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EFFICIENT SOLUTION OF 2D WAVE PROPAGATION PROBLEMS BY
CQ-WAVELET BEM: ALGORITHM AND APPLICATIONS∗

LUCA DESIDERIO† AND SILVIA FALLETTA‡‡

Abstract. In this paper we consider wave propagation problems in 2D unbounded domains, including dissi-
pative effects, reformulated in terms of space-time boundary integral equations. For their solution, we employ a
Convolution Quadrature (CQ) for the temporal and a Galerkin Boundary Element Method (BEM) for the spatial
discretization. It is known that one of the main advantages of the CQ-BEMs is the use of the FFT algorithm
to retrieve the discrete time integral operators with an optimal linear complexity in time, up to a logarithmic
term. Besides, it is also known that a key ingredient for the success of such methods is the efficient and accurate
evaluation of all the integrals that define the matrix entries associated to the full space-time discretization. This
topic has nowadays been successfully addressed when standard Lagrangian basis functions are considered for the
space discretization. However, it results that, for such a choice of the basis, the BEM matrices are in general fully
populated, a drawback that prevents the application of CQ-BEMs to large scale problems. In this paper, as a
possible remedy to reduce the global complexity of the method, we consider approximant functions of wavelet type.
In particular, we propose a numerical procedure that, by taking advantage of the fast wavelet transform, allows
on the one hand to compute the matrix entries associated to the choice of wavelet basis functions by maintaining
the accuracy of those associated to the Lagrangian basis ones and, on the other hand, to generate sparse matrices
without the need of storing a priori the fully populated ones. Such an approach allows in principle the use of
wavelet basis of any type and order, combined with CQ based on any stable ordinary differential equations solver.
Several numerical results, showing the accuracy of the solution and the gain in terms of computer memory saving,
are presented and discussed.

Key words. Damped Wave Equation, Convolution Quadrature, Boundary Element Method, Wavelets.
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1. Introduction. Computational methods for solving time-domain formulations of wave
equation problems have been an active area of research, developed in conjunction with fields
such as acoustics, seismology, geophysics, meteorology. The model of interest may be a pure or a
damped wave equation. The latter provides a much better description of the phenomenon, since
it takes into account the ability of the possible energy dissipation produced by the system.
A very difficult point is that many problems are set in unbounded domains, making the design
of suitable and accurate numerical methods very challenging. The Boundary Integral Equation
(BIE) technique, whose discretization is known as the Boundary Element Method (BEM), has
emerged as an efficient alternative to all the classical domain methods, because it allows to handle
problems defined on the exterior of bounded domains as easily as those defined in the interior of
bounded domains.
For space-time domain wave propagation problems without damping, the application of BIE tech-
niques began to be analyzed in the 1980s with the pioneering work by Bamberger and Ha Doung
[6]. In the last years, several other approaches have been proposed for solving standard wave
equation problems by means of BIEs, directly in the space-time domain. Among these we mention
here the Lubich Convolution Quadrature (CQ) [41] and the energetic technique [2]. These have
been recently extended to 2D damped wave propagation problems in [13] and [4, 5], respectively.
However, the development of efficient and reliable BIE strategies to simulate time-domain waves
in unbounded exterior domains is still a numerical challenge and a subject of an active recent re-
search, the main aim being the reduction of the computational complexity and of the high memory
required to compute and store all the entries of the matrices associated to the discrete bound-
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ary integral operators. Indeed, it is known that, when standard Lagrangian basis functions are
considered for the space approximation, the BEM matrices are generally fully populated, and the
overall memory cost of the BEM is O(M2N), M and N being the number of grid points chosen on
the domain boundary and the total number of time steps performed, respectively. This drawback
prevents the application of such methods to large scale realistic problems.
In the last years the development of fast numerical methods for the efficient and reliable simu-
lation of scattered waves in unbounded exterior domains has improved the application of BEMs.
For problems in three spatial dimensional domains, fast versions of the CQ with Backward Dif-
ferentiation Formulas (BDF) of order 2 for the temporal discretization have been developed in
[7, 28, 32, 38], and with Runge-Kutta convolution weights in [11, 12]. Among other effective
techniques, aiming at reducing computational cost and memory storage, we mention the Fast
Multiple Method [29], the Panel Clustering [26, 30] and the Hierarchical Matrices [31]. For recent
developments of the Fast Multiple Method in the context of wave propagation see [45], while for
recent developments in Hierarchical Matrices we also refer to [16, 19]. It is also worth mentioning
the recent papers [1] and [40], in which interesting time-domain FEM-BEM and wavelet BEM
methods, respectively, applied to large-scale industrial problems are shown.
In this paper, we consider 2D exterior wave propagation problems, including a dissipative term.
We apply a numerical scheme which is based on the discrete CQ formulas, proposed by Lubich
[41], for the discretization in time. The CQ formulas have the fundamental property of using the
Laplace transform of the kernel of the integral equation instead of its space-time expression, the
former having better regularity properties. Due to the possibility of reducing the computational
complexity of the time discretization to order N logN , thanks to the use of a Fast Fourier Trans-
form (FFT), this approach has become a very appealing tool for the numerical simulation of wave
propagation problems. A thorough review of results and properties of CQ applied to BIEs can be
found in [9]. In the last years, CQ formulas associated with A-stable BDF of order k ≤ 2 [43], have
been successfully applied to wave propagation problems in 2D and in 3D with Dirichlet boundary
condition [21], and in 2D with Neumann and mixed boundary conditions [22, 44]. The Lubich
technique has been also efficiently used for the time approximation of non reflecting boundary
conditions for solving exterior problems by the Finite Element Method (FEM) [23, 24, 27].
In combination with the CQ, for the discretization in space, we consider a Galerkin method based
on wavelet approximating functions. It is known that the wavelets have the property of yielding
sparse matrices when applied to a wide class of pseudo differential operators [15]. Wavelet BEMs
have been widely applied, for example in [33, 37, 39], to solve stationary problems. Very recently,
in [14], the authors have applied a CQ-wavelet method to the wave equation with Dirichlet bound-
ary conditions. In particular, they have proposed a wavelet compression technique, combined with
a time downsampling FFT strategy, that allows to obtain highly sparse BEM matrices with a com-
putational complexity of order Ñ log Ñ , being Ñ � N . Based on the expansion of the unknown
solution in terms of the reconstruction wavelet functions of the BIOR2.2 wavelet basis, and on
an a priori estimate of the decaying behaviour in time of the matrix entries, this strategy allows
to compute only those elements which are significant with respect to a prescribed tolerance. The
main drawback of this approach is that it can be applied if the explicit expression of the wave-
let basis functions is known, and that it requires ad hoc quadrature strategies to compute the
matrix entries, defined by space integrals, with sufficiently high accuracy. Having also long-time
computation in mind, we recall that the accurate calculation of such matrix entries represents
a key issue for the success of any CQ-BEM. Indeed, the more accurate is their evaluation, the
larger is the time interval where the method is faithful. This topic has nowadays been successfully
addressed when standard Lagrangian basis functions are considered for the space discretization
[21, 22, 25], while it is not been well established yet in the CQ-wavelet BEM case. In particular,
an accurate quadrature rule may become demanding if high order wavelet bases are considered,
or even impossible if, for example, wavelets are not given in analytic form.
We are aware that, in the context of wavelet BEM much effort has been done to design efficient
algorithms and quadrature rules for time independent problems [20, 33, 34, 35, 36]. In these papers
it is shown how the BEM matrices can be approximated by sparse ones for fixed time instants.
However this strategy would imply the loss of the FFT routine, and hence of the CQ-BEM effi-
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ciency, in the construction step of the matrices, the latter being a feature which instead we aim
at preserving.
The goal of this work is to propose a purely algorithmic procedure to obtain sparse BEM matrices
by combining the CQ-BEM with a Galerkin wavelet method. The approach is based on the ac-
curate computation of the matrix entries, defined by space integrals, in terms of piece-wise linear
Lagrangian basis functions. By maintaining the same accuracy, the matrix entries in terms of
the wavelet basis are then retrieved by taking advantage of the fast Discrete Wavelet Transform
(DWT). We will show that the new strategy allows the use of wavelet basis of any type and order,
even not known in closed form. We remark that the latter are of particular interest when the
wavelet approximation is combined with CQ based on A-stable Ordinary Differential Equations
(ODE) solvers that give rise to highly oscillating convolution weights. This is the case, for ex-
ample, when the trapezoidal CQ-rule is applied to the pure wave equation, or to the dissipative
one when the dissipation strongly dominates on the speed of propagation. In these cases, the use
of low order wavelet basis, such as the BIOR2.2, does not produce matrices that are as sparse
as those obtained for example in [14]. We will show indeed that, if the number of the wavelet
vanishing moments, which plays a key role in the sparsification, is not high enough, the decay to
zero (with respect to time) of the BEM wavelet matrix entries can be severely affected. The use of
wavelets with a bigger number of vanishing moments will allow to retrieve higher sparse matrices.
Moreover, we will apply a compression strategy that, as we will show, allows to get sparse matri-
ces without the need of storing a priori all the fully populated ones associated to the use of the
piece-wise linear Lagrangian basis functions.
We present an extensive numerical investigation of the sparsification properties of the wavelet
approach with respect to the variation of the damped equation parameters, to the choice of the
wavelet basis and of the CQ method. Incidentally, we remark that the analysis of the sparsity of
the matrices associated to the Single and Double layer operators is also of interest when the BEM
wavelet is used to define a transparent boundary condition in a FEM-BEM (or finite differences-
BEM) coupling.
The paper is organized as follows: in the next section we introduce the damped wave equation,
with Dirichlet and Neumann type boundary conditions, and its reformulation in terms of space-
time BIEs. In Section 3 we describe the main steps that lead to the time CQ formulas associated
to BIEs of the first and second kind, and the principles of the standard Galerkin BEM. In Section
4 we introduce the wavelet framework and the DWT and we describe the algorithmic procedure
for the compression of the CQ-BEM matrices. Then, in Section 5 we present numerical results
concerning the study of the sparsity behaviour of the matrices associated to the BEM operators
with respect to the variation of the damped wave equation parameters; furthermore, several nu-
merical tests show the effectiveness of the sparsification, in terms of memory saving and accuracy.
Some conclusions are then drawn in Section 6.

