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MIMO Full-duplex Networks with Limited

Knowledge of the Relay State

Alessandro Nordio, Member, IEEE, Carla Fabiana Chiasserini, Fellow, IEEE

Abstract

Full-duplex (FD)-enabled relay networks represent a relevant solution to two critical needs of

next-generation networks, namely, radio coverage extension and high spectral efficiency of wireless

communications. Under practical conditions, however, the FD mode may not be the best operational

setting for the relay; rather, operating in half-duplex may be more convenient when harsh channel

conditions add up to self-interference. One of the fundamental challenges in the design of FD relay

networks is thus how to determine the relay operational mode and the value of transmit power at both

the relay and the data source, so that the achievable data rate is maximized as time varies. We address

this problem in a two-hop, MIMO network, accounting for practical operational conditions in which

the source is unaware of the symbols that the relay is transmitting. In light of the problem complexity,

we also derive a lower-bound to the maximum achievable rate, which proves to be tight, especially

for low-medium SNR values. We then tackle massive MIMO networks, and exploit our asymptotic

analysis in the number of antennas to derive a low-complexity, yet highly efficient, operational mode

and transmit power allocation scheme for a finite-size scenario.

I. INTRODUCTION

The rapid increase in the mobile data demand and the need for an extended coverage of

wireless connectivity have made multiple-input-multiple-output (MIMO) relay networks a highly

attractive technology [1], [2]. In such systems, all involved nodes, namely, source, relay, and

destination, may be equipped with multiple antennas for data transmission and reception. Then,

spectral efficiency can be further increased by leveraging the full-duplex (FD) operation, so as to

enable simultaneous transmission and reception over the same frequency band at the relay [3].

Given the promise of such high performance, MIMO-FD relay networks have been identified as

one of the enabling technologies for 5G and beyond, efficiently catering data transfers in case

of coverage holes or users at the cell edge [4]–[6].

Importantly, the increasing practical relevance of FD relay networks is also due to the recent

advances in techniques for self-interference suppression at the relay. Thanks to such suppression
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mechanisms, the signal leakage from the transmitter to the co-located receiver at the relay can be

reduced, thus allowing for higher data rates. Examples of techniques for reducing self-interference

in FD relay networks can be found, e.g., in [7]–[11]. Other works have instead focused on the

characterization of such self-interference [12] and modelled it as a Gaussian noise affecting the

relay receiver, with energy proportional to the relay transmit power [13], [14]. A third body of

works have evaluated the impact of residual self-interference on the performance of FD relay

networks, or have designed and analyzed solutions to cope with that. In particular, [15] focuses

on the capacity of the Gaussian two-hop FD relay channel, assuming that the relay adopts the

decoding-and-forward (DF) scheme, the nodes have a single antenna, and the source has perfect

knowledge of the symbols transmitted by the relay at any time instant. Importantly, under the

above conditions, [15] derives the optimal probability distribution of the source input and of

the relay input. MIMO FD communications are instead addressed, e.g., in [16]–[23]. In the

absence of direct link and in the presence of self-interference, [16] derives the capacity of

the relay channel for the amplify-and-forward (AF) relaying scheme. AF relays and multiple

transmit antennas are also considered in [17] where the SINR at the receiver is maximized as

the relay transmit power varies. The studies in [18]–[22], instead, consider the design of linear

source and relay precoders for MIMO FD AF relay communications. In particular, [18] derives

a closed-form expression for precoding at the relay with rank-1 zero-forcing self-interference

suppression, while [19] focuses on the effect of the residual self-interference due to imperfect

cancellation. The work in [20] aims at maximizing the sum rate for a two-way relay channel,

by jointly optimizing the source transmit power and the beamforming matrix at the relay. With

a similar goal in mind, in [21] beamforming at the source is optimized while accounting for

relay processing. At last, [22] presents a hybrid beamforming scheme at the source and relay for

multiuser mmwave systems. Such a scheme maximizes the worst-case sum rate in the case of

imperfect channel state information (CSI), while meeting the user quality of service requirements.

Considering instead DF, [23] presents an optimal relay beamforming that minimizes the outage

probability in MIMO FD DF relaying, when only partial CSI is available at the receiver.

It is worth noting that relays with FD capabilities can operate in either FD mode or half-

duplex (HD) mode (the two of them also jointly referred to as X-duplex mode). Therefore,

depending on the channel conditions and on the constraints on the system parameters, optimal

transmission policies can be based on hybrid FD/HD relaying techniques [24]–[26]. Specifically,

the authors in [24] consider the instantaneous and average spectral efficiency of a dual-hop
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network with direct link between source and destination. They propose hybrid FD/HD relaying

policies that optimally switch between the two operational modes, depending on the channel

conditions and on the relay transmit power. The study in [25] considers a DF relaying technique

and evaluates the block error rate for FD and HD, ultra reliable short-packet communications,

and finite block-length codes. Finally, [26] derives the optimal transmission mode and power

allocation in single-antenna FD relay networks when the relay implements the DF technique

and only the relay transmit power distribution is available at the source.

In this paper, we consider both a MIMO and a massive MIMO (mMIMO) two-hop network

where no direct source-destination link exists and the relay adopts the DF scheme. The relay

operates in X-duplex mode (i.e., FD or HD) and the source has knowledge only of the transmit

power distribution adopted by the relay over a given time horizon. More specifically, the source

is not aware of the symbols that the relay is transmitting towards the destination. Such a scenario

reflects the practical case in which the relay performs link-layer or physical-layer encryption,

or it inserts in-band control information [27], [28]. Indeed, in all such situations the relay may

send to the destination a different sequence of symbols with respect to the one received from

the source. Furthermore, we consider that constraints on the average and maximum values of

transmit power at the source and relay nodes may be in place. The input distribution at the

source and the relay is assumed to be Gaussian, with variance not exceeding a given maximum

value. With regard to the residual self-interference, this is modeled as an additive Gaussian noise

with variance proportional to the relay transmit power, as often done in the related literature.

Given the above scenario, our objective is to maximize the data rate from the source to the

destination, by optimally setting over time the transmit power to be used at the source node and

at the relay node. It is worth noting that the latter also implies optimally setting the time fraction

during which the relay should operate in FD and HD mode, as a null source or relay power

correspond to the HD mode and positive values at both the source and the relay correspond

to the FD mode. We remark that, to the best of our knowledge, none of the existing works

has tackled the above aspects in a MIMO FD system using DF where the source has no full

knowledge of the symbols transmitted by the relay. More in detail, our main contributions are

as follows:

(i) We formulate an optimization problem to maximize the achievable rate in a MIMO, FD,

2-hop network. Importantly, we take the distribution of the transmit power at the relay as the

main decision variable. Then we maximize the rate over the source-relay link, conditioned to
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the value of the relay transmit power, so as to obtain a closed-form expression for the optimal

transmit power at the source. Based on this result, we can identify different operational regions

as the transmit power at the source and the relay, and the corresponding rate value over the first

hop, vary.

(ii) The closed-form expression of the conditional achievable rate on the first hop is then

plugged into the original problem formulation. In light of the problem complexity, we present

an approximate version of the problem that can be efficiently solved numerically. Furthermore,

we derive an analytical expression for the lower bound to the source-destination achievable rate

and characterize the performance in the absence of residual self-interference.

(iii) We study an mMIMO scenario where the large number of antennas at the transmitting

and receiving nodes allows for an asymptotic analysis, leading to an accurate, yet tractable,

semi-analytical expression of the maximum achievable rate. Importantly, such an expression

does not depend on the instantaneous channel conditions, rather on the asymptotic cumulative

density function of the channel matrix eigenvalues. We exploit these results to derive a hybrid

approach combining the optimal asymptotic distribution of the transmit power at the relay with

the achievable rate maximization in the case of a finite number of antennas.

(iv) Through extensive numerical results, we show the behavior of the maximum achievable

rate as the average and maximum transmit power values vary. Furthermore, and very relevantly,

we demonstrate that our hybrid solution holds tight also in scenarios with a small number of

antennas. This suggests that the source and relay transmit power do not need to be recomputed

at every new channel instance, rather they can be computed once over a relatively long time

horizon and still provide performance close to the optimum.

We remark that our analytical derivations optimizing the efficiency of MIMO-FD and mMIMO-

FD relay systems can play an important role in the design of 5G-and-beyond wireless networks.

Indeed, by identifying the optimal transmission power and operational mode of source and relay

substantially contributes to improving the system performance in terms of data rate and power

consumption.

The remainder of the paper is organized as follows. Sec. II provides some background on

precoding for MIMO communications, reporting the main results that we leverage in our analysis.

Sec. III introduces the system model and the formulation of the optimization problem, accounting

for the system constraints. Then Sec. IV focuses on the maximization of the rate on the source-

relay link, conditioned to the transmit power used at the relay. The complexity of the resulting
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problem is discussed in Sec. V, where bounds and an approximate solution are also presented.

The mMIMO case, along with an efficient semi-asymptotic approximation for the finite case, is

analysed in Sec. VI, while Sec. VII shows some performance results. Finally, Sec. VIII concludes

the paper.

