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A hidden integral structure endows
absolute concentration robust systems
with resilience to dynamical concentration
disturbances

Daniele Cappelletti, Ankit Gupta and Mustafa Khammash

Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26 4058 Basel, Switzerland

DC, 0000-0003-4259-2772

Biochemical systems that express certain chemical species of interest at the
same level at any positive steady state are called ‘absolute concentration
robust’ (ACR). These species behave in a stable, predictable way, in the
sense that their expression is robust with respect to sudden changes in the
species concentration, provided that the system reaches a (potentially new)
positive steady state. Such a property has been proven to be of importance
in certain gene regulatory networks and signaling systems. In the present
paper, we mathematically prove that a well-known class of ACR systems
studied by Shinar and Feinberg in 2010 hides an internal integral structure.
This structure confers these systems with a higher degree of robustness than
was previously known. In particular, disturbances much more general than
sudden changes in the species concentrations can be rejected, and robust
perfect adaptation is achieved. Significantly, we show that these properties
are maintained when the system is interconnected with other chemical reac-
tion networks. This key feature enables the design of insulator devices that
are able to buffer the loading effect from downstream systems—a crucial
requirement for modular circuit design in synthetic biology. We further
note that while the best performance of the insulators are achieved when
these act at a faster timescale than the upstream module (as typically
required), it is not necessary for them to act on a faster timescale than the
downstream module in our construction.
1. Introduction
The network of chemical interactions of a biochemical system of interest
can be complex and involve unknown reaction propensities. One of the main
goals of reaction network theory consists of deriving dynamical properties
from simpler graphical properties of the model, and independently of the
specific value of kinetic parameters [1,2]. The results presented in this paper
follow this approach.

A qualitative property of great interest is the capability of a certain chemical
species to be expressed with the same concentration at any positive steady state,
independently of the initial conditions and of how many steady states are
present. Namely, assume that the dynamics of the biochemical system are
expressed by the following d-dimensional ordinary differential equation,
which may have an infinite number of steady states

d
dt

x(t) ¼ f(x(t)):

We say that the ith species is absolute concentration robust (ACR), if there exists an
ACR value q independent of the initial condition x(0) such that, whenever x(t)
tends to a positive vector x, we have xi ¼ q. In the typical cases of interest, the posi-
tive steady state x that is reachedwill dependon the initial condition x(0),while the
entry xi ¼ q does not. As noted in [3], the property of absolute concentration
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robustness alone does not imply stability of the positive steady
states: it only ensures that if a positive steady state x exists, then
the value of the ACR species at x is the ACR value. Under the
assumption of stability, ACR provides a reliable, predictive
response to environmental changes, since the species of interest
reaches the steady-state level corresponding to the newenviron-
mental setting, regardless of the previous conditions. The
existence and importance of this robustness property for var-
ious gene regulatory networks and signal transduction
cascades is explored in many papers, including [4–12].

To achieve robustness with respect to some disturbance
(in this case changes of initial conditions), the deviations
from the ACR value caused by the disturbance needs to be
measured first. To this aim, a quantity of interest in the
control theory setting is the integrator, which is a function ϕ
of the system variables whose derivative is exactly the differ-
ence between the concentration of the ACR species and its
ACR value. At steady state, the derivative of ϕ is zero and
so needs to be the distance from the ACR value. Unfortu-
nately, in general such an integrator cannot be found, as
shown in §4.1 and as discussed in [13]. However, we will
show that a more relaxed concept of integrators can be
fruitfully used in this setting.

In the present paper, we systematically study for the first
time the connection between ACR systems and integrators.
Specifically, our first contribution is related to the existence
of a linear combination of chemical species whose derivative
is the difference between the ACR species and its ACR value,
multiplied by a monomial. Such a linear combination of
species is called constrained integrator (CI), because it behaves
similarly to an integrator given that the monomial does not
vanish [13]. We rigorously prove that such a linear CI
always exists for a class of models that strictly includes the
ACR systems introduced in [14]. This result has some impor-
tant consequences: first of all, under the assumption of
stability, it implies that the expression of ACR species is not
only robust to changes in the initial conditions, but also to
disturbances that are applied over time.

An important application in synthetic biology concerns
the design of insulators. A number of biochemical systems
are known to express a specific output if given a certain
input. The systems can therefore be considered as modules
with different functions. In cells, different modules are com-
bined so that more complex responses to external stimuli
become possible [15]. In synthetic biology, it is desirable to
combine different modules to achieve the same level of
complexity [16]. However, when connected, the different
modules can affect the dynamics of each other and they can
lose the desired dynamical properties they had when con-
sidered in isolation [17]. In a simplified framework, an
upstream module processes an input, and its output is fed
to a second, downstream module to be further processed.
Since the information is passed in the form of molecules,
which are then consumed or temporarily sequestrated by
the downstream module, the equations governing the
upstream module dynamics are perturbed and its functional-
ity can be affected. This effect is commonly called the loading
effect [18] or retroactivity [17,19], and needs to be minimized.
In other words, the upstream module needs to be insulated
from the loading effect caused by the downstream module.
We propose two ways in which the robustness of the systems
studied in this paper can be used to this aim. The first sol-
ution is to simply design an upstream module which is
robust to loading effects, modelled as a persistent disturbance
over time. The second solution is to design an extra com-
ponent, called an insulator, which transfers the signal from
the upstream module to the downstream module while at
the same time shielding the dynamics of the upstream
module from retroactivity effects.