2. The Model Problem. Let Ω ⊂ R2 denote an open, bounded domain with a sufficiently
smooth closed boundary Γ := ∂Ω and let Ωe := R2\Ω. We consider the following exterior problems
given by the scalar damped wave equation in absence of body forces and with a Dirichlet boundary
condition

(2.1)


∆u(x; t)− αu̇(x; t)− 1

c2 ü(x; t) = 0 (x; t) ∈ Ωe × (0, T )

u(x; 0) = u̇(x; 0) = 0 x ∈ Ωe

u(x; t) = f(x; t) (x; t) ∈ Γ× (0, T )

or with a Neumann boundary condition

(2.2)


∆u(x; t)− αu̇(x; t)− 1

c2 ü(x; t) = 0 (x; t) ∈ Ωe × (0, T )

u(x; 0) = u̇(x; 0) = 0 x ∈ Ωe

∂u
∂n (x; t) = g(x; t) (x; t) ∈ Γ× (0, T ).

In Problems (2.1) and (2.2), u(x; t) is the unknown displacement field, α ≥ 0 is the damping
parameter and c > 0 is the wave propagation speed in the medium. These last two parameters are
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related by α · c2 := 1/τ̄, with τ̄ ≥ 0 known as relaxation time. Furthermore, the superposed dot
indicates time differentiation, while ∆ denotes the Laplace operator. In the boundary conditions,
the prescribed values are indicated by f and g and, with reference to the domain Ωe, n denotes
the unit outward normal vector to the boundary Γ.

Let G(r; t) denote the forward fundamental solution of the two-dimensional damped wave equation
[4]:

(2.3) G(r; t) :=
c

2π
cosh

(α
2
c
√
c2t2 − r2

) H(ct− r)√
c2t2 − r2

e−
α
2 c

2t,

with r := ‖x − y‖ and H(·) the Heaviside distribution. Note that, when α = 0, we have the
fundamental solution of the two-dimensional wave equation.

We consider the boundary element reformulation of (2.1) and (2.2) in terms of the following single
layer space-time integral potential:

(2.4) u(x; t) =

∫
Γ

∫ t

0

G(‖x− y‖; t− τ)ϕ(y; τ)dΓydτ, (x; t) ∈ Ωe × (0, T ),

where ϕ(x; t) is a continuous density function, representing the jump of the normal derivative of
the solution of Problem (2.1) or (2.2) along the boundary. The single-layer potential u(x; t) is a
solution of the Dirichlet Problem (2.1) provided ϕ(x; t) is the solution of the Time Dependent BIE
(TD-BIE) of the first kind

(2.5)

∫
Γ

∫ t

0

G(‖x− y‖; t− τ)ϕ(y; τ)dΓydτ = f(x; t), (x; t) ∈ Γ× (0, T ),

while it is a solution of the Neumann Problem (2.2) provided ϕ(x; t) is the solution of the TD-BIE
of the second kind

(2.6)
1

2
ϕ(x; t)−

∫
Γ

∫ t

0

∂G

∂nx
(‖x− y‖; t− τ)ϕ(y; τ)dΓydτ = g(x; t), (x; t) ∈ Γ× (0, T ),

where nx is the outward boundary unit normal vector at x ∈ Γ.

Remark 2.1. For possible volume terms in Eq. (2.5) and (2.6) generated by non trivial sources
and non homogeneous initial conditions, we refer to [21, 22]. These will contribute to the Right
Hand Side (RHS) of the final linear system, hence they will not influence the analysis of the
method we are going to present in the next sections.

3. Galerkin Lubich CQ-BEM. To approximate the solution of (2.5) and (2.6), we present
a numerical approach that combines a Lubich CQ-method based on A-stable ODE methods, with a
classical wavelet Galerkin method [41]. In the following section we provide a very brief description
of the CQ approach for the time discretization. The reader is referred to [43] for further details.

3.1. Time Discretization. For the time discretization, we split the interval [0, T ] into N
steps of equal length ∆t = T/N. Collocating equations (2.5) and (2.6) at the discrete time instant
tn := n∆t, we obtain:

(3.1)

∫
Γ

∫ tn

0

G(‖x− y‖; tn − τ)ϕ(y; τ)dΓydτ = f(x; tn), x ∈ Γ, n = 0, . . . , N

and

(3.2)
1

2
ϕ(x; tn)−

∫
Γ

∫ tn

0

∂G

∂nx
(‖x−y‖; tn−τ)ϕ(y; τ)dΓydτ = g(x; tn), x ∈ Γ, n = 0, . . . , N.
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The semi-discrete approximations ϕn of the unknown density ϕ(·; tn) are obtained by solving:

(3.3)

n∑
j=0

∫
Γ

ωVn−j(‖x− y‖; ∆t)ϕj(y)dΓy = fn(x), x ∈ Γ, n = 0, . . . , N

or

(3.4)
1

2
ϕn(x)−

n∑
j=0

∫
Γ

ωKn−j(‖x− y‖; ∆t)ϕj(y)dΓy = gn(x), x ∈ Γ, n = 0, . . . , N.

To simplify the notations, in (3.3) and (3.4) we have set fn(x) := f(x; tn) and gn(x) := g(x; tn).
In the following, we will refer to ωJn (r; ∆t), with J = V,K, as convolution weights associated to
the kernels of the corresponding integral operators.

The weights are computed by using the contour integral representation

(3.5) ωJn (r; ∆t) =
1

ı2π

∮
|z|=%

ĜJ
(
r;
γ(z)

∆t

)
z−(n+1)dz,

where ĜV(r; s) = Ĝ(r; s) is the Laplace transform of kernel G appearing in (2.5), and ĜK(r; s) =
∂̂G
∂n (r; s) is the Laplace transform of the kernel ∂G

∂n appearing in (2.6), i.e.

(3.6) ĜV(r; s) :=
1

2π
K0

(r
c

√
s2 + αs

)
and ĜK(r; s) := −

√
s2 + αs

2πc

r · nx

r
K1

(r
c

√
s2 + αs

)
,

having denoted by K0 and K1 the modified Bessel functions of second kind and of order 0 and 1,
respectively. In (3.5), γ(z) denotes the characteristic quotient of an ODE solver, and the parameter

% is such that the circle |z| ≤ % lies in the domain of analyticity of ĜJ (r; γ(z)/∆t). Among the
most common used A-stable ODE solvers, we recall the expression of γ(z) associated to the BDF
of order 2 (BDF2) and to the trapezoidal rule (TRAP)

γ(z) =

{
z2

2 − 2z + 3
2 BDF2

2 1−z
1+z TRAP,

that we are going to consider as a benchmark in the forthcoming sections. In principle, any A-
stable ODE solver can be applied. We recall that convergence results for the trapezoidal rule, that
were not provided in [41], have been later derived in [8].

