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A CHARACTERIZATION OF MODULATION SPACES BY
SYMPLECTIC ROTATIONS

ELENA CORDERO, MAURICE DE GOSSON, AND FABIO NICOLA

Abstract. This note contains a new characterization of modulation spaces
Mp
m(Rn), 1 ≤ p ≤ ∞, by symplectic rotations. Precisely, instead to measure

the time-frequency content of a function by using translations and modulations
of a fixed window as building blocks, we use translations and metaplectic
operators corresponding to symplectic rotations. Technically, this amounts to
replace, in the computation of the Mp

m(Rn)-norm, the integral in the time-
frequency plane with an integral on Rn × U(2n,R) with respect to a suitable
measure, U(2n,R) being the group of symplectic rotations. More conceptually,
we are considering a sort of polar coordinates in the time-frequency plane. To
have invariance under symplectic rotations we choose a Gaussian as suitable
window function. We also provide a similar (and easier) characterization with
the group U(2n,R) being reduced to the n-dimensional torus Tn.

1. Introduction

The objective of this study is to find a new characterization of modulation
spaces using symplectic rotations. Precisely, we are interested in those metaplec-

tic operators Ŝ ∈ Mp(n,R), such that the corresponding projection S := π(Ŝ)
onto the symplectic group Sp(n,R) is a symplectic rotation. Let us recall that
the symplectic group Sp(n,R) is the subgroup of 2n × 2n invertible matrices
GL(2n,R), defined by

(1) Sp(n,R) =
{
S ∈ GL(2n,R) : SJST = J

}
,

where J is the orthogonal matrix

J =

(
0n In
−In 0n

)
,

(In, 0n are the n × n identity matrix and null matrix, respectively). Here we
consider the subgroup

U(2n,R) := Sp(n,R) ∩O(2n,R) ' U(n)
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of symplectic rotations (cf., e.g. [15, Section 2.3]), namely

(2) U(2n,R) =

{(
A −B
B A

)
: AAT +BBT = In, AB

T = BTA

}
⊂ Sp(n,R),

endowed with the normalized Haar measure dS (the group U(2n,R), being com-
pact, is unimodular).

In the 80’s H. Feichtinger [16] introduced modulation spaces to measure the
time-frequency concentration of a function/distribution on the time-frequency
space (or phase space) R2n. They are nowadays become popular among math-
ematicians and engineers because they have found numerous applications in
signal processing [6, 19, 20], pseudodifferential and Fourier integral operators
[7, 8, 9, 28, 29], partial differential equations [1, 2, 3, 4, 10, 13, 11, 11, 32, 33, 34]
and quantum mechanics [12, 15].

To recall their definition, we need a few time-frequency tools. First, the trans-
lation Tx and modulation Mξ operators are defined by

Txf(t) = f(t− x), Mξf(t) = e2πit·ξf(t), t, x, ξ ∈ Rn,

for any function f on Rn.
The time-frequency representation which occurs in the definition of modulation

spaces is the short-time Fourier Transform (STFT) of a distribution f ∈ S ′(Rn)
with respect to a function g ∈ S(Rn) \ {0} (so-called window), given by

(3) Vgf(x, ξ) = 〈f,MξTxg〉 =

∫
Rn
f(t)g(t− x) e−2πit·ξdt, x, ξ ∈ Rn.

The short-time Fourier transform is well-defined whenever the bracket 〈·, ·〉makes
sense for dual pairs of function or distribution spaces, in particular for f ∈
S ′(Rn), g ∈ S(Rn), or for f, g ∈ L2(Rn).

Let m(x, ξ) be a continuous weight, v-moderate for some submultiplicative
weight v (see [22, Section 11.1] for details - we will not use explicitly these
properties). We also assume that m has at most polynomial growth.

Definition 1.1 (Modulation spaces). Given g ∈ S(Rn), and 1 ≤ p ≤ ∞, the
modulation space Mp

m(Rn) consists of all tempered distributions f ∈ S ′(Rn) such
that Vgf ∈ Lpm(R2n). The norm on Mp

m(Rn) is

‖f‖Mp
m

= ‖Vgf‖Lpm =

(∫
R2n

|Vgf(x, ξ)|pm(x, ξ)pdxdξ

)1/p

(4)

=

(∫
R2n

|〈f,MξTxg〉|pm(x, ξ)pdxdξ

)1/p

(with obvious modifications for p =∞).
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The spaces Mp
m(Rn) are Banach spaces, and every nonzero g ∈M1

v (Rn) yields
an equivalent norm in (4), so that their definition is independent of the choice of
g ∈M1

v (Rn) (see [16, 22]).
We now provide an equivalent norm to (4) by using translations Tx (or mod-

ulations Mξ) and the operators Ŝ, with S ∈ U(2n,R) as follows.