II. PRELIMINARIES ON SVD PRECODING FOR MIMO

In this section, we recall the expression of the achievable rate in a MIMO system with n

transmit and m ≥ n receive antennas, when an optimized singular value decomposition (SVD)

precoder [29] is used at the transmitter. The received signal is given by y =
√
pαHΠx + η

where p is the transmit power, α is the path loss coefficient, H is the channel matrix, and x is

the Gaussian complex channel input with E[xxH] = 1
n
I. Also, Π is the precoding matrix and

η is the Gaussian complex noise with covariance E[ηηH] = II. Since the precoding matrix Π

should not affect the average power of the transmitted signal, we must impose E[|Πx|2] = 1,

which, by defining Q = ΠΠH, implies Tr{Q} = n. For a generic precoder applied at the

transmitter, and for Gaussian input, the mutual information between x and y is given by ρ =

log
∣∣I + γ

n
HQHH

∣∣ with γ = pα
I

being the signal to noise and interference ratio (SINR). Let

H = UΣVH be the singular value decomposition of H where U and V are unitary matrices

and Σ is the corresponding matrix of singular values. Also, let n′ ≤ n be the rank of H. If the

matrix H is perfectly known at the transmitter, the precoder Π? maximizing ρ is such that [29]

Π?Π?H = Q? = VDVH where D is a diagonal matrix whose elements are [D]i,i =
[
φ− ζ

γλi

]+

,

for i = 1, . . . , n′, and [D]i,i = 0 for n′ < i ≤ n. Moreover, [·]+ = max{0, ·}, λi = 1
m

[
ΣΣH

]
i,i

,

ζ = n
m

, and the parameter φ satisfies the constraint:

Tr{Q?} = Tr{D} =
n′∑
i=1

[
φ− ζ

γλi

]+

= n . (1)

By replacing the expression for Q? in the mutual information, we get:

ρ =
n′∑
i=1

[
log

φγλi
ζ

]+

. (2)

Assume the eigenvalues λi to be ordered in decreasing order, i.e, λi ≥ λj for i < j, then,

given γ and φ, the terms φ− ζ
γλi

(1 ≤ i ≤ n′) in (1) decrease as i increases. Let k ≤ n′ be the

largest integer such that φ− ζ
γλk

> 0. Then we can solve (1) for φ and obtain φ = n
k

(
1 + ζ

γ
`k

)
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with `k = 1
n

∑k
i=1

1
λi

. By substituting such value of φ in (2) and defining ck = ζk
nλk
− ζ`k

(k = 1, . . . , n′), we can rewrite the mutual information as:

ρ =
k∑
i=1

log

[
nλi
k

(
γ

ζ
+ `k

)]
(3)

for k = 1, . . . , n′ − 1 and ck ≤ γ ≤ ck+1, and for k = n′ and γ ≥ cn′ .

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first introduce the network system under study and the communication

model. Then, we formulate the optimization problem, maximizing the achievable data rate and

accounting for the system constraints.

A. Communication network

We consider a two-hop, FD relay network where the source S and the relay R are equipped

with n1 and n2 transmit antennas, respectively, while the relay and the destination D are equipped

with m1 ≥ n1 and m2 ≥ n2 receive antennas, respectively. In the following, we will use the

subscripts 1 and 2 to differentiate the parameters and variables related, respectively, to the first

and second hop of the relay network.

The relay decodes the information received from the source, then it re-encodes the information

and forwards it toward D (DF mode). To derive the maximum achievable rate, we assume that

the source is saturated, i.e., it has always data to transmit; also, we consider that source and

relay perform data transmissions according to a time division strategy. Importantly, we account

for the practical case where source and relay are not synchronized on a per-symbol basis, and

that the relay can modify link-layer or physical-layer control information as well as perform

link-layer data encryption. This implies that, unlike most of the existing work, the source may

not be aware of the symbols that the relay is transmitting towards the destination.

As for the communication channel, we assume that it remains constant during a time period

T . Within T , source and relay can operate in one of the following modes: (i) S transmits while

R receives only (HD-RX mode); (ii) S is silent while R transmits only (HD-TX mode); (iii)

both S and R transmit at the same time and R operates in FD (FD mode). Notice that, within

T , there may be multiple phases, each corresponding to one of the above operational modes and

to specific values of transmit power at the source and at the relay. A pictorial representation is

provided in Fig. 1.
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T

· · ·

t

Fig. 1. Structure of the time period.

Let p1 and p2 be the average transmit power used by, respectively, S and R, in a given phase,

such that p1 ≤ pmax
1 and p2 ≤ pmax

2 so as to reflect the fact that in real-world systems the transmit

power is limited to a maximum value. Additionally, as commonly assumed in communication

systems, we impose that the average value of the transmit power over a period T is equal to

E[p1] = p̄1 at the source and E[p2] = p̄2 at the relay.

In a given phase, the signal received at the relay can be expressed as

y1 =
√
p1α1H1Π1x1 + ν + η1 where (4)

• x1 is the vector of symbols transmitted by S, which are assumed to be Gaussian, complex,

multivariate distributed with zero mean and covariance E[x1x
H
1 ] = 1

n1
I;

• Π1 is the optimal precoding matrix at S such that Tr{Π1Π
H
1 } = n1;

• α1 is the path loss coefficient;

• η1 is a random vector, independent of x1, accounting for thermal noise and interference:

it is modeled as a complex Gaussian, multivariate random variable with independent and

identically distributed (iid) entries, zero mean, and covariance E[η1η
H
1 ] = I1I;

• H1 is the channel matrix corresponding to the S-R link, with rank n′1 ≤ n1; we assume

that H1 (i.e., perfect CSI) is known at both S and R ;

• ν is the residual self-interference atR, modeled as a complex Gaussian, multivariate random

variable independent of η1 and x1, with zero mean and covariance E[ννH] = βp2I [14].

This implies that, as also done in [13], [14], the self-interference covariance matrix is

proportional to the relay average transmit power p2 through the coefficient β, representing

the self-interference attenuation factor. We remark that β can take on any arbitrary value, and

that E[ννH] = 0 whenever the relay is silent (i.e., p2 = 0 and there is no self-interference).

The signal received at the destination is instead given by

y2 =
√
p2α2H2Π2x2 + η2 where (5)
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• x2 is the vector of random symbols transmitted by R, assumed to be Gaussian, complex

multivariate with zero mean and covariance E[x2x
H
2 ] = 1

n2
I;

• Π2 is the optimal precoding matrix at R such that Tr{Π2Π
H
2 } = n2;

• α2 is the path loss coefficient on the R-D link;

• H2 is the R-D channel matrix, with rank n′2 ≤ n2; perfect CSI knowledge is assumed at

R;

• η2 represents the noise plus interference at D and is modeled as a Gaussian, multivariate

complex random variable independent of x2, with covariance E[η2η
H
2 ] = I2I.

We underline that the precoding matrices Π1 and Π2 are optimized as described in Sec. II.

Next, let λj,i be the i-th ordered eigenvalue of 1
mj

HH
j Hj , and let us define

ζj=
nj
mj

; `j,k=
1

nj

k∑
i=1

1

λj,i
; cj,k=

ζjk

njλj,k
− ζj`j,k; γ1(p1, p2)=

p1α1

I1+βp2

; γ2(p2)=
p2α2

I2

.

Based on the above model and definitions, we can write the expression of the achievable rate

on the S-R and R-D links, as

ρ1(p1, p2) =
k∑
i=1

log

[
n1λ1,i

k

(
γ1(p1, p2)

ζ1

+ `1,k

)]
(6)

for k = 1, . . . , n′1 − 1 and c1,k ≤ γ1(p1, p2) < c1,k+1, and k = n′1 and γ1(p1, p2) ≥ c1,n′1
, and

ρ2(p2) =
k∑
i=1

log

[
n2λ2,i

k

(
γ2(p2)

ζ2

+ `2,k

)]
(7)

for k = 1, . . . , n′2 − 1 and c2,k ≤ γ2(p2) < c2,k+1, and for k = n′2 and γ2(p2) ≥ c2,n′2
. Note

that both ρ1 and ρ2 are piecewise functions composed of n′1 and n′2 pieces, respectively. While

a more elaborated analysis is needed to further characterize the behavior of ρ1, for ρ2 we can

already identify the points of transition between adjacent pieces of the rate function by solving

γ2(p2) = c2,k for p2. By doing that, we get:

τk ,
ζ2I2

α2

(
k

n2λ2,k

− `2,k

)
(8)

where we recall that λ2,k is the k-th eigenvalue of 1
m2

HH
2 H2 and `2,k = 1

n2

∑k
i=1

1
λ2,i

. Importantly,

we remark that ρ2(p2) is an increasing and concave function.

Finally, let g(p2), p2 ∈ [0, pmax
2 ], be the distribution of the transmit power p2 over period T at

R; thus ∫ pmax
2

0

g(p2) dp2 = 1; g(p2) ≥ 0 . (9)
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Then, the average rates achieved over T on the S-R and R-D links are given by, respectively,

R1(g, p1)=

∫ pmax
2

0

g(p2)ρ1(p1, p2) dp2; R2(g)=

∫ pmax
2

0

g(p2)ρ2(p2) dp2 (10)

where the used notations highlight that the average rates depend on the specific choice of the

distribution g(·). It is then easy to see that maximizing the achievable rate over a period T

implies to optimally characterize the different phases in T , i.e., to determine: (i) the optimal

values of transmit power to be used in each phase at the source, p1, and at the relay, p2 (or,

equivalently, g(p2)), and (ii) the optimal duration of each phase.

B. Maximizing the achievable rate

Let R be the achievable rate at which data are transferred from S to D in period T . We first

observe that the achievable rate is given by the minimum between the rate over the S-R link,

and the one over the R-D link. Therefore, the maximum achievable rate supported by the system

can be found by solving

P0: R = max
g(·),p1

min {R1(g, p1), R2(g)} = max
g(·)

min

{
max
p1

R1(g, p1), R2(g)

}
(11)

subject to the constraints in (9), E[p1] = p̄1, E[p2] = p̄2, p2 ∈ [0, pmax
2 ], and p1 ∈ [0, pmax

1 ].

Looking at the expression of R1(g, p1) in (10) and ρ1(p1, p2), we notice that the SINR, hence

the rate, depends on both p1 and p2, as the residual self-interference creates a dependency

between the performance of the first and the second link. Thus, to maximize the rate over the

first hop, source and relay should coordinate their power allocation strategies. We then write the

transmit power at S as a function of the transmit power at R (p1 = p1(p2)); as a consequence,

the constraints on the average power over period T for the S-R and the R-D link are given by

E[p2] =

∫ pmax
2

0

p2g(p2) dp2 = p̄2; E[p1] =

∫ pmax
2

0

p1(p2)g(p2) dp2 = p̄1 . (12)

Given the above expressions and as detailed in the following sections, we can consider the

distribution of the power at the relay, g(·), as the only decision variable in our optimization

problem P0. Indeed, the optimal transmit power at the source depends on p2, and the optimal

values of p1 and p2 determine the optimal source and relay operational modes. As an example,

the case p1 > 0, p2 > 0 corresponds to the relay operating in FD mode, while p1 = 0 and

p2 > 0 correspond to the HD-TX mode. Additionally, as will become clear in Sec. IV-B, given

the optimal g(·), we can identify the optimal duration of the temporal phases within T , each

corresponding to a different operational mode.
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With the aim to solve P0, in the following we first maximize the rate on the S-R link, thus

finding the optimal expression for the transmit power at the source as a function of p2. Then we

optimize the minimum between R1 and R2 with respect to the distribution g(·).

