between 0 (white) and 2 (black) in the
upper panels and 0 (white) and 3 (black) in the lower panels. The corresponding MMP-2 concentration and
ECM density plots are presented in Fig. 19 of Appendix C. The scale bar denotes 0.02 cm and applies to
all panels (Colour figure online)

reduced growth to 86425, and thus by about 7.7%. Otherwise, we generally found that
a higher percentage of epithelial-like cancer cells at the start coincided with a lower
number of mesenchymal-like cancer cells at the end of the simulations. At the same
time, the number of epithelial-like cancer cells after 22 days increased. We observed
that the maximum number of cancer cells occurred under initial conditions with even
parts ofmesenchymal-like and epithelial-like cancer cells but that the combined cancer
cell count at the end of the simulation was relatively stable if we varied the initial
number of epithelial-like cancer cells between 0% and 90% (see Fig. 12).

With regards to shedding from the primary tumour, and hence also to chances of
successful metastasis, we found that a higher initial percentage of mesenchymal-like
cancer cells correlated to a higher number of intravasating single cancer cells and
cancer cell clusters, likely as a result of an overall higher number of mesenchymal-
like cancer cells (see Fig. 13). If we started our simulation with mesenchymal-like
cancer cells only, we observed an average total of 634 intravasations by single cancer
cells or cell clusters — compared to only 7 over the same time range in the case of the
average of simulations that included epithelial-like cancer cells only. When we set the
number of ruptured vessels in the primary grid to 0 and considered 10 normal vessels
only, we observed no intravasations.
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Fig. 11 Simulation results on secondary grid representing the liver. Distribution of epithelial-like cancer
cells (upper panels) and mesenchymal-like cancer cells (lower panels) at the secondary site representing the
liver is shown at times 24,000Δt (left) and 48,000Δt (right), which corresponds to∼11 days and∼22 days,
respectively. The panel on the bottom right contains three single mesenchymal-like cancer cells indicated
in black, while the other panels do not contain any cells. The corresponding MMP-2 concentration and
ECM density plots are presented in Fig. 20 of Appendix C. The scale bar denotes 0.02 cm and applies to
all panels (Colour figure online)

5.3 Changing the Survival Probability of Cells in the Vasculature

As Aceto et al. (2014) suggested that the probability of cluster survival in the vas-
culature (PC ) is 23 to 50 times higher than that for single CTCs (PS ), in the next
simulations, we examined the effects of changing the probability of cluster survival
in the vasculature to be PC = 23PS = 1.15× 10−2—so to take the value of the lower
rather than the upper bound suggested by the authors. For this purpose, we did not
allow cancer cell clusters to break up in the vasculature. Averaged over 12 simula-
tions, the observed cluster survival was caused to be changed from 2.503×10−2 (with
PC = 2.5×10−2) to 1.137×10−2. While this change had no significant effect on the
number of single cells and clusters intravasating, it did reduce the average number of
extravasating cancer cell clusters, as expected.

5.4 The Role of MMP-2

To investigate the role of MMP-2 in the spatiotemporal evolution of the cancer cells,
we varied both the MMP-2 production rate and the MMP-2 diffusion coefficient.
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Fig. 12 Co-presence of epithelial- and mesenchymal-like cancer cells increases the overall primary tumour
cancer cell load. The absence of mesenchymal-like cancer cells hinders cancer cell invasion and tumour
growth. The final primary tumour cancer cell load on the vertical axis is given in units of 104 and refers to
simulation results after approximately 22 days (Colour figure online)

Fig. 13 Higher numbers of mesenchymal-like cancer cells at the primary site correspond to an increased
intravasation count. The final primary tumour cancer cell load on the horizontal axis is given in units of 104

and refers to simulation results after approximately 22 days (Colour figure online)

Modifying the MMP-2 production rate to take values Θ ∈ {0, 0.1, 0.195, 0.3, 0.4}
suggested that a lower MMP-2 production rate correlates with a higher overall cancer
cell load after ∼22 days—for each cancer cell type individually as well as for both
cell types combined. This resulted mainly from changes in cancer cell numbers on the
primary grid. The corresponding plot in Fig. 14 highlights this.

Increasing the MMP-2 diffusion coefficient over the range of values Dm ∈
{0.1, 0.5, 1, 1.5} × 10−3 decreased the total cancer cell load on the primary grid after
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Fig. 14 AhigherMMP-2 production rate lowers the final primary tumour cancer cell load. The final primary
tumour cancer cell load on the vertical axis is given in units of 104 and refers to simulation results after
approximately 22 days (Colour figure online)

22 days. The total number of intravasations and, coherently, the metastatic cancer cell
load decreased as well. This is shown in Fig. 15.

5.5 The Effects of MMP-2 Degradation Alone

We next set the MT1-MMP degradation rate to be Γ1 = 0 to examine the situation in
which the diffusibleMMP-2 is the onlyMDE in our system.We then varied theMMP-2
production rate, aswe had done beforewhen studying the effects of varying theMMP-2
production rate in the presence of MT1-MMP, to be Θ ∈ {0, 0.1, 0.195, 0.3, 0.4}.

