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ABSTRACT
A relevant family of control analysis and design problems can be reduced to the minimisation of a mul-
tivariate polynomial objective over a semialgebraic set. Such control problem formulations, however, are
nonconvex in general and hard to solve in practice. In this paper, we propose a novel approach to poly-
nomial control design based on iterations that involve either a fast coordinate-wise minimisation or a
univariate minimisation along a randomly chosen direction. We provide a detailed iteration complexity
analysis of the method, and we prove its convergence in probability to the global optimum. The practi-
cal effectiveness of the proposed method is also illustrated via a comparison with state-of-the-art tools
available in the literature. An example of application to an automated space rendezvous manoeuvre is
finally presented, showing how the method can be particularly relevant in the context of nonlinear model
predictive control.
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1. Introduction

It is a well-known fact that many analysis and design problems
in robust and nonlinear control can be addressed by solving
minimisation problems involving a polynomial objective and
polynomial constraint functions, see, e.g. Dorato (2000), Hen-
rion and Korda (2014), Henrion and Garulli (2005). Due to the
importance and generality of polynomial optimisation in con-
trol, an intense research e!ort has been spent in the last 20 years
to speci"cally solve this class of problems, which are generally
NP-hard, even for very simple instances of the constraint set,
see, e.g.De Klerk (2008), Lasserre (2015).

General nonlinear programming techniques based on the
Karush–Kuhn–Tucker (KKT) conditions (Karush, 1939; Kuhn
& Tucker, 1951; Z. Li et al., 2012) and the Fritz–John necessary
conditions for optimality (Bertsekas, 1999; Menini et al., 2018a)
are not tailored for polynomial problems. Several techniques
have then been speci"cally developed for solving polynomial
minimisation problems, see Parrilo and Sturmfels (2003) for an
overview. If the problem is unconstrained and the polynomial
to be minimised is bounded below and radially unbounded,
determining its solution essentially entails computing the set
of all the solutions to a system of polynomial equalities.
Remarkable examples of methods for determining the set of
all such solutions are the tools given in Cox et al. (2015),
Menini et al. (2018b), based on the computation of Gröb-
ner bases and eigenvalues, the techniques given in Gelfand
et al. (2008), which exploit the concept of A-discriminant, the
rational univariate representation given in Rouillier (1999),
and the numerical homotopy continuation methods given in
Verschelde (1999). Similar techniques have been proposed in
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Hanzon and Jibetean (2003), where it is shown that the solution
to an unconstrained minimisation problem can be determined
as the limit of the solutions to a family of auxiliary parametric
minimisation problems, which always admit a solution that can
be determined without computing Gröbner bases.

Another class of optimisation methods that has been widely
used to deal with non-convex optimisation programs are genetic
algorithms. By mimicking biological evolution, this class of
algorithms repeatedly modi"es a population of individual solu-
tions by randomly selecting individuals from the current popu-
lation and using them as parents to produce the children for the
next generation. Over successive generations, the population
‘evolves’ toward the global optimum of the program; for fur-
ther details see, e.g. Goldberg (1989), Conn et al. (1991), Conn
et al. (1997).

An alternative and popular approach for solving (possi-
bly approximately) unconstrained minimisation problem with
polynomial objective f is to compute the largest β ∈ R
such that the polynomial f − β is a sum of squares (SOS),
i.e. such that there exist polynomials h1, . . . , hm such that
f (x)− β =

∑m
i=1 h2i (x), see, e.g. Shor (1987), Parrilo (2000),

Lasserre (2001). Such a problem is a convex relaxation of the
original minimisation problem and can be solved numerically
to a given accuracy via semide"nite programming (SDP), thus
providing a lower bound β on the minimum value attained
by f, see, e.g.Wolkowicz et al. (2012). A similar reasoning
can be used to "nd a solution when the feasible set is com-
pact and not necessarily convex, by using the results given
in Jacobi and Prestel (2001) and Szegohuml; (1939). SDP has
also be proven successful for solving polynomial minimisa-
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tion problems with quadratic objective functions, see Nes-
terov (1998), Alon and Naor (2006).

The mentioned convex relaxations enjoy important theo-
retical properties: it is shown for instance in Lasserre (2001)
that the minimum of a polynomial over a compact set can be
approximated as closely as desired by solving a "nite sequence of
semide"nite programs. SDP relaxations thus provide guaranteed
lower bounds on the global optimum and, if "nite convergence
occurs at some point in the approximation hierarchy, they can
provide a certi"ed global minimiser. In practice, however, SDP
relaxation methods may become numerically very demanding
already for medium-scale problems, essentially due to linear
matrix inequality (LMI) representations with a matrix size that
scales with the number of monomials of degree d in n variables
as

(n+d
n

)
, see, e.g.Parrilo and Sturmfels (2003). The di#culty

in providing solutions in reasonable time already in medium-
sized problems make SDP relaxation methods hardly usable
in practical control applications, especially in those contexts
where control actions need be computed in real time, such as
in nonlinear model predictive control (NMPC).

There hence appears to exist a need for reliable numeri-
cal methods that can tackle constrained polynomial optimi-
sation problems of realistic size and provide: (a) optimal or
sub-optimal solutions in reasonable time, and (b) some form
of theoretical guarantee of convergence to the global optimum.
A class of numerical methods that gained popularity in recent
years, especially in the context of machine learning, is that of
coordinate descent methods, see Wright (2015) for a recent sur-
vey. Coordinate descent algorithms solve optimisation problems
by successively performing exact or approximate minimisations
along coordinate directions.

An example of these techniques is the Gauss–Seidel (GS)
method, which is based on updating the current solution vec-
tor with the solution of the scalar problem obtained by allowing
the variation of just one coordinate at a time. In its classical
implementation, such a method updates the entries of the esti-
mate cyclically, starting from an initial point in the feasible
set. Convergence results of the classical GS method have been
given for both the constrained and unconstrained cases under
suitable (pseudo)convexity assumptions, see, e.g. Zadeh (1970),
Bertsekas and Tsitsiklis (1989), Grippo and Sciandrone (2000),
even in certain non-di!erentiable cases (Tseng, 2001). How-
ever, for nonconvex problems, the GS method need not con-
verge to a critical point, see, e.g.the counter-examples given
in Powell (1973). Nevertheless, algorithms based on the GS
method have been proved useful in practice for solving cer-
tain control problems, see, e.g. Bloemen and Verbruggen
(2004).

Stochastic versions of the GS method, usually referred to as
random coordinate descent methods, exist in which the coor-
dinate to be updated is chosen each time at random; see,
e.g. Nesterov (2012), Necoara and Clipici (2013), Richtárik
and Takáč (2014). These methods were proved successful in
obtaining an η-accurate solution with probability at least 1− σ ,
with η and σ being arbitrary positive real numbers, provided
that the function to beminimised is the sum of a smooth convex
and a convex nonsmooth but block-separable function. Fur-
ther, such methods are capable of solving huge-scale problems

in a reasonable amount of time, see Nesterov (2014). Coordi-
nate descent methods, however, generally have no guarantee of
converging to the global optimum, for nonconvex problems.

A family of methods for dealing with general nonconvex
problems is the random search algorithms which, in their most
basic form, are based on iterating of the following procedure:
pick a randomsample froma suitable neighbourhoodof the cur-
rent estimate of the solution, and update such an estimate with
the picked random sample if the value of the objective function
decreases. Such simple scheme can be proved to converge with
probability one to a neighbourhood of the global optimum, see,
e.g.Solis andWets (1981), inwhich also a linear relation between
the mean number of function evaluations and the dimension
is found experimentally, see also Schumer and Steiglitz (1968)
and Rastrigin (1963). After some popularity for control appli-
cations in the 70s, random search techniques fell out of fashion
for a while, until they were reemployed in di!erent %avours in
the early 2000s in the context of Monte Carlo and randomised
algorithms for robust control, see, e.g. Spall (2005) and Tempo
et al. (2012).

One goal of the present work is to propose a novel type of
computational method for control that may synergise the speed
and large-scale e#ciency of coordinate-descent methods with
the probabilistic global optimality properties of random search
methods. In this direction, we propose a general method for
solving nonconvex constrained polynomial optimisation prob-
lems based on a nonuniform random coordinate minimisation
algorithm, in which transverse directions (i.e. di!erent from
the coordinate axes) are taken with nonzero probability. The
proposed algorithm can be envisioned as a nonuniform ran-
dom coordinate descent method, coupled with a hit-and-run
type of random search (see, e.g. Zabinsky, 2008) in which, how-
ever, rather than moving to a random point along the randomly
chosen direction, we move to the global minimum along that
direction.