IV. RATE OPTIMIZATION ON THE SOURCE-RELAY LINK

Here, we first derive the expression of the optimal transmit power p1 (Sec. IV-A), which

allows us to write the SINR at R and, hence, the rate achievable on the S-R link (Sec. IV-B).

We also provide numerical examples illustrating the behavior of such quantities, as the transmit

power at the relay, p2, varies.

A. Optimizing the transmit power at the source

The maximization over p1 of R1(g, p1) (see (11)) can be written as

P1: R?
1(g) = max

p1(·)

∫ pmax
2

0

g(p2)ρ1(p1, p2) dp2 s.t.

(a) 0 ≤ p1 ≤ pmax
1 ; (b)

∫ pmax
2

0

g(p2)p1(p2) dp2 = p̄1

where (a) is the constraint on the maximum transmit power at the source and (b) is the constraint

on the average value of p1 appearing in (12).

Proposition 4.1: The maximizer of the argument in P1 is given by:

p?1(p2)=


pmax

1 , if p2≤ω̂
ψk
n1
− I1+βp

α1
ζ1`1,k, if k=1, . . ., k̂−1 and ωk+1≤p2<ωk; k=k̂ and ω̂ ≤ p2<ωk̂

0 if p2≥ω1

(13)

where ψ is a parameter satisfying
∫ pmax

2

0
g(p2)p?1(p2) dp2 = p̄1, ω̂ = α1

k̂ψ/n1−pmax
1

ζ1`1,k̂β
− I1

β
, ωk ,

ψλ1,kα1

ζ1β
− I1

β
, and k̂ = arg maxk=1,...,n′1

kψ/n1−pmax
1

`1,k
.

Proof: The proof is provided in App. A.

An example reporting the behavior of p?1(p2) is depicted in Fig. 2 where k̂ = 2 and the shaded

regions show the corresponding relay modes. Looking at Fig. 2, we can give the following

interpretation of (13):

(a) p?1(p2) decreases as the relay transmit power, p2, increases. This is due to the fact that, as

p2 increases, the amount of residual self-interference at R grows (i.e., the S-R channel

becomes noisier). Thus, due to the constraint on the average transmit power, beyond a
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HD−TX

FD

HD−RX

p2
ω1ω2

p?1(p2)

ω̂

pmax
1

Fig. 2. Behavior of the function p?1(p2). The shaded regions denote the different operational modes at the relay.

certain value of p2 it is not convenient for the source to transfer data towards the relay. In

other words, given its limited power budget, the optimal choice for the source becomes to

save power and transmit when the level of self-interference is lower;

(b) p?1(p2) is made of k̂ + 2 linear pieces, each corresponding to a specific operational region

at S;

(c) for ω̂ ≤ p2 < ω1, p?1(p2) is made of k̂ pieces; the k-th piece corresponds to a situation

where the source transmit power is allocated to the first k (best) parallel channels defined

by the eigenmodes of the matrix H1;

(d) when p2 ≥ ω1, the S-R link experiences such high levels of self-interference that the best

strategy for S becomes to be silent (p?1 = 0) and for the relay to work in HD-TX mode;

(e) in the region 0 < p2 < ω1, the transmit power at both source and relay is strictly positive,

hence the relay works in FD mode;

(f) when p2 = 0, the transmit power at S is positive, thus the relay works in HD-RX mode;

(g) for p2 ≤ ω̂, p?1 takes its maximum value, pmax
1 .

Remark 4.1: Depending on the value of the system parameters, some of the threshold points,

ωk, of transition between different operational regions, as well as ω̂, can assume negative values.

However, being p2 the transmit power at the relay, p?1(p2) can only be evaluated for p2 ≥ 0, thus

only the subset of positive values within each operational region should be considered.

B. Rate characterization on the source-relay link
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When the optimized transmit power p?1(p2) is adopted at the source, the SINR at R is given

by γ?1(p2) =
α1p?1(p2)

I1+βp2
, which, according to (13) and for p2 ∈ [0, pmax

2 ], can be rewritten as

γ?1(p2)=


pmax

1 α1

I1+βp2
if p2<ω̂

ψkα1

n1(I1+βp2)
−ζ1`1,k if ωk+1≤p2<ωk, k=1, . . . , k̂−1; ω̂≤p2<ωk̂, k=k̂

0 if ω1≤p2

. (14)

We then substitute such an expression for γ?1(p2) in (6) to obtain the achievable rate on the

S-R link: ρ?1(p2) , ρ1(p?1(p2), p2). Since both (6) and (14) are piecewise defined functions, so

is ρ?1(p2). The transition points (between pieces, or, equivalently, regions) correspond to those

values of p2 located on the boundary between two adjacent pieces. An important transition point

is p2 = ω̂, which separates the region where the source power reaches the maximum possible

value, p?1 = pmax
1 , from the region where p?1 < pmax

1 . An example of ρ?1(p2) is illustrated in

Figures 3(left) and 3(center) where the transition point ω̂ corresponds to the regions boundary

highlighted by the red dashed line. In the region p2 > ω̂, the rate ρ?1(p2) is piecewise defined and

transitions between adjacent pieces occur when the SINR γ?1(p2) crosses one of the thresholds

c1,k, k = 1, . . . , k̂. Such transition points, whose expressions are reported after (13), are denoted

with ωk. For p2 < ω̂, the rate ρ?1(p2) is, again, piecewise defined and the corresponding transition

points are denoted with θk, k = k̂+1, . . . , n′1. Their expression can be obtained by solving for p2

the equation γ?1(p2) =
pmax

1 α1

I1+βp2
= c1,k, which yields (see the SINR expression for p2 < ω̂ in (14)

and that for c1,k) θk =
pmax

1 α1

βζ1

(
k

n1λ1,k
− `1,k

)−1

− I1
β

.

Summarizing, using (6) and (14), for p2 ∈ [0, pmax
2 ] and k̂ < n′1, we have:

ρ?1(p2) =



∑k
i=1 log

(
n1λ1,i

k

[
pmax

1 α1/ζ1
I1+βp2

+ `1,k

])
if θk+1 ≤ p2 < θk, k = k̂ + 1, . . . , n′1 − 1;

θk̂+1 ≤ p2 < ω̂, k = k̂; p2 < θn1 , k = n′1∑k
i=1 log

(
ψλ1,iα1

ζ1(I1+βp2)

)
if ωk+1 ≤ p2 < ωk, k = 1, . . . , k̂ − 1

ω̂ ≤ p2 < ωk̂, k = k̂

0 if p2 ≥ ω1

(15)

while, for k̂ = n′1, we get:

ρ?1(p2)=



∑n′1
i=1 log

(
λ1,i

[
pmax

1 α1/ζ1
I1+βp2

+`1,n′1

])
if p2 < ω̂∑k

i=1 log
(

ψλ1,iα1

ζ1(I1+βp2)

)
if ωk+1 ≤ p2 < ωk, k = 1, . . . , n′1 − 1

ω̂ ≤ p2 < ωn1 , k = n′1

0 if p2 ≥ ω1 .

(16)
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As can be seen from the above expression, for p2 ≥ ω̂, the rate ρ?1(p2) is continuous and convex,

although not differentiable in p2 = ωk, k = 1, . . . , k̂. For p2 < ω̂, the rate ρ?1(p2) is convex,

and differentiable everywhere. However, although made of convex pieces, ρ?1(p2) is not globally

convex, since in p2 = ω̂ we have: limp2=ω̂−
dρ?1(p2)

dp2
> limp2=ω̂+

dρ?1(p2)

dp2
. Such considerations on

the convexity of ρ?1(p2) will be helpful for deriving the lower-bound in Sec. V-B.

The explicit expression of the rate ρ?1(p2) in (15) and (16) allows us to write the solution to

problem P1 as R?
1(g) =

∫ pmax
2

0
g(p2)ρ?1(p2) dp2. Equipped with this result, we can now rewrite

problem P0 as

P2: R = max
g(·)

min

{∫ pmax
2

0

g(p2)ρ?1(p) dp2,

∫ pmax
2

0

g(p2)ρ2(p2) dp2

}
s.t. (9) and (12).

By solving P2, we can find the network data rate R and the optimal transmit power distribution

at the relay, g(·).

Example 1: An example showing the behavior of p?1(p2) and ρ?1(p2) is depicted in Fig. 3(left)

where n1 = m1 = 3, λ1,i = 7 − i, i = 1, . . . , 6, β = ψ = α1 = I1 = 1, and pmax
1 = 0.3. Under

this setting, we have n1 = n′1, ζ1 = 1, ω̂ = 0.32, k̂ = 2, ω1 = 2, ω2 = 1, and θ3 = −0.2286.

The latter is not shown in the figure since, being negative, it must be discarded.

Example 2: Fig. 3(center) still shows the behavior of p?1(p2) and ρ?1(p2), but under different

settings. We have: n1 = n′1 = m1 = 6, λ1,i = 7 − i, i = 1, . . . , 6, β = ψ = α1 = I1 = 1,

and pmax
1 = 0.15. In this case, we get ζ1 = 1, ω̂ = 2.4054, k̂ = 3, ωk = 6 − k, k = 1, . . . , k̂,

θ4 = 1.3478, θ5 = −0.1429, and θ6 = −0.7465. The latter two values are negative, hence

they are not shown. Now assume that the solution of problem P2 is obtained by the optimal

distribution: g?(p2) = 0.2δ(p2)+0.3δ(p2−2)+0.5δ(p2−6) where δ(·) is the Dirac delta function.

Then, the optimal communication strategy will consist of 3 phases, one for each delta function.