Generally, we found that the total primary cancer cell load after 22 days was sig-
nificantly reduced compared to simulations in which MT1-MMP was present. For
instance, comparing against simulations with our baseline MMP-2 production rate of
Θ = 0.195, the total primary cancer cell load was between 8.2% and 58.0% lower.
However, invasion was still possible.

5.6 The Role of MDEs in the Context of Haptotaxis-Dominated Cancer Cell
Movement

In all of the above simulations, we have considered diffusion-dominated cancer cell
movement. We next investigated the roles of MT1-MMP and MMP-2 in cancer cell
invasion in the scenario of haptotaxis-dominated cancer cell movement. For this, we
changed our epithelial-like and mesenchymal-like cancer cell diffusion coefficients
to be DE = 5 × 10−11 and DM = 1 × 10−10, respectively. Further, we focussed
on cancer cell invasion in the primary grid in these simulations and hence set the
number of normal and ruptured vessels to zero. Ceteris paribus, we then re-examined
the effectiveness of invasion involving solely MT1-MMP as well as solely MMP-2
in a system with haptotaxis-dominated cancer cell movement. We first set the MT1-
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Fig. 15 A higher MMP-2 diffusion coefficient corresponds to a lower final primary tumour cancer cell
load. The MMP-2 diffusion coefficient on the horizontal axis is given in units of 10−3 and the final primary
tumour cancer cell load on the vertical axis in units of 104. The results were measured after approximately
22 days (Colour figure online)

MMP degradation rate to be Γ1 = 0, allowing us to represent the situation in which
the diffusible MMP-2 is the only MDE in our system. We then, as before, varied
the MMP-2 production rate to be Θ ∈ {0, 0.1, 0.195, 0.3, 0.4}. As opposed to our
findings when studying diffusion-dominated cancer cell movement, we observed that
invasion was no longer possible for the same range of MMP-2 production rates. The
final cancer cell numbers on the primary grid averaged below a tenfold increase in cell
population when compared to the original nodule of 388 cancer cells. Moreover, the
final cancer cell constellation was located at the centre of the grid due to the very low
invasion distance of the cancer cells.

When we increased the MT1-MMP degradation coefficient back to the baseline
Γ1 = 1 but set the MMP-2 production rate to beΘ = 0, we found that the cancer cells
did invade with an average total of 18312 cancer cells after approximately 22 days.
By decreasing the MT1-MMP degradation coefficient to Γ1 = 0.5, we observed an
even larger cancer cell load of 28157.

5.7 Simulation Results Coincide with Experimental Evidence that Stresses
Importance of MT1-MMP in Cancer Invasion

We next ran simulations with an initial cell distribution and domain size that matched
the experiments conducted bySabeh et al. (2009),who embeddedHT-1080 cancer cells
into 3D type-I collagen gels as central nodules of diameter 1.5 × 10−2–2 × 10−2cm.
Coherently, we increased the diameter of our initial centred quasi-circular nodule
to 1.5 × 10−2cm and let it consist of 700 cancer cells, 40% (i.e. 280) of which were
epithelial-like and 60%(i.e. 420)mesenchymal-like. Further,we decreased our domain
size to be 0.1cm× 0.1cm to match that in the experimental conditions of Sabeh et al.
(2009). Figure 16 shows a snapshot of the spatiotemporal evolution of epithelial-like
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Fig. 16 Simulation results for a heterogeneous cancer cell population subject to haptotaxis-dominated
movement. To match the domain size and initial cell count of experiments by Sabeh et al. (2009), we
started our simulation by placing 420 mesenchymal-like cancer cells and 280 epithelial-like cancer cells
in a quasi-circular region with diameter 1.5 × 10−2 cm at the centre of a 0.1 cm × 0.1 cm grid (initial
conditions not shown). Depicted is the distribution of epithelial-like (upper panels) and mesenchymal-like
(lower panels) cancer cells at time 34,560Δt , corresponding to 16 days. Left to right, the invasive patterns
in the presence of both MDEs (Θ = 0.195, Γ1 = 1), in the presence of MT1-MMP only (Θ = 0, Γ1 = 1)
and in the presence of MMP-2 only (Θ = 0.195, Γ1 = 0) are shown for both cancer cell phenotypes. The
scale bar denotes 0.01 cm and applies to all panels (Colour figure online)

and mesenchymal-like cancer cells under these experimental conditions after running
a simulation for 720 time steps, which corresponds to 16 days. As expected, we still
observed that invasion by both epithelial-like and mesenchymal-like cancer cells was
possiblewhen bothMDEswere present (i.e. withΘ = 0.195,Γ1 = 1) andwhen solely
MT1-MMP was present (i.e. with Θ = 0, Γ1 = 1), while invasion was not possible
when solely MMP-2 was expressed (i.e. with Θ = 0.195, Γ1 = 0). These results are
shown in the left, middle and right column of panels of Fig. 16, respectively. Out of the
three mechanisms, invasion under expression of MT1-MMP alone yielded the highest
average invasion depth. We further observed that the switch from diffusion-dominated
to haptotaxis-dominated cancer cell movement triggered more prominent finger-like
protrusions in the invasive pattern of the epithelial-like cancer cells in the scenarios
where either both MDEs or MT1-MMP alone were present, which is shown in the left
and in the middle panel of the top row of Fig. 16, respectively.