Theorem 1.2. Consider the Gaussian function ϕ(t) = 2d/4e−π|t|
2
.

(i) For 1 ≤ p <∞ and f ∈Mp
m(Rn), we have

(5) ‖f‖Mp
m(Rn) �

(∫
Rn×U(2n,R)

|x|n|〈f, ŜTxϕ〉|pm(S(x, 0)T )pdxdS

) 1
p

,

where dx is the Lebesgue measure on Rn and dS the Haar measure on U(2n,R).
Similarly,

(6) ‖f‖Mp
m(Rn) �

(∫
Rn×U(2n,R)

|ξ|n|〈f, ŜMξϕ〉|pm(S(0, ξ)T )pdξdS

) 1
p

,

with dξ being the Lebesgue measure on Rn and dS the Haar measure on U(2n,R).
(ii) For p =∞, f ∈M∞

m (Rn), it occurs

(7) ‖f‖M∞
m (Rn) � sup

S∈U(2n,R)
sup
x∈Rn
|〈f, ŜTxϕ〉|m(S(x, 0)T )

and, similarly,

(8) ‖f‖M∞
m (Rn) � sup

S∈U(2n,R)
sup
ξ∈Rn
|〈f, ŜMξϕ〉|m(S(0, ξ)T ).

The interpretation of the integral (5) above is as follows. The metaplectic

operator Ŝ produces a time-frequency rotation of the shifted Gaussian Txϕ. In
this way, the operator

f 7→ 〈f, ŜTxϕ〉
detects the time-frequency content of f in an oblique strip, see Figure 1. All
the contributions are then added together with a weight |x|n which takes into
account the underlapping of the strips as |x| → +∞ and the overlapping as
x→ 0.

Formulas (6), (7) and (8) have similar meanings.
Observe that in dimension n = 1, U(2,R) ' U(1) and the above formula is

essentially a transition to polar coordinates with |x| being the Jacobian.
Comparing (4) and (5) we observe that in (5) the modulation operator Mξ is

replaced by the metaplectic operator Ŝ and the integral on the phase space R2n

has become an integral on the cartesian product Rn×U(2n,R). The integration
parameters (x, ξ) of (4) live in R2n, with dim R2n = 2n, whereas the parameters
(x, S) of (5) live in Rn × U(2n,R). Recall that dim U(2n,R) = n2 [15]; this
suggests that a formula similar to (5) should hold when U(2n,R) is reduced to
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x

ξ

S

Figure 1. The time-frequency content of f in the oblique strip is

detected by the operator f 7→ 〈f, ŜTxϕ〉.

a suitable subgroup K ⊂ U(2n,R) of dimension n. This is indeed the case (and
easier to see), as shown in the subsequent Theorem 1.3.

Consider the n-dimensional torus

(9) Tn =

S =

eiθ1 . . .

eiθn

 : θ1, . . . , θn ∈ R

 ⊂ U(n)

with the Haar measure dS = dθ1 . . . dθn. The torus is isomorphic to a subgroup
K ⊂ U(2n,R), via the isomorphism ι in formula (16) below (see the subsequent
section).

We exhibit the following characterization for Mp-spaces.

Theorem 1.3. Let ϕ be the Gaussian of Theorem 1.2.
(i) For 1 ≤ p <∞, f ∈Mp

m(Rn), we have

(10) ‖f‖Mp
m(Rn) �

(∫
Rn×Tn

|x1 . . . xn||〈f, ŜTxϕ〉|pm(S(x, 0)T )pdxdS

) 1
p

,

and, similarly,

(11) ‖f‖Mp
m(Rn) �

(∫
Rn×Tn

|ξ1 . . . ξn||〈f, ŜMξϕ〉|pm(S(0, ξ)T )pdξdS

) 1
p

.

(ii) For p =∞,

(12) ‖f‖M∞
m (Rn) � sup

S∈Tn
sup
x∈Rn
|〈f, ŜTxϕ〉|m(S(x, 0)T )

and

(13) ‖f‖M∞
m (Rn) � sup

S∈Tn
sup
ξ∈Rn
|〈f, ŜMξϕ〉|m(S(0, ξ)T ).
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The above results for the groups U(2n,R) and Tn can be interpreted, in a
sense, as two extreme cases, and it would be interesting to find, more generally,
for which compact subgroups K ⊂ U(2n,R) similar characterizations hold. We
conjecture that they should be precisely the subgroups K ⊂ U(2n,R) such that
every orbit for their action on R2n intersects {0}×Rn (up to subsets of measure
zero), with a corresponding weighted measure on Rn ×K to be determined.