Specifically (see Fig. 3(center)),

• in phase 1, lasting 0.2T , the relay transmit power is p2 = 0, and the source transmit power

is p?1(0) = pmax
1 (HD-RX mode);

• in phase 2, lasting 0.3T , the source and relay transmit powers are both positive, namely,

p2 = 2 and p?1(2) = pmax
1 (FD mode);

• in phase 3, lasting 0.5T , the source and relay transmit powers are p2 = 6 and p?1(6) = 0

(HD-TX mode).

Example 3: We now look at the behavior of ρ?1(p2) and ρ2(p2) (see Fig. 3(right)) when n1 =

m1 = n2 = m2 = 3, λ1,i = 4− i, i = 1, . . . , 3, λ2,1 = 4, λ2,2 = 1/4 λ2,3 = 2/11, β = ψ = α1 =
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Fig. 3. Examples of the behavior of p?1, ρ?1, and ρ2 as p2 varies. The transition points of the piecewise functions are highlighted

as well.

I1 = I2 = 1, α2 = 0.2, and pmax
1 = 0.3. We have: n1 = n′1, n′2 = n2, ζ1 = ζ2 = 1, ω̂ = 0.32,

k̂ = 2, ωk = 3− k, k = 1, . . . , k̂, θ3 = −0.2286, τ1 = 0, τ2 = 5/4, and τ3 = 9/4 (the latter was

defined in (8)). The figure also shows the value v for which ρ?1(v) = ρ2(v).

V. APPROXIMATE SOLUTION AND LOWER BOUND

We now look at the problem in P2 and discuss its complexity. We first observe that the rate

optimization has to be performed with respect to a probability function. Even in the simplest

case where n1 = n2 = 1 and pmax
1 → ∞, characterizing the solution space is extremely hard,

as shown in [26]. It follows that, in the general case where ρ?1 and ρ2 are piecewise functions

and ρ?1 is not convex, solving P2 is analytically unfeasible. We therefore present first an efficient

numerical approximation obtained by discretizing the distribution g(·), then we derive a lower

bound to R, which can be obtained without resorting to discretization and proves to be very

tight, especially for low-medium SNR values. Finally, for the sake of completeness, we obtain

the maximum achievable rate in absence of residual self-interference.

A. Approximate solution to Problem P2

We now present an approximate solution to Problem P2, obtained by discretizing the distri-

bution g(p2) as follows:

g(p2) =

Np∑
n=1

gnδ(p2 − πn)

where Np is the number of discretization points and 0 ≤ π1 < π2 < · · · < πNp ≤ pmax
2 . Let π =

[π1, . . . , πNp ]
T, g = [g1, . . . , gNp ]

T, p?1 = [p?1(π1), . . . , p?1(πNp)]
T, ρ?1 = [ρ?1(π1), . . . , ρ?1(πNp)]

T,
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and ρ2 = [ρ2(π1), . . . , ρ2(πNp)]
T. We recall that rates ρ?1(p2) and ρ2(p2) have been defined

in (15), (16), and (7), respectively. Then we can turn P2 into the following discrete problem:

P3: R̃ = max
π

max
g

min
{
gTρ?1,g

Tρ2

}
s.t.

(a) gTp?1 = p̄1 , (b) gTπ = p̄2 , (c) g ≥ 0 , (d) gT1 = 1 . (17)

Observe that the problem in (17) requires to consider all possible choices of the vector π, given

a value of Np. Clearly, the larger the Np, the more cumbersome the computation of R̃, but also

the higher the values of rate that we obtain, since the solution space can be searched within a

finer grained grid. As shown in Sec. VII, a value of Np = 50 is sufficient to closely approximate

R. Furthermore, a convenient, yet effective, way to solve P3 is to fix π by taking Np values

logarithmically spaced in the range [εpmax
2 , pmax

2 ], with ε � 1, including the values {0, p̄2}. In

practice, the elements of π are given by πi = ε
1− i

Np−3pmax
2 , for i = 0, . . . , Np − 3, πNp−2 = 0,

and πNp−1 = p̄2.

The rationale behind this choice is that communication phases in a time period T may be

characterized by values of the relay transmit power differing from each other by several orders

of magnitude. Thus, selecting logarithmically spaced elements for π allows us to achieve a better

approximation of R. Additionally, solutions to (11) may include phases where the relay is silent

(i.e., it works in HD mode, p2 = 0), transmits at average power (p2 = p̄2), or maximum power

(p2 = pmax
2 ); thus, we include such values of p2 in π as well. By doing this, we can rewrite our

problem as:

P4 : R̂ = max
g

min
{
gTρ?1,g

Tρ2

}
s.t. (a), (b), (c), (d) in (17) . (18)

Importantly, problem P4 can be solved through standard linear programming algorithms

available in many dedicated software packages (e.g., Matlab or Octave, just to name a few).

In a practical system, the routine solving P4 can be executed at the relay (which has knowledge

of both H1 and H2), once per channel coherence time T . The resulting optimal distribution

of the relay transmit power is sent to S, which can simply use it in the expression of p?1 and

compute its optimal transmit power. Note that, although vector g? has size Np, only few of its

elements are non-zero (in our analysis we found that at most 3 elements of g? are non-zero). It

follows that, for each channel coherence time T , only such elements need to be transmitted to

S, thus entailing a very limited communication overhead.

A discussion on the accuracy of the proposed approximation method is reported in Sec. VII.
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Remark 5.1: For a given input vector π, problem P4 provides, as output, the rate R̂ as well

as the vector of coefficients g? maximizing the rate. In principle, within T there may be up to

Np phases, with the generic n-th phase lasting g?nT seconds and such that the relay transmits at

average power πn. In the practice, however, the resulting number of phases is small, since only

few coefficients g?n are positive, as shown by our numerical results in Sec. VII.

B. Lower bound

We now aim at providing a lower bound to the maximum achievable rate, which can be derived

without resorting to discretization. To this end, we consider (11) and plug in such expression of

the rate the definitions of R1(g) and R2(g). By doing so, we can write:

R = max
g(·)

min{R1(g), R2(g)}

= max
g(·)

min

{∫ pmax
2

0

g(p2)ρ?1(p2) dp2,

∫ pmax
2

0

g(p2)ρ2(p2) dp2

}
≥ max

g(·)

∫ pmax
2

0

g(p2) min {ρ?1(p2), ρ2(p2)} dp2

, RLB . (19)

Importantly, as shown below, one can prove that the optimal distribution of p2 maximizing

the above expression is given by the sum of two Dirac δ(·) functions.

Proposition 5.1: The expression of the maximixer g?LB(p2) providing the lower bound RLB

in (19) is given by g?LB = uδ(p2 − π1) + (1 − u)δ(p2 − π2), where u, π1, π2 are reported in

Table I as the system parameters vary.

Proof: We first recall the result in [26, Lemma 4.1], which states that, given a continuous

concave function, φ(p), and a probability density function (pdf), g(p), with support in [a, b] and

average
∫ b
a
pg(p) dp = m, then maxg(·)

∫ b
a
φ(p)g(p) dp = φ(m) and ming(·)

∫ b
a
φ(p)g(p) dp =

b−m
b−a φ(a)+

(
1− b−m

b−a

)
φ(b) are obtained, respectively, for g(p) = δ(p−m) and g(p) = b−m

b−a δ(p−

a) +
(
1− b−m

b−a

)
δ(p− b). When instead φ(p) is convex, the expressions reported above have to

be swapped.

Now, let v be the solution for p2 of the equation ρ?1(p2) = ρ2(p2). This solution always exists

and is unique since ρ?1(p2) and ρ2(p2) are, respectively, a decreasing and an increasing function

of p2, ρ?1(0) > ρ2(0), and ρ2(ω1) > ρ?1(ω1) = 0. We then proceed by identifying several cases
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defined by sets of condones on the system parameters and we derive the expression of the bound

for each of them. We first observe that, if pmax
2 ≤ v, the bound in (19) can be rewritten as

RLB = max
g(·)

∫ pmax
2

0

g(p2)ρ2(p2) dp2 = ρ2(p̄2)

by virtue of [26, Lemma 4.1]. In such a case, the maximizer is g?LB(p2) = δ(p2 − p̄2). Instead,

when pmax
2 > v, the integral in (19) can be decomposed in a sum of two terms:

RLB = max
g(·)

[∫ v

0

g(p2)ρ2(p2) dp2 +

∫ pmax
2

v

g(p2)ρ?1(p2) dp2

]
. (20)

Let g1(p2) and g2(p2) be two distributions with support, respectively, in [v, pmax
2 ] and [0, v] and

such that g(p2) = qg1(p2) + (1 − q)g2(p2), with q ∈ [0, 1]. By substituting such expression for

g(p2) in the left constraint in (12), we get (1 − q)p̄2,2 + qp̄2,1 = p̄2, thus p̄2,2 = p̄2−qp̄2,1

1−q where

p̄2,1 =
∫ pmax

2

v
p2g1(p2) dp2 and p̄2,2 =

∫ v
0
p2g2(p2) dp2 are, respectively, the average value of g1(·)

and g2(·). The maximization over g(·) in (20) can now be rewritten as the joint maximization

over the distributions g1(·) and g2(·), and over the variables q and p̄2,1. Note that, since the

average value of a convex distribution falls in its support, we have to impose:

(a) v ≤ p̄2,1 ≤ pmax
2 ; (b) 0 ≤ p̄2,2 ≤ v . (21)

By recalling that p̄2,2 = p̄2−qp̄2,1

1−q , the inequality (21)-(b) can be rewritten as v+ p̄2−v
q
≤ p̄2,1 ≤ p̄2

q

which, merged with (21)-(a), provides v +
[
p̄2−v
q

]+

≤ p̄2,1 ≤ min
{
pmax

2 , p̄2

q

}
. The above set of

values for p̄2,1 is non-empty if v + p̄2−v
q
≤ pmax

2 and v ≤ p̄2/q, i.e., if p̄2−v
pmax

2 −v ≤ q ≤ p̄2

v
. Finally,

by recalling that 0 ≤ q ≤ 1, the set of valid pairs (q, p̄2,1) is given by

Z=

{
(q, p̄2,1)

∣∣∣∣∣
[
p̄2−v
pmax

2 −v

]+

≤q≤min
{

1,
p̄2

v

}
, v+

[
p̄2−v
q

]+

≤p̄2,1≤min

{
pmax

2 ,
p̄2

q

}}
.