However, Sabeh et al. (2009) used a homogeneous HT-1080 cancer cell popula-
tion, and thus cells of mesenchymal origin, in their experiments to examine the role
of MT1-MMP and MMP-2 in cancer invasion. In order to fully match the experi-
mental conditions of Sabeh et al. (2009), we next changed our initial conditions to
consider a cancer cell population consisting of 700 mesenchymal-like cancer cells
only, as shown in the third row of panels in Fig. 17. Sabeh et al. (2009) electroporated
multicellular clusters of HT-1080 cancer cells of diameter 1.5 × 10−2–2 × 10−2cm
either with a control small interfering RNA (siRNA), which leaves the diffusiblematrix
metalloproteinase-1 (MMP-1) and MMP-2 as well as the non-diffusible MT1-MMP
activated; or with MMP-1 and MMP-2 siRNAs, which leaves MT1-MMP alone acti-
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vated but silences the diffusible MDEs MMP-1 and MMP-2; or with MT1 siRNA,
which silences MT1-MMP but leaves MMP-1 and MMP-2 activated. These electro-
porated multicellular clusters were then embedded centrally in 3D-type-I collagen
gels. The initial experimental set-ups and their respective evolution after 3 days are
shown—left to right—in the two upper rows of panels in Fig. 17. Since the evolution
of the two diffusible MDEs, MMP-1 and MMP-2, in the experiments can be jointly
accounted for by the MMP-2 equation of our model, our modelling framework can
replicate the above-described experimental settings well. We did this by, again, con-
sidering a system with both MDEs (i.e. with Θ = 0.05, Γ1 = 1), with MT1-MMP
only (i.e. with Θ = 0, Γ1 = 1) and with MMP-2 only (i.e. with Θ = 0.05, Γ1 = 0),
respectively. When looking at the invasion results after 720 time steps, which corre-
sponds to 16 days, we observed similar results as in the case of a mixed initial cancer
cell population. As the first panel of the bottom row of Fig. 17 shows, invasion was
possible with both MDEs present. Yet, the invasion depth was slightly lower com-
pared to the case where we allowed for MT1-MMP expression alone, which is shown
in the second panel of the bottom row of the same figure. Finally, we again found that
invasion was not possible in the presence of MMP-2 alone as the third panel of the
bottom row of Fig. 17 shows. As Fig. 17 suggests, these results are qualitatively in
good agreement with the experiments by Sabeh et al. (2009).

Finally, due to our awareness that Sabeh et al. (2009) used cancer cells of mes-
enchymal origin only in their experiments, we further sought to reproduce the results
of experiments by Gaggioli et al. (2007), who studied the invasion of squamous cell
carcinoma (SCC) cells, which are of epithelial origin. They found that SCC cells rely
on fibroblasts for their invasion, which are cells of mesenchymal-like type that are
capable of matrix remodelling, like the mesenchymal-like cancer cells in our model.
In the absence of fibroblasts, the authors observed that the cancer cells were unable to
invade.While we showed that a mixed population of epithelial-like andmesenchymal-
like cancer cells was indeed able to invade when both MDEs are present (see panels
on the left of Fig. 16), we ran the same simulations again with epithelial-like cancer
cells only. This showed that the epithelial-like cancer cells in our model were unable
to invade on their own, as observed experimentally by Gaggioli et al. (2007). (Data
not shown—similar to bottom right panel of Fig. 17.)

6 Discussion and Perspective

In this paper, we have presented a novel mathematical framework to model the
metastatic spread of cancer in a spatially explicit manner. For this, we have used
a hybrid approach (cf. Anderson and Chaplain (1998); Anderson et al. (2000)) that
captures individual cancer cell dynamics while treating abiotic factors as a continuum.
We have confirmed through computational simulations that this framework accounts
for the key steps of the spatial modelling of metastatic spread.