In particular, at each iteration the proposed algorithm picks,
with probability p, a random coordinate direction (possibly,
with nonuniform probability), or, with probability 1−p, a direc-
tion from the unit sphere uniformly at random. The current
estimate of the solution to the nonlinear program is then
updated with the solution to the univariate optimisation prob-
lem obtained restricting the original problem to the line passing
through the current estimate and having the randomly selected
direction. Themain advantage of allowing transverse directions
is that it enables guaranteed convergence in probability to the
global solution,while preserving the e!ectiveness of coordinate-
descent methods. Further, since the proposed method is a
descent method, it always returns a feasible suboptimal solution
whenever it is stopped, even before convergence, and this is a
key enabling feature in real-time control applications.

A preliminary version of this method was presented in
Cala"ore and Possieri (2018), where it was assumed that the fea-
sible set is convex (such an hypothesis is removed here) and that
the distribution governing the selection of the coordinates is
uniform, whereas we here allow such probability mass function
to be generic.

Further, in the present work we provide a detailed iteration
complexity analysis in Section 4, present a speci"c result for
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"nding an initial feasible point in Theorem 4.1, and we develop
a full-%edged NMPC example in Section 6, through which
the proposed method is compared with state-of-the-art tech-
niques to solve polynomial optimisation problems in practical
applications.

The algorithm proposed here has been developed into a
Matlab package ,1 which was used for all the examples
reported in this paper, including an NMPC example on an
aerospace system discussed in Section 6. These examples sug-
gest that the proposed technique performs well compared to
other existing methods, and that it can provide practical solu-
tions for many cases in which other tools are unsuccessful.

2. Problem statement andmotivating examples

Let Z, N, R, R!0, and R>0 denote the sets of integer, natural,
real, nonnegative real, and positive real numbers, respectively.
The symbols Bn, Bn

o and Sn denote the closed and open unit
balls and the unit sphere in Rn, respectively. Let ei denote the
ith standard unit vector. The symbol intA denotes the interior
of the setA ⊂ Rn.

Given a compact set A ⊂ Rn, ‖x‖A
.= infy∈A ‖x− y‖2

denotes the $2 distance between x ∈ Rn and A. A function % :
Rn→ R!0 is positive semide"nite with respect to A, denoted
% ∈ PD(A), if %(x) = 0 ⇐⇒ x ∈ A. Given T ⊂ Rn, let IT (·)
be the indicator function of T . Let δ(·) denote the Kronecker
delta. A continuous function α : R!0→ R!0 is of class K∞,
if it is strictly increasing, α(0) = 0, and limr→+∞ α(r) = +∞.
A function f : Rn→ R is radially unbounded on ( ⊂ Rn,
denoted f ∈ ru((), if for every {xk}k∈N such that xk ∈ ( for
all k ∈ N and limk→+∞ ‖xk‖2 = +∞, one has limk→∞ f (xk) =
+∞.

The symbol Uni(·) denotes the uniform distribution over its
set argument, and the symbol ∼ reads as ‘has the distribution’.

A set-valued mapping G : Rn × Sn ⇒ Rn is said to be with
closed values if x +→ G(x, s) is outer-semicontinuous for all
s ∈ Sn; see De"nition 5.4 and Theorem 5.7(a) of Rockafellar
and Wets (2009).

Let x = [x1 . . . xn],, with n ∈ N, be a vector of variables.
Given α, let |α| .=

∑n
i=1 αi and xα = xα11 . . . xαnn . A polynomial

p in x is a "nite, R-linear combination of monomials, p =∑
α∈E cαxα , where E ⊂ Nn is a "nite set and cα ∈ R, ∀α ∈ E ;

the total degree of p is deg(p) .= max{|α|,α ∈ E}. The ring of
all the polynomials in x with coe#cients in R is R[x], whereas
Rm[x] denotes the set of all the m–dimensional vectors whose
entries are in R[x].

2.1 Problem statement

Let f ∈ R[x] and [h1 . . . hm], ∈ Rm[x] be given. Let

(
.= {x ∈ Rn : h1(x) " 0, . . . , hm(x) " 0},

and assume that ( is full-dimensional, i.e.
∫
( 1 dx .= 0. We

de"ne the polynomial minimisation problem (PMP)

∣∣∣∣
min f (x),
s.t. x ∈ (. (1)

The main goal of this paper is to design a procedure for solving
the PMP (1), that is, for "nding f ) ∈ R and x) ∈ ( such that

f ) = f (x)) = min
x∈(

f (x).

2.2 Motivating control examples

We next propose a brief motivating selection of some spe-
ci"c control problems that can be reduced to the solution a
PMP in the form (1). A broader perspective on polynomial
optimisation problems in control is given in the Introduction,
and further practical examples can be found in, e.g. Henrion
and Lasserre (2004).

2.2.1 LQ differential games
Consider the scenario in which N agents attempt at sel"shly
optimizing individual and potentially con%icting objectives in
a non-cooperative environment. The system is assumed to be
completely characterised by the state ξ(t) ∈ Rν , whose dynam-
ics are

ξ̇(t) = A ξ(t) +
N∑

i=1
Biui(t), (2a)

where A ∈ Rν×ν , Bi ∈ Rν×µi , ui(t) ∈ Rµi is the control action
of the ith agent, i = 1, . . . ,N. The objective of the ith agent is to
minimise

Ji =
∫ ∞

0
(ξ,(t)Qi ξ(t) + u,i (t)Ri ui(t)) dt, (2b)

where Qi and Ri are positive de"nite matrices. In Engw-
erda (2005), Possieri and Sassano (2016), it has been shown that
there exists a Nash equilibrium for the dynamical game (2) if
there exist symmetric solutionsXi = X,i ∈ Rν×ν , i = 1, . . . ,N,
to the following equations:

Ei(x)
.=



A−
N∑

j .=i
SjXj




,

Xi + Xi



A−
N∑

j .=i
SjXj





+ Qi − XiSiXi = 0, (3)

where Si = BiR−1i B,i , such that the matrix

Acl
.= A−

N∑

i=1
SiXi

is Hurwitz. Therefore, letting ℘1, . . . ,℘n be the polynomial
entries of "rst column of the Routh table of the characteristic
polynomial of Acl, and considering that Acl is Hurwitz if and
only if ℘i > 0, i = 1, . . . , ν, determining a Nash equilibrium of
the game (2) corresponds to solving the following PMP in the
entries x of the matrices X1, . . . ,XN ,

∣∣∣∣
min ‖vec(Ei((x)))‖22 + · · · + ‖vec(EN(x)))‖22,
s.t. ℘i(x) # ε, i = 1, . . . , n, (4)

where the symbol vec(·) denotes the vec operator and ε ∈ R>0
is a su#ciently small parameter.
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2.2.2 #2 distance between a point and a polynomial surface
Determining the $2 distance between a point and a surface is an
important problem in both robust and nonlinear control, see,
e.g.Chesi et al. (2001). Given a surface described as V = {x ∈
Rn : h(x) = 0}, where h is a polynomial, and a point y ∈ Rn,
assume, without loss of generality, that h(y) > 0 (otherwise,
h←−h). Computing ‖y‖V corresponds to solving in x,

∣∣∣∣
min ‖x− y‖22,
s.t. h(x) = 0. (5)

Actually, it can be proved that for this problem we can substi-
tute the equality constraint with an inequality one (which will
be active at optimum), and thus solve the PMP

∣∣∣∣
min ‖x− y‖22,
s.t. h(x) " 0. (6)

2.2.3 Nonlinearmodel predictive control
NMPC is one of the most e!ective and %exible frameworks
for designing control inputs for nonlinear systems, taking into
account input/state/output constraints and managing systemat-
ically the trade-o! between performance and control e!ort, see,
e.g.Mayne et al. (2000), Grüne and Pannek (2011). Consider a
discrete-time system of the form

ξ(k + 1) = ς(ξ(k),u(k)), (7)

where ς = [ς1 . . . ςν], ∈ Rν[ξ ,u], andu(k) ∈ Rµ denotes the
control input. The set of admissible inputs is speci"ed as

U .= {u ∈ Rµ : h1(u) " 0, . . . , hm1(u) " 0},

where h1, . . . , hm1 ∈ R[u] are given. The set of admissible states
is speci"ed as

X .= {ξ ∈ Rν : y1(ξ) " 0, . . . , ym2(ξ) " 0},

for given y1, . . . , ym2 ∈ R[ξ ]. The system performance is
expressed via a given function q∈R[k, ξ(k), . . . , ξ(k+ κ),u(k),
. . . ,u(k + κ)]. Assuming that the state ξ(k) can be measured,
NMPC essentially consists in determining, for each k ∈ N, a
sequence of control inputs {u)(k + κ)}κ=0,...,N that solves the
PMP
∣∣∣∣∣∣∣∣∣∣∣

min
N∑

κ=0
q(κ , ξ(k + κ),u(k + κ)),

s.t. ξ(κ + 1) = ς(ξ(κ),u(κ)), κ = k, . . . , k + N − 1,
hi(u(κ)) " 0, κ = 0, . . . ,N, i = 0, . . . ,m1,
yi(ξ(κ)) " 1, κ = 0, . . . ,N, i = 0, . . . ,m2.