Equipped with this result, we can rewrite the bound in (20) as follows

RLB = max
(q,p̄2,1)∈Z

[
(1− q)ρ2

(
p̄2 − qp̄2,1

1− q

)
+ qW

]
(22)

where we applied [26, Lemma 4.1], defined W , maxg1(·)
∫ pmax

2

v
g1(p2)ρ?1(p2) dp2, and exploited

the relation p̄2,2 = p̄2−qp̄2,1

1−q . We now focus on the term W in (22); as shown in App. C, we have:

1) if ω̂ ≤ v or ω̂ ≥ pmax
2 , then

W = ρ?1(pmax
2 ) +

pmax
2 − p̄2,1

pmax
2 − v

[ρ?1(v)− ρ?1(pmax
2 )] ; (23)
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2) if v < ω̂ < pmax
2 , then, by defining z =

ρ?1(ω̂)−ρ?1(pmax
2 )

pmax
2 −ω̂ − ρ?1(v)−ρ?1(ω̂)

ω̂−v we have

W =


−ρ?1(ω̂)−ρ?1(pmax

2 )

pmax
2 −ω̂ p̄2,1 +

ρ?1(ω̂)pmax
2 −ρ?1(pmax

2 )ω̂

pmax
2 −ω̂ if z ≥ 0, p̄2,1 ≥ ω̂

−ρ?1(v)−ρ?1(ω̂)

ω̂−v p̄2,1 +
ρ?1(v)ω̂−ρ?1(ω̂)v

ω̂−v if z ≥ 0, p̄2,1 < ω̂

−ρ?1(v)−ρ?1(pmax
2 )

pmax
2 −v p̄2,1 +

ρ?1(v)pmax
2 −ρ?1(pmax

2 )v

pmax
2 −v if z < 0

(24)

Next, we observe that the first term in (22) decreases with p̄2,1, since ρ2(·) is an increasing

function. Moreover, also the expressions for W in (23) and (24) decrease as p̄2,1 increases. It

follows that both terms in (22) decrease with p̄2,1; hence, from the definition of Z , the maximizer

turns out to be p̄2,1 = v +
[
p̄2−v
q

]+

. The above expression for p̄2,1 leads to two cases: for p̄2,1:

• when p̄2 < v, we have p̄2,1 = v. In such a case, the expressions for W in (23) and (24) do

not depend on q and, as detailed in App. B, we obtain RLB = ρ2(p̄2) and g?LB = δ(p2− p̄2).

• the expression p̄2,1 = v + p̄2−v
q

holds when p̄2 ≥ v. According to the definition of Z , this

constraint implies that the range of valid values for q is p̄2−v
pmax

2 −v ≤ q ≤ 1. Substituting

p̄2,1 = v + p̄2−v
q

into (22), the expression of the lower bound reduces to

RLB = max
p̄2−v

pmax
2 −v≤q≤1

(1− q)ρ2(v) + qW |
p̄2,1=v+

p̄2−v
q
. (25)

Specifically, for ω̂ ≤ v or ω̂ ≥ pmax
2 , we use the expression of W in (23) and obtain:

RLB =
pmax

2 − p̄2

pmax
2 − v

ρ?1(v) +

(
1− pmax

2 − p̄2

pmax
2 − v

)
ρ?1(pmax

2 ) .

Instead, for v < ω̂ < pmax
2 , we use the expression of W in (24). As for the first term in (24),

we observe that p̄2,1 ≥ ω̂ and p̄2,1 = v + p̄2−v
q

imply q ≤ p̄2−v
ω̂−v . Therefore, we have

RLB =


pmax

2 −p̄2

pmax
2 −ω̂ ρ

?
1(ω̂) +

(
1− pmax

2 −p̄2

pmax
2 −ω̂

)
ρ?1(pmax

2 ) p̄2 ≥ ω̂

ω̂−p̄2

ω̂−v ρ
?
1(v) +

(
1− ω̂−p̄2

ω̂−v

)
ρ?1(ω̂) p̄2 < ω̂

(26)

being z ≥ 0. As for the second term in (24), we observe that p̄2,1 < ω̂ and p̄2,1 = v + p̄2−v
q

imply q > p̄2−v
ω̂−v . Thus,

RLB = max
max

{
p̄2−v

pmax
2 −v ,

p̄2−v
ω̂−v

}
≤q≤1

[
ρ?1(v)ω̂ − ρ?1(v)p̄2 + ρ?1(ω̂)p̄2 − ρ?1(ω̂)v

ω̂ − v

]

=
ω̂ − p̄2

ω̂ − v
ρ?1(v) +

(
1− ω̂ − p̄2

ω̂ − v

)
ρ?1(ω̂) (27)

since p̄2 ≤ p̄2,1 < ω̂ implies p̄2 < ω̂. As for the third term in (24), we have

RLB = max
p̄2−v

pmax
2 −v≤q≤1

[
ρ?1(v)(pmax

2 − p̄2) + ρ?1(pmax
2 )(p̄2 − v)

pmax
2 − v

]

=
pmax

2 − p̄2

pmax
2 − v

ρ?1(v) +

(
1− pmax

2 − p̄2

pmax
2 − v

)
ρ?1(pmax

2 ) . (28)
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TABLE I

PARAMETERS OF THE MAXIMIZER g?LB(p2) PROVIDING THE LOWER BOUND IN (19). p2 = v IS SUCH THAT ρ?1(v) = ρ2(v)

Condition u π1 π2

pmax
2 ≤ v 1 p̄2 -

pmax
2 > v; p̄2 < v 1 p̄2 -

pmax
2 > v; p̄2 ≥ v; ω̂ ≥ pmax

2 or ω̂ ≤ v pmax
2 −p̄2
pmax
2 −v v pmax

2

pmax
2 > v; p̄2 ≥ v; v < ω̂ < pmax

2 ; z < 0
pmax
2 −p̄2
pmax
2 −v v pmax

2

pmax
2 > v; p̄2 ≥ v; v < ω̂ < pmax

2 ; z ≥ 0; p̄2 < ω̂ ω̂−p̄2
ω̂−v v ω̂

pmax
2 > v; p̄2 ≥ v; v < ω̂ < pmax

2 ; z ≥ 0; p̄2 ≥ ω̂ pmax
2 −p̄2
pmax
2 −ω̂ ω̂ pmax

2

z =
ρ?1(ω̂)−ρ?1(pmax

2 )

pmax
2 −ω̂ − ρ?1(v)−ρ?1(ω̂)

ω̂−v

The above results are summarized in Table I.

We remark that, as shown in Sec. VII. the lower bound to the maximum achievable rate that

can be attained proves to be very tight, especially for low-medium SNR values.

C. Maximum achievable rate in absence of residual self-interference

The achievable rate in absence of residual self-interference can be obtained by setting β = 0.

In this case, the SINR at R is a function of the source transmit power only, and is given by

γ1(p1) = p1α1

I1
. Then, in analogy to (7), the instantaneous rate achieved on the S-R is given by

ρ0
1(p1) =

k∑
i=1

log

(
n1λ1,i

k
(γ1(p1) + `1,k)

)
(29)

for k = 1, . . . , n′1 − 1 and c1,k ≤ γ1(p1) < c1,k+1, and for k = n′1 and γ1(p1) ≥ c1,n′1
. Since

the expressions of the rates ρ0
1(p1) and ρ2(p2) in, respectively, (29) and (7) are both concave

functions, the maximization of the corresponding rates averaged over a time period can be

performed by using [26, Lemma 4.1]. Such a maximization is therefore obtained for a transmit

power at S and R equal to p̄1 and p̄2, respectively. Then the upper bound to R is given by

R0 = min
{
ρ0

1(p̄1), ρ2(p̄2)
}
.

VI. MASSIVE MIMO SYSTEMS AND HYBRID ASYMPTOTIC RATE APPROXIMATION

In this section, we first tackle mMIMO communications and present an approximated analysis

considering that the number of antennas grows large (Sec. VI-A). We then leverage our asymp-
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totic analysis to derive a low-complexity rate approximation that holds tight for systems with a

limited number of antennas (Sec. VI-B).

A. Asymptotic analysis of mMIMO systems

Here we address the case where the number of antennas at S, R, and D grows large – a

relevant scenario in 5G-and-beyond communications. In particular, we consider an asymptotic

regime where, as done in the previous sections, we assume a block fading channel with coherence

time equal to T . Also, we have that matrices H1 and H2 are full rank (i.e., n′1 = n1 and n′2 = n2)

and n1, n2,m1,m2 tend to infinity, while the ratios ζ1 = n1/m1, ζ2 = n2/m2, and ζr = n2/m1

remain constant. Clearly, under such conditions, we need to take the normalized achievable rate

as performance metric, i.e., R
n1

, as R would diverge. We can write:

R∞ , lim
n1,n2,m1,m2→∞

R

n1

= lim
n1,n2,m1,m2→∞

max
g(·)

min

{∫ pmax
2

0

g(p2)
ρ?1(p2)

n1

dp2,

∫ pmax
2

0

g(p2)
ρ2(p2)

n1

dp2

}
= max

g(·)
min

{∫ pmax
2

0

g(p2)ρ?,∞1 (p2) dp2,
ζr
ζ1

∫ pmax
2

0

g(p2)ρ∞2 (p2) dp2

}
(30)

where we defined ρ?,∞1 (p2) , limn1,m1→∞
ρ?1(p2)

n1
and ρ∞2 (p2) , limn2,m2→∞

ρ2(p2)
n2

. In the follow-

ing, we derive the expressions for ρ?,∞1 (p2) and ρ∞2 (p2).