In carrying out the computational simulations, we found that such a modelling
framework provides biologically realistic outcomes and gives further insight into
the mechanisms underpinning the invasion-metastasis cascade at the cellular scale.
Tumour shape and metastatic distribution were predicted to appear as one would
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Fig. 17 Experimental findings by Sabeh et al. (2009) (black panels) compared to simulation results (white
panels). The top row of panels shows the initial experimental conditions in Sabeh et al. (2009), where
HT-1080 cancer cellswere embedded into 3D-type-I collagengels as central nodules of diameter 1.5×10−2–
2× 10−2 cm. The cancer cell spheroids had previously been electroporated with a control siRNA; MMP-1
and MMP-2 siRNAs; MT1 siRNA (left to right). Their invasion after 3 days is shown in the second row
of panels. To match the domain size and initial experimental conditions of Sabeh et al. (2009), we started
our simulation by placing 700 mesenchymal-like cancer cells in a quasi-circular region with diameter
1.5× 10−2 cm at the centre of a 0.1 cm× 0.1 cm grid (third row of panels)—the bar represents a length of
1×10−2 cm. The bottom row of panels shows the distribution of the mesenchymal-like cancer cells after 16
days (i.e. at time 34,560Δt), in the case where the mesenchymal-like cancer cells are subject to haptotaxis-
dominatedmovement. Left to right, the invasive patterns in the presence of bothMDEs (Θ = 0.05,Γ1 = 1),
in the presence of MT1-MMP only (Θ = 0, Γ1 = 1), and in the presence of MMP-2 only (Θ = 0.05,
Γ1 = 0) are shown. The number of cancer cells per grid point ranges from 0 (white) to 4 (black) on each of
the panels. Comparing the six panels on the bottom with those on the top, we find the simulation results to
be in good qualitative agreement with the experimental results by Sabeh et al. (2009). The scale bar denotes
0.01 cm and applies to all panels. Reproduced from Sabeh et al. (2009) with permission from Rockefeller
University Press (Colour figure online)
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expect in a cancer patient who has not yet received treatment. In particular, we found
that the mesenchymal-like cancer cells formed a ring-shaped leading front along the
tumour edge, which was also seen in experiments (Nurmenniemi et al. 2009) and is
often described as a leader-follower phenomenon in the literature. Nurmenniemi et al.
(2009) further observed an averagemaximum invasion depth of 5.47×10−2cmover 14
days, when culturing HSC-3 cancer cells, a human oral squamous carcinoma cell line
with high metastatic potential, on top of myoma tissue. This translates into an average
maximum invasion speed of approximately 4.52 × 10−8cm s−1. It suggests that our
observed maximum invasion depth of∼0.13cm in 22 days and resulting average max-
imum invasion speed of approximately 6.77 × 10−8cm s−1 is a realistic result, given
that migration speed varies between cancer cell lines. The distribution of the cancer
cell spread between the secondary sites that we considered in our model, measured
via the metastatic cancer cell load and number of metastases at the respective sites,
further matched the clinical data of 4181 breast cancer patients, summarised in Fig. 4,
which underlie our simulations. As Fig. 9 indicates, the largest micrometastasis, which
resulted from the earliest metastatic spread, occurred at the site of the bones. This is
the most frequently observed site of metastatic spread from primary breast cancer in
the data processed by the Kuhn Laboratory (2017). Overall, we observed two further
successful extravasations to the site of the bones, resulting in both phenotypically
homogeneous and heterogeneous secondary growth at this site. The second heaviest
cancer cell load, in the form of one heterogeneous micrometastases and one consisting
of epithelial-like cancer cells only, was found in the lungs. The least metastatic spread
occurred to the liver with only three mesenchymal-like DTCs being observed, which
arrived jointly as part of the same successfully extravasated mesenchymal-like can-
cer cell cluster. While, of course, stochasticity underpins the results of the metastatic
spread, we again found that our results matched the clinical observations summarised
in Fig. 4. To our knowledge, there are currently no data available that claim to deliver
an accurate estimation of the typical metastatic load from primary breast cancer to
secondary sites over a specified time frame. However, we believe our result is biolog-
ically appropriate with regards to its timing, in correspondence with the conclusion
reached by Obenauf and Massagué (2015) in their review of the metastatic traits that
allow cancer cells to colonise various secondary sites, who suggested that CTCs and
metastatic spread can be detected soon after vascularisation of the primary tumour, as
in our simulations. Nonetheless, Obenauf and Massagué (2015) argue that the most
limiting step of the invasion-metastasis cascade is not the dissemination through the
vasculature, which we account for in our model, but the transition from infiltration
of a secondary site to overt colonisation. To achieve this final step of colonisation,
which is not (yet) part of our modelling framework, the cancer cells need to survive
secondary site-derived detrimental signals and simultaneously exploit secondary site-
derived survival signals (Obenauf and Massagué 2015). Also, observed dormancy of
tumours over extended periods may occur in the form of pre-angiogenic micrometas-
tases that, at a later point in time, acquire the ability to become vascularised (Chambers
et al. 2002). As avascular tumours can grow up to 0.1–0.2cm via diffusion only (Folk-
man 1990), all metastatic spread observed in our simulation is assumed to fall into
this pre-angiogenic category.
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In addition to obtaining expected simulation outcomes on the cell-level, both for
primary tumour growth and secondary spread, by using the baseline parameter set-
tings in Table 1, we obtained other biologically realistic and relevant results from the
simulations by varying key parameters.

Changing the initial ratio of mesenchymal-like cancer cells to epithelial-like cancer
cells emphasised the importance of co-presence of the two cancer cell types for rapid
invasive tumour growth. In particular, it highlighted that cancer cell invasion relies on
the expression of MDEs (and MT1-MMP in particular), which are required to clear
the collagen in the normal tissue of its covalent cross-links, as proposed by Sabeh
et al. (2009). These results further suggested that a relatively small percentage of
MDE-expressing cancer cells suffices to induce rapid cancer cell invasion.

