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The LISA DFACS: a Nonlinear Model for the Spacecraft Dynamics?,??

Simone Vidanoa,∗, Carlo Novaraa, Luigi Colangeloa, Jonathan Grzymischb

aDepartment of Electronics and Telecommunications, Politecnico di Torino, Corso Duca degli Abruzzi 24, Turin 10129, Italy
bGuidance, Navigation and Control Section (TEC-SAG), ESTEC, European Space Agency, Keplerlaan 1, Noordwijk 2201 AZ,

The Netherlands

Abstract

In the last few years, the observation of gravitational waves by means of LIGO and Virgo interferometers and

the success of LISA Pathfinder, gave a significant boost to the development of space-based gravitational wave

observatories. The European Space Agency confirmed LISA as the third large class mission of the Cosmic

Vision program. The present work is part of the Drag Free and Attitude Control System (DFACS) preliminary

prototyping study, which aims at the development of mathematical models and advanced controllers for the

science phases of the LISA mission. Nonlinear modelling is a fundamental step for the derivation of linearized

and decoupled models as well as for the development of suitable linear and nonlinear controllers. In this

paper, an analytical nonlinear model is derived, which describes all the relevant dynamics of a LISA spacecraft,

representing an effective compromise between accuracy and complexity. The model is extensively validated

through linearization analysis and Monte Carlo simulations.
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Nomenclature

Acronyms

AME Arithmetic Mean Error

CRF Constellation Reference Frame

DFACS Drag Free Attitude Control System

DWS Differential Wavefront Sensing

DoF Degree of Freedom

ESA European Space Agency

ES Electrostatic Suspension

FEEP Field Emission Electric Propulsion
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GRS Gravitational Reference Sensor

IF Interferometer

IRF Inertial Reference Frame

LISA Laser Interferometer Space Antenna

MIMO Multi Input Multi Output

MRF Mass Reference Frame

MPS Micro Propulsion System

RMSE Root Mean Square Error

OA Optical Assembly

ORF Optical Reference Frame

SC Spacecraft

SRF Spacecraft Reference Frame

STR Star Tracker

TM Test Mass

Variables

rI ∈ R3: S/C CoM position wrt the IRF origin - components in IRF

rM ∈ R3: TM CoM position wrt the cage center - components in ORF

rIM ∈ R3: TM CoM position wrt the cage center - components in IRF

rMI ∈ R3: TM CoM position wrt the IRF origin - components in IRF

qS ∈ R4: quaternion of the rotation CRF –> SRF

qSI ∈ R4: quaternion of the rotation IRF –> SRF

qζ ∈ R4: quaternion of the rotation SRF –> ORF

qM ∈ R4: quaternion of the rotation ORF –> MRF

θS ∈ R3: Euler angle vector of the rotation CRF –> SRF

θM ∈ R3: Euler angle vector of the rotation ORF –> MRF

ωS ∈ R3: S/C angular velocity wrt CRF - components in SRF

ωSI ∈ R3: S/C angular velocity wrt IRF - components in SRF
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ωO ∈ R3: OA angular velocity wrt IRF - components in ORF

ωM ∈ R3: TM angular velocity w.r.t. ORF - components in MRF

ωMI ∈ R3: TM angular velocity w.r.t. IRF - components in MRF

ωC ∈ R3: CRF origin angular velocity wrt IRF - components in CRF

γ ∈ R1: angle between the ORF x-axis and the SRF x-axis

ζ ∈ R1: angle between the ORF x-axis and its direction at rest

ωζ
.
= (0, 0, ζ̇), ωγ

.
= (0, 0, γ̇)

αζ
.
= (0, 0, ζ̈), αγ

.
= (0, 0, γ̈)

L2,L3: direction vectors of the laser rays coming from SC2 and SC3 on SC1.

Command inputs

FT ∈ R3: MPS command force - components in SRF

FE ∈ R3: ES force - components in ORF

MT ∈ R3: MPS torque - components in SRF

ME ∈ R3: ES torque - components in ORF

MOA ∈ R: OA command torque

Disturbances

dS ∈ R3: disturbance force acting on a S/C - components in SRF

dM ∈ R3: disturbance force acting on a TM - components in ORF

DS ∈ R3: disturbance torque acting on a S/C - components in SRF

DM ∈ R3: disturbance torque acting on a TM - components in ORF

Dζ ∈ R: disturbance torque acting on an OA

FSt ∈ R3: stiffness force acting on a TM - components in ORF

MSt ∈ R3: stiffness torque acting on a TM - components in ORF
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Parameters

mS ∈ R1: S/C mass (including the two OAs)

mM ∈ R1: TM mass

JS ∈ R3×3: S/C inertia matrix w.r.t its CoM (including the two OAs)

bS ∈ R3: vector from the S/C CoM to the OA pivot - components in SRF

bM ∈ R3: vector from the OA pivot to the cage center - components in ORF

b ≡ bS + TS
ObM ∈ R3: vector from the S/C CoM to the cage center - components in SRF

Kt, ct, Izz ∈ R1: OA stiffness, damping, inertia

Mathematical Notations

• Scalars: a, b ∈ R.

• Column vectors:

r = (r1, . . . , rn) = [r1 . . . rn]
T =


r1
...

rn

 ∈ Rn×1.

• Row vectors: rT = [r1 . . . rn] ∈ R1×n.

• Matrices: M ∈ Rn×m.