We will also show how more theoretical results on reac-
tion network models can be obtained as a consequence of
our work. In reaction network theory, the study of steady-
state invariants constitute an interesting topic of research
[1,14,20,21]. In [14], it has been proven that certain graphical
properties of the network imply the existence of an ACR
species, regardless of the choice of kinetic parameters. Such
sufficient conditions are generalized in the present work
while they remain simple to check. Moreover, no method to
explicitly determine the ACR value was given in [14], and
we fill the gap by proposing a fast linear method to calculate
it. Furthermore, a substantial effort in the reaction network
community is devoted to understanding the conditions
under which the dynamical properties of single systems can
be extended to larger systems [22–26]. Notably, extensions
of ACR systems are addressed in [27]. Our contribution in
this sense consists of proving that, under certain conditions,
if an ACR system of the class studied in this paper is part
of a larger model, the ACR species is still ACR in the larger
system and its ACR value is maintained. Finally, it is worth
mentioning that in the present work, we consider the
possibility of time-dependent rates for the occurrence of
chemical transformations. This is more general than what is
usually studied in reaction network theory, with the excep-
tion of few works explicitly allowing for this scenario [28–33].
2. Examples of absolute concentration robust
systems

2.1. An illustrative example
Consider two proteins A and B, whose interaction is
described by

where the positive constants κ1 and κ2 describe the propen-
sity of a reaction to occur. If enough proteins are present
and they are homogeneously spread in space, then a good
model for the time evolution of the concentrations of proteins
A and B is given by mass-action kinetics. Specifically, the con-
centrations of A and B at time t, denoted by xA(t) and xB(t),
respectively, are assumed to solve

d
dt

xA(t)
xB(t)

� �
¼ k1xA(t)xB(t)

�1
1

� �
þ k2xB(t)

1
�1

� �
: (2:2)

It is easy to check that the steady states of (2.2) are given
by states (xA, xB) such that either xB ¼ 0 or xA ¼ k2=k1.
Hence, A is an ACR species because its expression at any
positive steady state is the same. It is common during
biochemical experiments to be able to control the inflow
rate of some species (say B). Some additional chemical
species may also be introduced, with the purpose of
degrading some of the present components (in this case,
species C is introduced to faster degrade species B). After



Figure 1. Proposed model for the EnvZ-OmpR signal transduction system in Escherichia coli, which is able to explain the experimentally observed robustness in the
expression of phosphorylated OmpR. In the first line of reactions, EnvZ can bind to ADP and ATP, but only when bound to ATP it can gain a phosphoryl group, and
the resulting species is denoted by EnvZ-P. In the second line of reactions, EnvZ-P transfers the phosphoryl group to OmpR, through the formation of an inter-
mediate complex. In the last line of reactions, the phosphoryl group is removed from OmpR-P through the action of EnvZ-D. The concentration of ATP and ADP is
assumed to be maintained constant in time.
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these modifications, (2.1) becomes

Since we still have

d
dt

xA(t) ¼ �k1xB(t) xA(t)� k2
k1

� �
,

it is still true that the valueofxA(t)will converge toκ2/κ1, as long
as the functions u1, u2 and the rates κ3, κ4 are such that the con-
centrationof the speciesB is not driven to0. In this paper,wewill
prove a general result describing when such robustness to
persistent perturbations is present for ACR systems.

2.2. EnvZ-OmpR osmoregulatory system
Consider the mass-action system described in figure 1. The
model is proposed and studied in [14,34] as the osmoregula-
tory system in Escherichia coli. It is in accordance with
experimental observations discussed in [6,9,12]. According to
the model, whose schematics is described in figure 1, the acti-
vation rate of the sensor-transmitter protein EnvZ depends
on themediumosmolarity. Then, an active form of EnvZ trans-
fers its phosphoryl group to the sensory response protein
OmpR, which becomes OmpR-P and promotes the production
of the outer membrane porins OmpF and OmpC. Hence, it is
important that the concentration of OmpR-P responds in a
reliable, predictive way to changes in the osmolarity of the
medium (which the rate constants κi in the reaction network
of figure 1 depend upon), but not on the initial concentration
of the different chemical species involved. As a matter of
fact, it is shown in [14] that OmpR-P is an ACR species, as a
consequence of the theory developed in the paper.
3. Necessary terminology and known results
In order to present the theorywe develop, we first need to intro-
duce some terminology. The linear combinations of chemical
species appearing on either side of the chemical reactions of
interest are called complexes, in accordancewith the reaction net-
work theory literature. Be aware that the word ‘complex’
usually has a different meaning in the biology literature. We
denote by m the number of complexes present in the network,
and by d the number of chemical species. As an example, the
complexes of (2.1) are A + B, 2B, B, and A. Here, d = 2 and
m = 4. In (2.3), the complexes are A + B, 2B, 0, B, A, C and C +
B, hence d = 3 and m = 7. Finally, in the system depicted in
figure 1 d = 8 and m = 10. Since a complex is a linear combi-
nation of species, each complex can be regarded as a vector of
length d. For example, for the model (2.1), we can consider
A + B as (1, 1), 2B as (0, 2), B as (0, 1), and finally A as (1, 0).
With this in mind, we can define the stoichiometric subspace as

S ¼ spanR{yj � yi : there is a reaction from yi to yj},

where yn denotes the nth complex, for all 1≤ n≤m. For
example, for (2.1), we have

S ¼ spanR

�1
1

� �
,

1
�1

� �� �
¼ spanR

�1
1

� �� �
:

For (2.3), we have S ¼ R3.
In the most general formulation of reaction systems, a

(time-dependent) rate function λij is associated with the reac-
tion from the ith to the jth complex of the network, and the
concentration vector of the different chemical species is
assumed to solve the differential equation

d
dt

x(t) ¼
X

1�i,j�m

(yj � yi)lij(x(t), t), (3:1)

where if a reaction from the ith to the jth complex does not
exist, then λij is the zero function. Note that (3.1) simply
sums the contributions to the dynamics given by the different
chemical reactions. Since the derivative in (3.1) is an element
of S at all times, every solution to (3.1) is necessarily confined
within a translation of S. If for all non-zero propensities λij
there exists a positive constant κij such that

lij(x(t), t) ¼ kij
Yd
l¼1

xl(t)
yil ,

then the model is a mass-action system. In this case, (3.1) can be
written as

d
dt

x(t) ¼ YA(k)L(x(t)), (3:2)

where Y is a d ×m matrix whose ith column is yi, A(κ) is a
m ×m matrix given by

A(k)ij ¼ k ji if i = j
�Pm

l¼1 kil if i ¼ j

�

and Λ(x(t)) is a vector of length m whose ith entry isQd
l¼1 xl(t)

yil . Examples of mass-action systems are (2.1) and
the model in figure 1.