We observed that higher numbers of mesenchymal-like cancer cells at the primary
tumour location increased the number of cancer cell intravasations. Also, cancer cells
from primary tumours consisting of a homogeneous epithelial-like cell population did
not intravasate (unless ruptured vessels were present, in which case minimal shedding
occurred). This coincides with experimental findings by Tsuji et al. (2009). Results
from theirmousemodel indicated that cancer cells originating fromprimary tumours of
homogeneously mesenchymal-like phenotype could intravasate. The same applied to
cancer cells that stemmed from tumours consisting of a combination of epithelial-like
and mesenchymal-like cancer cells. On the contrary, no intravasations were observed
when the primary tumour consisted of epithelial-like cancer cells only.

The fact that we, as opposed to Tsuji et al. (2009), found a small amount of suc-
cessfully intravasated cancer cells, even when our tumour consisted of epithelial-like
cancer cells only, was to be expected. This was a result of our inclusion of ruptured
vessels in the model, which we considered in accordance with the biological findings
by Bockhorn et al. (2007). Since these blood vessels are ruptured due to trauma or
pressure applied from the expanding tumour, no MDEs are required to degrade the
vessel wall and thus any cell type can intravasate through a ruptured blood vessel.
We verified that the ruptured vessels were indeed the cause of this discrepancy by
rerunning the simulations with an initial nodule consisting of epithelial-like cancer
cells only on a primary grid that solely contained normal blood vessels.

Furthermore, we showed that our model was able to reproduce the survival prob-
abilities of single CTCs and of CTC clusters observed in experiments by Luzzi et al.
(1998) and Aceto et al. (2014).

Regarding the role of the MDEs in our model, we found that both less MMP-2
production as well as less MMP-2 diffusion caused faster cancer cell invasion and
thus a higher metastatic cancer cell load after 22 days. If the MMP-2 was too diffusive
or too abundant, it degraded the ECM very rapidly. The result was a ring-shaped
area around the tumour edge, in which the ECM was fully degraded. This caused
the influence of haptotaxis on cancer cell movement to diminish or even to cease
completely. Hence, a more local or decreased degradation caused the cancer cells to
invade the tissue more rapidly.

When we reduced the MMP-2 production rate to zero, we observed that the cancer
cells could effectively invade in the presence ofMT1-MMPonly, which coincides with
the experimental results by Sabeh et al. (2009). On the contrary, when we set theMT1-
MMP degradation rate to zero and studied the effects ofMMP-2 degradation alone, we
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found that the final total primary cancer cell load was significantly reduced compared
to simulations withMT1-MMP present, which showed again the same tendency as the
results by Sabeh et al. (2009). However, contrary to the findings in these experiments,
invasion was still possible in our model when considering diffusion-dominated cancer
cell movement.

To further investigate the reason for this, we reduced the diffusion coefficients of
both the mesenchymal-like and the epithelial-like cancer cells, resulting in haptotaxis-
dominated rather than diffusion-dominated cancer cell movement.We then studied the
invasion of a mixed cancer cell population, consisting of 40% epithelial-like and 60%
mesenchymal-like cancer cells, as well as of homogeneous cell populations consisting
of mesenchymal-like or epithelial-like cancer cells only, under various MDE-related
conditions. These conditionswere the presence of bothMT1-MMPandMMP-2 aswell
as settings with solely MT1-MMP or solely MMP-2 present. We chose these MDE-
related conditions as they correspond to those in experiments conducted by Sabeh
et al. (2009). We first ran simulations with a heterogeneous initial cancer cell popula-
tion and then, to fully match the experimental conditions of Sabeh et al. (2009), with
mesenchymal-like cancer cells alone. In both cases,we found that invasionwasnot pos-
sible in the presence ofMMP-2 alone,while invasionwas possiblewhenwe considered
MT1-MMP expression alone. Invasion was also possible with both MDEs present but
the invasiondepthwas slightly decreased compared towhenweconsideredMT1-MMP
alone. In the case of a heterogeneous initial cell population, we again observed that the
mesenchymal-like cancer cells formed the invading edge of the tumour by occurring
most abundantly around the central cluster of epithelial-like cancer cells. Further, the
epithelial-like cancer cells formed a pattern of finger-like protrusions. The simulation
results observed in the case of a homogeneouslymesenchymal-like cancer cell popula-
tion were in qualitative agreement with the experimental results by Sabeh et al. (2009).
For these in vitro experiments, HT-1080 cancer cell spheroidswere electroporatedwith
a control siRNA, MMP-1 and MMP-2 siRNAs, or MT1 siRNA. These multicellular
clusters were then embedded in 3D-type-I collagen gels as central nodules of diameter
1.5×10−2–2×10−2cm. The invasive patterns of the HT-1080 cells under the various
conditionswere then studied after 3 days.Ourmodel’s results in comparisonwith those
of Sabeh et al. (2009) are shown in Fig. 17. Finally, we also matched experimental
results by Gaggioli et al. (2007) confirming that in the case of an initial population of
epithelial-like cancer cells only, invasion is not possible. However, the same epithelial-
like population mixed with mesenchymal-like cancer cells could invade.

Since we present a first spatiotemporal modelling framework of metastatic spread,
we have focussed on capturing the main steps involved in the invasion-metastasis
cascade. In future work, we aim to include more biological detail.