Another problem which is worth investigating is the study of discrete versions
of the above characterizations via coorbit theory [17].

The paper is organized as follows: in Section 2 we collected some preliminary
results, whereas Section 3 is devoted to the proof of Theorems 1.2 and 1.3.
In Section 4 we rephrase more explicitly Theorem 1.3 in terms of the partial
fractional Fourier transform.

2. Notation and Preliminaries

Notation. We write x · y for the scalar product on Rn and |t|2 = t · t,
for t, x, y ∈ Rn. For expressions A,B ≥ 0, we use the notation A . B to
represent the inequality A ≤ cB for a suitable constant c > 0, and A � B for
the equivalence c−1B ≤ A ≤ cB.

The Schwartz class is denoted by S(Rn), the space of tempered distributions
by S ′(Rn). We use the brackets 〈f, g〉 to denote the extension to S ′(Rn)×S(Rn)

of the inner product 〈f, g〉 =
∫
f(t)g(t)dt on S(Rn).

Metaplectic Operators. The metaplectic representation µ of Mp(n,R),
the two-sheeted cover of the symplectic group Sp(n,R), defined in (1) arises
as intertwining operator between the standard Schrödinger representation ρ of
the Heisenberg group Hd and the representation that is obtained from it by
composing ρ with the action of Sp(n,R) by automorphisms on Hd (see, e.g.,
[15, 21, 23]). Let us recall the main points of a direct construction.

The symplectic group Sp(n,R) is generated by the so-called free symplectic
matrices

S =

(
A B
C D

)
∈ Sp(n,R), detB 6= 0.

To each such a matrix the associated generating function is defined by

W (x, x′) =
1

2
DB−1x · x−B−1x · x′ + 1

2
B−1Ax′ · x′.

Conversely, to every polynomial of the type

W (x, x′) =
1

2
Px · x− Lx · x′ + 1

2
Qx′ · x′

with

P = P T , Q = QT
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and
detL 6= 0

it can be associated a free symplectic matrix, namely

SW =

(
L−1Q L−1

PL−1Q− LT PL−1

)
.

Given SW as above and m ∈ Z such that

mπ ≡ arg detL mod 2π,

the related operator ŜW,m is defined by setting, for ψ ∈ S(Rn),

(14) ŜW,mψ(x) =
1

in/2
∆(W )

∫
Rn
e2πiW (x,x′)ψ(x′)dx′

(with in/2 = eiπn/4) where

∆(W ) = im
√
| detL|.

The operator ŜW,m is named quadratic Fourier transform associated to the free
symplectic matrix SW (as a remark, for integral representations of metaplectic
operators that do not arise from free symplectic matrices see [14, 24]). The class

modulo 4 of the integer m is called Maslov index of ŜW,m. Observe that if m is
one choice of Maslov index, then m+ 2 is another equally good choice: hence to

each function W we associate two operators, namely ŜW,m and ŜW,m+2 = −ŜW,m.
The quadratic Fourier transform corresponding to the choices SW = J and

m = 0 is denoted by Ĵ . The generating function of J is simply W (x, x′) = −x·x′.
It follows that

(15) Ĵψ(x) =
1

in/2

∫
Rn
e−2πix·x

′
ψ(x′)dx′ =

1

in/2
Fψ(x)

for ψ ∈ S(Rn), where F is the usual unitary Fourier transform.

The quadratic Fourier transforms ŜW,m form a subset of the group U(L2(Rn))
of unitary operators acting on L2(Rn), which is mapped into itself by the oper-
ation of inversion and they generate a subgroup of U(L2(Rn)) which is, by def-
inition, the metaplectic group Mp(n,R). The elements of Mp(n,R) are called
metaplectic operators.

Hence, every Ŝ ∈Mp(n,R) is, by definition, a product

ŜW1,m1 . . . ŜWk,mk

of metaplectic operators associated to free symplectic matrices.

Indeed, it can be proved that every Ŝ ∈Mp(n,R) can be written as a product

of exactly two quadratic Fourier transforms: Ŝ = ŜW,mŜW ′,m′ . Now, it can

be shown that the mapping ŜW,m 7−→ SW extends to a group homomorphism
π : Mp(n,R)→ Sp(n,R), which is in fact a double covering.
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We also observe that each metaplectic operator is, by construction, a unitary
operator in L2(Rn), but also an automorphism of S(Rn) and of S ′(Rn).