A directed graph can be associated with a reaction net-
work, where the nodes are given by the complexes and the
directed edges are given by the reactions. Such a graph is
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called a reaction graph. As an example, (2.1) is a reaction
graph, while (2.3) is not because the complex 0 is repeated.
The reaction graph corresponding to (2.3) is

We denote by ℓ the number of connected components of
the reaction graph associated with the network. For both net-
works (2.1) and (2.3) ℓ = 2, as for the EnvZ-OmpR
osmoregulatory system of figure 1 we have ℓ = 3. Then, we
define the deficiency of a network as

d ¼ m� ‘� dimS:

The deficiency of a network has important geometric
interpretation, and a collection of classical deficiency theory
results can be found in [35]. The deficiency of (2.1) is δ =
4− 2− 1 = 1, and the deficiency of (2.3) is δ = 7− 2− 3 = 2.
Similarly, it can be checked that the deficiency of the EnvZ-
OmpR osmoregulatory system in figure 1 is 1.

Finally, we say that a complex y is terminal if for all paths
in the reaction graph leading from y to another complex y0,
there is a path leading from y0 to y. If a complex is not term-
inal, then it is called non-terminal. As an example, the only
terminal complexes for (2.1) and (2.3) are 2B and A.

We recall that a species is said to be ACR if its concen-
tration at any positive steady state of (3.1) is the same. We
are ready to state the following result, as presented in [14].
Theorem 3.1. Consider a mass-action system, and assume the
following holds:

— there are two non-terminal complexes yi and yj such that only
one entry of yj− yi is non-zero;

— the deficiency is 1.
— a positive steady state exists.

Then, the species corresponding to the non-zero entry of yj− yi
is ACR.

Note that a stronger version of theorem 3.1 is proven in [14],
which detects more general steady-state invariants than the
steady-state concentration of a single species. The stronger ver-
sion is stated in the electronic supplementary material as
theoremB.3, and an extension of it is proven in the presentwork.

The model (2.1) has deficiency 1, as already observed, has
at least one positive steady state and the non-terminal com-
plexes A + B and B differ only for the species A. Hence,
theorem 3.1 applies and A is ACR. It is shown in [14] that
the EnvZ-OmpR osmoregulatory system in figure 1 also ful-
fils the hypothesis of theorem 3.1, with the non-terminal
complexes EnvZ-D and EnvZ-D+OmpR-P only differing for
the species OmpR-P. As a consequence, OmpR-P is ACR. In
§4.2, we will develop a method to explicitly calculate the
ACR value through symbolic linear algebra. We note that
theorem 3.1 cannot be applied to (2.3) for two reasons: the
model is not a mass-action system unless u1(t) and u2(t) are
constant, and its deficiency is 2.
As noted in [3], the positive steady states of a system
with an ACR species are not necessarily stable. However, as a
consequence of the present work (more precisely, as a conse-
quence of theorem 5.1 with u being the zero function), we
know the following: if a mass-action system as in theorem 3.1
has an unstable positive steady state, then either the systemoscil-
lates around it, or some chemical species is completely
consumed, or some chemical species is indefinitely produced.
We give here the formal definition of ‘oscillation’, as intended
in this paper.
Definition 3.2. We say that a function g: R�0 ! R oscillates
around a value q [ R if for each t [ R�0 there exist t+ > t
and t− > t such that

g(tþ) . q and g(t�) , q:

4. A linear constrained integrator
4.1. Control theory background
In control theory, the focus is usually on systems of differen-
tial equations of the form

d
dt

x(t) ¼ f(x(t), u(t)), (4:1)

where x: R�0 ! Rnx and u: R�0 ! Rnu for some nx, nu [ Z.0,
and f is a continuous function, such that (4.1) has a unique
global solution for a set of initial conditions and a family of func-
tions u of interest. The function u is called the input of the system.
Furthermore, a quantity of the form z(t) = a(x(t)) is of interest,
where a is a differentiable function with a: Rnx ! Rnz , for
some nz [ Z.0. The function z is called the output of the
system. In the usual setting, one needs to find an appropriate
function u such that z is close to a desired level z [ Rnz , either
on average or for t→∞. To this aim, the existence of a differenti-
able functionf: Rnx ! R such that for all considered solutions x

d
dt

f(x(t)) ¼ z(t)� z,

is of high importance, and is called an integrator. The name
derives from ϕ(x(t)) being the integral of the error that needs to
be controlled

f(x(t)) ¼ f(x(0))þ
ðt
0
(z(s)� z) ds:

If the function is fed back to the system and is used to tune
the input, then an integral action or integral feedback is in place
[36,37]. One of the main features of an integrator is that the
derivative of ϕ(x(t)) is zero if and only if z(t) ¼ z. If a function
~f: Rnx ! R satisfies

d
dt

~f(x(t)) ¼ r(x(t))
�
z(t)� z

�
, (4:2)

for some differentiable function r: Rnx ! R, then ~f is called
a constrained integrator (CI) [13]. The name derives from
the fact that the derivative of ~f(x(t)) is zero if and only if
z(t) ¼ z, provided that r(x(t)) ≠ 0. In biology, it is common
to find CIs, and the condition r(x(t)) ≠ 0 is usually implied
by x(t) ≠ 0 [13]. Note that in [13] an explicit distinction
between integrators and integral feedbacks is not made.

In the setting of systems with ACR species, the output z
can be considered to be (a power of) the concentration of
the ACR species over time, and z can be their ACR values.
In (2.1), z(t) = xA(t) and z ¼ k2=k1. A CI (as noted in [13]) is
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given by ~f(x(t)) ¼ xB(t), since

d
dt

xB(t) ¼ k1xB(t) xA(t)� k2
k1

� �
:

The question of whether an integrator exists can be quickly
answered in negative, because any point of the form (xA, 0)
is a steady state. If an integrator ϕ existed, then by choosing
x(0) ¼ (xA, 0) we would have

0 ¼ d
dt

f(x(t)) ¼ xA � k2
k1

,

which cannot hold except for a specific value of xA. An integra-
tormay still exist in aweaker sense, ifwe restrict its domain. For
example, in this case, the function f̂ (x(t)) ¼ (1=k1) log xB(t)
would be an integrator, in the sense that if xB(t) > 0 then

d
dt
f̂(x(t)) ¼ 1

k1xB(t)
k1xB(t) xA(t)� k2

k1

� �� �
¼ xA(t)� k2

k1
:

However, the domain of f̂ is not the entire R2. Finally, since
linear functions could always be extended continuously to
the boundaries of R2

.0, a linear integrator cannot exist for (2.1)
even if its domain is restricted.