The effect of mutations on cell phenotypes can easily be included in this cell-based
modelling framework. SinceEMTandMETaremajor factors in themetastatic process,
a first natural extension to themodel would be the inclusion of phenotypic switching to
represent permanent and transient transitions between the epithelial and mesenchymal
phenotypic state as biologically observed in the invasion-metastasis cascade (Celià-
Terrassa et al. 2012). Since our modelling technique is spatially explicit, we could also
account for the fact that EMT has been shown to predominantly occur at the tumour
boundary (Tsuji et al. 2009) and that MET has been suggested to contribute to the
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colonisation of DTCs at secondary sites (Gunasinghe et al. 2012). In this context, the
biological observation that mesenchymal-like and epithelial-like phenotypes occur on
a spectrum rather than as two discrete states (Campbell 2018) is another detail that
could be included in the framework. Existing spatial models that consider multiple or
continuous phenotypic states of cancer cells include (Lorz et al. 2015; Świerniak and
Krześlak 2016; Domschke et al. 2017; Lorenzi et al. 2018).

The inclusion of a third spatial dimension would further enhance our model’s atten-
tion to biological detail. We have not prioritised this in the early stage development of
our invasion-metastasis cascade modelling framework as we believe that this would
not change the overall characteristics of the model’s qualitative insights.

Biomechanical properties are also not accounted for in our first modelling frame-
work but are evidently important, especially for processes such as intravasation, travel
through the vasculature and extravasation. For this reason, we are planning to couple
our modelling framework to a biomechanical haemodynamics model.

Breast cancer cell intravasation and dissemination occurs through a tumour
microenvironment of metastasis (TMEM)-mediated mechanism. TMEMs are micro-
anatomical structures consisting of three different cell types that are in direct physical
contact with one another (Karagiannis et al. 2017). Since we model individual cell
dynamics, our framework can easily be adapted to model TMEM involvement in
metastatic spread by including an additional cancer cell type and calibrating its phe-
notype.

Often solitary DTCs and micrometastases are non-proliferating, or dormant, even
years after primary tumour diagnosis (Chambers et al. 2002; Pantel andSpeicher 2016).
Others may not survive due to activation of the immune system at the secondary sites.
We could include cancer cell dormancy and immune system activation at secondary
sites more explicitly. In this regard, we could extend our framework to include organ-
specific differentiation of the tissue at the metastatic sites in the body. Further, the
tumour microenvironment at the metastatic sites could be modelled as a landscape that
evolves over time to capture the process of pre-metastatic niche formation that has been
observed both inmousemodels and clinical studies (McAllister andWeinberg 2014). It
could thus be studied inmore detail how these changes in themicroenvironment of dor-
mant cancer cells over time affect growth activation of previously latent micrometas-
tases, which was suggested, amongst others, by McAllister and Weinberg (2014).

To expand our model to capture metastatic growth beyond the current avascular
stage and to thus include the development of larger, vessel-growth activating (macro-
)metastases, it would also be useful to include tumour-induced angiogenesis into
our modelling framework. This could be achieved, for example, by accounting for
tumour-secreted, diffusible TAFs that trigger angiogenesis both at the primary and the
secondary sites of our model, in a similar manner to Anderson and Chaplain (1998).
Incorporating tumour-induced angiogenesis in our framework would also allow us to
include reseeding in a more realistic manner. In this paper, we have investigated the
classic, unidirectional view of metastatic progression. However, it is hypothesised that
self-seeding from primary to primary tumour, primary reseeding from ametastatic site
back to the primary tumour, and metastatic reseeding, where metastases form out of
existing metastases, also play a role in metastatic spread. These processes could easily
be included in this modelling framework, in particular in the context of allowing for
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colonisation by considering tumour-induced angiogenesis at the secondary sites. Of
course, we could also replace the currently static initial vessel distribution in a natural
way by including vascular growth resulting from tumour-induced angiogenesis.More-
over, similar to Powathil et al. (2012), we could include the transportation of oxygen
to the tumour through newly formed vessels as well as hypoxia-induced quiescence
of cancer cells.

For ethical reasons, modern-day data concerning metastatic spread, such as those
by Kuhn Laboratory (2017), stem from studies in which the primary tumours were
removed prior to the observations of when the tumour would reoccur or present
detectable metastases. We could easily modify our model to include both success-
ful resections of the primary tumour and/or of metastases as well as tumour resections
that accidentally leave a small residue of cancer cells. Finally, we could model resec-
tions at various times to examine the effects of delayed surgical interventions on the
disease outcome.
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Appendix

A Non-dimensionalisation

The following dimensional continuum system of PDEs, alongwith zero-flux boundary
conditions, describes the spatiotemporal evolution of the epithelial-like cancer cell
density cE(t, x, y), of the mesenchymal-like cancer cell density cM(t, x, y), of the
ECM density w(t, x, y), and of the MMP-2 concentration m(t, x, y):

∂cE
∂t

= dE∇2cE − φE∇ · (cE∇w),

diffusion haptotaxis

(5)

∂cM
∂t

= dM∇2cM − φM∇ · (cM∇w),

diffusion haptotaxis

(6)