It is known that, for certain time stepping schemes it is possible to determine the ωJn explicitly
[10, 26, 38]. In such cases, efficient methods as the Panel Clustering or fast and oblivious CQ
algorithm have been proposed.
In general, however, for a fixed value of r, the convolution weights are efficiently approximated, by
introducing the polar coordinate z = %eıθ, and by using the trapezoidal rule with R̃ equal steps
of length 2π/R̃, i.e.

(3.7) ωJn (r; ∆t) ' %−n

R̃

R̃−1∑
l=0

ĜJ

(
r;
γ(%eıl

2π
R̃ )

∆t

)
e−ınl

2π
R̃ .

All the ωJn (r; ∆t) are then computed simultaneously by the FFT algorithm with O(R̃ log R̃) flops.

Remark 3.1. In the design of efficient tools for the CQ-BEM, the behaviour of ωJn (r; ∆t) plays
a key role, see again [10, 26, 38]. Moreover, such a behaviour depends both on the parameters c
and α, and on the function γ(z).
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As an example, in Figures 1 and 2 we show the graph of ωVn (r; ∆t) (that of ωKn (r; ∆t) is similar)
associated to the pure wave equation (c = 1 · m/s, α = 0 · m2

/s) and to the dissipative one,
respectively. In the second case, the values of c = 9685 · m/s and α = 1.1 × 104 · m2

/s refer to the
material parameters of the Silicon [42].
As we can see, for the wave equation without damping, when the BDF2 method is considered
(Figure 1 top row), the ωVn (r; ∆t) are defined for r > 0, have a peak around r ≈ tn, decay
exponentially for r � tn, and have a “tail” towards r = 0 which is not tending to zero. On the
other hand, when the TRAP method is considered, the very smooth behaviour of the coefficients
along the tail is replaced by a highly oscillating one (see Figure 1 bottom row). In the dissipative
case (Figure 2), because of the presence of the damping parameter α, no tails are present but,
again, the coefficients, when the BDF2 and TRAP rule are considered, display a very different
behaviour. As we will see in Section 5, the behaviour of ωJn (r; ∆t) affects the compression property
of the wavelet approach. In particular, the regularity of the tail of ωJn (r; ∆t) influences the choice
of a wavelet basis, with a suitable number of vanishing moments, to retrieve a high compression
of the wavelet BEM matrices. Without entering into details, we recall that the number m̄ of
vanishing moments of a wavelet corresponds to the orthogonality property between the wavelet
basis functions and polynomials of degree less or equal than m̄− 1, a property that has effect on
the matrix compression [14]. Hence, the smoother the tail of ωJn (r; ∆t) is, the lower the number
m̄ of the wavelet vanishing moments can be chosen; viceversa, the presence of high oscillations in
the tails will enforce to choose wavelets with higher number of vanishing moments.
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Fig. 1. Wave equation without damping (c = 1, α = 0). Behaviour of the coefficients ωVn (r; ∆t) with respect
to r, for ∆t = 1.0e− 02 for the BDF2 (top row) and the TRAP (bottom row) rule.
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Fig. 2. Wave equation with damping: Silicon (c = 9685 · m/s and α = 1.1 × 104 · m2/s). Behaviour of the
coefficients ωVn (r; ∆t) with respect to r, for ∆t = 1.0e− 02, for the BDF2 (top row) and the TRAP (bottom row)
rule.
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3.2. Space Discretization: Galerkin Method. For the space discretization we will em-
ploy a Galerkin wavelet BEM. To this aim we start by introducing the Galerkin BEM based on
Lagrangian functions (standard case). For simplicity, we assume that the curve Γ is given either
by a global or piece-wise (local) parametric representation, including both the case of smooth and
non regular (polygonal) boundaries. We remark the sparsification property of the BEM matrices
in terms of the wavelet bases does not depend on the regularity of Γ.

For easiness of presentation we consider the case of a global parametrization given by x :=
ξ(σ) = (ξ1(σ), ξ2(σ)) and y := ξ(θ) = (ξ1(θ), ξ2(θ)) with σ, θ ∈ (−π, π]. In this case, the integra-
tion over Γ is reduced to an equivalent integration over the parametrization interval (−π, π]. We
introduce a uniform partition E of this interval, consisting of M elements ei of width ∆θ = 2π/M,
i = 1, · · · ,M . Denoting by P1 the space of univariate polynomials of maximal degree 1, we
introduce the space

(3.8) X1,1
∆θ := {ψ̃ = (ψ ◦ ξ−1) ∈ L2(Γ) : ψ|ei ∈ P1, ∀ ei ∈ E} ∩H1(Γ)

of piece-wise linear functions associated to the partition E . Let {Ni(θ)}M+1
i=1 denote the classical

Lagrangian basis functions associated with the nodes {θi}M+1
i=1 of E , i.e. Ni(θk) = δik. This defines

the associated interpolant of ϕj(y) on the curve Γ:

(3.9) ϕj(ξ(θ)) ' ϕ∆θ
j (θ) :=

M+1∑
i=1

ϕijNi(θ) ∀j = 0, . . . , N.

Taking into account that Γ is a closed curve, it results ϕ1
j = ϕM+1

j .

In the case of a boundary condition of Dirichlet type, the discrete problem consists of finding the
coefficients ϕij such that

(3.10)

n∑
j=0

M∑
i=1

ϕij

∫ π

−π

∫ π

−π
ωVn−j(r; ∆t)Ni(θ)Nm(σ)|ξ

′
(θ)||ξ

′
(σ)|dθdσ =

∫ π

−π
fn(ξ(σ))Nm(σ)|ξ

′
(σ)|dσ.

In the case of a boundary condition of Neumann type, the discrete problem consists of finding the
coefficients ϕij such that

(3.11)
1

2

M∑
i=1

ϕij

∫ π

−π
Ni(σ)Nm(σ)|ξ

′
(σ)|dσ+

−
M∑
i=1

n∑
j=0

ϕij

∫ π

−π

∫ π

−π
ωKn−j(r; ∆t)Ni(θ)Nm(σ)|ξ

′
(θ)||ξ

′
(σ)|dθdσ =

∫ π

−π
gn(ξ(σ))Nm(σ)|ξ

′
(σ)|dσ.

Both Equations (3.10) and (3.11) are to be considered for n = 0, . . . , N and m = 1, . . . ,M . The
matrix representation of (3.10) is

(3.12) V0ϕn = fn −
n−1∑
j=0

Vn−jϕj n = 0, . . . , N,

while that of (3.11) is

(3.13)

(
1

2
M−K0

)
ϕn = gn +

n−1∑
j=0

Kn−jϕj n = 0, . . . , N.
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In the linear systems (3.12) and (3.13), the unknown vectors are ϕj = (ϕ1
j , . . . , ϕ

M
j )>, the generic

elements of the matrices Vn and Kn are

Vni,m :=

∫ π

−π

∫ π

−π
ωVn (r; ∆t)Ni(θ)Nm(σ)|ξ

′
(θ)||ξ

′
(σ)|dθdσ i,m = 1, . . . ,M,(3.14)

Kni,m :=

∫ π

−π

∫ π

−π
ωKn (r; ∆t)Ni(θ)Nm(σ)|ξ

′
(θ)||ξ

′
(σ)|dθdσ i,m = 1, . . . ,M,(3.15)

and the components of the RHS vectors fn and gn are given by

fmn :=

∫ π

−π
fn(ξ(σ))Nm(σ)|ξ

′
(σ)|dσ and gmn :=

∫ π

−π
gn(ξ(σ))Nm(σ)|ξ

′
(σ)|dσ m = 1, . . . ,M.

In Equation (3.13), M stands for the standard mass matrix, whose entry of index i,m is

Mi,m :=

∫ π

−π
Ni(σ)Nm(σ)|ξ

′
(σ)|dσ.

By combining (3.14) and (3.15) with (3.7), the elements of matrices Vn and Kn can be recast as

(3.16) Vni,m '
%−n

R̃

R̃−1∑
l=0

CVi,m(l)e−ınl
2π
R̃ and Kni,m '

%−n

R̃

R̃−1∑
l=0

CKi,m(l)e−ınl
2π
R̃

where

(3.17) CJi,m(l) :=

∫ π

−π

∫ π

−π
ĜJ

(
r;
γ(%eıl

2π
R̃ )

∆t

)
Ni(θ)Nm(σ)|ξ

′
(θ)||ξ

′
(σ)|dθdσ, J = {V,K}.

Thus, the entries of index i,m of the matrices Vn and Kn, for n = 0, . . . , N , can be computed
simultaneously by the FFT algorithm, with O(R̃ log R̃) flops.