• Cross products:

r× p =


0 −r3 r2

r3 0 −r1

−r2 r1 0



p1

p2

p3

 =


r2p3 − r3p2

r3p1 − r1p3

r1p2 − r2p1



r×
.
=


0 −r3 r2

r3 0 −r1

−r2 r1 0

 .

• Vector `2 (Euclidean) norm:

|r| = ‖r‖ = ‖r‖2 =
√
r · r =

√
rT r =

√∑n
i=1 r

2
i = r.

• Λ(ω) ≡ Λ(J,ω)
.
= −J−1ω × Jω.

• Ω ≡ Ω(ω)
.
= ω×ω× + ω̇×.

• Z (γ) elementary rotation around z-axis by an angle γ.
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• T b
a : rotation matrix RFb –> RFa (coordinate transformation RFa –> RFb). A rotation matrix can be

expressed in function of the corresponding quaternion as

T ≡ T (q) =


q20 + q21 − q22 − q23 2(q1q2 − q0q3) 2(q1q3 + q0q2)

2(q1q2 + q0q3) q20 − q21 + q22 − q23 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q2q3 + q0q1) q20 − q21 − q22 + q23

 .

• Rotation matrix time derivative (Poisson relation):

Ṫ b
a = T b

aωa×

Ṫ a
b = −ωa × T a

b

(1)

where ω is the angular velocity vector of RFa wrt RFb with components expressed in RFa.

• Quaternions: q = (q0,q) =

 q0

q

, q0 ∈ R, q ∈ R3×1.

• Quaternion product: q⊗ p = (q0p0 − q · p) + (q0p+ p0q+ q× p)

• Quaternion kinematics matrix:

Q(q)
.
=



−q1 −q2 −q3

q0 −q3 q2

q3 q0 −q1

−q2 q1 q0


• Quaternion to Euler 123 conversion:

ϕ = atan2
(
− 2 (q3q4 − q0q1)

q20 − q21 − q22 + q24

)
ϑ = asin (q1q3 + q0q2)

ψ = atan2
(
− 2 (q1q2 − q0q3)

q20 + q21 − q22 − q24

) (2)

1. Introduction

Gravitational waves are an important aspect of General Relativity Theory that still needs to be fully inves-

tigated. For this reason, LIGO and Virgo ground-based interferometers were set up in the mid-1990s and were

improved in the following decades [1], achieving the first observation of a gravitational wave in 2015 [2]. The

Earth’s seismic activity affects their measurement spectrum below 10 Hz [1] and consequently, the gravitational

waves emitted by some astrophysical objects cannot be observed [3]. The first concept of a space-based interfer-

ometer, with a measurement bandwidth from 0.02 mHz up to 1 Hz, was proposed in the mid-1990s [4], but due

to the overall complexity and the uncertainties regarding the current state of the art of technology, a precursor

mission of LISA was developed in the mid-2000s [5, 6, 7]. LISA Pathfinder was launched in 2015 and performed

in-orbit tests until 2017, demonstrating key technologies required to satisfy LISA performance requirements [8].
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These outcomes, together with the first observations of gravitational waves by means of ground-based inter-

ferometers, resulted in the selection of LISA as the third large class mission in the next ESA Cosmic Vision

program. Hence, as part of the mission preparation, ESA started several development studies such as the system

Phase-A and the LISA DFACS (Drag Free and Attitude Control System). In the meanwhile, academic research

mainly focused on spacecraft rendezvous [9, 10], formation control [11, 12] and flexible spacecrafts [13, 14] rather

than drag-free controls. The latter are necessary in all the applications that require a fine compensation of the

disturbances affecting science and for this reason they were used in the past for gravimetry missions such as

GOCE [15] and GRACE [16]. However, drag-free control is of primary importance also for the obsevation of

gravitational waves, which are detected by measuring accurately the relative distance between two bodies placed

in geodesic trajectories. This condition can only be obtained by compensating for all the disturbances acting

on the reference bodies down to the nanoscopic scale by means of a high performance drag-free controller.

The present work is part of the LISA DFACS preliminary prototyping study, which aims at the mathematical

modelling of the spacecraft dynamics and at the design of controllers for the science phases of the LISA mission.

Despite some papers on control systems for past LISA concepts are present in the literature [17, 18], very

limited information is available on the mathematical models. For instance, [17] provides some guidelines for a

possible drag free control system, but no information regarding mathematical modelling is shown. [18] provides

a linear state space model used for the control design, but neither its derivation nor the terms that compose

the model are reported. The same holds for the modelling and control design papers about LISA Pathfinder

[19, 20, 21]. Another difference with respect to the previous works about LISA is that they consider an old

spacecraft concept that dates back to the mid-2000s. For example, [18] assumes different spacecraft mass and

inertia properties, different actuators (FEEP instead of cold gas thrusters) and different noises.

In the present work, the latest spacecraft concept is reviewed, then reference systems are defined and an

algorithm to obtain the so called Constellation Reference Frame is provided. A nonlinear model for the multi-

body dynamics is derived and validated in simulation. To the best of the Authors’ knowledge, it is the first

complete nonlinear dynamic model available in the literature for a LISA spacecraft. It describes all the relevant

nonlinearities, representing an effective compromise between accuracy and complexity. It is not computationally

demanding allowing quite fast simulation and it is suitable for linearization, decoupling and control design. A

preliminary version of the model was presented by the Authors in [22]. With respect to [22], the present paper

provides an improved version of the model, its derivation, the validation process and the analysis of the results.