(8)
Once a solution to the PMP (8) has been determined, the control
input u)(k) is given as input to system (7), and then the pro-
cess is repeated at the next step, in a rolling horizon fashion.
Assuming that ς , hi, yi and q are polynomials, by substituting
the expression for ξ(κ + 1) in the objective function and in the
constraints, the PMP (8) has the form (1).

The hypothesis of polynomial functions is not restrictive, in
theory. Indeed, any square-integrable function can be approxi-
mated with arbitrary precision on a compact set by an orthogo-
nal polynomial superposition. Also from a practical standpoint,

a polynomial approximation of non-polynomial functions can
be obtained numerically, in a data-driven framework.

In the next section, we describe our proposed numerical
method to tackle such problems.

3. Random coordinate descent with transverse
directions

The algorithm we propose to solve the PMP (1) is described in
words as follows: for any current solution estimate xk ∈ ( at
iteration k, with probability p ∈ [0, 1) we pick a random coor-
dinate direction v ∈ {e1, . . . , en} with P(v = ei) = / (i), i =
1, . . . , n, where / : {1, . . . , n}→ [0, 1] is a given probability
mass function,

∑n
i=1/ (i) = 1. Otherwise (i.e. with probabil-

ity 1−p), we pick a random transverse direction v uniformly on
Sn.We then set sk equal to v andwe update the solution estimate
according to the rule

xk+1 ∈ xk + λksk, (9a)

where

λk
.= argminλ∈Ik f (x

k + λsk), (9b)

and Ik is the (possibly unbounded) set

Ik
.= {λ ∈ R : xk + λsk ∈ (}. (9c)

Equation (9) are the core of the proposed minimisation
algorithm; the complete algorithm will be presented in
Section 4. It can be noted that our idea is to solve the mul-
tivariable optimisation problem (1) by iteratively solving the
single-variable optimisation problem (9b), whichminimises the
objective function along a chosen direction sk. With probability
p, sk is a coordinate direction, with probability 1−p it is a trans-
verse direction.We also observe that the method is non-local in
nature, since the univariate minimisation in (9b) is solved for
the global minimum at each iteration.

For p = 1, the above method is a (possibly non-uniform)
random coordinate minimisation method, while for p = 0 it
becomes a random direction search with exact line search.

The algorithm’s dynamics given by (9) can be rewritten in the
form of a stochastic di!erence inclusion

xk+1 ∈ G(xk, sk), (10)

where G : (× Sn ⇒ (, G(x, s) .= {y ∈ ( : ∃λ) ∈ I such that
y = x + λ)s and f (x + λ)s) " f (x + λ s), for all λ ∈ R such
that x + λ s ∈ (}, and {sk}k∈N is a sequence of independent,
identically distributed (i.i.d.) random variables de"ned from
the probability space (1 ,F ,P). Namely, for each k ∈ N, the
random variable sk : 1 → Sn is such that the probability mea-
sure µ(F) = P(ψ ∈ 1 : sk(ψ) ∈ F) is well de"ned for each F
in the Borel σ -"eld on Sn. In particular, for each k ∈ N, sk ∼
(1− p)Uni(Sn) + p

∑n
i=1/ (i)δ(ei). In the following, the sym-

bolR(x0) is used to denote the set of all the maximal solutions
(i.e. those that cannot be extended) to the stochastic di!erence
inclusion (10) starting at x0; see Subbaraman andTeel (2013) for
formal de"nitions.

The following lemma establishes that, under mild assump-
tions about the problem, the proposed method admits well-
behaved solutions. In particular, it guarantees that maximal
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random solutions from ( of the stochastic inclusion (10) exist
and are complete (i.e. if x0 ∈ (, then the length of each sequence
{xk}Jxk=0 ∈ R(x0) is Jx = +∞), and that the mapG : (× Sn→
( satis"es suitable regularity assumptions.

Lemma 3.1: De!ne the set

A .= {x) ∈ ( : f (x)) " f (x), ∀x ∈ (}

that is constituted by all the optimal solutions of the PMP (1).
Assume that A .= ∅, and that either ( is compact or f ∈
ru((). Then, G : (× Sn→ ( is locally bounded and s +→
graph(G(·, s)) .= {(x, y) ∈ Rn × Rn : y ∈ G(x, s)} is measurable
with closed values. Moreover, for all x0 ∈ (, maximal random
solutions inR(x0) exist and are complete.

A proof of Lemma 3.1 is given in Appendix A.1. Consider
now the following de"nition, see also Bhatia and Szegö (2002),
Thygesen (1997), Teel (2013).

De!nition 3.1: A compact set A ⊂ Rn is stable in probability
for (9) if for each ε, σ ∈ R>0 there exists δ ∈ R>0 such that

x0 ∈ (A + δ Bn) ∩(, {xk}k∈N ∈ R(x0) =⇒ P(xk(ψ)

∈ A + εBn
o , k ∈ N) # 1− σ .

The setA ⊂ Rn is attractive in probability for (9) if for each ε ∈
R>0, σ ∈ R>0 and3 ∈ R>0, there is K ∈ R>0 such that

x0 ∈ (A +3Bn) ∩(, {xk}k∈N ∈ R(x0) =⇒ P(xk(ψ)

∈ A + εBn
o , k # K) # 1− σ .

Hence, the set A ⊂ Rn is asymptotically stable in probability
for (9) if it is both uniformly attractive and stable in probability
for (9). If the setA is asymptotically stable in probability for (9),
then we say that (9) converges in probability toA.

Clearly, asymptotic stability in probability of the set of all
solutions of the PMP (1) is a desirable property for a minimisa-
tion algorithm since it implies that, if one already has a solution
that is close to the optimum, then the iterations of the algorithm
do not perturb such an optimality, and that the algorithm con-
verges in probability to the solution of the PMP, even when the
initial condition of the algorithm is far from optimality. In the
following theorem, we show that the set of all the solutions to
the PMP (1) is indeed asymptotically stable in probability for
the stochastic inclusion (9).

Theorem 3.1: Let the assumptions of Lemma 3.1 hold. If, addi-
tionally, p< 1 and there exists ν) ∈ R>0 such that the set (A +
νBn) ∩( has nonzero measure for all ν ∈ (0, ν)), then the setA
is asymptotically stable in probability from(.

A proof of Theorem 3.1 is given in Appendix A.2.

Remark 3.1 (About the assumptions in Theorem 3.1): It may
be worth to observe that Theorem 3.1 requires no convexity
assumption for guaranteeing global probabilistic convergence.
Also observe that the technical hypothesis that (A + νBn) ∩(

has nonzero measure holds in several standard situations; for
instance, if the set ( is a regular closed set (i.e. the closure
of its interior coincides with the set itself) then the hypothe-
sis holds. In words, if ( is everywhere full dimensional then
(A + νBn) ∩( has positive measure. One situation in which
this hypothesis may fail is when the constraints include lin-
ear equality constraints among the variables, which in practice
reduce the dimensionality of the feasible set. This situation,
however, is easily circumvented via the standard trick of elim-
inating the equality constraints and rewriting the problem in
a reduced set of free variables. Further, the assumptions of
Lemma 3.1 are satis"ed whenever the feasible set( is compact.
In this regard, itmay be observed that, since inmost engineering
problem the variables always have physical limits, a ‘compacti-
fying constraint’ of the form ‖x‖22 " M, for some large M> 0,
can typically be added to the constraints of the problem with-
out altering its optimal set. In such case, and assuming that the
optimal set is nonempty, the hypotheses of Lemma 3.1 remain
always satis"ed.

Under the above mild assumptions, the technique we pro-
poser allows us to determine an arbitrarily good approximation
of the solution to the PMP (1), with probability arbitrarily close
to 1, in a "nite number of iterations of Equation (9). More-
over, the proof of Theorem 3.1 establishes also robustness of the
proposedmethod. In fact, by Grammatico et al. (2013), the exis-
tence of a smooth Lyapunov function establishes (semiglobal,
practical) robustness with respect to small constant perturba-
tions, such as those arising from numerical errors.

Remark 3.2 (On the generality of the method): We observe
that the polynomial nature of the objective function f and of
h1, . . . , hm has not been exploited in the proof of Theorem 3.1.
Indeed, this theorem holds even when the proposed
minimisation technique is applied to problems in which f and
h1, . . . , hm are general continuous functions. In practice, how-
ever, application of the algorithm in the general setting would
require to have at one’s disposal an ‘oracle’ that returns, at each
step, a global optimal solution to the univariate minimisation
problem (9a). Solving such a problem may be non trivial for
non-polynomial instances, while it is solvable quite e#ciently
in the polynomial case, see Section 4.3. Therefore, the theo-
retical properties of Theorem 3.1 remain valid also for general
continuous functions, but the practical numerical e#ciency of
the method may be considerably worse in the case of non-
polynomial problem instances.