We are interested in its restriction Ŝ = π(S), with S ∈ U(2n,R), the symplec-
tic rotations in (2).

Observe that U(n) := U(n,C), the complex unitary group (the group of n×n
invertible complex matrices V satisfying V V ∗ = V ∗V = In) is isomorphic to
U(2n,R). The isomorphism ι is the mapping ι : U(n)→ U(2n,R) given by

(16) ι(A+ iB) =

(
A −B
B A

)
,

for details see [15, Chapter 2.3].
We present here some results related to the group U(2n,R), which will be used

in the sequel to attain the characterization of Theorem 1.2. First, we recall a
well-known result, see for instance [22, Lemma 9.4.3]:

Lemma 2.1. For f, g ∈ L2(Rn) and S ∈ Sp(n,R), the STFT Vgf satisfies

(17) |VŜg(Ŝf)(x, ξ)| = |Vgf(S−1(x, ξ))|, (x, ξ) ∈ R2n.

This second issue is contained in [5], we sketch the proof for the sake of con-
sistency.

Lemma 2.2. For ϕ, ψ ∈ S(Rn) and S ∈ U(2n,R), the STFT Vϕ(Ŝψ) is a
Schwartz function, with seminorms uniformly bounded when S ∈ U(2n,R).

Proof. Since ϕ ∈ S(Rn), the STFT Vϕ is a continuous mapping from S(Rn) into
S(R2n) (see [16]). Hence, it is enough to show that

{Ŝϕ : S ∈ U(2n,R)}
is a bounded subset of the Schwartz class S(Rn), i.e., every Schwartz seminorm is
bounded on it. Since the group U(2n,R) is compact, it is sufficient to show that
every seminorm is locally bounded, that is, we can limit ourselves to consider S
in a sufficiently small neighbourhood for any fixed S0 ∈ U(2n,R). Equivalently,
we can consider S of the form S = S1J

−1S0 where S1 belongs to a enough
small neighbourhood of J in U(2n,R). Using the representation of metaplectic
operators recalled at the beginning of this section, we can write

Ŝϕ(x) = ±Ŝ1[Ĵ
−1Ŝ0ϕ](x)

= c
√
| detL|

∫
Rn
e2πi(

1
2
Px·x−Lx·y+ 1

2
Qy·y)[Ĵ−1Ŝ0ϕ]︸ ︷︷ ︸

∈S(Rn)

(y)dy

where |c| = 1 and, we might say, ‖P‖ < ε, ‖Q‖ < ε, ‖L − I‖ < ε. If ε < 1, it

is straightforward to check that Ŝϕ belongs to a bounded subset of S(Rn), as
desired.
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Lemma 2.3. Let B = (bi,j)i,j=1,...n be the n × n submatrix in (2). The subset
Σ ⊂ U(2n,R) obtained by setting bi,1 = 0, i = 1, . . . n (i.e., the first column of B
is set to zero), is a submanifold of codimension n.

Proof. We have to verify that the coordinates b1,1, . . . , bn,1 are independent on
the subset Σ, namely the projection

(b1,1, . . . , bn,1) : U(2n,R)→ Rn

has rank n on Σ.
Let us first show that for every S0 ∈ Σ there exists a U(2n,R)-valued smooth

function S(b1, . . . , bn), defined in a neighbourhood of 0 ∈ Rn, such that S(0) = S0

and the first column “of its submatrix B” is precisely (b1, . . . , bn)T .
Let S0 = A + iB = (V1, . . . , Vn) ∈ Σ, with Vj being a n × 1 complex vector,

j = 1, . . . , n, so that by assumption (bi,1)i=1,...,n = ImV1 = 0. We consider any
smooth function V1(b1, . . . , bn), defined in a neighbourhood of 0 ∈ Rn, valued in
the unit sphere of Cn, such that

ImV1(b1, . . . , bn) = (b1, . . . , bn)T , V1(0) = V1.

Then, we apply the Gram-Schmidt orthonormalization procedure in Cn to the
set of vectors (V1(b1, . . . , bn), V2, . . . , Vn). This provides the desired U(n)-valued
function S(b1, . . . , bn). In particular S(0) = S0.

Now, the composition of the mapping

(b1, . . . , bn) 7→ S(b1, . . . , bn)

followed by the projection (b1,1, . . . , bn,1) : U(2n,R)→ Rn is therefore the identity
mapping in a neighbourhood of 0 and has rank n. Hence the same is true for the
projection (b1,1, . . . , bn,1) : U(2n,R)→ Rn at S0.