Remark 3.2. Assuming compatibility conditions on the initial and boundary data [21, 22],
since V0 and K0 are non singular, we have ϕ0 = 0. Therefore, the linear systems (3.12) and (3.13)
are iteratively solved for n = 1, . . . , N .

4. Fast Wavelet based CQ-BEM. There are basically two strategies to apply the wavelet
technique to CQ-BEM: a direct strategy which consists in generating the BEM matrices by ex-
panding the unknown density function ϕ(x; t) in terms of the wavelet basis; an indirect strategy
which applies a wavelet transform to the BEM matrices obtained by expanding the unknown func-
tion in terms of standard piece-wise linear nodal basis functions. We remark that both approaches
allow to preserve the use of the FFT algorithm and its benefits for the construction of the matrices,
see [14].
The direct strategy, presented in [14] for the wave equation, allows to apply an a priori matrix
compression, by computing only the significant entries of the matrices involved in the final linear
system, thus reducing both the global computational cost and the memory space. This method,
which is based on the a priori knowledge of the behaviour in time of the matrix entries, has been
designed for the particular choice of the biorthogonal BIOR2.2 wavelets. Moreover, the approach
requires some ad-hoc quadrature strategies to compute the matrix entries with a high accuracy, a
key issue for the success of the CQ method that has not been deeply investigated yet in the wavelet
context. In view of the above considerations, if a higher order wavelet basis is needed to obtain
a major compression (see Remark 3.1), an accurate quadrature rule may become demanding, or
even impossible when, for example, wavelets are not given in analytic form. In [20, 33, 34, 35, 36]
wavelet based compression strategies and efficient quadratures have been proposed and applied to
several 2D and 3D BEM. All the mentioned works deal with time independent problems, including
Helmholtz ones, and the numerical results therein presented are obtained with piecewise constant
or piecewise linear wavelets. Since the sparsity pattern of the wavelet BEM matrices varies in time
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(as shown in [14] for the particular choice of the BIOR2.2), the compression strategies proposed
in the above mentioned papers can be in principle applied only at each time instant, disregard-
ing the use of the FFT during the construction of the matrices. Alternatively, as suggested in
[7], an equivalent system of Helmholtz problems associated to different wave numbers could be
considered as well, and the wavelet sparsification technique could be applied to each Helmholtz
matrix in association to a FFT based solver. This strategy revealed to be particularly efficient
when, under suitable assumptions on the problem data, only a few number of Helmholtz matrices
must be computed and stored. Since the aim of our approach is to retrieve the temporal history
of each entry of the matrices via the FFT, and to solve generic time-dependent problems, we will
not apply such strategies.
The indirect strategy is purely numerical and allows to obtain a compression by setting equal to
zero all the matrix entries which are negligible up to a given threshold parameter ε > 0. In this
second case, the a priori storage of all the matrices is needed, and the memory saving is obtained
only a posteriori, as shown in [14].
In this work we propose a new strategy, based on a purely numerical procedure, that allows to
benefit both from the FFT in the CQ-BEM and from the wavelet compression, by the application
of the DWT. We recall that the DWT is a fast algorithm that allows to perform a change of basis,
that in our case is from the standard piecewise linear nodal basis functions into a wavelet basis.
The use of the DWT will allow us to obtain accurate wavelet BEM matrix entries, independently
of the choice of the wavelet basis, through an accurate computation of the integrals associated to
the Lagrangian basis, the latter being a well established task [21, 22]. Moreover, we will see that
the new procedure allows to store only the matrix entries which are significant up to a prescribed
tolerance, without the need of storing a priori all the fully populated matrices associated to the
use of the Lagrangian basis for the space discretization.

4.1. A new DWT based compression technique for CQ-BEM. Let us introduce the
square matrix W, whose columns store the wavelet decomposition of the piecewise linear basis
functions at the level L, this latter being associated to the refinement of the parametrization
interval (−π, π] of Γ by the relation M = 2L. By rewriting Equations (3.12) and (3.13) as

V0(W−1W)ϕn = fn −
n−1∑
j=0

Vn−j(W−1W)ϕj n = 1, . . . , N(4.1)

(
1

2
M−K0

)
(W−1W)ϕn = gn +

n−1∑
j=0

Kn−j(W−1W)ϕj n = 1, . . . , N,(4.2)

the standard wavelet Galerkin method is obtained by pre-multiplying the previous equations by
W−>, thus getting

(4.3) VW,0ϕWn = fWn −
n−1∑
j=0

VW,n−jϕWj and KW,0ϕWn = gWn +

n−1∑
j=0

KW,n−jϕWj n = 1, . . . , N.

with VW,j = W−>VjW−1, KW,j = W−>KjW−1, fWn := W−>fn and gWn := W−>gn.

We observe that, when orthogonal wavelets are used, like for example the Daubechies’ ones, it
results W−1 = W> so that no matrix inversion is required. With reference to formulas (3.16)
and (3.17), we describe the main issues relative to the implementation of the indirect CQ-BEM
wavelet approach to retrieve the matrices VW,j (and KW,j), based on the DWT and the a-posteriori
compression strategy. These are summarized in the following steps:
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Indirect CQ-BEM algorithm:
1. for all the values of the row and column indices i and m:

(a) compute the entries CVi,m(l), for all values l = 0, 1, . . . , R̃ − 1, by applying a ν-point
Gauss-Legendre rule, see [21] and [23];

(b) compute the vector F , of R̃ components, defined as F := FFT
(
CVi,m

)
;

(c) retrieve the matrix entries Vni,m = %−n

R̃
F(n), for n = 0, . . . , N ;

2. for all n = 0, . . . , N
(a) compute VW,n := W−>VnW−1;
(b) sparsify

(4.4) VW,ni,m :=

{
VW,ni,m , if |VW,ni,m | > ε

0, otherwise
for i,m = 1, . . . ,M.

In formula (4.4), by abuse of notation, we have denoted with the same symbol the matrices before
and after the compression. Moreover, we remark that, after step 1.(c), we have stored all the
matrix entries associated to all the time instants. To avoid such drawback, we propose a new
strategy by preliminary observe that the entry of index i,m of VW,n is given by:

(4.5) VW,ni,m =

M∑
h=1

W−>i,h ṼW,nh,m :=

M∑
h=1

W−>i,h

(
M∑
k=1

Vnh,kW
−1
k,m

)
.

According to Equation (3.16), and by taking advantage of the linearity property of the FFT, we
can rewrite (4.5) as follows:
(4.6)

VW,ni,m '
M∑
h=1

W−>i,h

%−n
R̃

R̃−1∑
l=0

M∑
k=1

CVh,k(l)W−1
k,me

−ınl 2π
R̃

 :=

M∑
h=1

W−>i,h

%−n
R̃

R̃−1∑
l=0

C̃Vh,m(l)e−ınl
2π
R̃

 .

where the coefficients C̃Vh,m are

C̃Vh,m(l) :=

∫ π

−π

∫ π

−π
ĜJ

(
r;
γ(%eıl

2π
R̃ )

∆t

)
Nh(θ)ψm(σ)|ξ

′
(θ)||ξ

′
(σ)|dθdσ.

In the above equation, we have denoted by ψ = {ψm}Mm=1 the set of wavelet basis functions,
retrieved from the set of the Lagrangian basis N = {Nm}Mm=1 by the relation ψ = W−1N.

Moreover note that, at this stage, the entries of the matrices ṼW,j and K̃W,j are not those
associated to the standard wavelet Galerkin scheme. They are associated to a Petrov-Galerkin
approach where the trial space is that spanned by the wavelet basis functions, while the test space
is that of the nodal piece-wise linear basis functions.
The main steps relative to the implementation of this new CQ-BEM wavelet approach to retrieve
the matrices VW,j (and KW,j) are:
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New CQ-BEM algorithm:
1. for each value of the row index h = 1, . . . ,M :

(a) compute the whole h-th row CVh,·(l) for all l = 0, 1, . . . , R̃− 1;

(b) compute the whole h-th row C̃Vh,·(l) =
M∑
k=0

CVh,k(l)W−1
k,· for all l = 0, 1, . . . , R̃− 1;

(c) compute the vector F̃ , of R̃ components, defined as F̃ := FFT
(
C̃Vi,·
)

;

(d) retrieve the matrix entries ṼW,nh,· = %−n

R̃
F̃(n), for n = 0, . . . , N ;

(e) sparsify

(4.7) ṼW,nh,m :=

{
ṼW,nh,m , if |ṼW,nh,m | > ε

0, otherwise
for m = 1, . . . ,M, n = 0, . . . , N.

