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Abstract

This paper focuses on the application of the Least-Square
Support Vector Machine (LS-SVM) regression for the mod-
eling of frequency responses of complex interconnect struc-
tures. The goal is to obtain a delayed-rational model (DRM)
for the structure accounting for multiple time-delays gener-
ated by wave propagation and reflections along the channel.
A novel approach for the time-delays estimation based on
the LS-SVM regression is introduced. The delays are es-
timated using the dual space formulation of the LS-SVM
with an ad-hoc kernel that considers a possible delay in-
terval. The results highlight the lower order of DRMs ob-
tained using the delays identified through this method when
comparing to the vector fitting approach by applying it to a
high-speed cable link.

1 Introduction

Signal integrity is one of the limiting factors on the ca-
pacity of data transmission in a high-speed link. Electri-
cal interconnects are responsible for a considerable part of
signal degradation, due to propagation effects such as at-
tenuation, ringing, signal delay, distortion, reflections and
crosstalk [1]. Therefore, accurate models for the simulation
of these structures are essential to predict signal integrity
within a simulation framework during the design phase of a
high-speed link. The standard approach to include an inter-
connect with a complex geometry in an electric circuit sim-
ulation tool is to approximate tabular data of their transfer
function through a sum of rational functions, which can be
identified with the popular vector fitting (VF) algorithm [2].
However, when the propagation delay between ports of the
system is large, a VF model may require a large number of
poles to accurately mimic the actual frequency-domain be-
havior of the interconnect. The resulting model eventually
will not model exactly the propagation delay, which may
appear in simulations as spurious signals transmitted in a
time shorter than the actual propagation delay of the inter-
connect and lead to an inaccurate evaluation of the signal
integrity of the channel [3].

A model that approximates accurately the interconnect
structure described above, and also allows the transfer func-
tion to be equivalently represented by a simple circuit con-
taining only ideal transmission lines and basic lumped el-
ements (resistors, capacitors and inductors) [4, 5] can be

written as:

H( jω)≈ H̃( jω) =
nτ

∑
i=1

( np,i

∑
j=1

ri j

jω− pi j
+ ri,0

)
e− jωτi . (1)

H̃( jω) approximates H( jω) using rational functions with
poles pi j ∈ C and residues ri j ∈ C in complex-conjugate
pairs, with pi j = p′i j + jp′′i j, and a constant term ri,0 ∈ R,
in order to represent a real valued system in time-domain.
Those rational functions are multiplied by an exponential
term that accounts for the time-delay τi ∈ R, which is larger
than zero for causal systems, resulting in a delayed-rational
model (DRM). The model in (1) is valid for a single trans-
fer function, however, a multiport system can be obtained
by modeling each element of its transfer function matrix
individually.

The estimation of all parameters in (1) at the same time
is impractical, as suitable values are needed for the time-
delay in the exponential term and for residues and poles in
the numerator and denumerator of the rational term. Cur-
rent methods to achieve the desired model format deal with
the estimation of these parts independently, finding first the
delay term and then the rational terms. The identification
of multiple time-delays is a critical step of the process. The
Gabor transform, which provides a time-frequency decom-
position of H( jω), turns out to be the most used method [4].
The underlying idea is to analyze the energy content as
a function of the delay, and use the time-delays that have
the largest relative contribution to the total energy as dom-
inant propagation delays. The time-frequency decomposi-
tion can also be achieved by performing a wavelet trans-
form on the time-domain impulse response [5]. An alter-
native time-domain based method considers that the analy-
sis of the time-domain response of the system to a narrow-
band input pulse can be used as a way to estimate its corre-
sponding propagation delays [6]. However, all these tech-
niques estimate the time-delays without considering that
they will be multiplied by a rational function in the final
model. Given that an accurate set of delays is obtained, a
robust method to obtain the rational part of the model is
the delayed vector fitting (DVF) [4, 6], a modified version
of VF that uses delayed basis functions and through itera-
tions identify a common set of poles for all the delay terms.
This method provides excellent results when an accurate es-
timate for the dominant time-delays is provided. Otherwise,
an optimization to improve the initial set of time-delay val-
ues is needed [4].



In this work, we present an alternative scheme for the esti-
mation of the dominant propagation delays of a distributed
system based on the least-squares support vector machine
(LS-SVM) regression, which is a flexible and powerful
Machine Learning (ML) regression that has been recently
adopted for the uncertainty quantification in complex elec-
tronic systems [7]. The feasibility and the strength of the
proposed approach is then investigated by applying it to the
modeling of a long high-speed cable [8].