Lemma 2.4. For every ε > 0, define the (x−independent) function

(18) χε(x, ξ) =
1

εn
1Q

(
ξ

ε

)
,

where

Q =

[
−1

2
,
1

2

]n
⊂ Rn and 1Q =

{
1, ξ ∈ Q
0, ξ /∈ Q

and

(19) χ̃ε(z) =
χε(z)∫

U(2n,R) χε(Sz) dS
, z ∈ R2n.

Then we have

(20)

∫
U(2n,R)

χ̃ε(Sz) dS = 1, ∀z ∈ R2n
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and

(21) lim
ε→0+

∫
R2n

χ̃ε(x, ξ)Φ(x, ξ)dxdξ = C

∫
Rn
|x|nΦ(x, 0) dx,

for some C > 0 and for every continuous function Φ on R2n with a rapid decay
at infinity.

Proof. We will show in a moment that, for z = (x, ξ) ∈ R2n,

(22)

∫
U(2n,R)

χε(Sz) dS & min{ε−n, |z|−n}

(with the convention, at z = 0, that min{ε−n,+∞} = ε−n). In particular,∫
U(2n,R) χε(Sz) dS 6= 0, for every z ∈ R2n. Formula (20) then follows, because∫

U(2n,R)
χ̃ε(Sz) dS =

∫
U(2n,R)

χε(Sz)∫
U(2n,R) χε(USz) dU

dS

=

∫
U(2n,R)

χε(Sz)∫
U(2n,R) χε(Uz) dU

dS = 1

for every z ∈ R2n, since the Haar measure is right invariant.
Let us now prove (22). For z = 0 we have∫

U(2n,R)
χε(Sz) dS =

1

εn

∫
U(2n,R)

dS =
C0

εn
,

with C0 = meas(U(2n,R)) > 0. Consider now z 6= 0. Observe that the function

Ψε(z) :=

∫
U(2n,R)

χε(Sz) dS

is constant on the orbits of U(2n,R) in R2n, so that we can suppose

z = (x, 0), x = (x1, 0, . . . , 0), x1 = |x| = |z| > 0.

Now, by the definition of χε and Ψε,
(23)

Ψε(z) = ε−nmeas

{
S =

(
A −B
B A

)
∈ U(2n,R) : |bi,1| <

ε

2|z|
, i = 1, . . . , n

}
,

where (bi,1)i=1,...,n, is the first column of the matrix B = (bi,j)i,j=1,...n.
Define, for µ > 0,

f(µ) = meas

{
S =

(
A −B
B A

)
∈ U(2n,R) : |bi,1| < µ, i = 1, . . . , n

}
.

Observe that f(µ) is non-decreasing and constant for µ ≥ 1. Moreover, from
Lemma 2.3 we know that by setting bi,1 = 0, i = 1, . . . , n, in U(2n,R), we
get a submanifold Σ of codimension n, and the function f(µ) is the measure
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of a tubular neighbourhood of Σ in U(2n,R). Hence we have the asymptotic
behaviour

(24) µ−nf(µ)→ C0 > 0, as µ→ 0+

and in particular

(25) f(µ) & min{1, µn}.
We then infer

(26) Ψε(z) = ε−nf

(
ε

2|z|

)
→ C1

|z|n
, as ε→ 0+

locally uniformly in R2n \ {0}, with C1 = 2−nC0, and

(27) Ψε(z) & ε−n min

{
1,

(
ε

|z|

)n}
= min{ε−n, |z|−n},

which is (22).
Let us finally prove (21). We are interested in the limit ε → 0+, so we can

assume ε ≤ 1. Consider a continuous function Φ on R2n with rapid decay at
infinity. By definition of χ̃ε(z) in (19) we have

χ̃ε(x, ξ) =
ε−n

Ψε(x, ξ)
1[−ε/2,ε/2]n(ξ)

so that, by (27),

|χ̃ε(x, ξ)Φ(x, ξ)| . ε−n(1 + |x|n)1[−ε/2,ε/2]n(ξ)|Φ(x, ξ)| ∈ L1(R2n)

for 0 < ε ≤ 1. Fubini’s Theorem then allows one to look at the first integral in
(21) as an iterated integral

Iε :=

∫
Rn

(∫
Rn
χ̃ε(x, ξ)Φ(x, ξ)dξ

)
dx

and we apply the dominated convergence theorem to the integral with respect
to the x variable as follows. Setting

Υε(x) :=

∫
Rn
χ̃ε(x, ξ)Φ(x, ξ)dξ = ε−n

∫
[−ε/2,ε/2]n

1

Ψε(x, ξ)
Φ(x, ξ) dξ,

by (26) we have, for every fixed x 6= 0,

Υε(x)→ C|x|nΦ(x, 0);

for some constant C > 0. On the other hand Υε(x) is dominated, using (27), by

(1 + |x|)n sup
ξ∈Rn
|Φ(x, ξ)| ∈ L1(Rn).