2. for all n = 0, . . . , N
(a) compute VW,n := W−>ṼW,n;
(b) sparsify

(4.8) VW,ni,m :=

{
VW,ni,m , if |VW,ni,m | > ε

0, otherwise
for i,m = 1, . . . ,M.

Once again, in formulas (4.7)-(4.8), by abuse of notation, we have denoted with the same symbol
the matrices before and after the compression.

Remark 4.1. We remark that the success of the new proposed scheme relies on the possibility
of obtaining sparse matrices ṼW,n and K̃W,n, for n = 0, . . . , N , after having performed the first
step (4.7) of the compression strategy. To show indeed the effectiveness of the sparsification
technique, we consider as benchmark example the wave equation without damping, i.e. c = 1 ·m/s
and α = 0 · m2

/s. The domain Ω is the unit disk centered at (0, 0), so that Γ := {x ∈ R2 : x =
(cos θ, sin θ), θ ∈ (−π, π]}, and the parametrization interval (−π, π] is decomposed into M = 29

(L = 9) subintervals. The final time instant is set T = 10 and time interval of interest [0, 10]
is subdivided into N = 1000 subintervals. We apply a BDF2 CQ-wavelet BEM by choosing the
BIOR2.2 and Daubechies DB45 wavelet basis (see Figure 3).
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Fig. 3. Behaviour of the reconstruction wavelet functions ψ4,6 associated to the BIOR2.2, BIOR6.8, DB10
and DB45, for L = 9. . We refer to [14] for details on the wavelet multi-index notation and its relation with the
standard index set {1, . . . ,M}.

In Figure 4, we plot the sparsity pattern of the matrices ṼW,n, for n = 100, 250, 500, 1000,
by fixing the threshold ε = 1.0e− 08 (bi-orthogonal BIOR2.2 top row, and the Daubechies DB45

bottom row). Similar patterns have been obtained for the matrices K̃W,n and when damping terms
have been considered. As we can see, after the first step of the compression strategy the BEM
matrices are already highly sparse and, for increasing time, the non zero entries gather towards
the first columns, as effect of the right multiplication of the BEM matrices Vn by the matrix W−1.
We remark that the non zero entries are the only ones actually stored before proceeding with the
second compression. After the first step, it results that the percentage of memory saving is 95.75%
for the BIOR2.2 and 95.22% for the Daubechies DB45. At the end of the complete compression
process we get a total memory saving of 97.73% and 99.16% for the former and latter wavelet
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basis, respectively. Finally, we remark that we can use standard routines for sparse matrix/vector
product to reduce the CPU time for the computation of the matrices VW,n in step 2.(a).
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Fig. 4. Wave equation without damping (c = 1 ·m/s and α = 0 ·m2/s). Sparsity pattern of ṼW,n with BIOR2.2
(top row) and ṼW,n with DB45 (bottom row), for BDF2 rule and for n = 100, 250, 500, 1000.

5. Numerical results. This section consists of two main parts: the first is devoted to the
numerical study of the efficiency of the proposed method, in terms of memory saving and accuracy;
the second presents the application of the scheme to some realistic problems.

In all the simulations presented, the CQ parameters are such that for a fixed η, the choice
%N =

√
η and R̃ = 2N allows to compute the approximation of ωJn with a relative error of

order
√
η, if ĜJ is computed with a relative accuracy bounded by η. In particular, we have

chosen η = 1.0E − 10. The integrals over the boundary Γ, which define the matrix elements Vni,m
and Kni,m, for n = 0, . . . , N (see (3.14)-(3.15)), are computed by using a 8-point (extra diagonal
elements) and a 16-point (diagonal elements) Gauss Legendre quadrature rule.

All the numerical computations have been run on a PC with Intel® CoreTM i7-7700 (3.60
GHz). To perform the numerical testing we have written standard (i.e. sequential) Matlab®

codes.

5.1. Study of the complexity and of the accuracy of the new scheme. The efficiency
of the global compression technique by the approach discussed in the previous section, depends
on the possible storage reduction obtained by the wavelet compression, whose direct consequence
is an acceleration of the classical matrix/vector product, needed to update the RHS of Equations
(3.12) and (3.13) at each time step. In this section we present an accurate numerical study, aiming
at showing the performances and the accuracy of the wavelet CQ-BEM. Precisely, in Section 5.1.1
we report the numerical study of the global memory storage required by both the standard and the
wavelet methods, with respect to the space and time mesh refinement. In Section 5.1.2 we show
the sparsity pattern of the matrices associated to the two approaches, at fixed time steps. Finally,
in Section 5.1.3, we study the behaviour of the L2 error of the solution of the BEM problems and
we report the global convergence rate with respect to the space and time refinement.
As benchmark example, in what follows the domain Ω is the unit disk centered at (0, 0), so that Γ :=
{x ∈ R2 : x = (cos θ, sin θ), θ ∈ (−π, π]}. By varying the physical properties of Ωe, we observe
the dependency on c and α of the sparsity of the discrete integral operators. We fix the final time
instant T = 10 and we consider two sets of physical parameters: c = 1 ·m/s and α = 0 ·m2

/s (wave
equation without damping), and c = 9685·m/s and α = 1.1×104 ·m2

/s (Silicon, see [42]). As wavelet
basis, we use the bi-orthogonal BIOR2.2 and BIOR6.8 compactly supported wavelet functions [17]
and the orthogonal Daubechies DB10 and DB45 compactly supported wavelet functions [18] (see
Figure 3 for some basis functions associated to the level L = 9).

5.1.1. Storage Requirement. In this first numerical investigation, we compare the com-
puted storage requirement of the wavelet approach with that needed by the full matrix represen-
tation, which is O(M2) for each matrix of the time marching and O(NM2) globally. We consider
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the CQ-wavelet BEM with both the BDF2 (Figure 5) and TRAP (Figure 6) ODE solvers and we
fix the threshold ε = 1.0E − 12, that ensures that the accuracy of the solution of the problem is
not affected by the compression of the system matrices, as we are going to show in Section 5.1.3.
We study the complexity of the proposed method for increasing number of Degrees of Freedom
(DoF), i.e. for increasing values of MN ; in particular we choose M = N = 2L, L = 1, · · · , 9.
When α is small compared to c, as in the case of the Silicon, we underline that the growth is less
than linear O(NM) for the BDF2 solver (see Figure 5), while it tends to be linear in the case
of TRAP rule (see Figure 6). On the other hand, in the case of the standard wave equation (or
when α is big compared to c), we have obtained the same linear complexity growth as in [14],
for both the BDF2 and TRAP solvers. Therefore, we omit the corresponding graphs. In all the
tested cases, no substantial differences are observed for the compression of the matrices VW,n and
KW,n, for n = 0, . . . , N . As we expect, the use of the BIOR6.8 and DB45 wavelets results more
efficient than the BIOR2.2 and the DB10, in terms of matrix compression, because the former
bases have a largest number of vanishing moments. Finally, we remark that the BIOR6.8 and the
DB10 wavelet functions approximately give the same memory saving.
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Fig. 5. Silicon (c = 9685 · m/s and α = 1.1 × 104 · m2/s). Comparison of the complexity for the BIOR2.2,
BIOR6.8, DB10 and DB45 wavelet based compression (ε = 1.0E−12) for the matrices VW,n (left plot) and KW,n

(right plot), for BDF2 ODE solver
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5.1.2. Sparsity Pattern of the BEM matrices. We consider a decomposition of the
parametric interval (−π, π] in M = 29 subintervals and we subdivide the time interval of interest
[0, 10] into N = 1000 subintervals. We compare the results of the proposed wavelet compression
technique (approach W) with those obtained by using a standard compression (approach S),
consisting of an a-posteriori cutting, obtained by setting equal to zero the entries of the matrices Vn
which are, in absolute value, less or equal to ε. In what follows we will denote by V∗,n, ∗ = {S,W}
the matrices corresponding to the approaches S and W, respectively. We fix ε = 1.0E − 08, for
both the approach S and the approachW. For the analysis of the sparsity patterns of the matrices
V∗,n, for n = 100, 250, 500, 1000, we consider the TRAP and BDF2 ODE solvers.
In the case of the wave equation without damping (Figure 7), at the time instant tn = 1 the
compressed matrix generated by the standard technique is sparse, while for the other instants it
is fully populated, for both the BDF2 and TRAP rules. We note that the wavelet compression is
very efficient when the BDF2 rule is considered, since a very few entries of the system matrices are
stored. On the other hand, when we use the TRAP solver, the compressed matrices with BIOR2.2
wavelets rule have the typical finger structure at all the time instants, while in the case of DB45
wavelets only the first two matrices have the finger structure and the others are even sparser.
We can conclude that the wavelet compression results stronger when applied to the matrices Vn
obtained with the BFD2 rule, because the coefficients ωVn (r; ∆t) related to this ODE solver are
less oscillatory of those related to the TRAP solver (see Figure 1).
If we consider the physical parameters of the Silicon (Figure 8), we remark how we do not have
any advantage from the standard approach S since almost all the entries of the matrices, for all
the time instants, are computed and stored with a consequently null memory saving and, hence,
no acceleration in the computation of the RHS vectors. On the other hand, the effectiveness of
the matrix compression is optimal for the approach W. When the BDF2 rule is used, only few
non-zero matrix elements are maintained, due to the almost constant behaviour of the coefficients
ωVn (r; ∆t) depicted in Figure 2 (top row). When the TRAP rule is used, the coefficient ωVn (r; ∆t)
are oscillatory (Figure 2, bottom row) and this behaviour leads to the need of storing a larger
number of matrix elements. In this case, the largest number of vanishing moments of the DB45
wavelet basis ensures a better compression. Analogous results have been observed for the matrices
K∗,n, with ∗ = S,W.