4.2. Existence and characterization
We state here our result concerning linear CIs. A stronger ver-
sion is proved in the electronic supplementary material. The
result is inspired by the analysis carried on in [14], which is
here expanded along lines similar to those of [21].

Our goal is to find a linear function ~f: Rd ! R of the form
~f(x) ¼ hĝ , xi satisfying (4.2) with z(t) being some power of
the ACR species, where 〈 · , · 〉 is the standard scalar product.
For any n × l real matrix M and real vector v of length n, we
denote by (M|v) the n × l + 1 matrix obtained by adding the
column v at the right of the matrix M. We further denote
by ek the kth vector in the canonical basis of Rm, whose kth
component is 1 and whose other components are 0. If the
complexes yi and yj only differ in the nth component, and
g [ Rdþ1 satisfies

A(k)`Y` j ei
� 	

g ¼ ej,

then if we denote by ĝ the projection onto the first d com-
ponents of γ and if the system is mass-action, it follows
from (3.2) that

d
dt

hĝ , x(t)i ¼ ĝ`YA(k)L(x(t)) ¼ Lj(x(t))� gdþ1Li(x(t))

¼ x(t)yi
�
xn(t)

(yj�yi)n � gdþ1

�
:

Hence, at any positive steady state xn ¼ g
1=(yj�yi)n
dþ1 , implying

that the nth species is ACR. Moreover, the function
~f(x) ¼ hĝ , xi is the CI we were looking for.

Inspired by the above analysis, we focus on the study of
the set

Gij(k) ¼ g [ Rdþ1: A(k)`Y` j ei
� 	

g ¼ ej
n o

, (4:3)

for 1≤ i, j≤m. The projection of Γij(κ) onto the first d coordi-
nates, denoted by Ĝij(k), will also be of interest as its elements
are linear CIs. We state this in the following result, a more
general version of which is proven in the electronic
supplementary material
Theorem 4.1. Consider a mass-action system. Assume that there
are two complexes yi and yj only differing in the nth entry, and
that Γij(κ) is non-empty. Let γ∈ Γij(κ), and define

q ¼ g
1=(yj�yi)n
dþ1 :

Then, either no positive steady state exists or the nth species is ACR
with ACR value q. Moreover,

f(x) ¼
Xd
i¼1

bixi,

is a linear CI with

d
dt

f(x(t)) ¼ Li(x(t))(xn(t)
(yj�yi)n � q(yj�yi)n ),

for any initial condition x(0) if and only if b [Ĝij(k).

Note that if γ∈ Γij(κ), then the vector v = ej− γd+1ei is in the
rowspan of Y A(κ), because A(k)`Y`ĝ ¼ v. As such, v is an
example of ‘complex linear invariant on the complexes yi
and yj’, as introduced in [21]. We follow a slightly different
approach than in [21], since we do not only care about the
steady state invariants but also aim to calculate the CIs
given by the set Ĝij(k), which can be considered as the
preimage of v via Y A(κ). However, methods discussed in
[21] can still be fruitfully used to quickly decide whether
Γij(κ) is empty, and to efficiently calculate the ACR value
encoded in γd+1. As an example we state the following result,
which is an immediate consequence of [21, proposition 1]:

Theorem 4.2. Let N be the matrix obtained by removing the ith
and the jth column from Y A(κ). Then, Γij(κ) is non-empty if
and only if rank YA(κ) > rank N.

The set Γij(κ) can be calculated with symbolic linear
algebra. Moreover, if j [ Ĝij(k) then necessarily

{jþ w :w [ S?} # Ĝij(k): (4:4)

Hence, Ĝij(k) is connected with S?, which is a set easily
described by linear algebra and independent on the rate func-
tions. The reason for (4.4) is perhaps clearer if Ĝij(k) is regarded
to as a preimage via YA(κ), as discussed above, since the col-
umns of YA(κ) are in S. A formal proof of (4.4) is given in the
electronic supplementarymaterial, wherewewill also give suf-
ficient conditions under which the inclusion is an equality.

As a concrete example, consider the model in figure 1.
UsingMatlab,we quickly obtain that a vector ξ is inΓ18(κ), with

j9 ¼
k1k3k5(k10 þ k11)[ATP]
k2(k4 þ k5)k9k11[ADP]

, (4:5)

and it is shown in the electronic supplementary material that

Ĝ18(k) ¼ ĵ þ

w1

w1

w1

w1

0
w1

0
w1

0
BBBBBBBBBB@

1
CCCCCCCCCCA

þ

0
0
0
0
w2

w2

w2

w2

0
BBBBBBBBBB@

1
CCCCCCCCCCA

:w1, w2 [ R

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;

, (4:6)

where ĵ is the projection of ξ onto its first d = 8 coordinates.
The family of models we study in this paper concerns reac-

tion systems with two complexes yi and yj differing in just one
entry, forwhich Ĝij(k) is non-empty. The following result shows
that such a family includes the models studied in [14]. The
result has been already discussed in [21, section 2.4] with a
different formulation, and its proof is basically already present
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in the proof of the main result of [14]. However, for the sake of
clarity, we propose a proof with the notations of the present
paper in the electronic supplementary material.
 lsocietypublishing.org/journal/rsif
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Theorem 4.3. Consider a mass-action system, and assume the
following holds:

— there are two non-terminal complexes yi and yj such that only
one entry of yj− yi is non-zero;

— the deficiency is 1.
— a positive steady state exists.

Then, Γij(κ) is non-empty.