Hence

lim
ε→0+

Iε =

∫
Rn

lim
ε→0+

Υε(x)dx = C

∫
Rn
|x|nΦ(x, 0) dx.
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This concludes the proof.

Remark 2.5. Observe that there are no conditions on the derivatives of the
function Φ in (21).

3. Proofs of the main results

In what follows we prove Theorems 1.2 and 1.3.

Proof of Theorem 1.2. (i) First Step. Let us start with showing that formula
(5) is true for any function ψ in the Schwartz class S(Rn) ⊂Mp(Rn), 1 ≤ p <∞.

Using the Gaussian ϕ(t) = 2d/4e−π|t|
2

as window function, we compute the Mp
m-

norm of ψ as in (4) and then use Lemma 2.4 so that

‖ψ‖p
Mp
m

=

∫
R2n

|Vϕψ(z)|pm(z)p dz =

∫
R2n

∫
U(2n,R)

χ̃ε(Sz)|Vϕψ(z)|pm(z)p dSdz

=

∫
R2n

∫
U(2n,R)

χ̃ε(z)|Vϕψ(S−1z)|pm(S−1z)p dSdz

=

∫
R2n

∫
U(2n,R)

χ̃ε(z)|VŜϕŜψ(z)|pm(S−1z)p dSdz

where in the last equality we used Lemma 2.1. Observe that, since S is unitary

and ϕ is a Gaussian, Ŝϕ = cϕ, for some phase factor c ∈ C, with |c| = 1 (see
[15, Proposition 252]) and this phase factor is killed by the modulus obtaining

|VŜϕŜψ(z)| = |VϕŜψ(z)|. Continuing the above computation we infer

‖ψ‖p
Mp
m

=

∫
R2n

χ̃ε(z)

∫
U(2n,R)

|VϕŜψ(z)|pm(S−1z)p dSdz.

Set

Φ(z) =

∫
U(2n,R)

|VϕŜψ(z)|pm(S−1z)p dS.

The dominated convergence theorem guarantees that Φ is continuous on R2n and
moreover Φ has rapid decay at infinity. This follows from Lemma 2.2 (recall that
m is continuous and has at most polynomial growth).

Letting ε→ 0+ and using (21) we obtain

‖ψ‖p
Mp
m

= C

∫
Rn
|x|n

∫
U(2n,R)

|VϕŜψ(x, 0)|pm(S−1(x, 0)T )p dSdx

= C

∫
Rn
|x|n

∫
U(2n,R)

|〈Ŝψ, Txϕ〉|pm(S−1(x, 0)T )p dSdx

= C

∫
Rn
|x|n

∫
U(2n,R)

|〈ψ, ŜTxϕ〉|pm(S(x, 0)T )p dSdx.
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The last equality is due to 〈Ŝψ, Txϕ〉 = 〈ψ, Ŝ−1Txϕ〉 and the invariance of the
Haar measure of U(2n,R) with respect to the change of variable S → S−1.

Second Step. Consider f ∈ Mp
m(Rn), 1 ≤ p < ∞. Using the density of

the Schwartz class S(Rn) in Mp
m(Rn) (cf. e.g., [22, Chapter 12]), there exists a

sequence {ψk}k ∈ S(Rn) such that ψk → f in Mp
m(Rn). This implies that ψk → f

in S ′(Rn) and

〈ψk, ŜTxϕ〉 → 〈ψ, ŜTxϕ〉

pointwise for every x ∈ Rn, S ∈ U(2n,R). Let us define, for every f ∈Mp
m(Rn),

(28) |||f ||| =
(∫

Rn×U(2n,R)
|x|n|〈f, ŜTxϕ〉|pm(S(x, 0)T )pdxdS

) 1
p

.

By Fatou’s Lemma, for any f ∈Mp
m(Rn):

(29) |||f |||p ≤ lim inf
k→∞

|||ψk|||p . lim inf
k→∞

‖ψk‖pMp
m

= ‖f‖p
Mp
m
.