3.1 Theoretical probabilistic convergence bounds

In this section, we derive a theoretical result that provides prob-
abilistic bounds on the number of iterations required by the pro-
posed algorithm for bringing the value of the objective function
f below a given threshold.

Let the assumptions of Theorem 3.1 hold and let G : Rn ×
Sn ⇒ Rn be the set-valued mapping given in (10). Then, given
p ∈ R!0, p< 1, and an open setO ⊂ Rn, for each x ∈ (, de"ne
$⊂O(0, x) .= 1, $∩O(0, x) .= 0, and, for each (x, k) ∈ (× N,
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de"ne $⊂O(k + 1, x) and $∩O(k + 1, x) as

$⊂O(k + 1, x) .=
∫

Sn
min

g∈G(x,s)
IO(g)$⊂O(k, x) µ(ds), (11a)

$∩O(k + 1, x) .=
∫

Sn
min

g∈G(x,s)
JO(k, g) µ(ds), (11b)

where JO(k, g) .= [IO(g), IRn\O(g)$∩O(k, g)]. The functions
$⊂O and $∩O bound the probabilities that the set O is
strongly invariant and strongly recurrent for (9), respectively;
see Possieri and Teel (2017) for the formal de"nition of these
two properties. The next theorem shows how these functions
can be used to provide probabilistic bounds on the convergence
of the given method.

Theorem 3.2: Let the assumptions of Theorem 3.1 hold and let
η ∈ R>0 be given. De!ne the sets

O1 = Rn \ {x ∈ ( : f (x) " η},
O2 = int {x ∈ ( : f (x) " η},

and assume that they are nonempty. Then, for all K ∈ N, for all
x0 ∈ (, and for all solutions {xk}k∈N ∈ R(x0), one has

$∩O2(K, x
0) " P(f (xi) " η, ∀i # K) " 1− $⊂O1(K, x

0).

A proof of Theorem 3.2 is given in Appendix A.3. The
relation given in Theorem 3.2 can be used, in principle, to
determine the expected number of iterations K needed to
diminish the objective function f to values lower than or
equal to η. Note that, di!erently from the result given in
Theorem 2 of Cala"ore and Possieri (2018), the bounds pro-
vided by Theorem 3.2 can be computed without requiring
prior knowledge of the set A, which was a rather unrealis-
tic requirement of Cala"ore and Possieri (2018). Furthermore,
by Lemmas 1 and 2 of Possieri and Teel (2017), the maps
k +→ $∩O2(k, x0) and k +→ 1− $⊂O1(k, x0) are monotonically
increasing and, under the assumptions of Theorem 3.2, we
have that limk→∞ $∩O2(k, x0) = limk→∞ 1− $⊂O1(k, x0) = 1
for all x0 ∈ (, by Theorem 3.1. Therefore, in theory, given η >

f ) and x0, such functions could be used to compute lower and
upper bounds on the number of iterations required to lower the
objective function below η with probability arbitrarily close to
1. Notice, however, that the bounds in Theorem 3.2 havemainly
a theoretical, rather than practical, interest, since they are gener-
ally hard to compute numerically. In practical implementations
of the algorithm, as described in Section 4, we shall instead rely
on a stopping criterion for the iterations (9) in order to exit the
loop.

4. Implementation and complexity analysis

In this section, we present the complete polynomial
minimisation algorithm and its implementation for the solution
of the PMP (1). In view of Lemma 3.1, the method given in (9)
essentially consists in applying the following Algorithm 1.

By Theorem 3.1, under some mild assumptions, the pro-
posed algorithm, if run inde"nitely (i.e. with L = +∞), would
converge with probability one to the solution of the PMP (1).

Algorithm1Random coordinate descent with transverse direc-
tions
Input: the PMP (1), a scalar p ∈ [0, 1), the probability mass

function / : {1, . . . , n}→ [0, 1], x0 ∈ (, a numerical tol-
erance ε ∈ R>0, and a positive integer L ∈ N

Output: estimates x̂) and f̂ ) of x) and f ), respectively
1: k = 0, κ = 0
2: while κ " L do
3: k← k + 1
4: pick a random number r in Uni(0, 1)
5: if r " p then
6: pick s ∼

∑n
i=1/ (i)δ(ei)

7: else
8: pick s ∼ Uni(Sn)

9: de"ne f̃ (λ) .= f (x + λ s) and h̃(λ)
.= h(x + λ s)

10: let λ) be a solution to the univariate PMP (A2)
11: let xk = xk−1 + λ) s
12: if |f (xk)− f (xk−1)| " ε (1 + |f (xk)|) then
13: κ← κ + 1
14: else
15: κ← 0
16: return x̂) = xk and f̂ ) = f (xk)

In practice, xk gets arbitrarily close to A with probability arbi-
trarily close to 1 if a su#cient number of iterations are carried
out, but there need not exist K ∈ N such that xK ∈ A exactly.
Therefore, a stopping criterion is required to interrupt the loop
in Algorithm 1 when the iterations get su#ciently close to the
optimal value. In particular, Algorithm 1 is interrupted as soon
as the relative decrement |f (xk)−f (xk−1)|

1+|f (xk)| is smaller than a given
tolerance ε for at least L consecutive iterations. Such a stop-
ping criterion is commonly used in numerical practice when
dealing with asymptotic techniques, see, e.g.Kearfott and Wal-
ster (2000).

In order to execute Algorithm 1, one has to perform the
following three operations:

• determine x0 ∈ ( for initializing the sequence xk;
• compute f̃ and h̃ at Step 9;
• solve an univariate PMP at Step 10.

The main objective of the remainder of this section is to
show how such operations can be carried out in practice, also
providing a detailed complexity analysis of each operation. In
particular, in Section 4.1, we show how Algorithm 1 itself can
be used, if needed, to determine an initial feasible point x0 ∈ (.
In Section 4.2, we show how to practically compute the polyno-
mials f̃ and h̃, and, in Section 4.3, we discuss a polynomial-time
algorithm to solve an univariate PMP.

4.1 Determining an initial feasible point

In order to use Algorithm 1 for solving the PMP (1), an initial
feasible point x0 ∈ ( must be available. To this end, there are
three possibilities: (i) if ( = Rn, then the initial feasible point
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can be chosen simply as x0 = 0 ∈ Rn; (ii) if ( is a ‘simple’ sub-
set ofRn, such as a norm ball, a parallelotope, a polyhedron or a
spectrahedron, then the initial feasible point can be determined
by direct geometric considerations, or by solving a preliminary
convex problem, such as a linear program in the case of a poly-
hedron, or an SDP in the case of a spectrahedron; (iii) if ( is a
generic intersection of the feasibility sets of polynomial inequal-
ities, then "nding x0 ∈ ( corresponds to determining a solution
for such a system of inequalities, which can be performed by
solving an auxiliary PMP of the form

∣∣∣∣∣∣∣∣

min ε,
s.t. hi(x)− ε " 0, i = 1, . . . ,m,

‖x‖22 " M,
|ε| " M.

(12)

where M ∈ R>0 is a su#ciently large constant, and the addi-
tional constraint ‖x‖22 " M imposes compactness of the fea-
sible set. Adding such constraint is not restrictive in practical
engineering problems, as discussed in Remark 3.1.

While it is worth to observe that, by and large, themost com-
mon situations in control applications fall in the ‘easy’ cases (i)
and (ii), we show next that in all other cases an initial point x0
can be found by applying Algorithm 1 to problem (12). To this
end, let xe

.= [x, ε],, and let

(e
.= {xe ∈ Rn+1 : hi(x)− ε

" 0, i = 1, . . . ,m, ‖x‖22 " M, |ε| " M} (13)

be the feasible set of the (12). We observe that x̂0e
.=

[0, max{h1(0), . . . , hm(0)}], is in (e for each h ∈ Rm[x].
Therefore, an initial feasible point for the PMP (12) is always
known. Moreover, the set(e is compact for any h ∈ Rm[x] and
eachM ∈ R>0. The next theorem shows that, under some mild
assumptions, one can determine an initial feasible point for the
PMP (1) by applying Algorithm 1 to (12).

Theorem 4.1: For each (su"ciently small) τ ∈ R!0, de!ne

(̌e,τ
.= (e ∩ {xe ∈ Rn+1 : ε " −τ }.