As an example of application, we know already from direct
calculation that for the EnvZ-OmpR signalling system the set
Γ18(κ) is non-empty. However, we could have also derived this
information from theorem 4.3, without explicitly calculating it.

We note here that the converse of theorem 4.3 does not
hold.We show this with an example of a multisite phosphoryl-
ation signalling system in the electronic supplementary
material (figure 6), which does not fall in the setting of [14]
but for which we are able to prove absolute concentration
robustness regardless of the choice of rate constants, as long
as a positive steady state exists. Notably, we are also able to
derive information on when this occurs without working
directly with the differential equation. As a consequence of
this example, the family of models we analyse is proven to be
strictly larger than that studied in [14].

A first interesting consequence of theorem 4.1 is that the
ACR value of the mass-action systems satisfying the assump-
tion of the theorem can be calculated by finding at least one
element of Γij(κ), and this can be done via a simple symbolic
linear algebra calculation. As an example, consider the EnvZ-
OmpR osmoregulatory system in figure 1. Then, theorem 4.1
implies that the ACR value of OmpR-P is the value given in
(4.5). This value is in accordancewith the one found in the elec-
tronic supplementary material of [14], however, we found it by
calculating a single element in the preimage of a matrix, as
opposed to working with the rather complicated differential
equation associated with the model. An even more involved
example is dealt with in the electronic supplementary material.

The existence of a linear CI given by theorem 4.1 is essen-
tial to develop the results presented in the next sections.
Before unveiling the consequences of theorem 4.1 in terms
of disturbance rejection, however, it is important to stress
that a CI does not necessarily constitute a feedback, as one
may be tempted to think. Consider

with κ1κ3 = κ2κ4. It can be shown that the system satisfies the
conditions of theorems 3.1 and 4.3, with the non-terminal
complexes A + B and A differing only in species A. Hence,
A is ACR and the assumptions of theorem 4.1 hold. A
linear CI as in theorem 4.1 is given by ϕ(x) =−xB/κ1, since
for this choice

d
dt

f(x(t)) ¼ xB(t) xA(t)� k4
k1

� �
:

However, the quantity ϕ(x(t)) does not regulate the dynamics
of A, since

d
dt

xA(t) ¼ k2 � k3xA(t)

does not depend on xB(t). Since in this case the CI is not
acting on the system, it is not surprising that the existence
of positive steady states is lost as soon as κ1κ3≠ κ2κ4.

It is also worth mentioning that not all systems with ACR
species have a linear CI: consider the mass-action system

The model is considered in [38], where it is proven that the
species A is ACR. We show in the electronic supplementary
material that there exists no linear function ϕ whose deriva-
tive at time t is of the form r(x(t))(xA(t)

g � q), for some
polynomial r and some real numbers γ, q. Note that in this
case theorem 4.3 does not apply because the deficiency of
the network is 2.
5. Rejection of persistent disturbances
5.1. The result
We state an important consequence of theorem 4.1, a stronger
version of which is proven in the electronic supplementary
material:
Theorem 5.1. Consider a mass-action system with d species, with
associated differential equation

d
dt

x(t) ¼ f(x(t)):

Assume that there are two complexes yi and yj only differing in the
nth entry, and that Ĝij(k) is non-empty. Let q be the ACR value of
the nth species. Consider an arbitrary function u with image in Rd

such that a solution to

d
dt

~x(t) ¼ f(~x(t))þ u(~x(t), t),

exists. Assume that there exists a ĝ [ Ĝij(k) which is orthogonal to
the vector u(x, t) for any x, t. Then, for any initial condition ~x(0), at
least one of the following holds:

— the concentration of some species goes to 0 or infinity, along
some sequence of time points;

— ~xn(t) oscillates around q and ĝk = 0 for some k≠ n;
— the integral

ð1
t
j~xn(s)� qjds,

tends to 0, as t goes to infinity.
The result implies that if a disturbance orthogonal to a
vector ĝ [ Ĝij(k) is applied over time, then, at most, the
ACR species can be forced to oscillate around its original
ACR value, but it cannot be forced to attain another steady-
state level without causing extinction or overexpression of
the chemical species present. We analyse the power of
theorem 5.1 by showing some examples of applications.
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Example 5.2. Consider the mass-action system (2.1), which
fulfills the assumptions of theorem 5.1 as already observed.
Assume the complexes are ordered as A + B, 2B, B and A,
and the species are ordered alphabetically as A, B. Hence,
the two non-terminal complexes differing in the ACR species
A are the 1st and the 3rd, and it is shown in the electronic
supplementary material that

Ĝ13(k) ¼ 0
1

� �
þ w

w

� �
:w [ R

� �
: (5:1)

Hence, by choosing w =−1, we have that

�1
0

� �
[ Ĝ13(k): (5:2)

This vector is clearly orthogonal to any disturbance acting on
the production and degradation rates of the species B. Hence,
it follows that the stability and the ACR value of the species A
is maintained in (2.3), provided that no species is completely
removed or indefinitely expressed. Specifically, since the
entry of (5.2) corresponding to B is zero, it follows from the-
orem 5.1 that if all the species concentrations are bounded
from below and from above by positive quantities, necess-
arily the concentration of the species A converges to its
ACR value as t goes to infinity, despite the disturbances.

Example 5.3. (EnvZ-OmpR osmoregulatory system). Con-
sider the osmoregulatory system in figure 1, whose features
have already been discussed in the paper. In particular, we
know the species OmpR-P is ACR with ACR value (4.5).
Recall that we ordered the complexes such that the two
non-terminal ones differing in OmpR-P are the 1st and the
8th. It follows from (4.6) that for any chemical species, there
is a vector in Ĝ18(k) with the corresponding entry equal to
0. It follows that even if the production and degradation of
any chemical species in the model is tampered with, the stab-
ility and the ACR value of the species OmpR-P are
maintained, in the sense described by theorem 5.1.

We can push the disturbances further. By appropriately
choosing w1 and w2 in (4.6), we can see that there is a vector
in Ĝ18(k) whose entries corresponding to the species OmpR
and EnvZ are both 0. Hence, it follows by theorem 5.1 that
by tampering with the production and degradation rates of
both these species over time, if no extinction and no overex-
pression occurs, then the concentration of OmpR-P still
converges to the value (4.5), or oscillates around it.