We denote the S-R and R-D links with the index j = 1, 2. Then consider link j and

let F (nj)
j (λ) be the empirical cumulative distribution function (cdf) of the eigenvalues λj,i of

1
mj

HH
j Hj , i = 1, . . . , nj . As often assumed in the literature [30], under some conditions on

Hj , the empirical cdf F (nj)
j (·) tends to the asymptotic cdfs Fj(λ) as the number of transmit

and receive antennas tends to infinity, with constant ratio ζj =
nj
mj
≤ 1. Considering λj,i to be

ordered in decreasing order, by definition of empirical cdf, we have

F
(nj)
j (λj,k) = 1− k

nj
. (31)

In such asymptotic regime, and for k → ∞ with constant ratio y = k/nj , the empirical cdf

in (31) tends to

lim
k,nj→∞

F
(nj)
j (λj,k) = Fj(λ) = 1− y . (32)

Next, we denote with fj(·) the corresponding pdf, with support [aj, bj]. In the above asymptotic

regime, we can also write

lim
nj ,mj ,k→∞

`j,k = lim
nj ,mj ,k→∞

1

nj

k∑
i=1

1

λj,k
=

∫ bj

λ

1

z
fj(z) dz , `∞j (λ) (33)
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where, `j,k is as defined in (6) and (7), for j = 1, 2, and according to (32), λ = F−1
j (1− y).

Let us now focus on the S-R link. The asymptotic expression of the optimized transmit power

in (13) can be obtained by observing that, as the number of transmit antennas n1 grows, the

difference λ1,k−λ1,k+1 between any two adjacent ordered eigenvalues tends to 0, and so does the

difference ωk − ωk+1, since it is proportional to λ1,k − λ1,k+1. Let λ1 be the generic eigenvalue

related to the S-R link and ω = ψλ1α1

ζ1β
. According to (13), when the source power is smaller

than pmax
1 , we have limk,n1→∞

ψk
n1
− I1+βp2

α1
ζ1`1,k = ψy − I1+βp2

α1
ζ1`
∞
1 (λ1) whenever p2 = ω, i.e.,

λ1 = I1+βp2

ψα1
ζ1. Note that, to obtain the above expression, we exploited (31), (32), and (33). By

recalling that y = 1− Fj(λ), we get

ψy − I1 + βp2

α1

ζ1`
∞
1 (λ) = ψ [1− F1(λ1)− λ1`

∞
1 (λ1)] . (34)

In conclusion, the optimized source transmit power p?1(p2) in (13) tends to the asymptotic limit

p?,∞1 (p2) , min {pmax
1 , ψ [1− F1(λ1)− λ1`

∞
1 (λ1)]} (35)

where we recall that ψ is such that
∫ pmax

2

0
p?,∞1 (p2) dp2 = p̄1. Similarly, the SINR on the S-R link

in (14) tends asymptotically to γ?,∞1 (p2) = min
{
ζ1pmax

1

λ1ψ
, ζ1

[
1−F1(λ1)

λ1
− `∞1 (λ1)

]}
. When k < n1

and c1,k ≤ γ?1(p2) < c1,k+1, we replace the above expression in (6) and obtain

ρ?,∞1 (p2) = lim
n1,m1→∞

ρ?1(p2)

n1

= lim
n1,m1,k→∞

1

n1

k∑
i=1

log

[
n1λ1,i

k

(
γ?1(p2)

ζ1

+ `1,k

)]
=

∫ b1

λ1

log

[
z

y

(
γ?,∞1 (p2)

ζ1

+ `∞1 (λ1)

)]
f1(z) dz . (36)

Recall that y = k/n1 and the eigenvalues are ordered in decreasing order, thus the k-th eigenvalue

in a finite system corresponds to z = λ1 in the asymptotic regime. Since asymptotically c1,k −

c1,k+1 → 0, given c1,k+1 ≤ γ?1(p2) ≤ c1,k, the above result holds if limn1,m1,k→∞ γ
?
1(p2) =

limn1,m1,k→∞ c1,k, i.e.,

γ?,∞1 (p2) = ζ1

(
y

λ1

− `∞1 (λ1)

)
. (37)

By substituting (37) in (36), we obtain ρ?,∞1 (p2) = J1(λ1) for γ?,∞1 (p2) = ζ1

(
1−F1(λ1)

λ1
− `∞1 (λ1)

)
where we defined J1(λ1) ,

∫ b1
λ1
f1(z) log z

λ1
dz. When k = n1, we observe that asymptoti-
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cally limn1,m1→∞ λ1,n1 = a1. Therefore, the condition γ?1(p2) ≥ c1,n1 becomes γ?,∞1 (p2) >

ζ1

(
1
a1
− `∞1 (a1)

)
. Hence, we have

ρ?,∞1 (p2) = lim
n1,m1→∞

1

n1

n1∑
i=1

log

[
λ1,i

(
γ?1(p2)

ζ1

+ `1,n1

)]
=

∫ b1

a1

log

[
z

(
γ?,∞1 (p2)

ζ1

+ `∞1 (a1)

)]
f1(z) dz

= J1(a1) + log

[
a1

(
γ?,∞1 (p2)

ζ1

+ `∞1 (a1)

)]
. (38)

In conclusion, by defining Qj(s) ,
∫ bj
s
fj(z) log z dz, we have

ρ?,∞1 (p2) =

 Q1(λ1)− log λ1 for γ?,∞1 (p2)

ζ1
= 1−F1(λ1)

λ1
− `∞1 (λ1)

Q1(a1) + log
(
γ?,∞1 (p2)

ζ1
+ `∞1 (a1)

)
for γ?,∞1 (p2)

ζ1
> 1

a1
− `∞1 (a1) .

(39)

Similarly, if λ2 is the generic eigenvalue of 1
m2

HH
2 H2, the asymptotic normalized rate ρ∞2 (p2) ,

limn2,m2→∞
ρ2(p2)
n2

for the R-D link can be written as

ρ∞2 (p2) =

 Q2(λ2)− log λ2 for γ2(p2)
ζ2

= 1−F2(λ2)
λ2

− `∞2 (λ2)

Q2(a2) + log
(
γ2(p2)
ζ2

+ `∞2 (a2)
)

for γ2(p)
ζ2

> 1
a2
− `∞2 (a2) .

Next, we consider the case of high practical relevance where the channel is affected by

Rayleigh fading. In the latter case, we also consider that the rank of the matrix E[HH
j ]E[Hj] is

constant and independent of nj . Under these conditions, the asymptotic distribution, fj(λ), of

the eigenvalues of the channel matrices 1
mj

HH
j Hj follows the Marčenko-Pastur law [30] fj(z) =

1
2πζjz

√
(z − aj)(bj − z) with support [aj, bj], and where aj = (1−

√
ζj)

2, bj = (1 +
√
ζj)

2, and

0 < ζj ≤ 1. The corresponding cdf is

Fj(z) =
1

2
+ zfj(z) +

aj + bj
4πζj

arcsin

(
2z − aj − bj
bj − aj

)
−
√
ajbj

2πζj
arcsin

(
(aj + bj)z − 2ajbj

z(bj − aj)

)
.

Moreover,

`∞j (z) =


1

2(1−ζj)+fj(z)− 1+ζj
2πζj(1−ζj) arcsin

(
(aj+bj)z−2ajbj

z(bj−aj)

)
+ 1

2πζj
arcsin

(
2z−aj−bj
bj−aj

)
if ζj < 1

1
π

√
4−z
z

+ 1
2π

arcsin
(
z
2
− 1
)
− 1

4
if ζj = 1 .

Equipped with the above expressions, we can approximate the rate R∞ by discretizing the

distribution g(·), as done in Sec. V-A. From (30), we obtain:

P5: R̂∞ = max
g

min

{
gTρ?,∞1 ,

ζr
ζ1

gTρ∞2

}
s.t.

(a) gTp?,∞1 = p̄1 , (b) gTπ = p̄2 , (c) g ≥ 0 , (d) gT1 = 1 (40)
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where we recall that g(p2) =
∑Np

n=1 gnδ(p2 − πn), π = [π1, . . . , πNp ]
T, g = [g1, . . . , gNp ]

T, and

we defined p?,∞1 = [p?,∞1 (π1), . . . , p?,∞1 (πNp)]
T, ρ?,∞1 = [ρ?,∞1 (π1), . . . , ρ?,∞1 (πNp)]

T and ρ∞2 =

[ρ∞2 (π1), . . . , ρ∞2 (πNp)]
T. Again, when the vector π is suitably chosen, the normalized rate R̂∞

is an excellent approximation of R∞, as also discussed in Sec. VII.

B. Hybrid asymptotic approximation for MIMO systems

We now present a hybrid methodology to approximate the rate R of a MIMO system with an

arbitrary (limited) number of antennas, leveraging g∞(p2) and p?,∞1 (p2) as sub-optimal choices

for computing the rate in (11). The advantage of such an approach is that g∞(p2) does not

depend on a specific channel realization, rather on the distribution of the channel gains. Thus,

given the system parameters and the channel distribution, g∞(p2) has to be computed only once,

as opposed to (11) that needs to be recomputed as frequently as once per channel coherence time.

Since the relay does not need to send control information to the source any longer, our hybrid

methodology eliminates the communication overhead; furthermore, it is robust to imperfect CSI,

provided that the estimated channel matrices are still Rayleigh distributed.

Let g∞(p2) =
∑Np

n=1 g
∞
n δ(p2− πn) and p?,∞1 (p2) =

∑Np
n=1 p

?,∞
1 (πn)δ(p2− πn) be, respectively,

the distribution of the relay transmit power and the source transmit power maximizing the

asymptotic rate in (40), when the vector of relay powers, π, is provided. By replacing in (11)

g(p2) and p1(p2) with g∞(p2) and p?,∞1 (p2), respectively, we have:

P6: RH = min {R1(g∞, p?,∞1 ), R2(g∞)}

= min
{
ρT

1 g∞,ρT
2 g∞

}
(41)

where ρ1 = [ρ1(p?,∞1 (π1), π1), . . . , ρ1(p?,∞1 (πNp), πNp)]
T and ρ2 = [ρ2(π1), . . . , ρ2(πNp)]

T, and

the functions ρ1(p1, p2) and ρ2(p2) are defined as in (6) and (7), respectively. We remark that

by replacing g(p2) and p1(p2) with, respectively, g∞(p2) and p?,∞1 (p2), the constraints in (9)

and (12) are automatically satisfied.

Importantly, in Sec. VII we show that the adoption in P2 of the above suboptimal choices for

g(p2) and p1(p2) (e.g., g∞(p2) and p?,∞1 (p2)) yields a very limited degradation of the achievable

rate.

