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Active Learning with Noisy Labelers for Improving
Classification Accuracy of Connected Vehicles

Alaa Awad Abdellatif, Member, IEEE, Carla Fabiana Chiasserini, Fellow, IEEE,
Francesco Malandrino, Senior Member, IEEE, Amr Mohamed, Senior Member, IEEE,

and Aiman Erbad, Senior Member, IEEE

Abstract—Machine learning has emerged as a promising
paradigm for enabling connected, automated vehicles to au-
tonomously cruise the streets and react to unexpected situations.
Reacting to such situations requires accurate classification for
uncommon events, which in turn depends on the selection of
large, diverse, and high-quality training data. In fact, the data
available at a vehicle (e.g., photos of road signs) may be affected
by errors or have different levels of resolution and freshness.
To tackle this challenge, we propose an active learning frame-
work that, leveraging the information collected through onboard
sensors as well as received from other vehicles, effectively deals
with scarce and noisy data. Given the information received from
neighboring vehicles, our solution: (i) selects which vehicles can
reliably generate high-quality training data, and (ii) obtains a
reliable subset of data to add to the training set by trading off
between two essential features, i.e., quality and diversity. The
results, obtained with different real-world datasets, demonstrate
that our framework significantly outperforms state-of-the-art
solutions, providing high classification accuracy with a limited
bandwidth requirement for the data exchange between vehicles.

Index Terms—Data selection, labeling quality, labelers selec-
tion, connected automated vehicles, online learning.

I. INTRODUCTION

The development of automated vehicles and Intelligent
Transportation Systems (ITS) has recently attracted significant
interest and has become one of the main goals in the agenda of
research agencies worldwide. An important component of ITS
is represented by automated vehicles, which, equipped with
artificial intelligence (AI) technologies as well as cameras,
sensors, and lidars, can learn, identify, and handle complex
situations occurring on a road [1]. Ordinarily, supervised ma-
chine learning is predicated on learning from large quantity of
data representing past history, e.g., different photos of the same
object. However, roads are very dynamic environments, with
high variability in typical driving scenarios. Hence, vehicles
may face multiple and diverse uncommon situations, such
as unexpected maneuvers by neighboring vehicles or move-
ments of pedestrians and bikers, for which limited history is
available. In these cases, conventional AI/supervised learning
techniques that rely on large amounts of accurately labeled
data for the training, cannot provide sufficiently good results.
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Fig. 1. V2V communications for information exchange about haz-
ardous/unexpected situations.

To overcome such a severe problem, we propose an effec-
tive, cooperative solution exploiting the capabilities of Con-
nected and Automated Vehicles (CAVs), based on: (i) lever-
aging vehicle-to-vehicle (V2V) communication to increase the
amount of data available at a vehicle [2], and (ii) adopting on-
line machine learning models to swiftly react to unexpected
events. Indeed, thanks to V2V communications, vehicles can
leverage not only the data generated by their own onboard
sensors and the history available locally (if any), but also those
received from their neighboring vehicles. This extra source of
information is of particular relevance under non-line-of-sight
conditions (see Figure 1), e.g., in the presence of fog or rain,
in which built-in cameras may not provide enough, or accurate
enough, data on the vehicle’s surroundings, or on the trajectory
of neighboring vehicles [3]. Additionally, V2V communication
can provide a vehicle with information on an event long before
the vehicle becomes exposed to it, thus allowing for more time
to classify the situation and properly react.

As an example, Volvo trucks and Volvo cars manufacturers
enabled their vehicles to share real-time traffic hazard infor-
mation via their cloud to automatically alert each other. Thus,
when a vehicle hazard warning light is switched on, an alert
signal is sent to all connected cars and trucks approaching the
location of the vehicle whose hazard lights have been activated
[4]. Similar automated response systems are employed in
platooning scenarios [5].

Our cooperative, on-line learning framework extends this
example by collecting, labeling, and integrating the informa-
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tion from the neighboring vehicles into the learning model
of each vehicle, hence enabling fast detection/prediction of
hazardous or unexpected situations.

Among the existing online machine-learning techniques,
active learning (AL) has emerged as a promising and effective
option. AL workflows are based upon actively acquiring new
data to enhance the learned models. In other words, training
data is not static, rather, an active learner can achieve high
classification accuracy by selecting over time the most infor-
mative data samples and by adding such a subset of data to
its training set. Active learning is based on: (i) receiving new
data from the available sources – in our cases, the the sensors
aboard a vehicle and the vehicle’s neighbors –; (ii) selecting
the most informative data to add to the training set [6],
[7]; (iii) including the newly-acquired data in the training
process. Depending upon the concrete scenario and underlying
learning technique (e.g., neural networks, SVM. . . ), this can
mean either running additional training iterations with the
new data, or restart the training from scratch. It follows that
both the training set and the learning model are progressively
updated, thus improving the learning quality [8]. It is worth
noticing that federated learning (FL) [9], which is a popular
distributed machine learning methodology allowing multiple
nodes to cooperatively train a model without the need to share
data, differs from AL in several ways. Indeed, FL requires
tight synchronization among nodes and the presence of a
centralized parameter server (also called a broker), which ren-
ders it unsuitable for highly dynamic scenarios like vehicular
ones. Furthermore, AL and FL solve orthogonal problems –
the former aims at using newly-arrived data, the latter aims
at training a model in a distributed manner – and can be
combined when warranted.

However, traditional AL schemes require accurate classi-
fiers, generating ground-truth labels for new data as it arrives.
Such an assumption is impractical in many real-time scenarios,
including that of connected and automated vehicles. Indeed,
vehicles are typically weak labelers, and often have at their
disposal noisy data (e.g., generated by cameras in the presence
of fog or rain), or data that may have different levels of
resolution and freshness. Thus, not only the labels generated
by the vehicles’ classifiers, but also the data generated or
received by a vehicle, may be affected by errors.