∂m

∂t
= dm∇2m + θcM − λm ,

diffusion expression decay

(7)

∂w

∂t
= − (γ1cM + γ2m)w.

degradation

(8)
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We non-dimensionalise the system in coherence with Anderson et al. (2000). So,
we choose to rescale distance with a length scale L = 0.2cm, which represents an
appropriate choice for the maximum invasion distance of cancer cells at an early stage
of cancer growth, and rescale time by τ = L2

D , where D = e − 6cm2s−1 is a reference
chemical diffusion coefficient, such that τ = 4×104 s,which gives approximately 11h.
We non-dimensionalise our model by setting t̃ = t

τ
, x̃ = x

L , ỹ = y
L , c̃E(t̃, x̃, ỹ) =

cE (t,x,y)
c̄E

, c̃M(t̃, x̃, ỹ) = cM (t,x,y)
c̄M

, m̃(t̃, x̃, ỹ) = m(t,x,y)
m̄ and w̃(t̃, x̃, ỹ) = w(t,x,y)

w̄
,

where c̄E , c̄M , m̄ and w̄ are appropriate reference parameters. When substituting these
into the system of PDEs (5)–(8) and dropping the tildes for better readability, we
obtain

∂cE
∂t

= DE∇2cE − ΦE∇ · (cE∇w), (9)

∂cM
∂t

= DM∇2cM − ΦM∇ · (cM∇w), (10)

∂m

∂t
= Dm∇2m + ΘcM − Λm, (11)

∂w

∂t
= −(Γ1cM + Γ2m)w, (12)

where DE = τdE
L2 = dE

D , ΦE = τφE w̄

L2 = φE w̄

D , DM = τdM
L2 = dM

D , ΦM = τφM w̄

L2 =
φM w̄

D , Dm = τdm
L2 = dm

D , Θ = τθ c̄M
m̄ , Λ = τλ, Γ1 = τ c̄Mγ1 , and Γ2 = τ m̄γ2 .

To choose biologically realistic parameter values for our model, we consult biolog-
ical publications on the topic (Stokes et al. 1990; Bray 1992; Luzzi et al. 1998; Meng
et al. 2004; Milo et al. 2009; Collier et al. 2011; Vajtai 2013; Aceto et al. 2014; Kuhn
Laboratory 2017) as well as comparable PDE models (Anderson et al. 2000; Deakin
and Chaplain 2013). An overview of the parameter values used together with their
mathematical and experimental origin is found in Table 1.

B Hybrid Approach Outline

We fix a time step Δt and set tn = nΔt . We discretise each of the G + 1 square
domains using a uniform mesh with step size Δx = Δy = 1

l . We set xi = iΔx and
y j = jΔy, where i, j ∈ [0, l] ⊂ N0. We continue by approximating the MMP-2
concentration m(t, x, y) and the ECM density w(t, x, y) by discrete values mn

i, j and
wn
i, j , respectively, and denote the number of epithelial- and mesenchymal-like cancer

cells on grid point (xi , y j ) at time tn by cE
n
i, j and cM

n
i, j , respectively.
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The spatiotemporal evolution of MMP-2 concentration and ECM density is then
governed by the explicit five-point central difference discretisation of equations (3)
and (4), respectively:

mn+1
i, j = Dm

Δta
(Δxa)2

(
mn

i+1, j + mn
i−1, j + mn

i, j+1 + mn
i, j−1

)

+ mn
i, j

(
1 − 4Dm

Δta
(Δxa)2

− ΔtΛ

)
+ ΔtaΘcM

n
i, j

wn+1
i, j = wn

i, j

[
1 − Δta

(
Γ1cM

n
i, j + Γ2m

n
i, j

)]
(13)

along with zero-flux boundary conditions. Note that the discretisation time step Δt
and space steps Δx and Δy were chosen to represent the physical properties of cancer
cell size and remain fixed. The abiotic time step Δta and the abiotic space steps Δxa
and Δya can be chosen freely for a more accurate discretisation of the PDEs in (13),
as long as Δt , Δx and Δy are integer multiples of Δta , Δxa and Δya , respectively.

We discretise Eqs. (1) and (2) using, again, a five-point central difference scheme.
This yields

cE
n+1
i, j = P0cE

n
i−1, j + P1cE

n
i+1, j + P2cE

n
i, j+1 + P3cE

n
i, j−1 + P4cE

n
i, j

and

cM
n+1
i, j = P0cM

n
i−1, j + P1cM

n
i+1, j + P2cM

n
i, j+1 + P3cM

n
i, j−1 + P4cM

n
i, j (14)

for epithelial-like andmesenchymal-like cancer cells, respectively, together with zero-
flux boundary conditions.

