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Abstract. Applications such as surveillance, banking and healthcare deal with 

sensitive data whose confidentiality and integrity depends on accurate human 

recognition. In this sense, the crucial mechanism for performing an effective ac-

cess control is authentication, which unequivocally yields user identity. In 2018, 

just in North America, around 445K identity thefts have been denounced. The 

most adopted strategy for automatic identity recognition uses a secret for encrypt-

ing and decrypting the authentication information. This approach works very well 

until the secret is kept safe. Electrocardiograms (ECGs) can be exploited for bi-

ometric purposes because both the physiological and geometrical differences in 

each human heart correspond to uniqueness in the ECG morphology. Compared 

with classical biometric techniques, e.g. fingerprints, ECG-based methods can 

definitely be considered a more reliable and safer way for user authentication due 

to ECG inherent robustness to circumvention, obfuscation and replay attacks. In 

this paper, the ECG WATCH, a non-expensive wristwatch for recording ECGs 

anytime, anywhere, in just 10 seconds, is proposed for user authentication. The 

ECG WATCH acquisitions have been used to train a shallow neural network, 

which has reached a 99% classification accuracy and 100% intruder recognition 

rate. 

Keywords: Biometrics, CCA, ECG, EKG, ECG WATCH, Electrocardiogram, 

Intruder recognition, Multilayer perceptron, PCA, Supervised learning, Weara-

ble device. 

1 Introduction 

In the last decades, the increasing amount of information technologies, smartphones 

and wearables, has led to an exponential growth of the data shared on internet. Infor-

mation is always travelling around, e.g. over Bluetooth. In such a scenario, each piece 

of information must be accessible only to its authorized users, aka access control [1]. 

Applications such as surveillance, banking and healthcare deal with sensitive data 

whose confidentiality and integrity depends on accurate human recognition [2]. In this 
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sense, the crucial mechanism for performing an effective access control is authentica-

tion, which unequivocally yields user identity. 

Biometric-based techniques take advantage of intrinsic human properties, such as 

physiological and behavioural; the former are related to some characteristic of human 

body like fingerprints [3] and retinas [4], while the latter one relies on the subject be-

haviour, e.g. typing rhythm, gait, and voice. Since the authentication method needs to 

be robust to forgery, not every biological parameter can be employed for biometrics. In 

this sense, it can be used any physiological and/or behavioural feature that fulfils re-

quirements such as universality, distinctiveness and permanence [5]. 

ECG biometrics. Because of its inherent robustness to circumvention, obfuscation and 

replay attacks, a biosignals-based approach has been largely explored during the last 

decades [6]. The idea is to exploit vital signals typically employed for medical diagno-

ses - such as electroencephalogram (EEG) [6,7], photoplethysmography [8] and elec-

trocardiogram (ECG)  [9,10] - for biometric purposes. In particular, the latter is quite 

interesting because both the physiological and geometrical differences in each human 

heart correspond to uniqueness in the ECG morphology [11]. In this sense, ECG exhib-

its various meaningful properties - such as uniqueness, permanence, and ease of collec-

tion [9]- that make ECG a preferable choice over both PPG and EEG; compared with 

classical biometric techniques, e.g. fingerprints, ECG-based methods can definitely be 

considered a more reliable and safer way for user authentication [12] because: 

 ECG is an internal signal and no traces remain after its acquisition, i.e. it is harder to 

be sniffed without the user noticing. 

 The inherent inter-variability of each recording implies ECG is difficult to be fabri-

cated. 

 ECG acquisition is less prone to ambient noise than other methods, such as voice 

[13,14] or face recognition [15], where ambient noise or lighting conditions can 

deeply affect the recognition process. 

 The ECG signal can be acquired via various conductive materials and simple elec-

tronics, which can also be easily embedded in fabric or wearables. 

 

Paper outline. The rest of the paper is organized as follows. Sec. 2 presents the state 

of the art of ECG-based neural biometric techniques. In Sec. 3 the proposed approach, 

based on wearable devices, is detailed. Sec. 4 illustrates the experimental ECG dataset, 

whose manifold and intrinsic dimensionality is analysed in Sec. 5. The chosen shallow 

neural network for user authentication is described in Sec. 6. Finally, Sec. 7 yields the 

conclusions. 

2 State of the art 

ECG based biometrics has proven to be robust to both emotional and mental state var-

iations [16]. With respect to the nature of the considered features ECG-based biometric 

systems can be clustered into three groups: fiducial, non-fiducial and hybrid.  



3 

The former approach is based on the extraction of specific points on the ECG heart-

beat, called fiducials, and their usage as input features, which may also involve their 

amplitude, angle, or duration.  The fifteen fiducial features based on the R peaks used 

in [17] yield 82% and 79% heartbeat identification rates using two different ECG sites, 

neck and chest, respectively. The fiducial amplitude and duration, together with QRS 

and PR intervals, are exploited in [18]; the method reaches 79% and 85.3% of accuracy 

w.r.t. different lead configurations.  