Assume that there exists τ ) ∈ R>0 such that the set (̌e,τ) has
nonzero measure. For each x0e ∈ (e and each σ ∈ R>0, letting
{xke }k∈N, xke = [(xk), ε],, be the sequence obtained by applying
Algorithm 1 to the PMP (12) with initial guess x0e , there exists a
!nite integer K such that

P(hi(xk) " 0, i = 1, . . . ,m, k # K) # 1− σ .

A proof of Theorem 4.1 is given in Appendix A.4. In view
of such a theorem, it can be easily derived that if there exists
a strictly feasible point x∗ ∈ ( (i.e. such that hi(x∗) < 0, i =
1, . . . ,m), then Algorithm 1 applied to the PMP (12) with x̂0e ∈
(e as initial guess is capable of determining a feasible point in
"nite time with probability arbitrarily close to 1. Furthermore,
the iteration of Steps 3–11 of such an algorithm can be inter-
rupted as soon as an x∗e = [(x∗), ε∗], such that ε∗ " 0 has
been found.

4.2 Step 9: polynomial substitution

We next provide some details on how Step 9 of Algorithm 1 can
be carried out. If the vector s to be used for computing f̃ and g̃ is
one of the coordinate directions e1, . . . , en, then those polyno-
mials can be computed in a quite e#cient way; the case when s is
not a coordinate direction instead typically requires more com-
putational e!ort; for this reason we treat next the cases s = ei
and s .= ei separately.

4.2.1 The case s = ei
First, note that given a monomial xα ∈ R[x], it can be equiv-
alently rewritten as xα = xα−i

−i x
αi
i , for each i ∈ {1, . . . , n}. Simi-

larly, given f ∈ R[x], the ith coordinate-wise polynomial of f at
x−i is the univariate polynomial in xi with coe#cients inR[x−i]
that is obtained by considering all values in x−i being "xed, and
only the ith variate xi as variable, i.e.

fi(xi) =
∑

α∈E
cαxα =

∑

α∈E
cαx

α−i
−i x

αi
i =

∑

α∈E
c̃α(x−i)xαii

where c̃α(x−i)
.= cαx

α−i
−i ∈ R[x−i]. The ith coordinate-wise

polynomial fi is useful when we update the estimate of the
solution to the PMP (1) with s = ei: determining f̃ (λ) and
h̃(λ) essentially consists in computing m+ 1 coordinate-wise
polynomials. The next proposition, whose proof is given in
Appendix A.5, provides an upper bound on the number of ele-
mentary operations (sum and products) that have to be carried
out to determine such polynomials.

Proposition 4.1: Let x = [x1 . . . xn],, let f ∈ R[x] and h =
[h1 . . . hm] ∈ Rm[x] be given, and let d .= max(deg(f ), deg(h1),
. . . deg(hm)). If sk = ei, then the computational complexity of
Step 9 of Algorithm 1 is upper bounded by cei = d (d + 1) n (m +
1)

(d+n
d+1

)
.

4.2.2 The case s != ei
In order to obtain an explicit polynomial representation of
f̃ (λ), we consider the jth monomial ξα(λ)

.= (xk + λsk)α =∏n
i=1(xki + λski )αi . Each term in the product above can be writ-

ten as (xki + λski )αi =
∑αi

j=0
(αi
j
)
(xki )αi−j(s

k
i )

j · λj =
∑αi

j=0 ζ
αi
i,j

(xki , s
k
i )λ

j, where ζ αii,j (x
k
i , s

k
i )

.=
(αi
j
)
(xki )αi−j(s

k
i )

j. Therefore, by
de"ning the row vector ζ

αi
i (xki , s

k
i )

.= [ζαii,0(x
k
i , s

k
i ) . . . ζ

αi
i,αi(x

k
i ,

ski )], the product in the expression for ξα(λ) can be read-
ily obtained by taking the convolution of the ζ

αi
i ’s, i.e. let-

ting ωα(xki , s
k
i ) = [ωα,0(xki , s

k
i ) . . . ωα,|α|(xki , s

k
i )],ωα(xki , s

k
i )

.=
ζα11 (xki , s

k
i ) ∗ ζα22 (xki , s

k
i ) ∗ · · · ∗ ζ

αn
n (xki , s

k
i ), where ∗ denotes the

convolution operator, we have that ξα(λ) =
∑|α|

i=0 ωα,i(xki , s
k
i )λ

i,
and hence

f̃ (λ) =
∑

α∈E

|α|∑

i=0
cαωα,i(xki , s

k
i )λ

i. (14)

This construction for f̃ can be used also to compute each entry
of the vector h̃. The next proposition, whose proof is given in
Appendix A.6, provides an upper bound on the computation
complexity of Step 9 of Algorithm 1 in the case s .= ei.
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Proposition 4.2: Let x = [x1 . . . xn],, let f ∈ R[x] and h =
[h1 . . . hm] ∈ Rm[x] be given, and let d .= max(deg(f ), deg(h1),
. . . deg(hm)). If sk .= ei, then the computational complexity of
Step 9 of Algorithm 1 is upper bounded by cs = 1

2 (d + 1)2(4d3 +
5d n + 5d + 10) (m + 1)

(d+n
d+1

)
.

Remark 4.1 (On complexity of coordinate and transverse
updates): By computing the ratio between the computational
complexities cei and cs, one obtains that

cei
cs

= 2 d (d + 1) n (m + 1)
(d + 1)2(4d3 + 5d n + 5d + 10) (m + 1)

= O(d2 nm)

O(d3nm + d5m)
.

This shows that, when dealing with PMP involving polynomials
with high degree d, it is more computationally e#cient to select
a coordinate direction rather than a transverse one.

4.3 Step 10: solving an univariate PMP

In order to execute Step 10 of Algorithm 1, an univariate
PMP has to be solved. The following proposition guarantees
that Algorithm 2 allows to determine a solution, if any, to the
PMP (15) and characterises its computational complexity.

Algorithm 2 Solution to an univariate PMP
Input: f ∈ R[λ] and h = [h1 . . . hm], ∈ Rm[λ]
Output: if any, a solution to the univariate PMP

∣∣∣∣
min f (λ),
s.t. hi(λ) " 0, i = 1, . . . ,m. (4)

1: let f ′(λ) = d
dλ f (λ)

2: compute the real roots r1, . . . , rθ of f ′, h1, . . . , hm
3: compute fi

.= f (ri), i = 1, . . . , θ
4: sort f1, . . . , fθ in ascending order
5: sort r1, . . . , rθ according to the sorted f1, . . . , fθ
6: if there exists r̄ ∈ R such that h1(r̄) " 0, . . . , hm(r̄) " 0 and

f (r̄) = f1 − 2|f1| then
7: return the PMP (15) is unbounded
8: else
9: for j = 1 to θ do
10: if h1(rj) " 0, . . . , hm(rj) " 0 then
11: return rj and fj
12: return the PMP (15) is unfeasible

Proposition 4.3: Let f ∈ R[λ] and h = [h1 . . . hm], ∈
Rm[λ] be given and let d .= max{deg(f ), deg(h1), . . . , deg(hm)}.
Algorithm 2 returns a solution, if any, to the PMP (1). Further-
more, its computational complexity is upper bounded by d6m +
2d6 − 6d5 + 15d4 − 20d3 + 2d2m2 + 6d2m + 17d2 + 2dm2 +
4dm− 5d − 2m− 1.

Proof: The e!ectiveness of Algorithm 2 follows directly from
Menini et al. (2018a, Lem. 5) and from the fact that the con-
sidered problem is scalar. Note that the polynomial f ′ can

be determined by carrying out d elementary operations and
hence the roots r1, . . . , rθ can be computed by carrying out
(d − 1)6 + md6 elementary operations, see Collins and Akri-
tas (1976). Note that, since θ is the total number of real roots of
f ′ and h1, . . . , hm, we have that θ " md + d − 1. Thus the total
number of operations required to compute f1, . . . , fθ is upper
bounded by 2(d + 1)(md + d − 1), see Borwein and Erdé-
lyi (2012). In order to carry out Step 6, one has to "nd all the real
roots of the polynomial f − f1 − 2|f1| and has to evaluate the
polynomials h1, . . . , hm on such roots. The computational com-
plexity of these operations is upper bounded by d6 and 2 d (d +
1)m, respectively. Similarly, the computational complexity of
Steps 9–11 is upper bounded by 2 (d + 1)m(md + d − 1), thus
concluding the proof. $

The complexity of each iteration of Algorithm 1 has been
characterised by means of Propositions 4.1, 4.2, and 4.3. The
overall convergence, in terms of number of iterations needed
for bringing of the objective function f below a given thresh-
old, depends in a complex way on the problem structure and on
the probability p, as shown theoretically in Theorem 3.2. The
next two sections provide numerical evidence of the practical
performance of the proposed methodology.