2 The Least-Square Support Vector Machine

The adopted LS-SVM regression searches to approximate a
set of training data pairs {xk,yk} for k = 1 . . .K, with a non-
linear regression ỹ(x), with the input x = [x1, . . . ,xd ]

T ∈ Cd

and output ỹ(x) ∈ C. The LS-SVM provides two ways to
express its regression model [9]:

ỹ(x) = 〈w,ϕ(x)〉+b, (2)

where weights w = [w1, . . . ,wD]
T ∈ CD, b = br + jbi ∈ C,

and the nonlinear map ϕ(·) : Cd→ CD from the input space
of dimension d to a feature space of dimension D. Equation
(2) will be called primal space representation. The above
formulation in the primal space is equivalent to the follow-
ing dual space formulation, which writes:

ỹ(x) =
K

∑
k=1

αkk(xk,x)+b, (3)

where αk = αk,r + jαk,i ∈ C and k(xk,x) is the so called
kernel function (Cd×Cd)→ C defined as:

k(xi,x j) =
〈
ϕ(xi),ϕ(x j)

〉
. (4)

The duality between the formulation in (2) and (3) allows us
to choose the more adequate model representation to work
with, and when needed, the dual space coefficients αk can
be related to the primal space weights w by means of:

w =
N

∑
k=1

αkϕ
∗(xk). (5)

The main difference between the two models is their dimen-
sionality: the primal space model has D terms, which is the
number of basis of the primal space, i.e., the dimension of w
and ϕ(x), which is a fixed and unbounded value, i.e., it can
be infinite, while the dual space model is a non-parametric
model with a number of terms equal to the number of train-
ing samples, K (plus the constant bias term present on both
models).

The coefficients αk and the bias term b of the dual space
model are estimated by solving the following linear system
of equations:Ω+ I2K/γ

1 0

0 1

1T 0T

0T 1T
0 0
0 0




αr
α i
br
bi

=


yr
yi
0
0

 , (6)

where yr = [y1,r, . . . ,yK,r]
T and yi = [y1,i, . . . ,yK,i]

T are the
real and imaginary parts of y, γ is a regularization parameter
that should be large to minimize errors, 1= [1, . . . ,1]T and
0= [0, . . . ,0]T are vectors containing K equal elements, I2K

is an identity matrix with size (2K×2K), and the (2K×2K)
kernel matrix Ω(x,x) is defined as:

Ω=

[
Ω

(1,1)
Ω

(1,2)

Ω
(2,1)

Ω
(2,2)

]
=

[
ℜ{k(xi,x j)} ℑ{k(xi,x j)}
−ℑ{k(xi,x j)} ℜ{k(xi,x j)}

]
, (7)

The submatrices Ω
(·,·) are (K×K) square matrices in which

the elements Ω
(·,·)
i, j in the i-th row and j-th column are de-

fined from the input values of xi and x j by means of the
kernel function in (4).

3 Time-Delay Identification via LS-SVM re-
gression

The LS-SVM regression of the previous section can
be applied to fit sampled pairs of a transfer function
{(ωk,H( jωk))}K

k=1 by considering a scalar input xk = [ωk]
and complex output y(xk) =H( jωk). The dual space model
of this reads:

H̃( jω) =
K

∑
k=1

αkk(ωk,ω)+b. (8)

It requires the definition of the kernel function in (4). The
most used kernel functions are the linear, polynomial and
gaussian kernels, which are based on their specific feature
space ϕ(ω), but it is possible to define an ad-hoc kernel
function so that the basis in its feature space correspond to
delayed-rational functions. Such kernel writes:

k(ω,ωk) = kp( jω, jωk)kτ( jω, jωk), (9)

with

kp(ωk,ωl) =
np

∑
j=1

 |p′j|1/2

( jωk− p j)

|p′j|1/2(
− jωl− p∗j

)
 , (10)

and

kτ(ωk,ωl)=


(

e− jτm(ωl−ωk)−e− jτM (ωl−ωk)
)

j(ωl−ωk)
, ωk−ωl 6=0

τM−τm, ωk−ωl=0

. (11)

The above kernel corresponds to a feature space with the
following delayed-rational basis:

ϕi j( jω; pi j,τi) =
|p′i j|1/2

jω− pi j
e− jωτi . (12)

The kernel in (9) considers a feature space of delayed-
rational basis with a set of np complex poles and the de-
lay τi assuming all possible values from a minimum τm to
a maximum τM . This feature space is infinite-dimensional,
but we are able to use it due to the dual space regression
model of the LS-SVM, from which we obtain a set of coef-
ficients α and b, that represents the model in the dual space,



according to (8), which is not a DRM. However, we can use
(5) to compute the value of w(τi, p j):

w(τi, p j) =
K

∑
k=1

αk
|p′j|1/2

jωk− p j
e− jωkτi . (13)

This value allows the representation of the model as in (2).
As the basis used to build the LS-SVM kernel correspond
to delayed rational functions, the primal space representa-
tion of the LS-SVM model is a DRM. The problem with
the direct utilization of the LS-SVM DRM is the number of
terms that it contains: it has all the basis with all the com-
binations of poles and delays included in the kernel. As
an infinite number of delays was included, the model will
have an infinite number of basis, which is not useful when
the implementation of the model is considered. Nonethe-
less, the model contains information about the most rele-
vant values of τi. As the energy density provided by each
basis is proportional to ‖w(τi, p j)‖2, independently of the
chosen pole, we can compute the distribution of the energy
associated with the system as a function of the time-delay
value wτ(τi):

wτ(τi) =
np

∑
j=1
‖w(τi, p j)‖2. (14)

wτ(τi) shows at which values of τi the system can have a
higher energy value (the system’s dominant delays), which
is observed by plotting and analyzing this function. We
should remark that one of the terms that the LS-SVM prob-
lem seeks to minimize is ∑ |w|2, making unlikely the occur-
rence of unnecessary high values for w(τi, p j). Algorithm
1 summarizes the procedure for the delay identification.