Moreover, an algorithm for the computation of the constellation frame is proposed.

2. Methodology

The LISA spacecraft is a quite complex multi-body system and consequently cannot be modelled and con-

trolled as a simple rigid body. The spacecraft concept was reviewed in order to identify the bodies involved,

the degrees of freedom and the kinematic chains. Then, suitable reference systems were assigned to the plant

and a nonlinear model was obtained by means of a Newton-Euler approach. In order to validate the model,
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the frequency and the time responses were evaluated in Matlab-Simulink and compared with a SimScape multi-

body benchmark model. SimScape is a CAD-like software based on Matlab-Simulink that allows to build

models of complex physical systems using a set of elementary blocks, avoiding the use of mathematical equa-

tions. Although the SimScape model is accurate in simulating the spacecraft dynamics, it does not provide a

mathematical description of the system that is being modelled.

3. Nonlinear modelling

3.1. Plant Description

Figure 1: LISA orbits (left), LISA spacecraft (right)

The LISA observatory consists in a constellation of three spacecraft travelling on different inclined heliocen-

tric orbits, resulting in a Sun-facing spinning triangle with a nominal side length of 2.5 · 106 km (Fig. 1). Due

to the orbital dynamics, the inner angles change periodically between 59° and 61° and the constellation center

follows the Earth at an average distance of 60 · 106 km.

The current spacecraft concept consists of a science module that carries two moving Optical Assemblies

(OA) whose nominal inter-angle is 60° (Fig. 1). In turn, each OA is composed by: i) a telescope; ii) an optical

bench for laser interferometry; iii) an electrostatic suspension system (also known as Gravitational Reference

Sensor), which houses a suspended cubic test mass (TM) as shown in Fig. 2. The GRS was tested in-orbit by

LISA Pathfinder [23], [24] and will be inherited by LISA.
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Figure 2: Optical Assembly (left), Gravitational Reference Sensor (right) [25]

The spacecraft is also a well-balanced system, given its geometrical symmetry and mass distribution, such

that the overall center of mass is close to the barycentre.

Since the LISA control problem is based on nanoscopic scale quantities, some low-scale couplings that affect

the system dynamics are not negligible. For instance, even if the test masses are apparently unconnected

and suspended inside the spacecraft, the local electromagnetic and gravitational fields determine low-scale

interactions between spacecraft and test mass that act as virtual springs. This problem has been addressed also

in LISA Pathfinder [26] and in some other preliminary studies about LISA [27].

Hence, eacmass is stiffly connected to the optical assembly with a system of virtual springs, while each OA

is linked to the main body thanks to a mechanical hinge that allows only yaw movements. To conclude, a single

LISA spacecraft is a multi-body system characterized by 20 degrees of freedom: (i) 6 DoFs for the external

body; (ii) 1 DoF for each optical assembly; (iii) 6 DoFs for each test mass.

Depending on the mission phase, several configurations of actuators and sensors will be available. For what

concerns the actuators, cold gas thrusters are mounted on the external surface and apply forces/torques directly

on the main body. The inter-telescope angle is commanded by means of a dedicated internal actuator that applies

torques around the mechanical hinges of the telescopes. All the TM DoFs can be controlled and sensed thanks

to the electrostatic suspension. The longitudinal translation, the pitch and yaw angles of the two test masses

can be also measured through laser interferometry techniques. The spacecraft inertial attitude is measured only

out of science mode, since the available star trackers are expected to be too noisy and inaccurate for science

purposes. Conversely, during science mode and when the constellation laser links have been acquired, the

spacecraft attitude relative to the incoming laser wavefronts is measured by means of the Differential Wavefront

Sensing (DWS) interferometry techniques.

For what concerns the environmental disturbances, the solar pressure acts on the external SC body, while

test masses are affected by the SC gravitational field and by other low-scale disturbances [28].

To sum up, LISA is a 20x17 MIMO system, whose command inputs and measured outputs are summarized
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in Table 1 and Table 2.

Name Variable Dim. Notes

MPS force FT 3 The spacecraft body is controlled by means of the MPS, a set of 9
cold gas thrusters arranged in three different pods around the
spacecraft lateral surface. The MPS can provide thrust and torque in
order to control every DoF of the spacecraft body.MPS torque MT 3

OA1 torque MOA1 1
Each optical assembly can be rotated around its pivot by a dedicated
motor. This command torque allows to control the opening angle
between the two optical assemblies in order to keep the laser links of
the constellation. Since the OA are fixed to the spacecraft body, the
reaction torque of the optical assemblies will be applied on the
spacecraft body.

OA2 torque MOA2 1

TM1 force FE1 3

Each test mass is controlled by the GRS, which contains an
electrostatic suspension able to control all the 6 DoF. Since the GRS
is mounted on the OA, the reaction forces and torques of the
electrostatic suspension will be applied to the OA and the spacecraft.

TM1 torque ME1 3

TM2 force FE2 3

TM2 torque ME2 3

Table 1: LISA command inputs

Name Variable Dim. Notes

SC inertial
attitude θSI 3 The inertial attitude is measured only out of science mode by means of

a system of star trackers.

SC attitude θS 3

During the drag free mode, the DWS provides the azimuth and eleva-
tion angles of the incoming laser beams. These measurements can be
used to reconstruct the constellation frame and the SC attitude relative
to this frame.