Non-fiducial methods are based on statistical attributes of the signal, in either the 

time or frequency domain, rather than specific points on the electrocardiogram curve. 

Autocorrelation and linear dimension reduction using kernel principal component anal-

ysis (kPCA) and SVM [19] is used in [20]. K-nearest neighbourhood classifier and 

Hadamard transform were exploited in [21]. 1-D convolutional neural networks were 

used in [22]. The discrete cosine transform and autocorrelation coefficients are em-

ployed in [23,24,25].  

Finally, both fiducial and non-fiducial features are combined in the latter category  

[26,27], which, in this sense, is called hybrid. For instance, [11] presents a technique 

where the fiducial features are the positions and amplitudes of the P, Q, R, S and T 

points, while the non-fiducial attributes are represented by the autocorrelation and dis-

crete cosine transform coefficients. 

3 The ECG WATCH biometric system 

Data breaches can be prevented by using biometric authentication devices for limiting 

the access to specific software and sites such as airport security areas or hospital neo-

natal wards. The identity and access management market is quickly increasing (today 

is bigger than $4bn), with biometric hardware credentials being a key growth trend 

[28]; specifically, a rising amount of companies is working for using ECG biometrics 

in both consumer and enterprise applications, such as smart clothing, access control 

cards and wrist wearables [12]. 

In this contest, a perfect tool for ECG biometric authentication is the ECG-WATCH 

[29,30], shown in Fig. 1. It is wearable and unobtrusive; it records, in only 10 s, a single-

lead ECG, which will be shown into a smartphone or desktop app; acquisitions are 

stored in the smartphone in an open format; data can also be shared to physicians for 

deeper analysis. The device is as big as an everyday watch; thus, it can be constantly 

worn at wrist without any discomfort for the user; it is low cost (30 €) and, above all, 

wireless (no long cables are required). In this sense, the ECG-WATCH has been de-

signed as a full-heart-monitoring too; indeed, the app is provided with an automatic 

silent atrial fibrillation detecting algorithm [31]. The ECG WATCH uses two dry elec-

trodes (one on top and the other on the back) to measure the user electrical potential 

difference along one of the three peripheral leads (I, II , III) of the Einthoven's triangle 

[32]: when it placed between user wrists, it acquires the lead I; when signal is recorded 

among the left leg and the right arm, the device measures the lead II; finally, if it is used 

between the left leg and arm, it gathers the lead III. 
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Fig. 1. The ECG WATCH 

In [33] authors have proven device acquisition quality, which has been then ex-

ploited for pathology recognition through a neural system [34]. In this work, instead of 

classifying heart diseases, an artificial neural network [35-42] is used for discriminating 

among different individuals. Due to the employment of wearable devices and mobile 

apps, and the need of a fast recognition algorithm, a shallow neural network [43,44,45] 

analogous to the one proposed in [46] is preferred to deeper models such the 1-D con-

volutional neural network of [47]. 

4 The experimental dataset 

ECGs have been collected in the Neuronica Lab of Politecnico di Torino on six male 

volunteers: five healthy subjects and one cardiopathic (Subject3). All acquisitions were 

recorded between wrists at 1 KHz; heartbeats (HBs), whose length has been empirically 

set to twenty time-instants, have been extracted using autocorrelation and discrete co-

sine transform (DCT). For each volunteer, the number of acquired ECGs, together with 

the corresponding total amount of HBs, is detailed in Table 1. The final TS has 2331 

rows (the cumulative sum of HBs) and 20 columns (the chosen heartbeat size). 

Table 1. Dataset taxonomy 

 
 Age Sex No. of ECGs No. of heartbeats 

Subject1 26 M 47 429 

Subject2 27 M 22 185 

Subject3* 60 M 63 748 

Subject4 24 M 56 531 

Subject5 27 M 20 190 

Subject6 23 M 31 248 

*Cardiopathic     
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Fig. 2. Heartbeat visualization: whole dataset. 

 
(a) Subject1        (b) Subject2        (c) Subject3 

 
 (d) Subject4        (e) Subject5        (f) Subject6 

Fig. 3. Heartbeat visualization: single subject. 

Fig. 2 does not exhibit a common pattern for all the subjects; R-peaks, i.e. the HBs, are 

somehow distinguishable but the plot is quite noisy. Fig. 3 provides a deeper level of 

analysis; here, HBs are plotted into a separate subfigure for each subject: 

 Subject2 and Subject5 subfigures are very well concentrated around their mean, i.e. 

the heartbeats are clearly distinguishable.  

 Subject6 is thicker around the mean but the overall shape is still appreciable.  

 Subject1 and Subject4 are quite noisy.  