In this paper, we tackle the above challenges by proposing
an AL framework for connected vehicles, which selects the
optimal set of labelers as well as a subset of the locally-
generated and received data, to be used for classification. More
specifically, our main contributions are as follows:

1) Vehicles’ interaction: we investigate three ways in which
vehicles can leverage the information exchanged through
V2V communications for online training, namely, by
sharing labels, data, or a combination of the two. For
each of these operational modes, we study the impact
on the classification accuracy as well as on the net-
work load. Importantly, although in this work we focus
on V2V communications, vehicle-to-everything (V2X)
communications could be leveraged as well, with the
additional benefit of potentially enlarging the set of
neighboring nodes with which a vehicle can interact;

2) Characterization of data quality: we propose a method
to define the information quality, including two main
steps: (i) label integration, to generate an aggregate label
for the acquired data, and (ii) data quality assessment,
to measure the quality of the acquired data based on
labelers’ accuracy, data freshness, and affinity of the
corresponding labels with respect to the aggregate label;

3) Labelers’ selection: we propose a reputation-based
scheme to evaluate neighboring vehicles quality, and
select those considered to be the most reliable labelers.

4) Data selection: we define a data selection scheme, which
accounts not only for the labelers’ quality, but also for
the trade-off between data quality and diversity, so as to
obtain a maximally diverse set of data with high quality;

5) Performance evaluation: we evaluate the proposed
framework and compare it against state-of-the-art so-
lutions, using three real-world datasets. Our results
demonstrate the effectiveness of the proposed approach
in improving the classification performance.

The rest of the paper is organized as follows. Sec. II dis-
cusses the related work and highlights the novelty of our study.
Sec. III describes the system model, while Sec. IV presents
the proposed AL framework, along with the label integration
strategies. Sec. V presents the proposed schemes for labelers
and data selection. Sec. VI discusses the scenarios and the
data traces we used for our performance evaluation, and it
shows the obtained results and the gain with respect to existing
solutions. Finally, Sec. VII concludes the paper.

II. RELATED WORK

Leveraging V2V communication along with the advances
of AI technologies, CAVs can learn the driving environment,
make optimal decisions, and share traffic information with
other vehicles and the network infrastructure [10]. AI tech-
nologies have been very successful in providing accurate,
real-time activity classification. However, one of the main
limitations of AI is the need for a large amount of accurately
labeled data for the training (supervised learning) [11].

As far as AL is concerned, most of the existing works
address the problem of noisy (or imperfect) labels in binary
classification [12], [13], while very few tackle the multi-
class (i.e., multi-label) case. Among the latter ones, [14]–[16]
investigate the classification performance of crowdsourced
data, where labeling can be done by volunteers or non-expert
labelers. One of the crucial problems in crowdsourcing is
data quality. As shown in [17], [18], when data/labelers are
not selected carefully, the acquired data can be very noisy
due to many reasons such as varying degrees of competence,
individual biases, and misleading behavior. Moreover, the cost
of acquiring a large amount of labeled data is non-trivial [19].

Such challenges have motivated the research for innovative
ways to enhance the quality of data acquired from different
labelers. In particular, [14] presents an AL-based, deep learn-
ing technique, leveraging volunteered geographic information
to overcome the lack of big datasets; therein, a customized
loss function is specifically defined to effectively deal with
noisy labels and avoid performance degradation. [16] enhances
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the performance of supervised learning with noisy labels in
crowdsourcing systems by applying the majority voting label
integration method and selecting the data referring to the same
event whose label is sufficiently close to the resulting value.
The work in [15] studies the problem of imbalanced noisy
labeling in crowdsourcing systems, where the available labeled
data is not evenly distributed across the different classes.
First, it performs label integration and data selection based on
data uncertainty and class imbalance level, then it classifies
unlabeled data using the trained model and adds them and
the associated labels to the training set. However, this work
focuses on label integration and instance selection only, while
neglecting the quality of the collected data (e.g., in terms of
data freshness) as well as that of the labelers.

A different application is targeted in [8] where AL is used
for incremental face identification. This study aims to build
a classifier that progressively selects and labels the most
informative data, and then it adds the newly labeled data
to the training set. Furthermore, AL is combined with self-
paced learning (SPL) – a recently developed learning scheme
that gradually incorporates from easy to more complex data
into the training set, with easy data being those with high
classification confidence. Note that all of the above works
consider specific classifiers (or loss functions), which cannot
be easily incorporated in other learning techniques [20]. Thus,
finding a label integration and data selection strategy that can
be integrated with a generic multi-class classification scheme,
is still an open problem.

With regard to cooperative applications leveraging V2V
communications, it is worth noticing that several car manu-
facturers have already enabled their vehicles to share real-time
hazard signals and to automatically alert each other [4]. The
integration of V2V communication with machine learning to
improve road safety has also received significant interest. In
particular, [21] studies the impact of communication loss on
3D object detection exploiting a deep-learning approach. In
[22], Gaussian process regression is used to estimate the age
of the vehicles’ data and proactively allocate, e.g., transmission
power and resource blocks for reliable and low-latency V2V
communication. [23] deals with the vehicle type recognition
problem, in which labeling a sufficient amount of data is very
time consuming. The solution presented in [23] exploits fully
labeled web data to reduce the labeling time of surveillance
data through deep transfer learning; also, only images of
unlabeled vehicles with high uncertainty and diversity are
selected to be queried.