(a) BDF2 rule (b) TRAP rule

Fig. 7. Wave equation without damping (c = 1 · m/s and α = 0 · m2/s). Sparsity pattern of VS,n (top row),
VW,n with BIOR2.2 (middle row) and VW,n with DB45 (bottom row) at tn, for BDF2 and TRAP rule.
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(a) BDF2 rule (b) TRAP rule

Fig. 8. Silicon (c = 9685 · m/s and α = 1.1 × 104 · m2/s). Sparsity pattern of VS,n (top row), VW,n with
BIOR2.2 (middle row) and VW,n with DB45 (bottom row) at tn, for BDF2 and TRAP rule.

5.1.3. Accuracy of the wavelet compression. We consider the exterior Dirichlet prob-
lem (2.1) with the datum f(x; t) = t4e−t cos (x2

1 + 2x2
2).

Here, we aim at testing the accuracy and the efficiency of the approximations we obtain by us-
ing the CQ-BEM approach and the standard and wavelet based compression. Since an analytical
expression of the exact solution of the problem is not known, we construct the corresponding refer-
ence solution by solving the problem with the standard CQ-BEM by using Me = 512 sub-intervals
for the discretization of the parametrization interval (−π, π] and Ne = 2048 sub-intervals for the
time interval [0, 10]. We refer to the reference solution as ϕMe,Ne(x; t) and to the corresponding
potential function as uMe,Ne(x; t). We denote by ϕM,N (x; t) and uM,N (x; t) the approximate so-
lution and the corresponding potential function obtained with the proposed wavelet based and
standard compressions, choosing the space and time discretization parameters M and N , respec-
tively.
To test the accuracy of our method, we introduce the relative errors at the final time instant T :

(5.1) EM,N
ϕ :=

∥∥ϕMe,Ne(·;T )− ϕ∗M,N (·;T )
∥∥
L2(Γ)

‖ϕMe,Ne(·;T )‖L2(Γ)

(5.2) EM,N
u :=

|uMe,Ne(x;T )− uM,N (x;T )|
|uMe,Ne(x;T )|

for a fixed x ∈ Ωe,

associated to the approximate solutions ϕM,N (x; t) and uM,N (x; t), respectively. In Tables 1 and
2, we report these quantities for the wavelet approach W that uses the BIOR2.2 wavelet basis
functions, and the corresponding Estimated Order of Convergence (EOC), computed by using the
standard formula

(5.3) EOC := log2

(
EM,N
ϕ

E2M,2N
ϕ

)
or EOC := log2

(
EM,N
u

E2M,2N
u

)
.

Additionally, we focus our attention on the percentage of the memory saving, defined as

(5.4) mem∗(%) := 100 ·
(

1− nz

M2N

)
with ∗ = S,W
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where M2N is the total number of matrix elements of the standard CQ-BEM and nz is the number
of the elements that are stored after the cutting.

We choose the threshold parameter ε = 1.0E − 12. We remark that we have obtained the
same accuracy also for the choice of the wavelet basis BIOR6.8, DB10 and DB45 as well as for
the standard approach S. Therefore, we do not report the latters, but only the comparison of the
five approaches in terms of memory saving.

BDF2 TRAP

M N EM,N
ϕ EOC EM,N

u EOC memS memWBIOR2.2 memWBIOR6.8 memWDB45 memS memWBIOR2.2 memWBIOR6.8 memWDB45

8 32 1.15E− 01 7.40E− 03 0.0% 28.1% 28.1% 32.0% 0.0% 28.1% 28.1% 29.1%
2.1 2.3

16 64 2.71E− 02 1.50E− 03 0.0% 13.3% 13.3% 29.6% 0.5% 13.3% 13.3% 22.0%
2.0 2.2

32 128 6.63E− 02 3.27E− 04 2.1% 6.9% 26.7% 52.0% 3.6% 7.3% 6.4% 21.0%
2.0 2.1

64 256 1.60E− 03 7.60E− 05 5.3% 6.6% 56.1% 67.2% 6.8% 6.6% 3.8% 23.7%
2.1 2.1

128 512 3.73E− 04 1.73E− 05 7.9% 36.4% 73.5% 78.5% 9.1% 8.1% 5.0% 30.6%
2.3 2.4

256 1024 7.69E− 05 3.36E− 06 9.9% 72.9% 85.2% 89.9% 10.6% 12.8% 12.0% 36.9%

Table 1
Wave equation without damping (c = 1 ·m/s and α = 0 ·m2/s). Errors, convergence orders and memory saving

for the standard, wavelet BIOR2.2, wavelet BIOR6.8 and wavelet DB45 compressions. T = 10.

BDF2 TRAP

M N EM,N
ϕ EOC EM,N

u EOC memS memWBIOR2.2 memWBIOR6.8 memWDB45 memS memWBIOR2.2 memWBIOR6.8 memWDB45

8 32 2.58E− 01 4.47E− 04 0.0% 35.1% 34.7% 76.7% 0.0% 25.7% 25.6% 25.6%
2.2 2.1

16 64 5.54E− 02 1.05E− 04 0.0% 21.2% 67.4% 92.1% 0.0% 13.0% 12.9% 31.3%
2.0 2.0

32 128 1.35E− 02 2.53E− 05 0.0% 29.1% 91.9% 97.0% 0.0% 6.4% 6.4% 33.3%
2.0 2.0

64 256 3.30E− 03 6.16E− 06 0.0% 76.5% 97.9% 98.9% 0.0% 3.2% 24.2% 33.4%
2.1 2.1

128 512 7.89E− 04 1.45E− 06 0.0% 95.2% 99.5% 99.6% 0.0% 2.5% 50.9% 58.1%
2.3 2.3

256 1024 1.58E− 04 2.90E− 07 0.0% 99.1% 99.8% 99.9% 0.0% 18.0% 74.2% 77.4%

Table 2
Silicon (c = 9685 · m/s and α = 1.1 × 104 · m2/s). Errors, convergence orders and memory saving for the

standard, wavelet BIOR2.2, wavelet BIOR6.8 and wavelet DB45 compressions. T = 10.

As we expected, we observe a quadratic convergence rate for both the approximate density
ϕM,N (x; t) and potential uM,N (x; t) functions. This result is due to a convergence rate in time
proportional to O(∆t2), as forecasted in [41], and a convergence rate in space proportional to
O(∆x2), as shown in [14] for the wave equation without damping and the choice of the BIOR2.2
wavelet basis with m̄ = 2 vanishing moments.
In Tables 1 and 2 it is also visible the high memory saving obtained with the proposed compression
technique. For the wave equation without damping, we remark the effectiveness of the compression
when the BDF2 rule is used. In the case of the physical parameters of the Silicon, the standard
compression technique S has a null memory saving.

Remark 5.1. In numerical experiments, we have observed similar errors and the same EOC and
memory saving when we consider the Neumann problem (2.2) with datum g(x; t) = t4e−t cos (x2

1 + 2x2
2).