As a final remark, we note that (4.4) can be useful in deter-
mining whether a vector in Γij(κ) exists, with a specific
component equal to 0, say the nth one. In fact, the existence
of such a vector can be deduced without calculations, if there
is a vector w [ S? whose nth component is different from 0.
5.2. Insulating properties
Here, we discuss how the theory we developed can be used to
design ACR modules that serve as effective insulators in miti-
gating the problem of retroactivity in synthetic biology. As
explained in the Introduction, the loading effects caused by a
downstream biochemical module can disrupt the functionality
of upstream modules (see figure 4 for a concrete example),
which prevents the implementation of biochemical circuits by
interconnecting biochemical modules with different functions
[17]. Our results indicate that certain ACR systems are
remarkably tolerant, and the ACR species maintains its ACR
value even in the presence of arbitrary time-varying disturb-
ances. We exploit this property to show that insulator ACR
modules can be designed to provide inputs to the downstream
modules while robustly mirroring the key functional property
of upstream modules. In other words, the loading effects gen-
erated by downstream modules are rejected by the ACR
insulator, facilitating modularity. We now explore this idea in
greater detail and present an illustrative example.

Assume that a mass-action system has two complexes yi
and yj, that are only different in the nth component, which cor-
responds to the species X. Assume further that Ĝij(k) is non-
empty and that a positive steady state exists. Hence, the species
X is ACR, with some ACR value q. It further follows from the-
orem 5.1 that, if there exists ĝ [ Ĝij(k) with ĝn ¼ 0, then the
production and degradation rates of the species X can be arbi-
trarily perturbed over time by an arbitrary function u, without
compromising its robustness. Specifically, if the perturbed
system is stable and no chemical species is completely con-
sumed, then the concentration of X will still converge to the
same ACR value q as in the original mass-action system. We
can consider the perturbation u as the loading effect of a down-
streammodulewhose input is the concentration of speciesX. In
this case, the loading effect on the original system is rejected
and the concentration of X is maintained at a desired level q
at steady state. Furthermore, the concentration of X is main-
tained approximately constant in the transient dynamics as
well, if we assume as done in [17] that a separation of dynamics
timescale is in place. Specifically, assume

d
dt

~x(t) ¼ 1
1
f(~x(t))þ u(~x(t), t)en,

for some small ε > 0, with f(~x(t)) and u(~x(t), t) being of the same
order of magnitude. Under the assumption of stability, if ε is
very small then the perturbed system will quickly approach
the slow manifold defined by

0 ¼ f(~x(t)),

hence the concentration of X is constantly equal to its ACR
value. Finally and perhaps more importantly, if part of the
disturbance acts on the same timescale as the system, that is if

d
dt

~x(t) ¼ 1
1
(f(~x(t))þ u(~x(t), t)en)þ u0(~x(t), t)en,

with f(~x(t)), u(~x(t), t) and u(~x(t), t) being of the same order of
magnitude, then the slow manifold

0 ¼ f(~x(t))þ ut(~x(t))en,

is quickly approached, where ut is a function from Rd to Rd

defined by ut(x) = u(x, t). By theorem 5.1 applied to the disturb-
ance ut, the species X assumes its ACR value at any positive
point of the slow manifold, which is exactly what we wanted.

As an illustrative example consider the EnvZ-OmpR
osmoregulatory system in figure 1. It follows from (4.6)
that there exists ĝ [ G18(k) with a zero in the entry corre-
sponding to the ACR species OmpR-P. Hence, the
production and degradation rates of OmpR-P can be arbitra-
rily changed over time, without altering its robustness
property, in the sense described by theorem 5.1. As
observed, the statement still holds true if the perturbation
is originated by a downstream module that acts on OmpR-
P. Hence, the EnvZ-OmpR osmoregulatory system can be
used to maintain the expression of OmpR-P at a desired



EnvZ-OmpR system

downstream module

κ

OmpR-POmpR-P

g(OmpR-P)

Figure 2. Proposed use of the EnvZ-OmpR signal transduction system of figure 1 as a controller of a downstream module using OmpR-P. The concentration of
OmpR-P is regulated by the EnvZ-OmpR signalling system, with steady state given by (4.5). The steady state can be adjusted by modifying the parameters κij of the
EnvZ-OmpR signalling system (which depend on the medium osmolarity) or the ratio between ADP and ATP present. The output of the downstream module is a
function g of the concentration of OmpR-P, which is received as an input.

upstream module

insulator

A + B
κ1

2B

A � + B
κ2

A � + A

downstream module

u(t)

A � (not changed
by the insulator)

κ1 , κ2 , x B(0)

A ≈ κ2A �

κ1

A (changed by down-
stream module)

g(A )

Figure 3. The upstream module expresses the chemical species Aw as output. The insulator transfers a multiple of the signal from the upstream module to the
downstream module, which is modified to accept as an input the concentration of A rather than the concentration of Aw.
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level, which depends on the input rate constants, even if the
species OmpR-P is used by a downstream module. More-
over, if the osmoregulatory system acts on a fast enough
timescale, the concentration of the species OmpR-P is
approximately maintained at the target level at any time
point. Note that this analysis holds true provided that the
disturbed system converges to a positive steady state,
which should be checked separately. In figure 2, a diagram
describing this situation is proposed.