5. Numerical tests

In this section, we demonstrate the e!ectiveness of the given
minimisation procedure through several numerical tests.

Randomly generated experiments have been carried out to
compare the performances of our polMin toolbox (which
implements the procedure given in (9) through the tools out-
lined in Section 4) with the nonlinear optimisation pack-
age IPOPT (Wächter & Biegler, 2006), the Matlab function
fmincon (Byrd et al., 2000), the toolbox GloptiPoly (Hen-
rion & Lasserre, 2003), the toolbox SOSTOOLS
(Papachristodoulou et al., 2013) and the toolbox Yalmip (Löf-
berg, 2009). In particular, in each experiment, randommatrices
A ∈ Rν×ν and B ∈ Rν×ν with entries uniformly distributed in
[−100, 100] have been generated and it has been assumed that
X = diag(x1, . . . , xν). Then, the matrix Acl has been de"ned
as Acl

.= A + BX and the corresponding Routh polynomials
℘1, . . . ,℘ν ∈ R[x] have been computed. Finally, the following
PMP has been considered

∣∣∣∣
min x21 + · · · + x2ν ,
s.t. ℘i(x) # 0.1, i = 1, . . . , ν, (16)

which corresponds to a decentralised static feedback problem.
It is worth noticing that although the objective function of the
PMP (16) is rather simple, the polynomials ℘i(x) may be very
complex (e.g.for ν = 5, one of these polynomials is given by the
sumof 1623monomials with random coe#cients), thusmaking
the problem of computing the solution to the PMP (16) very
complex; see Table 1.

All the experiments have been carried out on a laptop with
an Intel i5 CPU (2.4 GHz) and 8 GB, 1600 MHz, DDR3 RAM.
In each test, the same set of 100 PMPs, randomly generated as
detailed above, has been used as input to either:



INTERNATIONAL JOURNAL OF CONTROL 9

Table 1. Average execution times (s).

ν

Method 1 2 3 4 5

(a1) 0.825 1.258 1.570 6.102 454.8
(a2) 0.707 0.981 1.318 5.470 195.17
(a3) 0.747 1.002 1.281 4.395 187.65
(a4) 0.765 1.092 1.325 4.197 185.48
(a5) 0.775 1.093 1.326 4.258 184.22
(b) 0.0115 0.0215 0.0428 0.197 4.067
(c) 0.031 0.043 0.11 0.36 3.11
(d) 0.264 0.256 0.3005 0.292 –
(e) 0.226 0.544 0.871 – –
(f ) 0.724 2.128 10.405 – –

The selection of p that led to the best execution time has been highlighted in bold.

(a) the MATLAB toolbox polMin, by using the functions
findFeas and polMin (which implement Algorithms 1
and 2), with / (i) = 1

ν , i = 1, . . . , ν, ε = 10−4, L = 100,
(a1)p = 0.99; (a2)p = 0.97; (a3)p = 0.95; (a4)p = 0.93;
(a5)p = 0.91;

(b) the nonlinear optimisation package IPOPT with gradient
and Hessian information;

(c) the function fmincon with gradient information;
(d) the MATLAB toolbox GloptiPoly, interfaced with the

solver MOSEK (MOSEK ApS, 2017), using the functions
msdp and msol;

(e) the MATLAB toolbox Yalmip, interfaced with the solvers
BMIBNB and MOSEK, using the function optimize;

(f) the MATLAB toolbox SOSTOOLS, interfaced with the
solver SDTP3 (Tütüncü et al., 2003), using the function
findbound.

A total of 5 tests (corresponding to 5000 numerical exper-
iments) have been considered. Each column of Table 1 cor-
responds to the same ν ∈ N and reports the average execu-
tion time of the methods (a)–(f). Just the cases in which the
method returned a feasible solution have been considered in the
computation of the execution times.

Table 2 reports the success rate of each method (an exper-
imental test has been considered successful when a feasible
solution to the PMP (16) is returned).

Finally, let (f )(a1), x
)
(a1)), (f

)
(a2), x

)
(a2)), (f

)
(a3), x

)
(a3)), (f

)
(a4), x

)
(a4)),

(f )(a5), x
)
(a5)), (f )(b), x

)
(b)), (f )(c), x

)
(c)), (f )(d), x

)
(d)), (f )(e), x

)
(e)), and

(f )(f ), x
)
(f )) be the solution of the PMP (16) obtained by using

the methods (a1), (a2), (a3), (a4), (a5), (b), (c), (d), (e), and (f),
respectively. Table 3 shows the percentage of cases in which x)i ∈

Table 2. Success rate of each toolbox (in %).

ν

Method 1 2 3 4 5

(a1) 100 100 100 100 100
(a2) 100 100 100 100 100
(a3) 100 100 100 100 100
(a4) 100 100 100 100 100
(a5) 100 100 100 100 100
(b) 100 99 95 79 56
(c) 100 91 50 32 17
(d) 100 83 13 9 0
(e) 100 49 17 0 0
(f ) 100 81 12 0 0

( and f )i " min{f )(a1), f )(a2), f )(a3), f )(a4), f )(a5), f )(b), f
)
(c), f

)
(d), f

)
(e), f

)
(f )},

i ∈ {(a1), (a2), (a3), (a4), (a5), (b), (c), (d), (e), (f )}, i.e. the per-
centage of cases in which each method has obtained the best
feasible solution with respect to the others (columns do not sum
to one since argmin{f )i , i ∈ {(a1), (a2), (a3), (a4), (a5), (b), (c),
(d), (e), (f )}} need not be a singleton).

As shown in Tables 1 and 2, the proposed technique, while
being slower, succeeded to return a feasible solution to the
PMP (16) in all the considered cases. In regard of execution
times, it is fair to mention that our implementation of the pro-
posed algorithm is an academic prototype, which was not "nely
tuned or optimised for speed, and that currently even relies on
symbolic computations in some steps. The timing comparison
is heremadewith respect to state-of-the-art commercial solvers,
and it is therefore reasonable to believe that the execution time
gap shown in Table 1 might be considerably reduced by a more
re"ned implementation and coding of the proposed algorithm.
More importantly, however, as shown in Table 3, the proposed
tool was able to determine a good approximate solution to the
PMP (16). It is worth noticing that, in all the tests, letting

f ) = min{f )(a1), f )(a2), f )(a3), f )(a4), f )(a5), f )(b), f
)
(c), f

)
(d), f

)
(e), f

)
(f )},

we obtained that

|max{f )(a1), f )(a2), f )(a3), f )(a4), f )(a5)}− f )|
1 + |f )|

" 0.0939,

i.e. in all the considered tests, the proposed minimisation
method provides a solution that, when sub-optimal, is close
to the optimal one (obtained by using another minimisation
method with certi"ed global optimality). Furthermore, the
results reported in Tables 1 and 3 highlight the e!ects of the
selection of the parameter p (which has been selected close to 1
in order to limit the number of steps in which a transverse direc-
tion is chosen) on the convergence of the algorithm, as detailed
in the following remark, which provides suggestions on how to
select such a parameter.

Remark 5.1: By analysing the results reported in Tables 1 and
3, the convergence time of the proposed algorithm reduces if
p is decreased with the degree d of the involved polynomials.
This is due to the fact that, since the PMP (1) is generically
nonconvex, as d increases, it may be convenient to take more
often transverse directions, which are selected with probability

Table 3. Percentageof cases inwhich eachmethodhad thebest performance. The
selection of p that led to the best performance has been highlighted in bold.

ν

Method 1 2 3 4 5

(a1) 100 75 71 83 96
(a2) 100 78 71 86 94
(a3) 100 73 83 87 95
(a4) 100 75 69 82 98
(a5) 100 72 68 83 96
(b) 94 87 83 78 34
(c) 100 89 50 32 7
(d) 100 81 13 9 0
(e) 100 21 13 0 0
(f ) 100 79 12 0 0
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1−p. Indeed, in view of (A5), smaller values of p correspond
to a larger expected decrease of the objective function f (x); for
further details, see Appendix A.2. However, selecting smaller
values of p corresponds to an increased expected per-iteration
e!ort due to the fact that transverse directions are selectedmore
often than coordinate ones; for further details, see Remark 4.1.
Therefore, since decreasing the parameter p implies at the same
time an improved convergence rate and an increased computa-
tional complexity, it has to be selected via empirical tests as a
trade-o! between the per-iteration complexity and the overall
convergence rate.

6. Control application

In this section, we use the proposed technique to solve an
NMPC problem arising from an aerospace application.

A space rendezvous is a manoeuvre in which a spacecraft
(called the chaser) must approach another spacecraft (called the
target) to a very close distance. Thesemanoeuvres are important
ingredients of many present and future space missions, see, e.g.
Weiss et al. (2015), Q. Li et al. (2017). Traditionally, rendezvous,
docking and similar kinds of manoeuvres are carried out ‘man-
ually’, by means of ad-hoc corrections "nalised to compensate
possible positioning errors. In this simulated example, space
rendezvous is carried out automatically, by means of NMPC.