TM1 position rM1 3

The first electrostatic suspension (ES1) measures the TM1 position rel-
ative to the cage center. During drag free mode, the local interferometer
is used to measure the longitudinal displacement (x-coordinate) of the
test mass.

TM1 attitude
θM1 3

ES1 measures TM1 attitude with respect to the cage frame. DWS
interferometry techniques provide finer measurements of the test mass
pitch and yaw.

TM2 position rM2 3 Same as TM1 position

TM2 attitude θM2 3 Same as TM1 attitude

OA1 angle ζ1 1 OA1 opening angle with respect to the rest position.

OA2 angle ζ2 1 OA2 opening angle with respect to the rest position.

Table 2: LISA measured outputs
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3.2. Reference Systems

3.2.1. Definition

Figure 3: Spacecraft frame:{s1, s2, s3}, Optical Assembly frame: {o1i,o2i,o3i}, Test Mass frame: {m1i,m2i,m3i}, Constellation
frame:{c1, c2, c3}, SP : solar panel plane, L2L3: incoming laser rays

The LISA spacecraft is composed by 5 main bodies and consequently at least 7 reference frames have to be

defined. The main reference frames (i.e. for SC1) are:

• The Sun-centered Inertial Reference Frame: IRF = {OI , I1, I2, I3}

• The Constellation Reference Frame: CRF = {OC , c1, c2, c3}

Reconstructed on-board starting from the incoming laser directions. It is centered on the spacecraft

barycentre, c3 is perpendicular to the plane that contains the laser vectors L2 and L3, c1 is the bisector

of the angle defined by the incoming laser directions.

• The Spacecraft Reference Frame: SRF = {OS , s1, s2, s3}

Centered on the spacecraft barycentre, s1 is the bisector of the nominal inter-telescope angle α = π/3, s3

is perpendicular to the solar panel SP .

• Two Optical Reference Frames: ORFi = {OOi,o1i,o2i,o3i} where i = 1 for the left optical assembly and

i = 2 for the right one.

The origin of the i-th frame is located at the cage center of the corresponding electrostatic suspension.

For what concerns the frame axes, the following condition holds: o31‖o32‖s3. Moreover, o1i is parallel to

the symmetry axis of the corresponding optical assembly.

• Two Test-Mass Reference Frames: MRFi = {OMi,m1i,m2i,m3i} where i = 1 for the left test mass and

i = 2 for the right one.

Each frame is centered on the CoM of the corresponding test-mass, m1i,m2i,m3i are orthogonal to the

TM faces.
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3.2.2. The Constellation Reference Frame

During science mode, the star tracker is not available and consequently the SC attitude with respect to

the IRF cannot be measured. Hence, for SC attitude control purposes it is convenient to consider also the

Constellation Reference Frame CRF = {OC , c1, c2, c3} , whose c1 axis is the bisetrix of the angle defined by

the incoming laser rays and c3 is perpendicular to the laser plane P , which is defined by the laser ray directions

L2 and L3. The CRF can be reconstructed on-board thanks to the long arm DWS sensors, which provide the

azimuth and elevation angles of the incoming laser rays with respect to the optical reference frames. A possible

algorithm is reported hereafter.

The first step consists in computing the laser ray vectors by means of the well known formula of the spherical

coordinate systems and then make a change of coordinates from the ORF to the SRF. Let be ϕk and ϑk the

azimuth and elevation angles of the laser coming from the k-th SC to the i-th ORF:

Lk = TS
Oi


sin (ϕk) cos (ϑk)

cos (ϕk) cos (ϑk)

sin (ϑk)

 , k = 2, 3 i = 1, 2.

Then, the equation of the plane P that contains L2 and L3 is computed by means of a cross product. This

provides not only the coefficients of the cartesian equation, but also the normal vector, which corresponds to

the z-axis of the constellation frame:

L2 ×L3 =

[
a b c

]T
P : ax+ by + cz = 0

c3 =
L2 ×L3

‖L2 ×L3‖
=

[
a b c

]T
√
a2 + b2 + c2

.

However, there exists an infinite number of orthonormal bases whose x and y axes lie on the plane P. Hence,

another constraint has to be set in order to obtain the constellation frame. The c1 axis has to be the bisector

of the angle between L2 and L3 on the plane P :

L2 =

[
x2 y2 z2

]T
L3 =

[
x3 y3 z3

]T
A =

3∑
i=2

xi√
x2i + y2i

B =

3∑
i=2

yi√
x2i + y2i

C =

3∑
i=2

zi√
x2i + y2i

c1 =

[
A B C

]T
√
A2 +B2 + C2

.

Finally, c2 can be computed as the cross product between c3 and c1.The final result is shown in Figure 4.
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Figure 4: Constellation Reference Frame ({OC , c1, c2, c3}) and Spacecraft Reference Frame ({OS , s1, s2, s3})

3.3. Nonlinear Model

From the control design point of view, it is important to have a simple, but representative dynamic model.

As a matter of fact, the complexity increases the design effort, the possibility of implementation errors and it

could be also a limiting factor for the applicability of certain control techniques. The nonlinear model presented

in this study is based on some reasonable assumptions:

1. Given the symmetry and the balancing of the spacecraft concept, the CoM is assumed to lie on the SRF

origin and this allows to simplify the equation of motion. The Newton-Euler equations with respect to a

certain reference frame whose origin is not located on the center of mass are given by [29]:

 F

T

 =

 mI −mr×C

mr×C J −mr×Cr
×
C


 r̈o

ω̇o

+

 mω×ω×rC

ω× (J −m r×Cr
×
C

)
ω

 (3)

where the left-hand side are the forces and the torques acting on the body, the right hand side collects all

the inertial and fictitius force terms, r̈o and ω̇o are the frame translational and angular accelerations, rC

is the distance between the frame origin and the center of mass. When rC = 0 some terms of (3) become

null.