Consider now the casewere an upstreammodule is affected
by loading effects. We show how the theory developed in this
paper can be used to design an insulator. Assume that the
upstream module accepts u(t) as an input, and modulates the
concentration of the species Aw accordingly. The species Aw

is then used by a downstream module, which returns a func-
tion of the concentration of Aw as output. The action of the
downstream module on the species Aw causes a loading
effect on the upstream module. To reduce the loading effects,
we propose to modify the downstream module such that it
acts on a speciesA rather than on the speciesAw, and to include
in the system the following module, where B is a species that is
not used by neither the upstream nor the downstreammodule:

Aþ B�!k1 2B

A� þ B�!k1 A� þ A:

Assume the system is stable and that the species B is not com-
pletely consumed. Then, at steady state the concentration level
of Aw is fixed, and the concentration of the ACR species Awill
converge to its ACR value k2xAw=k1 regardless of any disturb-
ance applied to the production and degradation rate of A. In
fact, a linear CI as in the statement of theorem 4.1 is given by
ϕ(x) = xB/κ1, and at any time point

d
dt

f(x(t)) ¼ xB(t) xA(t)� k2
k1

xAw (t)
� �

: (5:4)

We further note that if the dynamics of (5.3) occurs on a faster
timescale than the upstream module (not necessarily of the
downstream module), then a slow manifold is quickly
approached where the concentration of the species A is main-
tained at the level k2xAw (t)=k1 at any time point. In this case,
the module (5.3) approximately outputs a multiple of the con-
centration of Aw over the whole time line. The multiplicative
constant can be tuned through the parameters κ1 and κ2, as
well as the timescale that (5.3) operates in. The timescale can
be further tuned via the concentration of B, as it also follows
from (5.4). In conclusion, the downstream module receives as
an input a good approximation of a multiple of the concen-
tration of Aw, and its activity does not affect the upstream
module, nor (5.3). Moreover, (5.3) does not affect the upstream
module at all, since the species A appears in (5.3) as a catalyst
and is not changed in the catalysed reaction. The proposed
insulating strategy is illustrated in figure 3, and it is applied
to an example discussed in [17] in figure 4.
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Figure 4. In the example, we let u(t) = 0.04(1 + sin(0.005t)) and xAw (0) ¼ 5. All the rates are in 1 min. The ODE solution is calculated in Matlab with ode23s.
In the first panel, the two systems are considered in isolation, with the assumption that the concentration of the species A

w
is maintained at the same level as the

concentration of species Aw, at any time point. In the second panel, the two systems are linked together, and the species Aw is directly used by the downstream
system. The dynamics are completely disrupted by the loading effects, a plot of the absolute value of the difference of the two solutions over time is proposed. In
the third panel, the insulator of figure 3 is used, with xA(0) = 0 and xB(0) = 20. The loading effects are practically removed, despite the choice of low rate constants
0.1. Notably, with this choice the insulator acts on a faster timescale than the upstream module, but on the same timescale as the downstream module. The
difference of the concentration of C between the solution of insulated system and the solution of the isolated systems spikes quickly to 40, but it decreases
to less than 0.5 within 10 min, after which is maintained low as illustrated in the second plot of the third panel.
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5.3. Inclusion in larger systems
In the previous section, we have seen how the absolute concen-
tration robustness and the related stability properties can be
transferred to a larger model that is not necessarily
mass-action. The larger system may include further chemical
transformations and external inputs, whose dynamics may
be partly unknown. If seen under a different perspective, this
result allows us to further extend the set of sufficient conditions
of theorem3.1 that imply the existence of anACR species, in the
sense of theorem 5.4 below. Before stating the precise result,
which is a consequence of theorem 4.1, we need a definition:
Given a reaction system S, we say that S0 is a subsystem of
S if it can be obtained from S by cancelling some reactions,
and if the choice of rate functions for the remaining reactions
is maintained. Moreover, if S and S0 have d and d0 species,
respectively, we let p: Rd ! Rd0 be the projection onto the
species of S0. The following holds:
Corollary 5.4. Consider a reaction system S, and let S0 be a
subsystem. Assume that S0 is a mass-action system with
two complexes π(yi) and π(yj) only differing in the entry corre-
sponding to the species X, and for which Ĝij(k) is non-empty.
Moreover, assume there exists ĝ [ Ĝij(k) such that π(yl− yk) is
orthogonal to ĝ for all yk→ yl that are reactions of S but not reac-
tions of S0. Then, the species X is ACR for both S and S0, with
the same ACR value.



EnvZ-OmpR osmoregulation system, as described in figure 1

misfolding of sensory response protein OmpR-P, and recovery through the action of chaperones:

EnvZ-OmpR-P
κ12 EnvZ + OmpR�-P

OmpR�-P + C
κ13 OmpR-P + C

production and degradation of chaperones:

gene regulatory network C 0
uC(t)

external regulation of the sensor-transmitter protein EnvZ:

0
u1(t)

u2(t)
EnvZ

transcription of OmpC and OmpF:

OmpR-P  binds to DNA promoter

OmpCOmpF

Figure 5. Reaction system including the EnvZ-OmpR osmoregulation system depicted in figure 1 as a subsystem. Parts of the system depicted here are unknown,
specifically, no model is given for the production of chaperones or for the transcription of the outer membrane porins OmpF and OmpC.
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The proof of a stronger result is in the electronic sup-
plementary material. Here, we illustrate how the corollary
can be applied in the case of EnvZ-OmpR signalling
system, where we extend the model with reactions whose
kinetics is not completely known, and in particular is not
required to be of mass-action type. Consider the reaction
system S described in figure 5, which includes the EnvZ-
OmpR osmoregulation system described in figure 1 as a
subsystem. We assume that a protein can misfold when
the phosphoryl group is transferred from EnvZ to OmpR.
Such a misfold can be corrected by chaperones, which are
proteins assisting the conformational folding of other
proteins. We can realistically assume chaperones are inde-
pendently produced and degraded through an unknown
mechanism that does not involve EnvZ or OmpR proteins.
We also allow for an arbitrary and persistent external con-
trol on the expression level of EnvZ sensor-transmitter
protein. Finally, we consider the utilization of OmpR-P as
transcription regulatory protein of the outer membrane
porins OmpF and OmpC. For our purposes, we assume
the details of the transcription mechanism are not
known, but that only the protein Ompr-P is involved in
the process. As previously done, let the complexes of the
EnvZ-OmpR osmoregulation system be ordered from left
to right and from top to bottom, such that EnvZ-D and
EnvZ-D+OmpR-P are the 1st and the 8th complex, respect-
ively. Also, let the species be ordered according to their
appearance from left to right and from top to bottom, as
EnvZ-D, EnvZ, EnvZ-T, EnvZ-P, OmpR, EnvZ-OmpR-P,
OmpR-P, EnvZ-OmpR-D-P. In particular, EnvZ is the
second species, EnvZ-OmpR-P is the sixth species, and
OmprR-P is the seventh species. It follows from (4.6) that,
by choosing w1 = −ξ2 and w2 = −ξ7 = 0, a vector ẑ is in
Ĝ18(k) with:

1. ẑ2 ¼ ĵ2 þ w1 ¼ 0;
2. ẑ6 � ẑ2 ¼ ĵ6 þ w1 þ w2 � ĵ2 � w1 ¼ ĵ6 � ĵ2 ¼ 0;
3. ẑ7 ¼ ĵ7 þ w2 ¼ 0.