We then extract the coefficients of the resulting probabilities for cancer cells to
move left, right, up and down to determine the cancer cells’ movement. We obtain

P0 : Pn
i−1, j := Δt

(Δx)2

[
Dk − Φk

4

(
wn
i+1, j − wn

i−1, j

)]
,

P1 : Pn
i+1, j := Δt

(Δx)2

[
Dk + Φk

4

(
wn
i+1, j − wn

i−1, j

)]
,

P2 : Pn
i, j+1 := Δt

(Δx)2

[
Dk + Φk

4

(
wn
i, j+1 − wn

i, j−1

)]
,

P3 : Pn
i, j−1 := Δt

(Δx)2

[
Dk − Φk

4

(
wn
i, j+1 − wn

i, j−1

)]
,

P4 : Pn
i, j := 1 − Δt

(Δx)2

[
4Dk − Φk

(
wn
i+1, j + wn

i−1, j + wn
i, j+1 + wn

i, j−1 − 4wn
i, j

)]
,

(15)

where k = E,M, with the coefficientsP0,P1,P2,P3 corresponding to the probabilities
that, during the next time step, a cancer cell at grid point (xi , y j ) moves left, right,
up and down, respectively. While the above probabilities P0–P4 let us derive Eqs. (1)
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and (2), we will choose for P4 to become

P4 : Pn
i, j := 1 − 4Dk

Δt

(Δx)2

in order to make P0–P4 real probabilities such that

4∑
q=0

Pq = 1.

P4 is the probability that a cancer cell remains at grid point (xi , y j ) during the next
time step. So, the cancer cellsmove both by diffusion, and, as soon as there is a nonzero
ECMdensity gradient, also by haptotactic movement towards the higher ECMdensity.

At any time step n ≥ 0, we realise the individual-based cell movement from grid
point to grid point using the following algorithm, following the work of Burgess et al.
(2016, 2017):

1. On every grid, we identify cM
n
i, j on each grid point (xi , y j ) by counting the number

of mesenchymal-like cancer cells and thus the MMP-2 concentration and ECM
density by calculating the numerical solutions defined by completing Eq. (13) with
zero-flux boundary conditions and suitable initial conditions, which we defined
above.

2. For each grid point (xi , y j ) on every grid, we evaluate the movement probabilities
to a neighbouring grid point for cancer cells on this grid point by substituting the
local ECM densities into Eq. (15).

3. Five intervals are then defined based on the movement probabilities in Eq. (15), at
each grid point (xi , y j ):

R0 := [0,P0); Rp :=
⎡
⎣

p−1∑
q=0

Pq ,

p∑
q=0

Pq

⎞
⎠ , p = 1, 2, 3; and R4 :=

⎡
⎣

3∑
q=0

Pq , 1

⎤
⎦ .

4. At each grid point (xi , y j ) of every grid, we generate a random number z ∈ [0, 1]
for every cancer cell on that grid point. Depending on which of the above intervals
R0 to R4 the value of z falls into, the corresponding cancer cell will move left
(z ∈ R0), move right (z ∈ R1), move up (z ∈ R2), move down (z ∈ R3), or
remain on its current grid point (z ∈ R4).

5. If a cancer cell would have been placed outside the grid limits by Step 4, it remains
in its grid position in compliancewith our zero-flux boundary conditions. The same
applies if a cancer cell would have moved to a grid point already filled with the
maximum carrying capacity of Q cells.

123



2004 L. C. Franssen et al.

C Figures

See Figs. 18, 19 and 20.

Fig. 18 Simulation results on secondary grid representing the bones. Distribution of MMP-2 concentration
(top panels) and ECMdensity (bottom panels) at the secondary site of the bones is shown at times 24,000Δt
(left) and 48,000Δt (right). This corresponds to∼11 days and∼22 days, respectively. TheMMP-2 concen-
tration ranges from 0 (white) to 3.4737 × 10−2 (black) and the ECM density from 0.17559 (light grey) to
1 (black). The red grid points represent blood vessels, through which cancer cells can extravasate. Figure 9
shows the corresponding plots of the cancer cell distributions. The scale bar denotes 0.02 cm and applies
to all of the panels (Colour figure online)
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Fig. 19 Simulation results on secondary grid representing the lungs. Distribution of MMP-2 concentration
(upper panels) and ECMdensity (lower panels) at the secondary site of the lungs is shown at times 24,000Δt
(left) and 48,000Δt (right). This corresponds to∼11 days and∼22 days, respectively. TheMMP-2 concen-
tration ranges from 0 (white) to 1.5876×10−2 (black) and the ECM density from 0.41137 (light grey) to 1
(black). The red grid points represent blood vessels, through which cancer cells can extravasate. Figure 10
shows the corresponding plots of the cancer cell distributions. The scale bar denotes 0.02 cm and applies
to all of the panels (Colour figure online)
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Fig. 20 Simulation results on secondary grid representing the liver. Distribution of MMP-2 concentration
(top panels) and ECM density (bottom panels) at the secondary site of the liver is shown at times 24,000Δt
(left) and 48,000Δt (right). This corresponds to∼11 days and∼22 days, respectively. TheMMP-2 concen-
tration ranges from 0 (white) to 3.7129× 10−3 (black) and the ECM density from 0.58015 (light grey) to 1
(black). The red grid points represent blood vessels, through which cancer cells can extravasate. Figure 11
shows the corresponding plots of the cancer cell distributions. The scale bar denotes 0.02 cm and applies
to all of the panels (Colour figure online)
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