It is important to remark that the poles used in this ad-hoc
kernel do not need to have a specific value. It is expected
that the final DRM has a low-order rational part, and it is
assumed that a higher number of poles randomly placed in
the left half-plane is able to approximate the original ra-
tional part. For the time-delay interval, if we assume that
the frequency points ωk are uniformly spaced, τM should
respect the relation τM < 2π/(ωk+1−ωk) = 1/∆ f .

Algorithm 1 Delay identification algorithm

1: Group the samples in the vectors yr + j yi =
[yr,1 + j yi,1, . . .,yr,K + j yi,K ] and ω = [ω1, . . .,ωK ];

2: Randomly select a set of complex poles P ∈ Cnp in a
reasonable region of the s-plane;

3: Define minimum and maximum delays τm and τM;
4: Compute the kernel for all frequency point pairs
{ωi,ω j},{i, j}= {1, . . . ,K}, using (9);

5: Assembly the matrix in (7);
6: Set a value for γ and solve (6);
7: Compute wτ(τi) according to (13);
8: Find the peaks in wτ(τi), which correspond to the set

of relevant delays τ = {τ1 . . .τnτ
}.
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Figure 1. Top Panel: plot of wτ(τi) for the transfer func-
tion of S1,1. Bottom Panel: magnitude plot showing the
accuracy of the model for S1,1.

4 Application Example

The application of the presented method can be exemplified
by analyzing simulated data of a single wire in a SpaceWire
link [8], containing a 10 m long SpaceWire cable with com-
patible connectors and PCB adapters. The method is ap-
plied to the curves of a reflection S1,1( jω) and a transmis-
sion S1,2( jω) scattering parameters. A full multiport model
is achieved by applying the method to each of the parame-
ters in the scattering matrix individually, and then combin-
ing the individual results [4]. The method is applied first
to S1,1( jω), which has its identified delays shown in Fig. 1.
The first identified delay happens at τ = 0.5 ns, represent-
ing a reflection that occurs a few centimeters into the prop-
agation path. In the simulated setup, this reflection happens
when the PCB and connector transitions into the SpaceWire
cable. Further ahead, another 6 delays were chosen in the
order of hundreds of ns. Furthermore, τ = 0 also is con-
sidered as a possible delay because this is a scattering pa-
rameter representing the port reflection. The approximation
for the magnitude of the S1,1 transfer function performed
with the identified delays is also presented. It shows a good
accuracy by using 8 delays and 38 total poles distributed
among them. A vector fitting approximation with an error
of a similar order of magnitude requires around 180 poles.

The process is repeated for S1,2. Figure 2 shows the iden-



tified delays for this component of the system. Here, we
see that contrary to the previous reflection, in this transmis-
sion term it takes at least a certain amount of time until we
can see the first peak. In total, 6 main delays were iden-
tified. Figure 2 shows also a delayed-rational approxima-
tion for the magnitude of S1,2 performed with the identi-
fied delays. It shows a good accuracy by using 6 delays
and 25 total poles distributed among them. A vector fitting
approximation with an error of a similar order of magni-
tude requires the use of more than 100 poles. A summary
of the L2 and L∞-norm error between the original data and
the constructed model is shown in Table 1, with results of
a VF model for comparison, remarking the reduced order
achieved with this method while reaching similar or larger
accuracy.
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Figure 2. Top Panel: plot of wτ(τi) for the transfer func-
tion of S1,2. Bottom Panel: magnitude plot showing the
accuracy of the model for S1,2.

Table 1. Summary of the error between available data for
the link in the example and models used to approximate it.

VF Proposed method
S1,1 error - L2 0.776 0.780
S1,1 error - L∞ 0.086 0.085

S1,1 order 180 38
S1,2 error - L2 1.228 0.806
S1,2 error - L∞ 0.177 0.041

S1,2 order 119 25

5 Conclusion

This paper presents the application of the LS-SVM regres-
sion to the modeling of frequency responses generated by
systems possessing multiple propagation delays based on
the use of an ad-hoc kernel. This LS-SVM regression al-
lows the estimation of the dominant propagation delays,
which can be combined to rational fitting techniques to ob-
tain models with a smaller order compared to VF models,
leading to more compact behavioral models. By apply-
ing the method for transfer function samples of a 10 m
SpaceWire cable link, the model extracted using the de-
lays identified with the presented method used a number
of poles around 4.7× smaller than VF models, while also
having guaranteed causality.
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