 Subject3 heartbeats are completely unrecognizable; it can be argued that the mor-

phology loss is due to the cardiovascular disease.  
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5 Manifold analysis 

The database has been studied to determine its intrinsic dimensionality (ID). A prelim-

inary linear analysis has been conducted using the Principal Component Analysis 

(PCA) [48].  Fig. 4 shows the corresponding Pareto chart [49] computed on the whole 

dataset, where each column represents the amount of variance explained by the corre-

sponding principal component (of course, the plot has a decreasing trend). Assuming 

90% is a significative threshold for the explained variance while ignoring noise, the 

intrinsic dimensionality can be estimated to 12.  

Because of the differences depicted in Fig. 3, each subject samples have been ana-

lysed separately; Table 2 summarizes the results: despite the intrinsic dimensionality of 

the whole dataset is equal to 12, it varies a lot w.r.t each volunteers, from a minimum 

of 8 up to 15. Interestingly, Subject3, whose plot is the less HB shaped, has also the 

higher intrinsic dimensionality w.r.t. the PCA linear analysis. 

 

Fig. 4. Pareto chart: whole dataset. 

Table 2. Intrinsic dimensionality 

6 MLP-based authentication 

Although the previous analyses have demonstrated the input dataset is easy to be clus-

tered in terms of healthy and sick subjects, it must be further deepened if it is possible 

also to recognize each volunteer. The wearable philosophy requires a simple algorithm 

with regard to both the computational complexity and the time needed for providing a 

 Whole DB Subject1 Subject2 Subject3 Subject4 Subject5 Subject6 

PCA* 12 (90.27) 14 (91.04) 8 (90.12) 15 (92.23) 11 (90.45) 14 (91.44) 13 (91.92) 

*in brackets the percentage of explained variance. 
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result, i.e. the authorization token; at the same time, the most important constraint to be 

considered is the accuracy.  At this purpose, a simple shallow neural network has been 

trained. The input layer is mapped one-to-one to the input features; thus, it is made of 

twenty units. The hidden layer is made of fifty neurons, and the output units are 

equipped with soft-max activation functions [49]. Due to the cross-entropy error func-

tion, the network yields the membership probabilities for each subject of the TS. To 

balance the overrepresentation (see Table 1) of Subject3 (~ 750 samples), the two 

youngest attendees (Subject4 and Subject6), were merged into as a single fifth class (~ 

780 HBs), say other, which is also used for representing external people w.r.t. the au-

thentication system. The shallow network has been trained by means of the Scaled Con-

jugated Gradient algorithm [49]. To preserve the input label distribution, in all the sim-

ulations, the input dataset was split into balanced training, validation and test subsets 

w.r.t the five classes (Subject1, Subject2, Subject3, Subject5, other). Seventy percent of 

the TS was used for training, while the rest was divided in equal parts for test and val-

idation sets, respectively. 

The training and testing confusion matrices are shown in Fig. 5; in both cases, the 

overall accuracy exceeds 99%. More in detail, classes 2 and 4 precision and class 3 

recall reach 100% for both training and testing, while class 3 precision and class 5 recall 

are higher in testing than in training. 

Class 3 (the cardiopathic attendee) has confirmed to be the simplest to be recognized; 

however, both the overall and the single class performances are definitely impressive. 

In this sense, the proposed technique is suitable for the application at hand. 

 

Fig. 5. Shallow neural network confusion matrices: training (left) and testing (right). 

6.1 Unknown subject 

As a final test, the method robustness has been measured using a novel, additional sub-

ject never fed to the network, neither in training nor in test. The scope was simulating 

a real case scenario, where an intruder tries to deceive the system by means of a fake 
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identity; here, it is modelled using the fifth class, which represent the non-authorized 

users, i.e. the rejected tokens.  

The intruder is a ten-years old child, who kindly provided 128 heartbeats. Fig. 6 

yields the recall phase confusion matrix: the intruder is never misclassified, which 

proves the biometric model is robust and can be exploited for real authorization tasks. 

 

Fig. 6. Shallow neural network confusion matrix: intruder simulation 

7 Final considerations 

ECG-based authentication provides greater security and safety in a world of risk; if 

used together with other biometrics, it can yield the most powerful digital security strat-

egy; indeed, such an approach may totally modify the security model, from external-

based biometric to internal physiological data, which are almost impossible to forge. In 

this paper, a shallow neural network has demonstrated to be able to recognize subjects 

and, above all, to detect intrusion attempts. Its robustness has also been proven w.r.t 

heart pathologies. 

Finally, studying vital parameters signals could lead to extrapolate deeper human 

insights, which could have even more significative applications than authentication. For 

instance, ongoing researches have explored the usage of wearable devices to assess 

changes in the human nervous system w.r.t. external inputs [50]: pre-defined emotional 

states have been related to physiological data acquired with a wristband. In this sense, 

it can be thought as an advancement towards the understanding of the physiology un-

derlying emotions. 
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