Denote by Ek the vector of Rd with the kth entry equal to 1
and the other entries equal to zero. The following holds.

Misfolding of OmpR-P. The projection of the difference
between EnvZ + OmpRw-P and EnvZ-OmpR-P onto the
species of the EnvZ-OmpR signalling system is E2− E6,
which is orthogonal to ẑ by 2. The projection of the difference
between OmpR-P + C and OmpRw-P + C is E7, which is
orthogonal to ẑ by 3.

Production and degradation of chaperones. By assump-
tion, any chemical reaction y→ y0 involved in the production
and degradation of chaperones does not consume or produce
any chemical species of the EnvZ-OmpR signalling system.
Hence, π(y0 − y) = 0, which is orthogonal to ẑ .

External regulation of EnvZ. The difference between
EnvZ and 0 is ±E2, which is orthogonal to ẑ by 1.

Transcription of OmpC and OmpF. We assume that the
transcription only involves the species OmpR-P, out of all the
species in the EnvZ-OmpR osmoregulation system. Hence,
for all the reactions y→ y0 involved in the transcription,
either π(y0 − y) = 0 or π(y0 − y) is a multiple of E7. In either
case, π(y0 − y) is orthogonal to ẑ .

It follows from corollary 5.4 that the species OmpR-P is
ACR in the reaction system of figure 5. Moreover, its ACR
value is still given by (4.5), as long as a positive steady
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state exists. Note that corollary 5.4 could be applied even if
not all chemical reactions are known, and even if the model
is not mass-action. It is also worth noting that the deficiency
of the model is not known, due to the lack of information on
the precise reactions constituting the network, but is certainly
greater than 1. Indeed, the deficiency of the subsystem consti-
tuted by the EnvZ-OmpR osmoregulation system and by the
misfolding of OmpR-P is 2, and the deficiency of a system is
necessarily greater than or equal to the deficiency of any
subsystem [39, lemma 5].
rnal/rsif
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6. Discussion
Several biological systems of interest exhibit an ACR
species, meaning that the steady-state value of the species
is invariant to the initial condition, under the assumption
of stability. In this paper, we perform control theoretic
analysis of biochemical systems that have an ACR species
(ACR systems). Our main contribution is to prove the exist-
ence of a linear constrained integrator (CI) for a family of ACR
systems, which strictly includes the models studied in [14]
(see theorem 4.1). As we elaborate in the paper, this techni-
cal result and its generalization (see electronic
supplementary material) have three important biological
consequences. Firstly, they provide an easy algebraic way
to calculate the steady-state value of ACR species, which
is a cumbersome task for complex networks. This method
adds to those developed in [21]. Secondly, we show that
in the studied systems, ACR species are still ACR even if
arbitrary time-varying disturbances are applied (see theo-
rem 5.1). This property can be naturally exploited to
design insulators to attenuate loading effects in synthetic
biology applications. Lastly, under certain conditions, a
large system can inherit an ACR species from an ACR
subsystem, and maintain its steady-state value. (see
corollary 5.4).

Our results reveal previously unknown facts about ACR
systems and they open the door to many interesting problems
for future research. Efficient algorithms can be designed in
order to check for the existence of portions of the systems
that confer absolute concentration robustness to the whole
system. To this aim, the connections of Ĝij(k) with structural
properties of the network which we show in the electronic
supplementary material can be useful, and theoretical results
can be expanded in this direction. As the ACR property
depends crucially on stability, further detailed analysis on
when stability can be ensured would be welcome. Currently,
in the statement of theorem 5.1, we cannot exclude the possi-
bility that some species is completely consumed or
indefinitely produced upon tampering with the model, or
that oscillations around the ACR value occur. Finding struc-
tural conditions able to eliminate this possibility would be
a nice and useful contribution.

As a final remark, we think the study of stochastically
modelled systems that satisfy the assumptions of theorem
4.1 would be interesting and fruitful. Stochastic models of
reaction systems are typically used when few molecules of
certain chemical species are available [40,41]. It is proven in
[3] that systems satisfying the assumptions of theorem 3.1,
when stochastically modelled, undergo an extinction event
almost surely. As a consequence, the desirable robustness
properties of the ACR systems studied in [14] are completely
destroyed in a low molecule copy-number regime. As an
example, the model depicted in (2.1) undergoes an almost
sure extinction of the chemical species B when stochastically
modelled, regardless of the initial conditions. This is caused
by the fact that all the molecules of B can be consumed by
the reaction B→A, before the occurrence of a reaction A +
B→ 2B. Robustness at finite time intervals of some stochasti-
cally modelled ACR systems is recovered, but only in a
multiscale limit sense [42]. Moreover, it is shown in [38]
that absolute concentration robustness of the deterministic
model does not necessarily imply an extinction event in the
corresponding stochastic model, but the connection is still lar-
gely unexplored. The results developed in the present paper
can help in this direction: consider again (2.1). The extinction
of species B cannot occur if production of B is included in the
model as in (2.3), or as in

At the same time, it follows from theorem 5.1 that the stab-
ility properties of the species A are maintained both in (2.3)
and in (6.1), when deterministically modelled. In particular,
the concentration of the species A still converges to the
value κ2/κ1. It would be interesting to study if in this and
in similar cases some form of absolute concentration robust-
ness arise in the long-term dynamics of the stochastic
models as well.
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