It is easy to check that |||f ||| is a seminorm on Mp
m(Rn). Applying (29) to the

difference f − ψk we obtain |||f − ψk||| → 0 and hence |||ψk||| → |||f |||. By
assumption we also have ‖ψk‖Mp

m
→ ‖f‖Mp

m
, and the desired norm equivalence

in (5) then extents from S(Rn) to Mp
m(Rn).

Third Step. We will show that (6) easily follows from (5). By the definition
of the symplectic group (1), for any S ∈ U(2n,R),

J−1S = (ST )−1J−1 = SJ−1

for S−1 = ST . On the other hand, for any f ∈ Mp
m(Rn), ‖f‖Mp

m
� ‖f̂‖Mp

m̃
, with

m̃(z) = m(J−1z); see [16]. Using (15),

|〈f̂ , ŜTxϕ〉| = |〈f, Ĵ−1ŜTxϕ〉| = |〈f, ŜF−1Txϕ〉|

= |〈f, ŜMxF−1ϕ〉| = |〈f, ŜMxϕ〉|

since the Gaussian is an eigenvector of F−1 with eigenvalue equal to 1. Moreover

m̃(S(x, 0)T ) = m(J−1S(x, 0)T ) = m(SJ−1(x, 0)T ) = m(S(0, x)T ).

Hence (6) follows from (5).
(ii) Case p =∞. Observe that any z ∈ R2n can be written as

z = S−1(x, 0)T ,
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for some x ∈ Rn, S ∈ U(2n,R), so that, for any f ∈M∞
m (Rn),

‖f‖M∞
m (Rn) = sup

z∈R2n

|Vϕf(z)|m(z) � sup
S∈U(2n,R)

sup
x∈Rn

∣∣Vϕf(S−1(x, 0)T )
∣∣m(S−1(x, 0)T )

= sup
S∈U(2n,R)

sup
x∈Rn
|Vϕ(Ŝf)(x, 0)|m(S−1(x, 0)T )

= sup
S∈U(2n,R)

sup
x∈Rn
|〈Ŝf, Txϕ〉|m(S−1(x, 0)T )

= sup
S∈U(2n,R)

sup
x∈Rn
|〈f, ŜTxϕ〉|m(S(x, 0)T ),

which gives (7). Formula (8) follows as above.

We now prove the similar result, with the group U(2n,R) replaced by the
subgroup Tn (up to isomorphisms).

Proof of Theorem 1.3. (i) We could follow a similar pattern to the proof of The-
orem 1.2, replacing the group U(2n,R) by Tn. The preparation of Lemma 2.3
would be no longer necessary. Lemma 2.4 would require some small adjust-
ments. On the other hand a more direct argument can be given. Namely, writ-
ing zj = (xj, ξj) in complex notation as rje

iθj , and setting r = (r1, . . . , rn),
θ = (θ1, . . . , θn) we have

‖f‖p
Mp
m

=

∫
R2n

|Vϕf(z)|pm(z)p dz

=

∫
Rn+×[0,2π]n

r1 · · · rn|Vϕf(r1e
iθ1 , . . . , rne

iθn)|pm(r1e
iθ1 , . . . , rne

iθn)p dr dθ.

With S as in (9) and using Lemma 2.1, therefore we have

‖f‖p
Mp
m
�
∫
Rn×Tn

|x1 · · ·xn||Vϕf(S(x, 0)T )|pm(S(x, 0)T )p dx dS

=

∫
Rn×Tn

|x1 · · ·xn||Vϕ(Ŝ−1f)(x, 0)|pm(S(x, 0)T )p dx dS

=

∫
Rn×Tn

|x1 · · ·xn||〈Ŝ−1f, Txϕ〉|pm(S(x, 0)T )p dx dS,

which is (10). The characterization (11) has the same proof as the corresponding
formula (6).

(ii) The M∞ case uses the same argument as in the proofs of (7) and (8), with
the group U(2n,R) replaced by Tn.
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4. Integral representations for the torus in terms of the
fractional Fourier transform

Observe that the symplectic matrix in U(2n,R) corresponding to the complex
matrix S ∈ Tn in (9) via the isomorphism ι in (16) is given by

ι(S) =

(
A −B
B A

)
with

A = diag [cos θ1, . . . , cos θn] B = diag [sin θ1, . . . , sin θn].