Consider a chaser spacecraft %ying in a neighbourhood of a
target. Suppose this latter is travelling in a circular orbit around
a planet with angular speed ω. The dynamics of the chaser is
described by thewell knownHill–Clohessy–Wiltshire equations
(Q. Li et al., 2017):

z̈1 = u1 + 3ω2z1 + 2ωż2,

z̈2 = u2 − 2ωż1,

z̈3 = u3 − ω2z3,

(17)

where zi are the chaser coordinates in a target-centred refer-
ence frame and ui are the accelerations given by the chaser
thrusters. The value ω = 0.0011 rad/s is assumed for the angu-
lar speed, corresponding to a low Earth orbit with a period of
about 95 min. The control problem is to move the chaser to a
point located near to a speci"c side of the target, to allow a subse-
quent docking manoeuvre. A state constraint must be imposed
to avoid collisions between the two spacecraft. Input constraints
are present as well, accounting for thruster saturation. Note
that (17) is an (unstable) linear time-invariant system. However,
as shown in the following, the control problem that is solved
hereafter is nonlinear, since the state constraint is nonlinear
(and nonconvex).

In order to solve the control problem, the system (17) has
been discretised, using the zero-order hold method with sam-
pling time equal to 5 s (the input is assumed to be constant
between two sampling times). Then, the discretised equations
have been written in the form (7), upon de"nition of the discre-
tised state ξ(k) .= [z1(k) ż1(k) z2(k) ż2(k) z3(k) ż3(k)], ∈ R6

and input u(k) .= [u1(k) u2(k) u3(k)], ∈ R3 vectors. Next, the
constant reference state ξ r

.= [zr,1 0 zr,2 0 zr,3 0], has been
de"ned, where zr

.= [zr,1 zr,2 zr,3], is the desired chaser arrival

point. The objective function (8) has been considered, with

q (k, ξ(k),u(k)) .=
{
u(k),Ru(k), if k < N,
ξ̃(k),Q ξ̃(k), if k = N,

(18)

where ξ̃(k) .= ξ r − ξ(k) is the tracking error, while Q ∈ R6×6

and R ∈ R3×3 are positive semide"nite weight matrices. Note
that, by construction, for k = N, the function q equals a
weighted norm of the tracking error, whereas for k<N it equals
a weighted norm of the command input. This latter term is
a measure of the command activity, which in turn provides a
quanti"cation of the propellant consumption. Minimizing the
objective function in (8), with q given by (18), allows us to
minimise the tracking error and, at the same time, limit the
propellant consumption. The matrices Q and R can be used to
trade-o! between tracking performance and consumption.

Then, the set of admissible inputs has been de"ned as

U .= {u ∈ R3 : g(u)
.= ‖u‖2∞ " 1}.

This set accounts for thruster saturation. The set of admissible
states has been de"ned as

X .= {ξ ∈ R6 : y(ξ)
.= zmin − ‖z‖22 " 0},

where z .= [z1 z2 z3],, and zmin is aminimumdistance, imposed
to avoid collisions between chaser and target.

A numerical simulation has been carried out to test the
e!ectiveness of the proposed tool in solving the optimisation
problem (8), by choosing the following parameters/matrices for
the MPC algorithm:

ξ r = [−15 0 0 0 0 0],, zmin = 10, N = 20,

ξ0 = [11 0 0 0 0 0],, Q = 10 I, R = I,

where all the distances are expressed in metres. Note that the
PMP to be solved at each iteration involves 60 minimisation
variables (namely, the three control inputs for 20 time steps)
and 60 nonlinear and nonconvex polynomial constraints aris-
ing from the admissible sets X and U , and hence it is hardly
tractable with conventional methods.

Algorithm 1 has been used to solve the PMP (8) at each time
step, thus determining the control input that has to be applied to
the chaser. In order to carry out the simulation in a realistic sce-
nario, we constrained the execution time of such an algorithm
(including the time required to determine the initial feasible
point) to 4 s, i.e. the algorithm has been interrupted after 4 s
of execution (i.e. we forced an execution time smaller than the
sampling time of the zero order holder) and the last estimate of
the optimal solution to the PMP (8) has been used to design the
control input. Furthermore, at all the time steps, a randomnoise
uniformly distributed in [−0.001, 0.001] has been added to the
control input u (determined as detailed above) in order to take
into account possible disturbances acting on the craft. Figure 1
depicts the results of such a simulation.

As shown in Figure 1, despite the limited amount of time that
has been allotted to perform the optimisation, the complexity
of the problem to be solved at each step, and the presence of
the disturbance, the proposed technique has successfully solved
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Figure 1. Application of the MPC algorithm to system (17): (a) discrete-time state and (b) continuous-time state.

Figure 2. Application of the MPC algorithm to system (17) using ga to solve the PMP (8): (a) discrete-time state and (b) continuous-time state.

Figure 3. Application of the MPC algorithm to system (17) using fmincon to solve the PMP (8): (a) discrete-time state and (b) continuous-time state.

the rendezvous control problem by steering the craft to the
desired position while avoiding collisions. For comparison, the
sameMPCalgorithmhas been applied using either theMatlab
generic algorithm ga or the Matlab function fmincon to
solve the PMP (8). As for the proposedminimisation technique,
both the genetic algorithm ga and the function fmincon have
been interrupted after 4 s of execution and the last estimate of
the optimal solution to the PMP (8) has been used to design
the control input. Figures 2 and 3 depict the results of these
numerical simulations.

As shown in Figures 1–3, the algorithm polMin outper-
forms both ga and fmincon for the considered rendezvous
control problem.

7. Conclusion

A random coordinate minimisation method with occasional
transverse steps has been proposed for solving constrained
polynomial minimisation problems arising in control. From
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a methodological point of view, we proved convergence in
probability to the global optimum for the proposed algorithm,
and we established theoretical bounds on the rate of conver-
gence in probability. From the practical point of view, the pro-
posed algorithm performed satisfactorily in several numerical
tests, also in comparison with existing techniques for poly-
nomial optimisation. The algorithm is a descent algorithm,
hence it can be interrupted at any time while providing a sub-
optimal feasible solution and a corresponding upper bound
on the optimal value. This feature is specially appealing when
solving problems arising from NMPC, where availability of
a sub-optimal solution in the allotted solution time is an
essential requirement in order to ensure applicability of the
technique.

Note

1. Available at the following link: https://github.com/Corrado-possieri/
polMin
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Appendix. Proofs of main results

A.1 Proof of Lemma 3.1
The "rst two parts of the proof are just sketched, since they follow the same
lines of Cala"ore and Possieri (2018), with minor adaptations due to the
fact that the set ( is not assumed to be convex here. We begin by showing
that sub-level sets of f are compact. Toward this end, let f ) = f (x)) where
x) is any point inA. First, notice that the sub-level set Lc of f,

Lc
.= {x ∈ Rn : f (x)− f ) " c} ∩(, (A1)

is compact for all c ∈ R!0, see Cala"ore and Possieri (2018). Second, we
show that f (g) " f (x) for all g ∈ G(x, s) and all (x, s) ∈ (× Sn. Indeed,
assume by contradiction that there exists (x, s) ∈ (× Sn such that f (g) >
f (x) for some g ∈ G(x, s). This implies that, for such a pair (x, s) ∈ (× Sn,
it holds that f (x + s argminλ∈I f (x + λ s)) > f (x) leading to a contradic-
tion of the de"nition of the argmin(·) function and of the fact that 0 ∈ I
since x is in (. Therefore, due to the boundedness of the sub-level sets
Lc, the map G : (× Sn → ( is locally bounded. Moreover, since the set
( is either compact or f ∈ ru((), by the same reasoning given above
about the compactness of the sets Lc, the mapping s +→ graph(G(·, s)) .=
{(x, y) ∈ Rn ×Rn : y ∈ G(x, s)} has closed values. Hence, measurability of
such a mapping follows by Example 5.22 and Exercise 14.9 of Rockafellar
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andWets (2009). Therefore, the mapG : Rn × Sn ⇒ Rn satis"es Standing
Assumption 1 of Subbaraman and Teel (2013), Teel et al. (2014), Possieri
and Teel (2017), which guarantees the existence of maximal solutions in
R(x0), provided that x0 ∈ (.