Finally, a preliminary version of our study has been pre-
sented in [24], which introduces an efficient data selection
scheme for online learning. Although [24] tackles the trade-
off between data quality and diversity, it does not account
for the reliability of neighboring vehicles. In this paper,
we extend [24] to address the problem of weak or noisy
labelers, by developing a labelers’ selection scheme and, by
doing so, selecting the optimal data subset for online training.
Furthermore, we enhance the performance evaluation of the
proposed framework, as well as the comparison against state-
of-the-art solutions, by using additional real-world datasets.

Novelty. Our work is the first to address the problem of

scarce and noisy data available to vehicles for classifying
unexpected events. Moreover, unlike other studies, we assess
the data quality level accounting for many factors, including
freshness. Finally, the methods we propose for label integra-
tion as well as for labelers and data selection are general
enough to be incorporated in different classification techniques
or loss functions.

III. SYSTEM MODEL

We introduce below the main components of the system
under study, along with the used notation. The road topology is
divided into discrete segments i ∈ I, while time is continuous.
We denote with t the generic time instant and with tij the time
at which vehicle j ∈ V is found at segment i ∈ I.

Vehicles. We denote with V the set of all vehicles, and
with E(t) the set of edges that exist at time t, i.e., pairs
of vehicles within radio range of each other. Given an ego
vehicle v0 ∈ V , we indicate by Nv0(t) the set of neighbors
of v0 at time t, i.e., vehicles v ∈ V : (v0, v) ∈ E(t).

The classification task. In our scenario, each vehicle has
its own active learning model running locally, which combines
locally- and remotely-generated information. This information
comes from onboard cameras and Advanced Driver Assistance
Systems (ADAS); in the following, we refer to both sensor
readings and features extracted from such information as data.
The high-level purpose of the adaptive learning system we
consider is to classify the collected data, associating each
of them with a label. Labels, i.e., the output classes of the
data, are the final output we get from the learning model
after training it. The classification accuracy then expresses the
proximity of the labels in the dataset to the ground truth. We
denote with xij the data observed by vehicle j ∈ V while
traveling in segment i ∈ I, and with yij ∈ L the associated
label (L is the set of all possible labels). Data observed by
the ego vehicle and the locally-generated labels thereof are
indicated by xi0 and yi0, respectively. The combination of
data, label, and time (xij , yij , tij) is referred to as sample.

Modes. As already mentioned and illustrated in Figure
2, vehicles can receive information from their neighbors.
Specifically, we compare the following three modes:
• labels: the ego vehicle receives only the set Yi =
{yi0, yi1, . . . , yiJ} of labels generated by its neigh-
bors {1, 2, . . . , J} ∈ Nv0(t);

• data: the ego vehicle receives only the set Xi =
{xi0, xi1, . . . , xiJ} of data observed by its neigh-
bors {1, 2, . . . , J} ∈ Nv0(t);

• samples: the ego vehicle receives both labels and data.
It is important to observe that modes significantly differ in
the network usage they imply. Indeed, labels can be orders
of magnitude smaller than the data they are based upon;
hence, in terms of communication bandwidth, the “labels”
mode is potentially much more efficient than the “data” and
“samples” ones. Moreover, we remark that the proposed AL
framework can be easily extended to consider Vehicle-to-
everything (V2X) communications. In this case, depending
on the adopted communication mode (e.g., V2I (vehicle-to-
infrastructure), V2N (vehicle-to-network), V2D (vehicle-to-
device), or V2V), the ego vehicle can identify the type of
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Fig. 2. The considered vehicles network with time-varying topology.

cooperative labelers and share with them its information,
without affecting its active learning framework.

IV. ACTIVE LEARNING FRAMEWORK

In this section, we first introduce the proposed AL frame-
work and the performance metrics we consider. Then, we
discuss the basic majority voting method for labels integration,
in addition to two more sophisticated methods: weighted
majority voting and weighted average.

A. Methodology and performance metrics

Our framework, depicted in Figure 3, includes five main
stages, as described below.

Offline learning: We consider that each vehicle has a
certain amount of history, composed of M samples, through
which it can initially train its learning model; as mentioned,
M may be very small. With reference to such off-line dataset,
we define the accuracy of the generic vehicle labeler j as,

Aj =

∑M
m=1 I(ymj , ym)

M
(1)

where ymj is the label generated by j for sample m, ym is
the estimated label, and I(u,w) is an indicator function, such
that I(u,w) = 1 if u = w, and 0 otherwise.

Online labeling: Let us now consider that an event takes
place at time ti0 while the ego vehicle v0 is in road segment
i. The vehicle acquires some information through its onboard
sensors and, possibly, extracts some features (as mentioned, we
refer to such new information as data); then v0 labels such data
through the learning model, obtaining sample (xi0, yi0, ti0).
Depending on the adopted operational mode, the ego vehicle
shares with its neighbors, labels, data, or samples. Note that,
in the data operational mode, v0 has to label the received
information using its own training model.

Label integration: After receiving the information from
its neighboring vehicles, v0 computes an aggregated label
for the acquired data, using one of the label integration
strategies reported below. Clearly, in label and sample mode,
v0 leverages the labels received from other vehicles, while in
data mode it exploits the labels that v0 itself has obtained
for the locally generated data and for the received data. We
denote the aggregated label with ȳi0; moreover, we define
quality indicator qi0, which, as detailed later, accounts for
the accuracy (as labelers) of the vehicles Aj from which
v0 receives information, as well as for the data freshness.
The samples referring to the situation in road segment i, to
which the ego vehicle is exposed, are therefore described as

(Xi0, ȳi0, qi0), where Xi0 is the data referring to such an event
available at v0.