Consider the case θi 6= kπ, k ∈ Z, i = 1, . . . , n. The matrix ι(S) is a free
symplectic matrix and the related metaplectic operator possesses the integral
representation (14). Since

AB−1 = B−1A = diag
[cos θ1

sin θ1
, . . . ,

cos θn
sin θn

]
,

the polynomial W (x, x′) becomes

(30) W (x1, . . . , xn, x
′
1, . . . , x

′
n) =

n∑
i=1

1

2 sin θi
(cos θix

2
i − 2xix

′
i + cos θix

′2
i )

and
∆(W ) =

c√
| sin θ1 · · · sin θn|

.

for some phase factor c ∈ C, with |c| = 1. Hence we obtain, for ψ ∈ S(Rn),

(31) ι̂(S)ψ(x) =
c√

| sin θ1 · · · sin θn|

∫
Rn
e2πiW (x,x′)ψ(x′)dx′,

with W (x, x′) in (30). From (31) we deduce that ι̂(S) can be written as the
composition of the operators

(32) ι̂(S) = ±ι̂(S1) · · · ι̂(Sn),

where, for some phase factor c,

ι̂(Si)ψ(x) =
c√
| sin θi|

∫
R
e

πi
sin θi

(cos θix
2
i−2xix′i+cos θix

′2
i )
ψ(x′1, . . . , x

′
i, . . . , x

′
n)dx′i.

Indeed if θi = π/2, then ι̂(Si) = ±Ĵ is the Fourier transform with respect to

the variable xi. Otherwise, ι̂(Si) = ±Fθi , the θi-angle partial fractional Fourier
transform (again referred to the variable xi).

Alternatively, the same conclusion (32) can be drawn by writing

(33) S = diag [eiθ1 . . . , eiθn ] = diag [eiθ1 , 1, . . . 1] · · · diag [1, . . . 1, eiθn ]

that is
S = S1 · · ·Si · · ·Sn,
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with

Si = diag [1, . . . 1, eiθi , 1, . . . 1], i = 1, . . . , n

so that

ι̂(S) = ̂ι(S1) . . . ι(S1) = ±ι̂(S1) · · · ι̂(Sn).

If θi = 2kπ for some k ∈ Z, ι̂(Si) = ±I with I the identity operator. If θi =

(2k + 1)π for some k ∈ Z, ι̂(Si)ψ(x) = ±ψ(x1, . . . ,−xi, . . . , xn).

Hence using the θi-angle partial fractional Fourier transform Fθi = ±ι̂(Si) we
can rephrase Theorem 1.3 as follows.

Theorem 4.1. Let ϕ be the Gaussian of Theorem 1.2.
(i) For 1 ≤ p <∞, f ∈Mp

m(Rn), we have

‖f‖Mp
m(Rn) �

(∫
Rn×[0,2π]n

|x1 . . . xn||〈f,Fθ1 . . .FθnTxϕ〉|pm(x1e
iθ1 , . . . , xne

iθn)pdxdθ

) 1
p

,

and

‖f‖Mp
m(Rn) �

(∫
Rn×[0,2π]n

|ξ1 . . . ξn||〈f,Fθ1 . . .FθnMξϕ〉|pm(ξ1e
iθ1 , . . . , ξne

iθn)pdξdθ

) 1
p

.

(ii) For p =∞,

‖f‖M∞
m (Rn) � sup

θ∈[0,2π]n
sup
x∈Rn
|〈f,Fθ1 . . .FθnTxϕ〉|m(x1e

iθ1 , . . . , xne
iθn)

and

‖f‖M∞
m (Rn) � sup

θ∈[0,2π]n
sup
ξ∈Rn
|〈f,Fθ1 . . .FθnMξϕ〉|m(ξ1e

iθ1 , . . . , ξne
iθn).

We observe that this result could also be obtained by writing ‖f‖Mp
m(Rn) in

terms of the weighted Lp norm of the Bargmann transform of f and using the
covariance property of the Bargmann transform; the papers [18, 30] and specially
[31] are relevant in this connection.
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[2] A. Bényi and K.A. Okoudjou. Time-frequency estimates for pseudodifferential operators.
Contemporary Math., Amer. Math. Soc., 428:13–22, 2007.
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[9] E. Cordero, K. Gröchenig, F. Nicola and L. Rodino. Wiener algebras of Fourier integral
operators. J. Math. Pures Appl., 99:219–233, 2013.

[10] E. Cordero and F. Nicola. Boundedness of Schrödinger type propagators on modulation
spaces. J. Fourier Anal. Appl. 16(3):311–339, 2010.

[11] E. Cordero and F. Nicola. Schrödinger equations with bounded perturbations. J. Pseudo-
Differ. Op. and Appl., 5(3):319–341, 2014.
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[17] H. G. Feichtinger and K. Gröchenig. Banach spaces related to integrable group represen-
tations and their atomic decompositions, I. J. Funct. Anal., 86(2):307–340, 1989.
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