VII. NUMERICAL RESULTS

To evaluate the performance of our proposed solution, we consider a scenario similar to that

employed in [15], [26] where the distance between the source and the relay and between the
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relay and the destination is set to d = 300 m. We assume that communications take place using

carrier frequency fc = 2.6 GHz and signal bandwidth B = 200 kHz. The path loss for both links

is given by αj =
(

c
4πfc

)2

d−pe j = 1, 2, where pe = 3 is the path loss exponent. The additive

noise at both relay and destination has power spectral density N0 = −174 dBm/Hz so that the

noise terms are given by I1 = I2 = N0B = −121 dBm. Furthermore, we assume that S-R

and R-D links are affected by Rayleigh fading and that the entries of the matrices H1 and H2

are random independent variables, having circularly-symmetric complex Gaussian distribution

with zero-mean and unit-variance. Since such matrices have full rank with probability 1, in the

following we assume n′1 = n1 and n′2 = n2.

We first evaluate the performance obtained through the approximate solution in (18) and we

discuss its accuracy. To this end, in Fig. 4(left) we show the rate R̂, computed as in (18) and

obtained for a single realization of the channel matrices H1 and H2, for n1 = m1 = n2 = m2 = 4,

pmax
2 = 23 dBm, p̄2 = 20 dBm, pmax

1 = p̄1 + 3 dB, and β = −125 dB. Each curve refers to a

different number of discretization points, Np, which is also the size of vector π = [π1, . . . , πNp ]
T.

The elements of π are selected as described in Sec. V-A. Looking at Fig. 4(left), we observe

that:

• the rate R̂ increases with Np. Values of Np larger than 200 do not provide further gain;

• the solution of problem P4 in (18) provides up to three positive weights, gn, regardless the

value of Np;

• for p̄1 < 20 dB and p̄1 > 38 dB, the curves do not depend on Np, while they slightly differ

in the range 20 dB < p̄1 < 38 dB. Indeed, we have observed that, for low values of p̄1, (18)

provides two positive weights gn, namely for p2 = 0 and p2 = pmax
2 while, for p̄1 > 38 dB,

the only positive weight is for p2 = p̄2. As for 20 dB < p̄1 < 38 dB, the curves converge

very fast as Np grows. We then consider the rate obtained for Np = 200 as an almost perfect

approximation of R.

Let R̂Np be the rate obtained by solving (18) using as input a vector π composed of Np

elements, i.e., Np − 2 logarithmically spaced elements plus the elements {0, p̄2}, as described

in Sec. V-A where ε = 10−10. In Fig. 4(right), to quantify the effect of Np on R̂, we show the

relative rate loss R̂loss = |1− R̂Np

R̂200
|, averaged over 100 realizations of the channel matrices. As

can be observed, Np = 5 provides less than 5% rate loss, while for Np = 100 the loss becomes

negligible (lower than 10−4).

In the following, we will use Np = 50 as a fair trade-off between accuracy of the rate R̂ and
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Fig. 4. Left: achievable rate as the number of discretization points Np varies, for n1 = m1 = n2 = m2 = 4, pmax
2 = 23 dBm,

p̄2 = 20 dBm, and pmax
1 = p̄1 + 3 dB. Right: rate loss as the number of discretization points Np varies, for a given channel

realization, n1 = m1 = n2 = m2 = 4, pmax
2 = 23 dBm, p̄2 = 20 dBm, and pmax

1 = p̄1 + 3 dB.

the complexity of problem P4, as well as for solving P5 and computing the asymptotic rate. In

particular, for the same system parameters considered above, Fig. 5 depicts the distribution of

the achievable rate, R̂, versus the average transmit power at the source, p̄1, when the number of

transmitting or receiving antennas at all devices is set to n (i.e., n1 = m1 = n2 = m2 = n). More

specifically, we consider n = 2 (left plot), n = 4 (center plot), and n = 16 (right plot). For each

value of p̄1, the lines limiting the shaded regions represent the percentiles {10, 20, . . . , 90} of the

distribution. The solid line represents the median while the dashed line denotes the asymptotic

rate nR̂∞. It can be observed that, as n increases, the distribution of R̂ rapidly converges to the

asymptotic rate. Although the convergence is faster for lower values of p̄1, for n = 16 the 10-th

and 90-th percentiles tightly match the asymptotic rate for all considered values of p̄1.

We remark that, since the discretization points we used are distributed over the entire support

of the objective function in problem P2 and the involved functions are C∞ (except for a discrete

set of points), rate R̂ converges to R as Np grows. For the same reason, rate R̂∞ converges

to R∞. Moreover, as the number of antennas tends to infinity, the normalized rate R
n
→ R∞

because of the convergence of the empirical eigenvalue distribution F (nj)
j (λj,k) to the asymptotic

distribution Fj(λ). We then conclude that, for sufficiently large values of Np and n, rate nR̂∞

is an excellent approximation for R.

We now evaluate the performance of the hybrid technique outlined in Sec. VI-B. Fig. 6(left)

compares the rate R̂ obtained by solving P4, against the rate RH, obtained by solving P5. Both
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rates are averaged over 100 realizations of the channel matrices H1 and H2. We observe that

RH ≤ R̂ as expected, however the rate loss is very limited, especially when the number of

antennas, n, is greater or equal to 4. Also, the figure shows that, for small and large values

of p̄2, the two rates coincide. This is due to the fact that in such cases P4 and P5 provide, as

output, the same maximizing distribution g(·).

In Fig. 6(right), we compare the rate achieved by the proposed techniques for n1 = m1 =

n2 = m2 = 4. Specifically, (i) the solid line represents the rate R̂, obtained by solving P4;

(ii) the dashed line denotes the lower-bound RLB defined in (19); (iii) the dotted line refers to

the rate, RH, achieved by the hybrid technique proposed in Sec. VI-B; (iv) the dash-dotted line

indicates the rate, RHD, achieved by the system when the relay is constrained to work in the

conventional HD mode, for which the rate is given by

RHD = max
τ

min

{
(1− σ)ρ1

(
p̄2

1− σ
, 0

)
, σρ2

( p̄1

τ

)}
subject to the average power constraints in (12) and where ρ1(p1, p2) and ρ2(p2) are defined

in (6) and (7), respectively (this scheme implies that the time period is divided in two phases

only, of duration σT and (1− σ)T , respectively); (v) the line with markers represents the rate,

RFD obtained when the relay always works in FD mode, and p2 = p̄2 and p1 = p̄1.

Fig. 6(top right) presents the achievable rate versus p̄1 for p̄2 = p̄1 and pmax
1 = pmax

2 = p̄1 +

10 dB. We observe that, again, the hybrid technique closely matches R̂, showing a performance

loss lower than 1 dB. The bound RLB is very tight for low values of transmit powers, whereas

a relay exclusively working in HD mode, reduces the system performance of about 4 dB. The

system working exclusively in FD mode shows instead a horizontal asymptote for high values

of p̄1 and p̄2. Indeed, given the expressions of the SINR on the two links (see Sec. III-A), it

is clear that, given p̄1 = p̄2, the SINR on the S-R link becomes the network bottleneck as p̄2

increases.

Finally, in Fig. 6(bottom right) we set p̄1 = 20 dBm and pmax
1 = 23 dBm, and we show the

achievable rates versus the average SNR on the R-D link, γ̄2 = p̄2α2/I2. Also in this case, the

hybrid technique exhibits a limited performance loss in the medium-high SNR region, whereas

the lower bound is extremely tight for all low-medium values of SNR. Importantly, the results

in Fig. 6 demonstrate that the hybrid technique is very appealing in relay communications

even when the transceivers are equipped with a small number of antennas. Indeed, it requires

essentially no communication overhead, at the price of a very small degradation in the achievable
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communication rate. When instead the system works in FD mode all the time, we observe a

severe drop in performance for high values of γ̄2: as γ̄2 grows while p̄1 remains constant, the

SINR, hence the throughput, on the S-R link tends to zero.

Finally, let us discuss the resulting operational modes adopted at the relay. Let tHD be the

fraction of time the relay works in HD mode. Referring to Fig. 6(bottom right) and to the curve

obtained by solving problem P4 (i.e., the rate R̂), we observed that tHD = 0 for γ̄2 ≤ 20 dB,

tHD = 0.39 for γ̄2 = 30 dB, and tHD = 0.5 for γ̄2 ≥ 40 dB. As expected, tHD increases with the

relay average transmit power p̄2, which is proportional to γ̄2. Indeed, as p̄2 increases, the best

option for the source is to remain silent for a larger fraction of time (HD-TX mode), according

to the optimal power profile in (13). The capability of the relay to operate in FD mode is instead

fully exploited in the low-medium SNR regime on the R-D link.

Fig. 5. Distribution of the achievable rate R̂, for n1 = m1 = n2 = m2 = 2 (left), n1 = m1 = n2 = m2 = 4 (center), and

n1 = m1 = n2 = m2 = 16 (right) pmax
2 = 23 dBm, p̄2 = 20 dBm, and pmax

1 = p̄1 + 3 dB. The percentiles {10, 20, . . . , 90}

are denoted by the lines limiting the shaded regions, while the asymptotic rate is represented by the red dashed line.

VIII. CONCLUSIONS

We modeled a two-hop relay network where the relay can work in FD or HD mode and

all nodes are equipped with multiple antennas. Considering practical operational conditions, we

analysed the achievable rate performance and determined the optimal operational mode at the

relay as well as the transmit power level at both the relay and the source nodes. To do this, we

first selected the transmit power at the relay as the main decision variable and, conditioned to the

value of such variable, we derived a closed-form expression for the optimal transmit power at

the source. We then leveraged the latter expression to get an analytical formulation of the overall

problem. Given its complexity, we presented an approximate solution as well as an analytical
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Fig. 6. Left: average achievable rate R̂ and RH for different values of the the number of antennas, as p̄1 varies and for

pmax
2 = 23 dBm, p̄2 = 20 dBm, and pmax

1 = p̄1 + 3 dB. Right-top: average achievable rate plotted versus p̄1 = p̄2, for

n1 = m1 = n2 = m2 = 4, pmax
1 = pmax

2 = p̄2 + 10 dB. Right-bottom: average achievable rate plotted versus the average SNR

γ̄2, for n1 = m1 = n2 = m2 = 4, p̄1 = 20 dB, pmax
1 = 23 dB, and pmax

2 = p̄2 + 3 dB.

expression for the lower bound to the source-destination achievable rate and for the performance

in the absence of residual self-interference.