Labeler selection The received labels/samples from the
neighboring vehicles have a significant impact on the ob-
tained accuracy at v0. Thus, it is important to select the best
neighboring vehicles that v0 should consider. To do so, we
propose a labelers selection scheme, where reputation values
of diverse labelers are computed by subjective logic model.
After monitoring the behavior of the neighboring vehicles,
the ego vehicle v0 evaluates their reputation values, based
on past interactions, and selects a subset of labelers S0 =
{v1, v2, . . . , vJ} ⊂ Nv0(t) with the highest reputation. It is
assumed that all vehicles will have the same evaluation criteria
to generate reputation values for the neighboring vehicles.

Data selection and classification: The ego vehicle selects
the most appropriate set of samples to update its learning
model. The goal of our data selection scheme is to find a
maximally diverse collection of samples (with respect to all
possible labels, i.e., data classes) in which each sample has as
high quality as possible. Hence, the proposed scheme allows
for selecting the highest quality data/samples from the highest
reputation neighboring vehicles, subject to a diversity require-
ment. Using the selected samples, v0 updates its training set,
repeats the training1 and performs classification. We remark
that the on-line retraining typically happens at uncommon or
rare situations, and it is executed by using a much smaller
amount of data compared to offline training; thus it is requires
much less time and it implies much less overhead than the
initial (offline) training.

B. Label integration and quality definition

We consider and compare the following label integration
methods for the computation of the aggregate label ȳi0.

Majority Voting (MV). The simplest and most popular
label integration method is MV [15], which assumes no prior
knowledge on the labelers’ accuracy or data freshness. In MV,
ȳi0 is computed as:

ȳ
(MV )
i0 = argmax

l∈L

|S0|∑
j=0

I(yij = l) . (2)

Given ȳ(MV )
i0 , a sample quality indicator, qMV

i0 ∈ [0, 1], is:

qMV
i0 =

1

|S0|+ 1

max
l∈L

|S0|∑
j=0

I(yij = l)

 . (3)

Besides neglecting data freshness, MV’s performance is ac-
ceptable only when more than 50% of the labelers have high
accuracy, which does not always hold in complex real-world
scenarios [15]. Thus, in what follows, we propose alternative
methods that aim at overcoming MV’s weaknesses.

Weighted Majority Voting (WMV). We now define a
probability of correctness, pij , representing the probability

1As better detailed in Sec. VI-A, we compare several different ML tech-
niques in our performance evaluation. Some of them (e.g., neural networks)
can leverage additional data to refine an already-trained model, while others
(e.g., tree learning) cannot. For sake of uniformity, we therefore restart the
training from scratch for all techniques.
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Fig. 3. Diagram representing the proposed AL framework, highlighting the different stages performed by the vehicles and the corresponding data flow.

with which v0 receives a correct information from vj . Such
a probability depends on the labeler’s accuracy and data
freshness:

pij = fij ·Aj , (4)

with the data freshness being defined as:

fij =

{
exp[−(ti0 − tij)] ti0 > tij
0 ti0 ≤ tij

(5)

and taking on values ranging from 0 (totally stale data) to
1 (absolutely fresh data) [25]. Considering that pij’s are
independent with respect to j [18], we write:

ȳ
(WMV )
i0 = argmax

l∈L
P(ȳ

(WMV )
i0 = l|yi0, · · · , yiJ). (6)

Following the standard hypothesis testing procedure [18] and
assuming for ease of presentation binary classification with
equal priors, i.e., P(ȳ

(WMV )
i0 = 1) = P(ȳ

(WMV )
i0 = −1), the

aggregate label ȳ(WMV )
i0 is given by:

ȳ
(WMV )
i0 =

 1, ρ1 > ρ2

0 ρ1 = ρ2

−1, ρ1 < ρ2

(7)

where ρ1 =
∏
{j:yij=1} pij , and ρ2 =

∏
{j:yij=−1} pij . Hence,

the quality indicator of WMV is defined as

qWMV
i0 = max

l∈L

∏
{j:yij=l}

pij . (8)

Weighted Average (WA). The WA method relies on defin-
ing a weighting coefficient accounting for both the labelers’
accuracy and data freshness: λij = a · fij + b · Aj , where a
and b are constants representing the importance of fij and Aj ,
respectively. Then, the aggregate label is defined as

ȳWA
i0 = argmax

l∈L

|S0|∑
j=0

exp(λij) · I(yij = l) . (9)

We remark that the exponential function in (9) is used to
weight more the labels associated with high classification
confidence, thereby making it more descriptive than a simple
average. The quality indicator of WA is then given by:

qWA
i0 = max

l∈L

|S0|∑
j=0

exp(λij) · I(yij = l). (10)

To assess the performance of our label integration methods,
we define the Labeling Accuracy (LA) for the ego vehicle as

LA0 =

∑Ω
i=1 I(ȳi0, γi)

Ω
(11)

where Ω is the size of the testing dataset for the event currently
occurring in road segment i, and γi is the ground truth.

We remark that the WMV and WA methods account for
the labelers’ quality and freshness; also, WA leverages an
exponential function with a weighting coefficient to magnify
the effect of high-quality labelers, which improves the perfor-
mance compared to MV and WMV.

V. LABELERS AND DATA SELECTION

In this section, we detail the two core procedures of our
framework, i.e., labelers selection and data selection.

A. Labelers’ selection

Since we are dealing with noisy/unreliable sources of in-
formation (i.e., labelers), we opt to leverage subjective logic
to select the most reliable labelers. Subjective logic is a type
of probabilistic logic that accounts for uncertainty of diverse
sources to model and analyze the systems involving relatively
unreliable sources [26]. Indeed, we aim to define a reputation
function, to be used at each vehicle, to model the interactions
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with different vehicles. The proposed reputation scheme con-
siders two types of interactions, namely, positive interactions
and negative interactions. The former means that a vehicle
believes that the received information from the neighboring
vehicle (or labeler) is true, i.e., its label is consistent with
the aggregate label ȳi0. The latter means that the received
information may be misleading or unreliable, since it conflicts
with the remaining information acquired from other labelers.