2. Given the high manufacturing tollerances demonstrated by LISA Pathfinder, the test mass is assumed to

be an ideal cube whose mass is homogeneously distributed. Therefore, the center of mass, the barycenter

and the MRF origin are assumed to be coincident, providing further simplification of the equation of

motion for the same reason of point 1.

3. The two optical assemblies are currently under system study, but in any case their connection with the

spacecraft body shall be sufficiently rigid in order to avoid excessive oscillations that could affect science.

A 1 DoF second order model made by a torsional mass spring damper system can be considered.

4. The OAs will be used to track the pulsation of the constellation angle, which is expected to be maximum

1° with a very slow rate of 1.15 · 10−7 °/s. Hence, the effects of the OA dynamics on the spacecraft and
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on the test mass should not be relevant. Moreover, eventual motion cross-couplings to other coordinates

can be neglected.

In this section, the nonlinear model is presented through four main subsections: the spacecraft attitude dy-

namics, the OA model, the TM attitude dynamics and the relative translation dynamics between SC and TM.

Figure 5 shows a vector scheme helpful to understand the nonlinear equations.

Figure 5: Vector scheme for TM1

3.3.1. SC Attitude Dynamics

The goal of the LISA attitude control during science, is to align the SRF with the CRF. Hence, a rotation

dynamics model that describes the SC attitude relative to the CRF is needed. Let us consider the notations

and definitions section at the beginning of the present paper. According to the addition rule of the angular

velocities,

ωS = ωSI − TS
CωC (4)

where ωS is the SC angular velocity with respect to the constellation frame in SRF components, ωSI is the SC

inertial angular velocity in SRF components and ωC is the angular velocity of the constellation frame in CRF

components. The SC angular acceleration relative to the CRF can be obtained by means of the time derivative

of (4) and by considering (1):

ω̇S = ω̇SI − ṪS
CωC − TS

C ω̇C

= ω̇SI + ωS × TS
CωC − TS

C ω̇C ,

(5)

where the inertial angular acceleration ω̇SI is given by the Euler equation
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ω̇SI = −J−1
S ωSI × JSωSI + J−1

S

MT +DS −
∑
j=1,2

(
TS
OjIzz ζ̈j + TS

OjMEj + bj × TS
OjFEj

) . (6)

MT is the total torque of the thrusters, DS is the resultant torque of all the external disturbances acting on

the SC body (i.e. the solar pressure), while the other terms are the reactions of the internal actuators (i.e. the

optical assemblies and the electrostatic suspensions). In particular, MEj are the electrostatic torques used to

control the attitude of the j-th TM and FEj are the electrostatic forces used to control the TM translation.

Since each suspension cage is located at a distance bj from the SRF origin, also FEj generate torques that

affect the spacecraft attitude. The rotation matrix TS
C = T (q∗S) is time-variant and depends on the spacecraft

attitude quaternion, while the rotation matrices TS
Oj = Z(γj) are time-variant since they are function of the

OA opening angles γj (ζj(t)):

γj(t) =

 π/6 + ζj(t), j = 1

−π/6 + ζj(t), j = 2.
∀ t ≥ t0 . (7)

By replacing (6) into (5), it is possible to obtain the complete expression of the spacecraft angular acceleration

relative to the constellation frame in SRF components. To conclude, the SC attitude dynamics model is:

ω̇S = ω̇SI + ωS × TS
CωC − TS

C ω̇C

ω̇SI = −J−1
S ωSI × JSωSI + J−1

S

MT +DS −
∑
i=1,2

(
TS
OjIzz ζ̈j + TS

OiMEj + bi × TS
OiFEj

)
q̇S =

1

2
qS ⊗ ωSq =

1

2
Q(qS)ωSq,

(8)

where the attitude quaternion q̇S is obtained from the angular velocity ωSq = (0,ωS) by integrating the

standard quaternion kinematics equation [30]. Since the thrusters provide a torque which is three/four orders

of magnitude higher than the electrostatic suspension forces and torques, the reaction terms could be neglected

for a even more simplified model.

When the star trackers are available outside the science mode, the inertial attitude quaternion qSI can be

measured and an attitude dynamics model with respect to the IRF can be considered:

q̇SI =
1

2
qSI ⊗ ωSIq =

1

2
Q(qSI)ωSIq. (9)

The attitude angles θSI can be easily obtained from qSI thorugh (2).
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3.3.2. OA model

The optical assemblies are currently under system study. Therefore, a preliminary second-order model can

be considered to describe the yaw dynamics of the j-th OA:

ζ̈j = −2ωNξζ̇j − ω2
Nζj +

MOAj

Izz
− MEj

Izz
− TOj

S ω̇SI +
Dζj

Izz

ωN =

√
Kt

Izz

ξ =
ct

2
√
KtIzz

,

(10)

where ζ is the angle with respect to the direction at rest, Kt, ct, Izz are the stiffness, damping and inertia

properties around the pivot axis. MOA is the command torque provided by the OA motor, ME is the reaction

torque of the electrostatic suspension and TOj
S ω̇SI are the effects of the spacecraft dynamics on the OA.