We conclude the proof by showing that there does not exist (x, s) ∈ (×
Sn such thatG(x, s) = ∅. Given x ∈ ( and s ∈ Sn, de"ne f̃ ∈ R[λ] and h̃ ∈
Rm[λ] as f̃ (λ) .= f (x + λ s) and h̃(λ) = [h̃1(λ) . . . h̃m(λ)], .= h(x + λ s).
Thus, G(x, s) = x + λ) s, where λ) is the set of all the solutions to

∣∣∣∣
min f̃ (λ),
s.t. λ ∈ (̃, (A2)

where (̃ .= {λ ∈ R : h̃1(λ) " 0, . . . , h̃m(λ) " 0}. Hence, if the PMP (A2)
admits a solution, then G(x, s) .= ∅. If ( is compact, then (̃ is compact,
and hence the PMP (A2) admits a solution by the extreme value theorem,
see Rudin (1964). Thus, assume that( is not compact, but f ∈ ru((). Since
x ∈ ( implies that 0 ∈ (̃ and minλ∈(̃ f̃ (λ) " f̃ (0), solving the PMP (A2)
corresponds to solving the univariate PMP

∣∣∣∣
min f̃ (λ),
s.t. λ ∈ ((̃ ∩ [λ, λ]), (A3)

where λ and λ are the smallest and the largest real roots of f̃ (λ)− f̃ (0),
respectively. Thus, since (̃ ∩ [λ, λ] is compact, the PMP (A3) admits a solu-
tion. Therefore, the statement of the lemma follows from Proposition 1
of Teel et al. (2014).

A.2 Proof of Theorem 3.1
The proof is similar to the proof of Theorem 1 of Cala"ore and Possieri
(2018) with suitable adaptations due to the di!erent distribution of the
sequence of random variables {sk}k∈N, and therefore it is just sketched.
First, note that, under the assumptions of Lemma 3.1, the set A = L0
is compact. Hence, let V : Rn → R!0 be any smooth function such that
V(x) = f (x)− f ) for all x ∈ ( and lim‖x‖→+∞ V(x) = +∞. Such a func-
tion exists since either ( is compact or f ∈ ru((). Since the set A is
compact, V(x) = 0 ⇐⇒ x ∈ A, and V is radially unbounded, by Goebel
et al. (2012, p. 54), there exist classK∞ functions α and α such that

α(‖x‖A) " V(x) " α(‖x‖A).

By the reasoning given in the proof of Lemma 3.1 about the fact that
f (g) " f (x) for all g ∈ G(x, s) and all (x, s) ∈ (× Sn, it results that
supg∈G(x,s) V(g) " V(x) for all (x, s) ∈ (× Sn. Thus, given x ∈ ( \ A, let
: = (f (x)− f ))/2 ∈ R>0 and let ℵ = min{:,υ)}. Since (A + νBn) ∩(
has nonzero measure for all ν ∈ (0, ν)), Lℵ has nonzero measure. There-
fore, for each x ∈ ( \ A, there is a selection Sx of Sn, whose measure is
not zero, such that supg∈G(x,s) V(g) " V(x)/2 for all s ∈ Sx. Therefore,
since sk ∼ (1− p)Uni(Sn) + p

∑n
i=1/ (i)δ(ei) and hence µ(ei) = p/ (i),

i = 1, . . . , n, andµ(S) = (1− p)
∫
S 1 ds for eachS ⊂ Sn such that ei /∈ S ,

i = 1, . . . , n, we have that
∫

Sn
sup

g∈G(x,s)
V(g)µ(ds)

= (1− p)<
∫

Sn
sup

g∈G(x,s)
V(g) ds + p

n∑

i=1
/ (i) sup

g∈G(x,ei)
V(g)

" (1− p)<
(
V(x)
2

∫

Sx

1 ds + V(x)
∫

Sn\Sx

1 ds
)

+ pV(x)

" V(x)− 1− p
2

<V(x)
∫

Sx

1 ds, (A4)

where < = 1
2πn/2

∫∞
0 x

n
2−1e−x dx, for all x ∈ (. Hence, letting %(x) be any

function in PD(A) such that

%(x) " 1− p
2

< V(x)
∫

Sx

1 ds, (A5)

for all x ∈ (, whose existence is guaranteed by the fact thatSx has nonzero
measure, we have that, for all x ∈ (,

∫

Sn
sup

g∈G(x,s)
V(g) µ(ds) " V(x)− %(x).

Therefore, since, by Lemma 3.1, if x0 ∈ ( then xk ∈ ( for all k ∈ N, by
Theorem 1 of Teel (2013), the setA if asymptotically stable in probability
from(.

Remark A.1: Since V(x) = f (x)− f ) for all x ∈ (, the function %(x)
in (A5) provides information about the expected per-iteration decrease of
the proposed algorithm.Namely, by construction, we have thatE(f (x+)) "
f (x)− %(x) for all x ∈ (.

A.3 Proof of Theorem 3.2
If the assumptions of Theorem 3.1 are met, then the stochastic di!erence
inclusion (10) satis"es Standing Assumption 1 of Possieri and Teel (2017)
and the set Lη de"ned in (A1) is compact. Thus the set O1 is
open, and, by Lemma 1 of Possieri and Teel (2017), $⊂O1 (k, x0) =
inf {zk}k∈N∈R(x0) E[

∏k
i=1 IO1 (zk)]. Thus, since ( is positively invariant

with respect to the stochastic di!erence inclusion (10), the function 1−
$⊂O1 (K, x0) constitutes an upper bound over all the solutions from x0 for
the probability of reaching the set Lη . Thus, since, by Lemma 3.1, Lη is
positively invariant with respect to inclusion (9), we have that

P(f (xi) " η,∀i # K) = P(xK ∈ Lη)

= P(∃i " Ks.t.f (xi) " η) " 1− $⊂O1 (K, x
0).

On the other hand, we have that f (x) " η for all x ∈ O2. By Possieri
and Teel (2017, Lem. 2), since the stochastic inclusion (10) satis"es Stand-
ing Assumption 1 of Possieri and Teel (2017), we have $∩O2 (k, x0) =
inf {zk}k∈N∈R(x0) E[maxi∈{1...,k} IO2 (zk)], i.e. $∩O2 (k, x0) constitute a lower
bound over all the random solutions from x0 ∈ ( for the probabil-
ity of reaching the set O2 in k iterations. Thus, since f (xk+1) " f (xk)
and hence P(f (xi) " η, ∀i # K|∃j ∈ {1, . . . ,K} such that xj ∈ O2) = 1, it
results that P(f (xi) " η, ∀i # K) # P(f (xi) " η, ∀i # K ∧ ∃j ∈ {1, . . . ,
K} such that xj ∈ O2) = P(∃j ∈ {1, . . . ,K} such that xj ∈ O2) # $∩O2
(K, x0), for all random solutions {xk}k∈N ∈ R(x0).

A.4 Proof of Theorem 4.1
By using a construction similar to the onemade in the proof of Theorem 3.1
(with A + νBn substituted by (̌e,τ) ), it can be easily derived that the set
(̌e,τ is asymptotically stable in probability from (e. Hence, by de"nition,
for each ε ∈ R>0, σ ∈ R>0 and3 ∈ R>0, there is an integer K such that

x0e ∈ ((̌e,τ) +3Bn) ∩(e, {xke }k∈N ∈ Re(x0e )

=⇒ P(xke (ψ) ∈ (̌e,τ) + εBn
o , k # K) # 1− σ ,

where Re(x0) denotes the set of all the maximal solutions to the stochas-
tic di!erence inclusion xk+1

e ∈ Ge(xe, se), starting at x0e , and Ge(xe, se) is
the set-valued mapping obtained adapting the map G(x, s) given in (10)
to the PMP (12). By considering that the entries of h(x) are continuous
functions and hi(x) " −τ ) for all xe ∈ (̌e,τ) , i = 1, . . . ,m, there exists a
su#ciently small ε) ∈ R>0 such that xke ∈ (̌e,τ) + ε) Bn

o =⇒ hi(xk) " 0,
i = 1, . . . ,m.

A.5 Proof of Proposition 4.1
By Rheinboldt et al. (1977), in order to determine the value of themonomi-
als xα−i

−i , one has to carry out up to n2 d elementary operations. The proof
is concluded by the fact that there are

∑d
r=0

(n+r−1
r

)
= d+1

n
(n+d
d+1

)
vectors
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α ∈ Nn such that |α| " d and that, at Step 9 of Algorithm 1, we need to
computem+ 1 coordinate-wise polynomials.

A.6 Proof of Proposition 4.2
Note that, in order to determine each of the vectors ζ

αi
i (xki , s

k
i ) and

ωα(xki , s
k
i ), one has to carry out up to 2d3(d + 1) and 5

2n (d + 1)(d n +
d + 2) elementary operations, respectively. Therefore, in view of (14), the

function f̃ and each entry of the polynomial vector h̃ can be determined
by carrying out up to 1

2 (d + 1)2(4d3 + 5d n + 5d + 10)
(d+n
d+1

)
elementary

operations, thus concluding the proof.