Considering the ego vehicle v0 and a neighboring vehicle
vj , the trustworthiness or local opinion (as in subjective logic
[27]) of v0 about vj is formally defined as a function of
b0j , d0j , u0j , a0j . Herein, b0j , d0j , and u0j represent the belief,
disbelief, and uncertainty of v0 in vj , respectively, while a0j

is the base rate. The belief is the probability that the received
information from vj is true, disbelief is the probability that the
received information is false, and uncertainty is the confidence
in the obtained knowledge about vj . The base rate is the prior
probability in the absence of belief or disbelief. Hence, based
on the subjective logic model in [27], [28], we have that:

b0j , d0j , u0j , a0j ∈ [0, 1] , and b0j + d0j + u0j = 1. (12)

In our framework, we define the reputation value of vj at
v0, as follows:

R0j = δ · b0j + (1− δ) · a0j , with (13)

b0j = (1− u0j)
α0j

α0j + β0j
. (14)

In (13) and (14), we have:

• α0j =
∑Nj

i=1 I(yij = ȳi0) is the number of positive inter-
actions between vj and v0, and β0j =

∑Nj

i=1 I(yij 6= ȳi0)
is the number of negative interactions, where Nj is the
number of labels, data, or samples received from vj at
v0;

• δ = min
{
α0j+β0j

θ , 1
}

, where θ is the number of inter-
actions that reveals high prior knowledge about vj ;

• a0j = Aj ;
• the uncertainty u0j is mainly obtained by the communi-

cation quality of the link between v0 and vj .

Accordingly, after receiving the information from the neigh-
boring vehicles, v0 updates the reputation values of different
labelers, using (13). Hence, the labelers with high reputation
can be selected.

After calculating the reputation of diverse labelers, we
address the tradeoff between the labeling quality and network
load for the selected subset of labelers S0 at v0. Let ϕ0 be the
average quality of the acquired samples; e.g., when the WA
method is used for label integration, ϕ0 is defined as:

ϕ0 =

∑
i∈Z q

WA
i0

|Z|
, (15)

where Z is the set of the latest consecutive road segments
along which the ego vehicle has traveled. The network load
is defined as B0 = ψ ·

∑|S0|
j=1Nj , where ψ is the size of

the exchanged message between the neighboring vehicles.
Both objectives (i.e., labeling quality and network load) are

normalized with respect to their maximum values, then they
are combined into the following utility function:

U0 = η · ϕ̃0 − (1− η) · B̃0 (16)

where ϕ̃0 and B̃0 are the normalized quality and load, and 0 ≤
η ≤ 1 is a constant trading off the labeling quality and network
load. Accordingly, we define the optimal selected subset of
labelers at v0 as

S∗0 = argmax
S0∈Nv0

(t)

U0. (17)

To efficiently obtain S∗0 , we propose the Labelers’ Selection
(LS) algorithm reported in Algorithm 1. The LS algorithm
leverages the monotonicity property of the optimal set, in
order to decrease the complexity of searching for the optimal
subset of labelers. Such a property is proved by the lemma
below.

Lemma 1: The optimal set S∗0 is monotonic, i.e., if we
have j ∈ S∗0 and i /∈ S∗0 then we must have R0j > R0i.

Proof: Suppose that a labeler i with reputation R0i has
been selected from a set of optimal labelers Ŝ0(i), while
a labeler j with reputation R0j has been selected from a
non-optimal set of labelers S0(j). Given that R0j > R0i,
the labeling accuracy of labeler j must be greater than the
accuracy of labeler i, based on (13). From (10) and (15), we
can infer that ϕ0(j) > ϕ0(i), hence U0(j) > U0(i). This
contradicts our first assumption that Ŝ0(i) is the optimal set
of labelers, according to the definition given in (17). Hence, the
optimal set S∗0 must include labeler j that has high reputation,
while adding any other labelers with lower reputation instead
of j would result in a non-optimal set.

The above lemma can significantly reduce the search com-
plexity for the optimal set S∗0 by first ordering all labelers in
descending order with respect to their reputation R0j . Then,
for each possible selected labelers set size 1, 2, · · · , |Nv0(t)|,
we obtain the optimal set by sequentially adding labelers with
high reputation, and till when including one more labeler
leads to a decrease in U0. We highlight that, after defining
the optimal subset of labelers S∗0 , their information will be
considered in the following procedure to obtain a maximally
diverse set of data with high quality.

B. Data subset selection

The objective of our data selection algorithm, named
Quality-Diversity Selection (QDS), is to obtain a subset of
high-quality data to be added to the online training set, so as
to maximize the model classification accuracy. We highlight
that, unlike most of the existing quality-based schemes to
data selection that result in a reduced samples’ diversity, our
approach efficiently trades off quality and diversity, thus it
significantly improves the performance of the AL framework.
Furthermore, the QDS algorithm not only determines which
samples should be selected but also how many should be added
to the training set.