Remark 5.2. It is known that a key issue of time domain BEMs is the capability of retrieving
accurate solutions when long times T are considered. To show how the compression strategy
influences the accuracy of the approximation in such cases, we have applied the proposed scheme
for the choice of the larger value T = 40. In the same setting of Table 1, we report the results
obtained for the BIOR2.2 wavelets, the basis that displays the lower compression rate because of
the lower number of vanishing moments. We have computed the reference solutions ϕMe,Ne(x; t)
and uMe,Ne(x; t) with Me = 256 sub-intervals for the discretization of the parametrization interval
(−π, π] and Ne = 8192 sub-intervals for the time interval [0, 40]. In Table 3 we report the accuracy
of the solution computed with the same choice of the discretization parameters of the reference
one and for different choices of the threshold parameter ε. As expected, the corresponding errors
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increase as the compression increases. Moreover we point out that the memory savings are higher
than those shown in Table 1, for both the choices of the CQ ODE solvers, since a higher number
of time steps N has been considered. It is worth noting that, in accordance with what observed
in Remark 3.1, the TRAP solver allows for a lower compression and, if the larger parameter
ε = 1.0E − 08 is chosen, too many entries of the BEM matrices are neglected with a consequent
totally inaccurate solution. Similar comments are valid for the other choices of the wavelets basis.

ε = 1.0E− 12 ε = 1.0E− 10 ε = 1.0E− 08

EMe,Ne
ϕ EMe,Ne

u memWBIOR2.2 EMe,Ne
ϕ EMe,Ne

u memWBIOR2.2 EMe,Ne
ϕ EMe,Ne

u memWBIOR2.2

BDF2 2.90E− 05 6.84E− 07 92.8% 5.06E− 04 5.42E− 06 97.2% 4.99E− 02 6.52E− 04 98.8%
TRAPEZ 1.24E− 03 2.21E− 07 56.0% 3.20E− 02 3.18E− 04 82.2% 1.74E + 44 1.49E + 30 95.8%

Table 3
Wave equation without damping (c = 1 · m/s and α = 0 · m2/s). Errors and memory saving for the wavelet

BIOR2.2 compression and for different thresholds. T = 40.

Finally, we have not observed any increasing or decreasing of the effective damping with
respect to the compression rate. As proof of this, we consider a non vanishing oscillating wave,
solution of Problem (2.1) for the pure wave equation, with datum f(x; t) = sin(t)2, t ∈ [0, 40]
and all parameters of Table 3. We note that, with such a choice of the datum, the solution is
constant with respect to the space variable. In Figure 9 we show the behaviour of the density
function ϕMe,Ne(x; t), x = (0, 0), and of the potential uMe,Ne(x; t), x = (2, 0), with respect to the
time variable. We compare the reference (standard) solution with those obtained by applying the
wavelet BIOR2.2 CQ-BEM associated to the BDF2 and TRAP rules, by varying the parameter
ε. As we can see, up to reasonable values ε (see Table 3), no spurious damping effects are visible.
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0 10 20 30 40
0

0.2

0.4

0.6

0.8

BDF2 uMe,Ne(x; t)

STANDARD CQ-BEM ciupasss
CQ-WAV. BEM (ε = 1.0E − 12)
CQ-WAV. BEM (ε = 1.0E − 10)
CQ-WAV. BEM (ε = 1.0E − 08)

0 10 20 30 40
−6

−4

−2

0

2

4

6

TRAP. ϕMe,Ne(x; t)

STANDARD CQ-BEM ciupasss
CQ-WAV. BEM (ε = 1.0E − 12)
CQ-WAV. BEM (ε = 1.0E − 10)

0 10 20 30 40
0

0.2

0.4

0.6

0.8

TRAP. uMe,Ne(x; t)

STANDARD CQ-BEM ciupasss
CQ-WAV. BEM (ε = 1.0E − 12)
CQ-WAV. BEM (ε = 1.0E − 10)

Fig. 9. Wave equation without damping (c = 1 ·m/s and α = 0 ·m2/s). Temporal profiles of ϕMe,Ne (left plots)
and uMe,Ne (right plots), for the standard and wavelet BIOR2.2 CQ-BEM. T = 40.
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5.2. Application to some realistic problems. In this section, we apply the approach
presented in the previous sections to some numerical examples. In particular, Examples 1 and 2
we solve two scattering problems: the former with a Dirichlet datum (soft scatterer), the latter
with a Neumann one (hard scatterer). Finally, in Example 3 we consider a Neumann problem,
corresponding to the propagation of a wave generated by a load. We present the results for the
choice of the BDF2 CQ-BEM approach and the BIOR6.8 wavelet matrix compression.

Example 1. We consider the scattering of an incident wave uinc(x; t) by an infinitely long cylin-
drical scatterer, immersed in a medium with wave propagation velocity c = 1 · m/s and damping
parameter α = 10 ·m2

/s (which, after a properly scaling, correspond to the parameters of Brass, see
[42]). In a fixed 3D Cartesian coordinates system (x1, x2, x3), the cylindrical scatter is supposed
to be sound-soft and invariant with respect to x3, and to have kite-shaped section. We consider
a cylindrical incident wave due to a causal signal λ(t) = 10000 · sin(4t) · e−1.6(t−3)2 , simultane-
ously emitted by all the points in a line source parallel to the x3-axis. Therefore, the incident
wave is invariant to x3 and the problem is reduced to a 2D case. Consequently, we choose to
set our simulation in the plane x3 = 0, where the boundary of the section of the scatterer is
Γ := {x = (x1, x2) ∈ R2 : x = (cos θ + 0.65(cos 2θ − 1), 1.5 sin θ), θ ∈ (−π, π]}. According to the
above assumptions, the incident wave is obtained as time convolution of the forward fundamental
solution (2.3) of the damped wave equation and the signal λ(t), i.e.

(5.5) uinc(x : t) =

t∫
0

G(‖x− xS‖; t− τ)λ(τ)dτ x ∈ R2 \ {xS}, t ∈ [0, T ].

The source point on the line source is chosen xS = (1.24, 1.24) and T = 15 is the final observation
time. The datum of the Dirichlet TD-BIE (2.5) is g(x; t) = −uinc(x; t). In the following, uinc(x; t)
will be evaluated by using the Lubich CQ method. The time interval of interest is subdivided
into N = 210 sub-intervals. For the space discretization, we choose to decompose the parametric
interval (−π, π] in M = 210 subintervals. We set the threshold parameter ε = 1.0E − 08, with
a consequently memory saving of 99.89%. In Figure 10, we show the behaviour of the density
function on the boundary Γ of the kite-shaped section, i.e. we report ϕ((cos θ + 0.65(cos 2θ −
1), 1.5 sin θ); t) for θ ∈ (−π, π] and t ∈ [0, 15]. The left plot is its 2D view, while the right plot is
its 3D view.

Fig. 10. Example 1. 2D (left plot) and 3D view (right plot) of ϕ((cos θ + 0.65(cos 2θ − 1), 1.5 sin θ); t), for
θ ∈ (−π, π] and t ∈ [0, 15].

Finally, we use the single layer space-time integral potential representation (2.4) to reconstruct
the scattered field usca(x; t). In Figure 11 we plot the time history of the incident field uinc(x; t)
(left), of the scattered field usca(x; t) (center) and of the total field utot(x; t) (right), given by the
sum of uinc and utot, at the exterior point x = (0.75, 0.75).
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Fig. 11. Example 1. Temporal profile of the incident field uinc(x; t), the scattered field usca(x; t) and the
scattered total utot(x; t) at the point x = (0.75, 0.75).

Example 2. We consider the hard-scattered field usca(x; t) of a plane vertically propagating inci-
dent wave uinc(x; t), impinging upon an elliptical crack Γ := {x ∈ R2 : x = (cos θ, 0.1 sin θ), θ ∈
(−π, π]}. Here, we refer to a domain where the wave propagation velocity is c = 1 · m/s and there
is no damping, i.e. α = 0 · m2

/s. The type of uinc(x; t) is assumed as a Ricker wavelet

h(t) = A
[
2π2f2

Pt
2 − 1

]
e−π

2f2
Pt

2

,

where fP = 1.5 and A = 0.6. The incident wave uinc(x; t) := h(x2−x0,2+c(t−t0)) is centered at the
point x0 = (0, x0,2) with x0,2 = −1 ·m, and it is emitted with a time shift parameter t0 = 1 · s. We
solve the Neumann TD-BIE (2.6) with the datum g(x; t) on Γ consisting of the normal derivative
of uinc(x; t). We remark that this datum is similar to that considered in [3], where the problem
is studied for different geometries of the crack. We choose a decomposition of the parametric
interval (−π, π] of the crack Γ into M = 210 sub-intervals and a discretization of the time interval
of interest [0, 4] into N = 210 sub-intervals. The threshold parameter is ε = 1.0E − 08 that gives
rise to a memory saving of 97.46%. In Figure 12, we plot the behaviour of the approximate density
function on the boundary Γ of the crack, i.e. ϕ((cos θ, 0.1 sin θ); t), for θ ∈ (−π, π] and t ∈ [0, 4].