3.3.3. S/C-TM stiffness model

Before describing the TM rotation dynamics, it is important to provide a mathematical model for the low-

scale couplings mentioned in Section 3.1 that are proportional to the test mass displacements rM and ϑM .

Therefore, they can be modelled as a system of virtual springs:

 FSt

MSt

 =

 STT SRT

STR SRR


 rM

ϑM

 , (11)

where FSt and MSt are the stiffness forces and torques acting on the j-th test-mass, while STT , SRT , STR, SRR ∈

R3×3 are the stiffness matrices that can obtained by means of CAD-based techniques [27].

3.3.4. TM attitude dynamics

The angular velocity of the j-th TM relative to the corresponding ORF in MRF components (ωMj) is given

by the addition rule of the angular velocities:

ωMj = ωMIj − TMj
Oj ωγj − TMj

S ωSI , (12)

where both the angular motions of the spacecraft ωSI and the optical assembly ωγ are considered. To improve

readability, the j subscript will be omitted. The angular acceleration is given by the time derivative of (12) and

by (1):

ω̇M = ω̇MI − ṪM
O ωγ − TM

O ω̇γ − ṪM
S ωSI − TM

S ω̇SI

= ω̇MI + ωM × TM
O ωγ − TM

O ω̇γ + ωM × TM
S ωSI − TM

S ω̇SI .

(13)

The inertial angular acceleration of the test mass ω̇MI in (13) is given by the Euler’s equation:

ω̇MI = −J−1
M ωMI × JMωMI + J−1

M TM
O (ME +DM +MSt) , (14)
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where ME is the torque provided by the electrostatic suspension, DM is the resultant of all the disturbance

torques acting on the test-mass, while MSt = STRrM +SRRϑM is the stiffness torque from (11). TM
O = T (q∗M )

and TM
S = TM

O TO
S = T (q∗M )Z(−γ) are time-variant matrices, since they depend on the test-mass attitude

quaternion and on the OA opening angle (7).

To conclude, the attitude dynamics model of the j-th TM relative to the corresponding ORF in MRF

components is given by (13) and (14):

ω̇M = ω̇MI + ωM × TM
O ωγ − TM

O ω̇γ + ωM × TM
S ωSI − TM

S ω̇SI

ω̇MI = −J−1
M ωMI × JMωMI + J−1

M TM
O (ME +DM +MSt)

q̇M =
1

2
qM ⊗ ωMq =

1

2
Q(qM )ωMq,

(15)

The TM attitude quaternion q̇M is obtained from the TM angular velocity ωMq = (0,ωM ) by integrating the

standard quaternion kinematics equation. Moreover, the attitude angles θM can be obtained from the attitude

quaternion through (2).

3.3.5. TM-SC translation

The position of the j-th test-mass relative to the corresponding cage center (ORF origin) in IRF coordinates

is

rIMj = T I
OjrMj . (16)

From now on the j-th subscript will be omitted to improve readability. By performing the first two time

derivatives of (16) and by considering (1), the translational velocity and acceleration are

ṙIM = Ṫ I
OrM + T I

O ṙM

= T I
OωO × rM + T I

O ṙM ,

(17)

r̈IM = Ṫ I
OωO × rM + T I

Oω̇O × rM + T I
OωO × ṙM + Ṫ I

O ṙM + T I
O r̈M

= T I
OωO × ωO × rM + T I

Oω̇O × rM + T I
OωO × ṙM + T I

OωO × ṙM + T I
O r̈M

= T I
O

(
ω×

Oω
×
O + ω̇×

O

)
rM + 2T I

OωO × ṙM + T I
O r̈M

= T I
OΩ(ωO) rM + 2T I

OωO × ṙM + T I
O r̈M ,

(18)

where ωO is the angular velocity of the optical assembly with respect to the IRF and it is given by ωO =

ωγ + TO
S ωSI . Equation (18) shows centrifugal and Coriolis acceleration terms since the ORF is a non-inertial

frame with angular velocity ωO. Moreover, by expliciting the acceleration of the TM CoM relative to the cage

center in ORF coordinates we obtain:

r̈M = TO
I r̈IM − Ω(ωO) rM − 2ωO × ṙM . (19)

On the other side, rIM is also given by the following sum of position vectors:
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rIM = rMI − rI − T I
SbS − T I

ObM , (20)

where rMI is the distance between the test mass and the IRF origin, rI is the distance between the SRF and

the IRF origin, bS is the distance between the SRF and the pivot of the optical assembly, bM is the distance

between the pivot and the cage center. By performing the second time derivative of (20) and by considering

(1), the velocity and the acceleration of the test-mass relative to the cage center in IRF coordinates can be also

written as:

ṙIM = ṙMI − ṙI − Ṫ I
SbS − Ṫ I

ObM

= ṙMI − ṙI − T I
SωSI × bS − T I

OωO × bM ,

(21)

r̈IM = r̈MI − r̈I − Ṫ I
SωSI × bS − T I

Sω̇SI × bS − Ṫ I
OωO × bM − T I

Oω̇O × bM

= r̈MI − r̈I − T I
SωSI × ωSI × bS − T I

Sω̇SI × bS − T I
OωO × ωO × bM − T I

Oω̇O × bM

= r̈MI − r̈I − T I
S

(
ω×

SIω
×
SI + ω̇×

SI

)
bS − T I

O

(
ω×

Oω
×
O + ω̇×

O

)
bM

= r̈MI − r̈I − T I
SΩ(ωSI)bS − T I

OΩ(ωO) bM ,

(22)

where ḃS=ḃM = 0 since bS and bM are constant distances. The inertial acceleration of the j-th test-mass r̈MI

and the inertial acceleration of the spacecraft r̈I can be obtained by means of the Newton’s Law:

r̈MI = −µ�
rMI

|rMI |3
+m−1

M T I
O(FE + dM + FSt)

r̈I = −µ�
rI

|rI |3
+m−1

S T I
S(FT + dS)−m−1

S

∑
j=1,2

T I
Oj (FEj) ,

(23)

where FT +dS are the resultant force of the thrusters and of the external disturbances acting on the spacecraft

body. The term −m−1
S

∑
j=1,2 T

I
Oj (FEj) are the reaction forces of the two electrostatic suspensions on the

spacecraft, when j = 1 the subscript can be omitted. dM is the resultant of the disturbance forces acting on

the test-mass, while FSt = STT rM + SRTϑM are the stiffness forces from (11).

By replacing (23) into (22), we have the complete expression of the test mass acceleration relative to the

cage center in IRF coordinates:

r̈IM = K∆∆rI +m−1
M T I

O(FE + dM + FSt)−m−1
S T I

S(FT + dS)

+m−1
S

∑
j=1,2

T I
OjFEj − T I

SΩ(ωSI)bS − T I
OΩ(ωO) bM ,

(24)

where:

K∆∆rI ∼= −µ�

(
rMI

|rMI |3
− rI

|rI |3

)
,

is the spacecraft/test-mass gravity gradient.

By replacing (24) into (19), we obtain the complete expression of the test mass acceleration relative to the

cage center in ORF coordinates:
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r̈M = TO
I

(
K∆∆rI +m−1

M T I
O(FE + dM + FSt)−m−1

S T I
S(FT + dS)

+m−1
S

∑
j=1,2

T I
OjFEj − T I

SΩ(ωSI)bS − T I
OΩ(ωO)bM

− Ω(ωO) rM − 2ωO × ṙM .
(25)

To sum up, the TM translation model can be expressed as follows:

r̈M = aN − TO
S Ω(ωSI)bS − Ω(ωO)bM − Ω(ωO)rM − 2ωO × ṙM

aN = TO
I K∆∆rI +m−1

M (FE + dM + FSt)−m−1
S TO

S (FT + dS) +m−1
S

∑
j=1,2

TO
OjFEj

Ω(ωO) = ω×
Oω

×
O + ω̇×

O

ωO = TO
S ωSI + ωγ

ω̇O = ṪO
S ωSI + TO

S ω̇SI + ω̇γ = −ωγ × TO
S ωSI + TO

S ω̇SI + ω̇γ ,

(26)

where r̈M is TM acceleration relative to the cage center in ORF coordinates, aN collects all the terms related

to the forces, ωO is the ORF angular velocity. When j = 1, the subscript can be omitted and consequently

the rotation matrix TO
O is the identity matrix, while TO

O2 is rotation matrix from ORF2 to ORF1. The rotation

matrices TO
S , T

O
O2 are time-variant being a function of the angle γ(t).

To conclude this section, it is worth noticing that (8) (10) (15) (26) are all coupled together.

4. Validation

4.1. Linear Analysis

The most important activity when validating models for complex systems is to check that the main dynamics

are accurately represented. In this case, real data were not available and a Matlab Simscape multibody model

was used as a benchmark. SimScape is a CAD-like software based on Matlab/Simulink, allowing to build

models of complex physical systems using a set of elementary blocks, thus avoiding the use of mathematical

equations. Although the SimScape model is accurate in simulating the spacecraft dynamics, it does not provide

a mathematical description of the system that is being modeled. As already mentioned in Section 3.1, LISA is

a 20x17 MIMO system, where the input and output vectors are

u =

(
FT MT MOA1 MOA2 FE1 ME1 FE2 ME2

)
∈ R20

y =

(
θSI rM1 θM1 rM2 θM2 ζ1 ζ2

)
∈ R17,

x =

(
θSI rM1 θM1 rM2 θM2 ζ1 ζ2 θ̇SI ṙM1 θ̇M1 ṙM2 θ̇M2 ζ̇1 ζ̇2

)
∈ R34,
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where θSI , θM1, θM2 are the Euler 123 angles. A first comparison between the benchmark and the analytical

model could be carried out in the frequency domain. The first step consists in linearizing both models around

the same working point, given by

x = 0,

obtaining 340 unstable transfer functions G for each model, which are unstable and consequently have an infinite

DC-gain:

y = Gu, G ∈ R17×20.

It is worth noticing that the comparison in the frequency domain is difficult, since the standard system norms

(e.g., the H-infinity and H-2 norms) cannot be used due to system instability. To overcome this issue, we

propose the following approach. Given G0 ∈ R17×20 the set of transfer functions of the Simscape model, a way

to identify the most relevant contributions acting on the j-th output is:

Ĝ0 = max (G0(jω)) , where 2π · 10−5 ≤ ω ≤ 2π · 100 (LISA bandwidth)

u =

(
FT MT MOA1 MOA2 FE1 ME1 FE2 ME2

)
M0 = Ĝ0u,

where Ĝ0 ∈ R17×20 are the peak magnitudes of all the transfer functions on the LISA frequency range, u

are the input amplitudes of the LISA actuators FT = 1 · 10−5 N, MT = 2 · 10−5 Nm, MOA = 1 · 10−2 Nm,

FE1 = FE2 = 5.7 · 10−9 N, ME1 = ME2 = 3 · 10−11 Nm. The product between Ĝ0 and u provides map M0 that

can be normalized column-wise:

M0 (i , j) =
M0 (i , j)

maxk=1:20 (M0 (k , j))
∀i = 1 : 20, j = 1 : 17.