The diversity score is measured based on the entropy of the
selected samples [29]: H(X ) = −

∑K
k=1 χk log2 χk, where
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Algorithm 1 Labelers’ Selection (LS) Algorithm
1: Input: Aj , (Xi0,Yi0, Ti),∀i ∈ {1, · · ·N}
2: Compute ȳi0 and qi0 using a label integration method (e.g.,

MV, WMV, WA)
3: Obtain the reputation value for each labeler j,∀j ∈
{1, · · · |Nv0(t)|} using (13)

4: Rank all labelers in descending order with respect to their
reputation values

5: Initially: set j = 1,S0(j) = {v1}, and compute U0(j)
using (16)

6: for j = 2 : |Nv0(t)| do
7: Add labeler j to the selected subset of labelers S0(j)
8: Compute U0(j) using (16)
9: if U0(j) < U0(j − 1) then

10: S∗0 = S0(j − 1)
11: Break . No further addition is worth it
12: else
13: S∗0 = S0(j)
14: end if
15: end for
16: return S∗0

χk is the fraction of samples belonging to class k, and K is
the number of classes defined for the classification task. The
labeling quality of the selected samples is defined as in (15),
where n is the number of selected samples. Accordingly, the
sample selection is conducted in two steps:
• Selecting class k∗: the class of samples to target is chosen

so as to maximize diversity, i.e., k∗ = argmaxkH(X ).
The idea is indeed that the more diverse samples are
selected, hence the more balanced their distribution across
the different classes, the more informative they will be.

• Selecting the samples: given class k∗, the samples with
the best quality are selected such that the labeling quality
is maximized, i.e., X ∗ = argmaxX ϕ0(X ).

The selected samples are added to the on-line training
set and the classification accuracy of the AL framework is
checked by labeling the data in the testing set. If the obtained
classification accuracy α̂ is below the desired predefined value
α, one more sample is selected, till accuracy α is reached. The
proposed QDS algorithm is summarized in Algorithm 2, where
n∗ is the number of selected samples.

Algorithm 2 Quality-Diversity Selection (QDS) Algorithm
1: Input: S∗0 , (Xi0,Yi0, Ti), ȳi0, qi0, ∀i ∈ {1, · · ·N}.
2: Identify the selected class k∗

3: Given k∗, select samples with maximum quality X ∗
4: Add selected samples to the online training set O
5: Compute α̂
6: if α̂ > α then
7: n∗ = |O|
8: Break . n∗ is obtained
9: else

10: Go to step 2.
11: end if
12: return n∗, O

VI. PERFORMANCE EVALUATION

In this section, we first present the simulation environment
that is used to derive our results. Then, we assess the per-
formance of the proposed AL framework compared to state-
of-the-art techniques. In particular, our results mainly focus
on label integration assessment, data and labelers selection
assessment, as well as studying the effect of data freshness on
the obtained classification accuracy.

A. Simulation environment

In our performance evaluation, we use three datasets, called
vehicles, Antwerp, and MNIST. The vehicles dataset [30]
includes a set of photos of four types of vehicles (namely, a
double decker bus, a Cheverolet van, a Saab 9000, and an Opel
Manta 400). The images of the vehicles dataset were processed
with the BINATTS image processing system, extracting a com-
bination of scale-independent features through a combination
of classical moment-based measures and heuristic ones, like
circularity, rectangular, and compactness. Thus, in the vehicles
dataset, the data refers to the photos of the vehicles, while the
labels are the types of vehicles.

The Antwerp dataset [31] represents the traffic demand of
the ring road of Antwerp during a typical day. This dataset
includes the vehicles’ speed and the per road-section density
(i.e., the number of vehicles currently in a section), along
with global indicators of the transportation system. All these
features (i.e., data) are reported every 60 seconds. We use this
dataset to detect the road density, which is divided into six
classes (or labels). The MNIST dataset [32] is a large database
of handwritten digits, which is widely used for the training and
testing of different supervised machine learning schemes. The
data here refers to the photos of the handwritten digits – one
field per pixel –, while the labels are the types of digits (i.e.,
from 0 to 9).

Each dataset has been divided into three sets: offline training
set, online training set, and testing set. For the label integration
assessment, we use the three datasets and devote to each
of them a separate plot showing the labeling accuracy as a
function of the size of the offline training set. Then, to avoid
redundancy, we use the MNIST dataset for the data selection
and data freshness assessment, while we leverage the Antwerp
dataset for the labelers’ selection assessment.

To model the fact that vehicles may have different quality
levels (e.g., quality of their sensors, camera, and computational
capabilities), each vehicle is assigned a different classification
model [33] (one classifier among the following ones: fine tree,
medium tree, linear SVM, medium Gaussian SVM, linear
discriminant, and weighted KNN), with the best-performing
classifiers associated with the highest quality vehicles. It fol-
lows that low-quality vehicles are more likely to have incorrect
labels. The considered classifiers are run using MATLAB
Toolbox.

B. Results

The first aspect we are interested in is the impact of the label
integration methods on the labeling accuracy (LA). To this
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Fig. 4. Labeling accuracy as a function of the size M of the offline training set, for different label integration methods while considering samples mode,
using: (a) the vehicles dataset, (b) the MNIST dataset, and (c) the Antwerp dataset.
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Fig. 5. Classification accuracy as a function of the size of the online training set, for different data selection strategies, under the (a) labels, (b) data, and (c)
samples modes.

end, Figure 4 presents the LA as a function of the size M of
the offline training set, for different datasets. Unless otherwise
specified, we assume that the ego vehicle v0 is helped by a
total of four neighbors. It is possible to observe how a larger
training set always corresponds to a better accuracy. More
interestingly, the weighted average integration (WA) yields
substantially better accuracy than majority voting (MV) and
weighed majority voting (WMV). An intuitive explanation is
that WA is able to use all available samples, while at the same
time accounting for their quality and freshness. This resembles
such standard machine learning techniques as dropout and data
augmentation, where training on a more challenging dataset
improves performance. Indeed, the WA method relies on
defining a weighting coefficient that accounts for both the la-
belers’ accuracy and data freshness. Hence, it is used to weight
more the labels associated with high classification confidence,
thereby making the results more descriptive than a simple
average. Based on this result, we use the WA integration
method in the remainder of our performance evaluation.