We then addressed an mMIMO scenario and, through an asymptotic analysis, we obtained

a semi-analytical, low-complexity method to determine the optimal transmit power at both the

source and the relay, and the optimal operational mode at the latter node. Remarkably, this

expression is independent of the instantaneous channel conditions and can be conveniently used

to obtain the optimal system settings, even when the nodes are equipped with a small number

of antennas.

APPENDIX A

PROOF OF PROPOSITION 4.1

We are interested in finding the maximizer, p?1(p2), of the objective function in P1. To this end,

we write the Lagrangian of the problem L(p1, p2) = −g(p2)ρ1(p1, p2) +ψ′g(p2)p1 where ψ′ ≥ 0

is the Lagrange multiplier. Then, when P (p) 6= pmax
1 and p1(p2) 6= 0, by imposing ∂L(p1,p2)

∂p1
= 0,

we obtain ψ′ = ∂ρ1(p1,p2)
∂p1

. We recall that the SINR, γ1(p1, p2), on the source-relay link, takes

the form γ1(p2) = p1α1

I1+βp2
and the rate ρ1(p1, p2) in (6) can be rewritten as a piecewise function,
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continuous in p1

ρ1(p1, p2) =
k∑
i=1

log

[
λ1,in1

k

(
Pα1/ζ1

I1 + βp
+ `1,k

)]
(42)

for k = 1, . . . , n′1 − 1 and Lk(p2) ≤ p1 ≤ Lk+1(p2), and for k = n′1 and p1 ≥ Ln1(p), where

Lk(p2) =
c1,k
α1

(I1 + βp2). Since ∂ρ1(p1,p2)
∂p1

is continuous in p1 and monotonically decreasing for

p1 > 0, the equation ψ′ = ∂ρ1(p1,p2)
∂p1

has a unique solution. As ψ′ can be arbitrarily defined,

let us set ψ′ = n1

ψ
where ψ is a new Lagrange multiplier. Then, by using (42), we first obtain

ψ =
p1+

I1+βp2
α1

ζ1`1,k

k/n1
for k = 1, . . . , n′1− 1 and Lk(p2) ≤ p1 < Lk+1(p2), and for k = n′1 and p1 ≥

Ln′1(p2). The solution of the above equation is p̃1(p2) = ψk
n1
− I1+βp2

α1
ζ1`1,k for k = 1, . . . , n′1− 1

and Lk(p2) ≤ p̃1(p2) < Lk+1(p2), and for k = n′1 and p̃1(p2) ≥ Ln′1(p2). The above expression

can be simplified by observing that the intersection of p̃1(p2) with Lk(p2) is unique for every k.

By solving p̃1(p2) = Lk(p2), we get p2 = ωk ,
ψλ1,kα1

ζ1β
− I1

β
. Thus,

p̃1(p2) =

 ψk
n1
− I1+βp

α1
ζ1`1,k if ωk+1≤p2<ωk, k=1, . . ., n′1−1 and p2<ωn′1 , k=n′1

0 if p2≥ω1 .
(43)

Note that the last line in (43) can be derived considering that p̃1(p2) is a decreasing function of

p2 with p2 ∈ [0, pmax
2 ]. Since p̃1(p2) = 0 for p2 = ω1, the optimal source transmit power is zero

also for any p2 > ω1. Then, we consider the constraint on the maximum transmit power at S

and write p?1(p2) = min{p̃1(p2), pmax
1 }. Finally, we solve the equation p̃1(p2) = pmax

1 and obtain

p2 = ω̂ = α1
k̂ψ/n1−pmax

1

ζ1`1,k̂β
− I1

β
where k̂ = arg maxk=1,...,n′1

kψ/n1−pmax
1

`1,k
represents the index of the

piece of p̃1(p2) in which ω̂ lies. We can then write the optimal transmit power at S, p?1(p2), as

in (13).

APPENDIX B

DERIVATION OF THE LOWER BOUND FOR p̄2,1 = v

The solution p̄2,1 = v holds when p̄2 < v. However, since p̄2,1 is the average of g1(p2), we

can write p̄2,1 =
∫ pmax

2

v
p2g1(p2) dp2 = v, which implies g1(p2) = δ(p2− v). Moreover, according

to (22), the condition p̄2 < v implies that the range of valid values for q reduces to 0 ≤ q ≤ p̄2/v,

since in this case p̄2

v
< 1 and p̄2−v

pmax
2 −v < 0. Summarizing, under the conditions pmax

2 > v and

p̄2 < v, the lower-bound in (22) becomes

RLB = max
0≤q≤p̄2/v

(1− q)ρ2

(
p̄2 − qv
1− q

)
+ qρ?1(v) = ρ2(p̄2)
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In (44), we first used g1(p2) = δ(p2−v), then we exploited the relation ρ?1(v) = ρ2(v), and, finally

we observed that h(q) = (1 − q)ρ2

(
p̄2−qv
1−q

)
+ qρ2(v) decreases with q since, h(0) ≥ h(p̄2/v),

h′′(q) < 0, and h′(0) ≤ 0. Then, looking at (19), we note that the expression coincides with (44)

for g?LB(p2) = δ(p− p̄2), which thus results to be the maximizer.

APPENDIX C

PROOF OF (24)

We are interested in computing W . If ω̂ ≤ v or ω̂ ≥ pmax
2 , then the function ρ?1(p2) is convex

for p2 ∈ [v, pmax
2 ]. Thanks to [26, Lemma 4.1], we have

W = ρ?1(pmax
2 ) +

pmax
2 − p̄2,1

pmax
2 − v

[ρ?1(v)− ρ?1(pmax
2 )] . (44)

If, instead, v < ω̂ < pmax
2 , the function ρ?1(p2) is not convex for p2 ∈ [v, pmax

2 ], but it is made of

two convex pieces, as discussed in Sec. IV-B. Therefore, we can think of g1(·) as a combination

of two distributions, say g1,1(·) and g1,2(·), with support in [v, ω̂] and [ω̂, pmax
2 ], respectively, and

such that g1(x) = ug1,1(x) + (1− u)g1,2(x), with 0 ≤ u ≤ 1. For sake of simplicity, let us make

a change of notation and simply refer to [v, ω̂] as [a, b], and [ω̂, pmax
2 ] as [b, c].

We also define the average of the distributions g1,1(·) and g1,2(·) as µ1 and µ2, respectively,

with a ≤ µ1 ≤ b, and b ≤ µ2 ≤ c. Then, the constraint on the average of g1(·) provides∫ c
a
xg1(x) dx = µ = uµ1 + (1− u)µ2, which leads to µ2 = µ−pµ1

1−p . Thus, we can rewrite W as

W = max
g1,1(·),g1,2(·),u

[
u

∫ b

a

g1,1(x)ρ(x) dx+ (1− u)

∫ c

b

g1,2(x)ρ(x) dx

]
(a)
= max

u,µ1

u[d1ρ(a) + (1− d1)ρ(b)] + (1− u)[d2ρ(b) + (1− d2)ρ(c)] (45)

where d1 = b−µ1

b−a , d2 = c−µ2

c−b , and in the last equality we applied twice the result in [26, Lemma

4.1], thanks to the convexity of ρ(x) for x ∈ [a, b) and x ∈ (b, c]. By merging this result with

the inequalities b ≤ µ2 ≤ c, we obtain c − c−µ
u
≤ µ1 ≤ b − b−µ

u
. Furthermore, by introducing

the constraint a ≤ µ1 ≤ b, we get max
{
a, c− c−µ

u

}
≤ µ1 ≤ min

{
b, b− b−µ

u

}
. After some

algebra, such result can be rewritten as [b− µ]+ ≤ t ≤ min {u(b− a), u(b− c) + c− µ} where

we defined t , u(b−µ1). Clearly, the set of possible values for t is non-empty if the constraints

0 ≤ u(b−a), 0 ≤ u(b− c)+ c−µ, b−µ ≤ u(b−a), b−µ ≤ u(b− c)+ c−µ, 0 ≤ u ≤ 1 are met,

which means
[
b−µ
b−a

]+ ≤ u ≤ min
{

1, c−µ
c−b

}
. We now observe that W in (45) can be rewritten as

W = maxu,µ1 w where w = −zt + y, with z , ρ(b)−ρ(c)
c−b − ρ(a)−ρ(b)

b−a and y , ρ(b)(c−µ)−ρ(c)(b−µ)
c−b .

The expression for w varies depending on z and µ, as follows:
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• µ ≤ b and z ≥ 0: when z ≥ 0, w is maximized if t is minimized, i.e., we impose

t = [b− µ]+. Since µ ≤ b, this reduces to t = b− µ. Then, W = −ρ(a)−ρ(b)
b−a µ+ bρ(a)−aρ(b)

b−a .

• µ > b and z ≥ 0: by following the same considerations as before, the maximum is achieved

when t = 0 and we obtain W = −ρ(b)−ρ(c)
c−b µ+ cρ(b)−bρ(c)

c−b .

• µ ≤ b and z < 0: when z < 0, w is maximized if t is maximized. Then we set t =

min {u(b− a), u(b− c) + c− µ}. Moreover, when µ ≤ b, the range of possible values for

u reduces to b−µ
b−a ≤ u ≤ 1. The optimum is achieved when u = c−µ

c−a , i.e., t = c−µ
c−a (b − a),

and we get W = −ρ(a)−ρ(c)
c−a µ+ cρ(a)−aρ(c)

c−a .

• µ > b and z < 0: we proceed as above and choose t = min {u(b− a), u(b− c) + c− µ}.

In this case, since µ > b, the range of possible values for u reduces to 0 ≤ u ≤ c−µ
c−b . Again,

the optimum is achieved when u = c−µ
c−a and we obtain W = −ρ(a)−ρ(c)

c−a µ+ cρ(a)−aρ(c)
c−a .
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