M0 identifies the relevant transfer functions of the Simscape model. In turn, this implies a unitary value for the

most important dynamic acting on the j-th output. The obtained results are shown in Figure 6. It is interesting

to notice how the first three inputs (related to the thruster force FT ), mainly act on outputs 4,5,6 and 10,11,12

(TM1 and TM2 translations with respect to their cage centers). Inputs 4-5-6 (thruster torques MT ) mainly act

on output 1, 2, 3 (spacecraft attitude). Input 7 and 8 (optical assembly torques MOA1,MOA2), mainly act on

output 16-17 (OA zeta angles). Or again, inputs 9-10-11 and 15-16-17 (electrostatic suspension forces) are not

unitary values since the main dynamics acting on the test mass translation is given by the thrusters.
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Figure 6: Most important transfer functions of the LISA system (Left: SimScape M̂0, Center: Analytical M̂1, Right: M̂0 − M̂1.

The same procedure was repeated for the analytical model, but in this case the column normalization of map

M1 = Ĝ1u is performed with respect to the maxima of map M0, in order to have a common scaling reference

necessary to evaluate the modelling errors:

M̂1 (i , j) =
M1 (i , j)

maxk=1:20 (M0 (k , j))
∀i = 1 : 20, j = 1 : 17,

Finally, the modelling error on the main dynamics in the frequency range of interest is evaluated as the difference

between the two maps: e = M̂0−M̂1. The obtained results are reported in Figure 6 and in Table 3. The highest

modelling error is lower than 3 · 10−4 and it occurs on the transfer functions that relate the OA command

torques to the test-mass x-y positions. These results are acceptable being small values. Thus, we can conclude

that the relevant transfer functions are correctly modelled. The zero values are those related to the transfer

functions that are null both on the Simscape and the analytical model.

4.2. Simulations

The drawback of the linear analysis is that the linearization process neglects the plant nonlinearities, which

are an important element of the spacecraft dynamics and of our model. Hence, a second validation was carried

out in order to compare the two models in conditions where the contribution of the nonlinearities is not negligible.

It must be remarked that small initial errors (even numerical) between the two models could diverge to infinite

for long simulation horizons, since all the transfer functions are unstable. Many of them are double integrators

and thus have a slope of -40 db/dec and an infinite DC gain. Figure 7 shows an example of open loop simulation.

Plots on the left column show the system output of both the Simscape and the analytical model. Continuous
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and dashed lines are overlapped, meaning that the output errors are very small as shown in the plots of the

right column. It should be noted that the error evolution follows a quadratic law, since the system is unstable.

As a further evaluation, Table 4 summarizes the arithmetic mean and the root mean square output errors

of a Monte-Carlo campaign made of 1000 open loop runs. Constant inputs were randomly chosen between

the saturations of the actuators. The simulation horizon was set to 100 s, which can be considered enough

since the models will be used for the design of closed loop controls. Despite system instability, the obtained

RMSE are generally small between 10−19 and 10−9 orders of magnitude depending on the degree of freedom,

demonstrating a satisfactory modelling accuracy.

5. Conclusions

The LISA mission will be of primary importance for the detection of gravitational waves in the
[
1 · 10−5, 1

]
Hz bandwidth. The current spacecraft concept consists of a main body carrying two moving optical assemblies

and two suspended test-masses, resulting in a MIMO system with 20 inputs and 17 outputs. From the control

design point of view, it is important to obtain an analytical model which is a good trade-off between accuracy

and complexity. In the present paper, a set of reference systems was defined and then a nonlinear model based

on the Newton-Euler approach was derived. To validate the model, frequency and time domain comparisons

with a Matlab-Simscape multibody model were carried out. At first, both models were linearized around the

same working point. Then, the main system dynamics were identified by searching for the peak magnitudes

of every transfer function in the LISA frequency range and by multiplying them for the command amplitude.

The same procedure was repeated for the analytical model and finally the two maps were compared to identify

modeling errors. The findings showed very small errors between the two maps, with a maximum value lower

than 3 · 10−4 on the dynamics relating the optical assembly torques with the x-y positions of the test-masses.

Finally, the two models were compared also in the time domain, by evaluating the open loop output error given

the same input. To this aim, a Monte-Carlo test campaign based on 1000 simulations was carried out and the

mean output error was evaluated for each output variable. The obtained output errors were generally small

between 10−19 and 10−9 orders of magnitude depending on the degree of freedom, despite the system instability

and a relatively long simulation horizon of 100s. To conclude, the model here presented proved to be accurate

and suitable for future works such the analytical linearization and decoupling as well as the analysis and control

design of the LISA mission.
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Figure 7: Example of open loop comparison. In the plots on the left, the Simscape outputs are almost overlapped by the analytical
model. Indeed, the plots on the right show very small errors between the two models. The error evolution follows a quadratic law,
since the systems are unstable. Therefore, initial errors (even numerical) increase quadratically over time in open loop. Idx1-2-3
stands for the first, second and third component of the considered vector.
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