The second aspect we investigate is how the data selection
algorithm and the mode of operation influence the perfor-
mance. Figure 5 compares the proposed approach against a
state-of-the-art solution presented in [16], hereinafter referred
to as majority voting quality selection (MVQS). The MVQS
scheme addresses the problem of weakly labeled crowdsourced
data and aims to select for training those data that have the
best quality labels, while using the MV method for label inte-
gration. Furthermore, we compare our QDS approach against
a baseline approach, namely, the random-selection approach

(RS), where the WV method is used for label integration and
the samples are selected randomly for training.

The plots in Figure 5 depict the classification accuracy
as a function of the online training set size; each curve
therein corresponds to a data selection algorithm, and each
plot corresponds to a different mode. Comparing the individual
lines within each plot, it is possible to observe how our own
QDS algorithm consistently outperforms both the MVQS and
RS approaches. This result suggests also that samples’ quality
is not the only factor to account for when assembling a training
set, rather labelers’ accuracy shall be considered as well.
Looking at the three plots, it is clear that the samples mode
is associated with higher performance than the data mode,
and both outperform the labels mode; consistently with one’s
intuition, more information – be it labels or data – translates
into better performance. Based on this result, in the following
we focus on the data mode and samples mode.

The better performance of the data and samples modes
comes, however, at the cost of an increased network load, as
summarized in Figure 6-(a). Each marker therein corresponds
to a combination of mode and training size, and its x- and y-
coordinates (respectively) correspond to the network load and
the achieved classification accuracy. The figure highlights how
different trade-offs between network load and classification
accuracy can be pursued and that, in general, the two quantities
are strongly correlated. In Figure 5 and Figure 6, the MNIST
dataset is used, while the network load is calculated by
assuming that the size of the exchanged messages between
the neighboring vehicles ψ is equal to 2 bytes in the case of
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Fig. 6. (a) Trade-offs between classification accuracy and network load; (b) effect of cooperation on classification accuracy when the size of the offline
training set is M = 500 and (c) M = 2, 000, while considering data mode.

labels mode, 180 bytes in the case of data mode, and 182
bytes in the case of samples mode.

The third aspect we are interested in is the issue of cooper-
ation between vehicles, and, in particular, how much, and to
whom, cooperation is beneficial. The plots in Figure 6-(b) and
Figure 6-(c) depict how, for a fixed size of the offline training
set, the quantity of available online training data influences
the classification accuracy. Different lines in these plots cor-
respond to high-quality (HQ/no coop) and low quality (LQ/no
coop) vehicles with no cooperation, as well as to low-quality
vehicles operating in samples mode (LQ/samples). It is clear
that cooperation yields a substantial performance advantage
for low-quality vehicles, which can reach the desired level of
accuracy (α = 0.95 in the plots) with a substantially smaller
number of samples, hence, in a much shorter time.

Next, in Figure 7–Figure 11, we study the effect of the
proposed labelers’ selection (LS) algorithm on the obtained
classification accuracy, using the Antwerp dataset, while con-
sidering the samples mode. We now assume that the ego
vehicle v0 can be helped by a total of seven neighboring
labelers. We further assume that the accuracy of the neighbor-
ing labelers are normally distributed according to distribution
N (µ, σ2), with mean µ = 83% and variance σ2 = 162.6.
Figure 7-(a) and Figure 7-(b) show the classification accuracy
and the average labeling quality ϕ0, respectively, as the online
training set size varies. Each curve in Figure 7 corresponds
to a number of selected labelers, while the dotted curve
corresponds to the optimal subset of labelers selected by
our LS algorithm. Interestingly, Figure 7 highlights that the
increase in the number of labelers interacting with the ego
vehicle v0 does not always lead to improving the labeling
quality or the classification accuracy. In fact, the classification
accuracy reaches a maximum for a certain number of labelers,
after which receiving samples from more labelers may harm
the performance. The reason is that the newly-added samples
may arrive from low-quality labelers, which may confuse the
classifier rather than enhancing the learning process. This
confirms the importance of selecting only high-quality labelers
among the available neighbors. Importantly, our labeler selec-
tion algorithm is especially well-suited for this situation, since
it allows to select the optimal subset of labelers. Interestingly,
by considering both the labeling quality and network load, our
scheme could select the minimum number of (high-reputation)
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Fig. 7. Impact of the number and quality of labelers on the obtained: (a)
classification accuracy, and (b) average labeling quality, as the size of the
online training set varies, while using the Antwerp dataset.

labelers (i.e., 3 out of 7) that yields adequate classification
performance without overloading the network.

Given the selected optimal subset of labelers (i.e., 3 out
of 7), Figure 8 depicts the effect of offline training set size
on the obtained performance. This figure highlights that high-
reputation labelers need to have at their disposal a sufficient
amount of offline training data to generate high-quality la-
bels. Consequently, by receiving high-quality samples from
different neighbors, the online training yields a substantial
enhancement in the classification accuracy for vehicles with
small offline training set.

To further illustrate the gain of the proposed LS algorithm,
we compare it in Figure 9 against two baselines: Random
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Labelers Selection (RLS) and Ideal Labelers (IL) selection.
The former randomly selects the labelers from the available
labelers pool, while the latter always selects the optimal
labelers in an ideal environment; in such an environment, all
labelers generate samples with 100% labeling accuracy. In
this figure, we consider that each labelers selection strategy
picks up three labelers out of the available seven. As shown,
the proposed LS algorithm consistently outperforms the RLS
approach by selecting the optimal subset of labelers. Also,
it can be seen that our LS algorithm substantially improves
the classification accuracy to approach the benchmark solution
with ideal labelers.