Fig. 12. Example 2. 2D (left plot) and 3D view (right plot) of ϕ((cos θ, 0.1 sin θ); t), for θ ∈ (−π, π] and t ∈ [0, 4].

To reconstruct the scattered field usca(x; t), we use Equation (2.4). In Figure 13, we show the
behaviour in time of the incident field uinc(x; t), the scattered field usca(x; t) and the total field
utot(x; t) at the exterior point x = (0, 0.4). We recall that utot(x; t) is obtained by the superposition
of uinc(x; t) and usca(x; t).
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Fig. 13. Example 2. Temporal profile of the incident field uinc(x; t), the scattered field usca(x; t) and the
scattered total utot(x; t) at the point x = (0, 0.4).

Finally, several snapshots related to the reconstructed total field in a square around the crack
for different time instants are presented in Figure 14. These results show how the incident wave
reaches the crack and how the total field is affected by the scattered wave. In particular, we
observe a diffraction caused at the edges of the ellipse, whose effect are visible on both the upper
and the lower half of the square. At the beginning of the simulation, the total field vanishes on
the upper part of the ellipse, due to the interaction of the incident and the scattered waves. Then,
as time passes, the scattered wave diminishes and the wavefront recovers, even if the effects of the
diffraction are still present as a shadow. Our results are in perfect agreement with those presented
in [3].

t ' 0.1 t ' 0.4 t ' 0.7 t ' 1.0

t ' 1.3 t ' 1.6 t ' 1.9 t ' 2.2

t ' 2.5 t ' 2.8 t ' 3.1 t ' 3.4

Fig. 14. Example 2. Snapshots of the reconstructed total field utot(x; t) around the elliptic crack.

Example 3. We consider an infinite thin plate with an elliptic hole Γ := {x ∈ R2 : x =
(cos θ, 0.1 sin θ), θ ∈ (−π, π]}, whose center is set at the origin of a fixed Cartesian coordinates
system. We simulate a wave generated by two loads, located at the points x1 = (

√
2/2,
√

2/20)
and x2 = (−

√
2/2,
√

2/20) on Γ, and decaying exponentially in time, i.e. we consider the Neumann
TD-BIE (2.6) with datum

(5.6) g(x; t) = 10 [δ(x− x1) + δ(x− x2)] e−t
2

,

where δ(x) stands for the Dirac delta distribution. The velocity is c = 632 · m/s, which refers to
the second sound velocity for non-porous glass [42]. With this choice of the data, we consider
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two examples: a wave propagation problem without (case a) and with the damping (case b). The
chosen threshold parameter is ε = 1.0E − 08. For the spatial discretization we subdivide the
parametric interval (−π, π] of Γ into M = 210 sub-intervals and for the time discretization we fix
N = 210 equi-spaced time instants within the interval [0, 4].

Case a). As first case, we suppose that there is no damping, i.e. α = 0 · m2
/s. In Figure 15,

we show the behaviour of the approximate density function on the boundary Γ of the crack, i.e.
ϕ((cos θ, 0.1 sin θ); t), for θ ∈ (−π, π] and t ∈ [0, 4].

Fig. 15. Example 3. Case a). 3D view of ϕ((cos θ, 0.1 sin θ); t), for θ ∈ (−π, π] and t ∈ [0, 4].

By using the single layer space-time integral potential representation (2.4), we compute the ap-
proximate solution u(x; t) at the points x = (0, 1), x = (0, 2) and x = (0,−1). The corresponding
time histories are plotted in Figure 16. We remark that u(x; t) has the same behaviour at all the
three points and there is no transient phase before the wave reaches these observation points. In
spite of the high number of spatial discretization points, we observe a memory saving of 99.99%
compared to the standard CQ-BEM.
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Fig. 16. Example 3. Case a). Temporal profile of u(x; t) at the points x = (0, 1) (left), x = (0, 2) (center)
and x = (0,−1) (right).

In Figure 17 we show some snapshots of the solution u(x; t) at different time instants of the interval
[0, 1] and in the x1x2-domain [−4, 4]× [−4, 4], external to the hole. We observe that the two loads
generate two waves that act separately at the beginning of the simulation. Then, as time increases,
their interaction contributes to the pick of u(x; t), until the solution starts to decay exponentially
in time as the Neumann datum does.
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t ' 0.0039 t ' 0.0078 t ' 0.0117 t ' 0.0156

t ' 0.0273 t ' 0.0508 t ' 0.1016 t ' 0.2031

t ' 0.4023 t ' 0.6016 t ' 0.8008 t ' 1.0

Fig. 17. Example 3. Case a). Snapshots of u(x; t) around the hole.

Case b). In the second example, we assume τ̄ = 10−12 · s such that α = 2.5× 106 ·m2
/s, as in [42].

The time behaviour of u(x; t) at the points x = (0, 1), x = (0, 2) and x = (0,−1), represented in
Figure 18, shows a transient phase (which is absent when α = 0 · m2

/s) of the wave before the the
observation points are reached.

0 1 2 3 4

0

0.1

0.2

0.3

x = (0, 1)

0 1 2 3 4

0

2

4

6

8
·10−2 x = (0, 2)

0 1 2 3 4

0

2

4

·10−2 x = (0,−1)

Fig. 18. Example 3. Case b). Temporal profile of u(x; t) at the points x = (0, 1) (left), x = (0, 2) (center)
and x = (0,−1) (right).

We remark that the global memory saving in this case is 99.94%. From the snapshots in Figure 19,
we see that there is a long transient phase during which the generated waves do not interact and
the effects of the two loads are located in the upper half square. In the lower part, the total wave
is confined very close to the boundary of the hole, due to the dissipation.
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t = 0.0039 t = 0.1758 t = 0.4883 t = 0.6836

t = 0.8789 t = 1.1719 t = 1.3672 t = 1.5625

t = 1.7578 t = 1.9531 t = 2.3438 t = 3.5156

Fig. 19. Example 3. Case b). Snapshots of u(x; t) around the hole.

6. Conclusions and perspectives. We have considered two boundary integral reformula-
tions of the wave equation with damping in 2D unbounded domains, for Dirichlet and Neumann
type boundary conditions. For the resolution of the corresponding Boundary Integral Equations,
we have used a Galerkin method in space coupled with second order Lubich Convolution Quadra-
tures in time, and we have applied a wavelet compression technique to sparsify the matrices of the
resulting global discretization. Based on the fast Discrete Wavelet Transform for the accurate and
efficient computation of the integrals involving wavelet functions, we have proposed a numerical
procedure that allows for a compression of the wavelet BEM matrices without the need of storing
a priori the fully populated ones. The proposed approach allows to use wavelet basis of any type,
with high number of vanishing moments, that do not need to be known in closed form and to con-
sider Convolution Quadrature based on any stable Ordinary Differential Equations solver. Out
of an extensive numerical testing, we have considered, as benchmark wavelet basis, the biorthog-
onal BIOR2.2 and BIOR6.8 and the Daubechies DB10 and DB45 functions and, as benchmark
Ordinary Differential Equations solver, the trapezoidal rule and the Backward Differentiation For-
mula of order 2. The numerical testing we have performed shows the effectiveness of the wavelet
compression of the matrices associated to the Single and Double layer operators, for all choices
of the wavelet basis. With respect to the discretization parameters, such a compression results in
a growth less than linear when the damping parameter is small compared to the speed of wave
propagation (like for example for the Silicon), or in a linear growth when the damping parameter
is big compared to the speed of wave propagation. The numerical results we have obtained show
an optimal L2 global convergence rate, even when a very high sparsification of the matrices is
retrieved.

We believe that the proposed approach displays potentials also for what concerns the appli-
cation of BEM wavelet methods to 3D wave propagation problems, where the sparsification of the
matrices is even more crucial. Indeed, wavelet compression techniques can be generalized to the 3D
case by using wavelet basis functions defined on surfaces. Successful results have been obtained for
example in [36], where stationary problems are considered. For what concerns 3D time-dependent
problems, it is worth mentioning that the sparsification property of the BEM matrices has been
analysed for the pure wave equation and with the use of the standard piece-wise linear local basis
functions; we refer the reader, for example, to [32], [7], [28]. In these papers suitable assumptions
on the data of the problem or on the geometry of the obstacle and on the transient phase are
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considered. Moreover, as for the 2D case, the mentioned methods rely on the analytic expression
of the CQ coefficients associated to particular ODE solvers. We believe that an investigation in
this direction is worthy and that a pure numerical black box approach, as the one proposed here
in 2D, could be considered to solve 3D time dependent problems as well.

Acknowledgments. The authors are grateful to the referees for their careful reading of the
manuscript and their useful comments.
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