Another interesting advantage for our LS algorithm is its
robustness against Bad-quality Labelers (BLs). Such labelers
may generate fake/low-quality samples or labels, which may
confuse the neighboring vehicles. However, the proposed LS
algorithm can tackle this issue, thanks to the proposed labelers’
reputation scheme. After interacting with bad-quality labelers,
the LS algorithm can detect the inconsistency in the received
samples compared to the aggregated samples from Good-
quality Labelers (GLs). Hence, the LS algorithm assigns a low
reputation to bad-quality labelers and, by selecting only the
high-reputation labelers, it avoids receiving information from

bad-quality labelers. In Figure 10, we consider that the ego
vehicle has four bad-quality labelers with a labeling accuracy
that follows the uniform distribution U(70%, 78%), while it
has three good-quality labelers with a labeling accuracy that
follows the uniform distribution U(90%, 98%). Figure 10-(a)
shows the classification accuracy variations as functions of
the size of the online training, while increasing the number
of selected labelers using our LS algorithm. Conversely, Fig-
ure 10-(b) shows the classification accuracy variations, while
increasing the number of selected labelers using RLS.

We can observe that our LS algorithm always outperforms
the RLS approach for different numbers of selected labelers.
However, increasing the number of labelers results in a sig-
nificant drop in the classification accuracy, due to receiving
information from low-quality labelers. Also, we can see that
for large number of selected labelers (i.e., 6 or 7), the obtained
accuracy increases at the beginning then decreases as the size
of the online training set grows. In both cases, the quality drop
is a consequence of the inclusion of low quality information
coming from bad-quality labelers, which harm the learning
process and confuse the classifier. As shown by the dotted
curve in Figure 10-(a), the proposed LS and QDS schemes
allow the selection of the optimal – not necessarily the largest
– set of information to use, resulting in better classification
performance.

In Figure 11, we depict the effect of increasing the number
of selected labelers on the obtained classification accuracy
and time of convergence for the IL selection, where all
labelers have 100% labeling accuracy. We define the time of
convergence as the time needed to reach the desired level
of accuracy. It is clear that any increase in the number of
selected labelers will directly result in a decrease of the time
of convergence, since the ego vehicle will be able to aggregate
a large number of samples from different labelers in a much
shorter time.

Finally, in Figure 13 we look at the effect of data fresh-
ness on the obtained classification accuracy using the MNIST
dataset and while considering the data mode. First, we model
data freshness within the considered dataset as follows:
• The road is divided into segments, where it is assumed

that an event (that needs to be detected by all vehicles)
has occurred in a segment i0 at time t0 (see Figure 12);

• The neighboring vehicles at segment i0 and time t0 can
acquire High Freshness (HF) data, while the vehicles
located at segment i1 and time t0 can acquire Medium
Freshness (MF) data;

• At time t0 + ∆, the vehicles at segment i0 will have the
MF data, while the vehicles located at segment i1 will
have Low Freshness (LF) data.

We then establish a link between freshness and sample qual-
ity, by associating low-quality samples with low-freshness,
medium-quality samples with medium-freshness, and high-
quality samples with high-freshness.

In Figure 13, we assume that the online training set is
acquired at v0 from the neighboring vehicles with different
levels of freshness. First, the results highlight that classification
accuracy can be significantly improved with increasing level
of data freshness. Also, increasing the online training set size
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improves the performance when a vehicle v0 receives high
freshness data from its neighboring vehicles. On the contrary,
receiving LF data will have a minor effect on enhancing
classification accuracy, even with an increasing size of the
online training set. Second, the figure depicts the effect of
AL cooperation on vehicles with MF data and LF data. By
enabling the cooperation between vehicles with HF data and

Event
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HF HF+MF MF

Event

i0 i1

MF MF+LF LF

(a)

(b)

Fig. 12. A snapshot from the considered CAV network at: (a) time t0, and
(b) time t0 + ∆.
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Fig. 13. Classification accuracy as a function of the size of the online training
set, for different levels of freshness and M = 500, while considering the data
mode.

vehicles with MF data, the latter can significantly improve
their performance. This also applies to vehicles with LF data
when they cooperate with vehicles with MF data.

VII. CONCLUSION

We proposed an active learning framework for connected
automated vehicles, which leverages vehicle-to-vehicle com-
munication to increase the amount of collected data in the
training set. Given that a vehicle can receive from its neigh-
bors multiple data, labels, or a combination of the two, we
proposed label integration methods, as well as labelers and
data selection algorithms, which account for the labelers’
accuracy, data freshness, and data diversity. In this context, we
formulated labelers’ reputation and samples quality indicators
and provided a theoretical analysis for the proposed labelers
and data selection algorithms. We evaluated our approaches
using different real-world datasets, and we showed that they
outperform state-of-the-art solutions. In particular, numerical
results highlight their effectiveness and ability to provide
5-10% increase in classification accuracy, with respect to
conventional active learning schemes that consider majority
voting for labels integration and/or random data selection.
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Furthermore, the proposed algorithms can efficiently differ-
entiate between high and low quality labelers over time and
select the optimal subset of labelers and data, thus substantially
improving the classification accuracy by 6% compared to
random labelers selection scheme. As future work, it would
be interesting to combine the proposed AL framework with
emerging distributed learning techniques (such as federated
learning). Since most of the existing schemes for distributed
learning suffer from slow convergence, a new AL solution
would be needed, which leverages the distributed nature of
vehicular networks, while coping with such highly dynamic
scenarios and ensuring sufficiently fast convergence.
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