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Sensorless Control of Synchronous Motor Drives:
Accurate Torque Estimation and Control under

Parameter Errors
Anantaram Varatharajan, Gianmario Pellegrino, Senior Member, IEEE, Eric Armando, Senior Member, IEEE, and

Marko Hinkkanen, Senior Member, IEEE

Abstract—Accurate torque control is of interest in traction
and other industrial applications, whose realization is challenged
by parameters errors and temperature induced variations. This
paper proposes a sensorless technique for resilient torque control
in salient synchronous machines. The position observer is driven
by the adaptive projection vector for position error estimation
(APP) scheme. A second projection vector, orthogonal to APP for
non interference, serves for flux adaptation. Based on the torque
estimation, a model-based optimal current reference generation
for maximum torque per ampere (MTPA) condition is designed to
realize accurate torque control. The proposed scheme is validated
experimentally on an 1.1 kW synchronous reluctance (SyR)
machine test-bench.

Index Terms—Sensorless control, adaptive projection vector,
flux adaptation, torque control, optimal current reference.

I. INTRODUCTION

Control of synchronous machines without a position trans-
ducer finds importance in automotive and industrial applica-
tions for cost reduction and improved reliability. Low speed
sensorless control techniques rely on high-frequency excita-
tion approach to exploit the differential saliency for position
estimation. This comprises of two schemes: continuous exci-
tation using periodic signal injection [1] [2] and discontinuous
excitation schemes [3]–[5]. In medium to high speed region,
the high-frequency excitation approach is often relegated in
favor of fundamental-wave excitation approach for reliability
and low acoustic noise.

This paper concerns the latter category of fundamental-
wave excitation methods based on back-emf integration for
position estimation [6] [7]. An active flux based observer
is a state of art technique reported in literature [8] [9] but
suffers from instability at low speeds braking and at very
high speeds motoring region as demonstrated in [10]–[12].
To circumvent instability, [10] proposed a flux observer with
adaptive gain while [12] proposed an adaptive projection
vector for position error estimation (APP) scheme. All such
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methods are parameter-dependent and suffers from parame-
ter inaccuracy. The immunity property of the APP scheme
to stator resistance variations and non-ideal inverter voltage
compensation is illustrated in [13].

Another control aspect hampered by parameter inaccuracy
is the torque estimation and control. Under parameter errors,
the torque estimation is enhanced using inductance adaptation
in extended back-emf based sensorless control of an interior
permanent magnet synchronous motor (IPMSM) in [14]. How-
ever, due to the coupling of position observer with inductance
adaption, a small residual error in torque estimation remains.

This paper presents a new torque control technique with
maximum torque per ampere (MTPA) tracking and closed-loop
compensation of torque estimation error caused by parameter
inaccuracies, within the APP sensorless framework. The APP
position observer can be supplemented with high-frequency
excitation schemes for operation at zero to low speeds region
[5]. Section II introduces notation and analysis of the flux
observer. The APP scheme is elaborated in Section III along
with the position observer. Section IV presents the main
contributions of the paper, enumerated as follows:

1) An optimal current reference generation respecting
MTPA criterion is devised as a function of discrepancy
between commanded and estimated torque using the
small-signal model of the machine.

2) An analytical expression for torque estimation error is
derived as a function of parameter errors and steady-state
position error. It is subsequently formulated for the APP
sensorless scheme.

3) A projection vector that is orthogonal to APP is em-
ployed for current model flux adaptation, i.e., for cor-
recting the error-prone flux-map. The orthogonality en-
sures decoupling and non-interference with the position
observer.

4) The proposed adaptation of flux-map parameter errors is
shown to alleviate the error in torque estimation. Thus,
accurate torque control becomes realizable.

5) The stability analysis of the position observer with flux
adaptation is reported in Section V.

Section VI presents the experimental validation of the
proposed sensorless scheme with optimal torque control and
flux adaptation on a 1.1 kW synchronous reluctance (SyR)
machine test-bench. Finally, Section VII concludes the paper.
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Fig. 1. Torque control system overview illustrating the model-based optimal current reference generation, hybrid flux observer (HFO) and position observer
with flux adaptation.

II. SENSORLESS CONTROL SYSTEM

The electrical rotor position is θ and the electrical angular
speed is ω = s θ where s is the differential operator d

dt .
Estimated vectors are represented by the superscript .̂ The
orthogonal rotational matrix is J = [ 0 −11 0 ] and I is the identity
matrix.

The machine model is expressed in coordinates of estimated
rotor reference frame, denoted by subscript d̂q, whose d-axis
is at θ̂ = θ−θ̃, where θ̃ is the position error. Real space vectors
will be used; for example, the stator current is id̂q = [id̂, iq̂]

T

where id̂ and iq̂ are the vector components in estimated rotor
reference frame. Space vectors in the stationary reference
frame are denoted by subscript αβ. Note that the convention
of a SyR machine is followed, i.e, d-axis is defined along the
maximum inductance path. The block diagram illustrating an
overview of the motor control is shown in Fig. 1.

A. Mathematical Model of a Synchronous Machine

The voltage equation of a synchronous machine in estimated
rotor reference frame is expressed as

sλd̂q = vd̂q −Rsid̂q − ω̂ Jλd̂q (1)

where Rs is the stator resistance and λd̂q is the stator flux
linkage. The electromagnetic torque is given by

T =
3p

2
iT
d̂q

Jλd̂q (2)

where p is the number of pole pairs.
Let Λdq(idq) denote the 2-D flux-map lookup tables of the

machine under test, shown in Fig. 2, such that the actual flux
in estimated reference frame is

λd̂q = eJθ̃ Λdq(e
−Jθ̃ id̂q). (3)

B. Hybrid Flux Observer

The flux observer is defined in the stationary reference
frame as

sλ̂αβ = vαβ − R̂siαβ +Gαβ

(
eJθ̂ λ̂

i

d̂q − λ̂αβ
)

(4)

Fig. 2. Flux map of the SyR motor under test exhibiting saturation and cross-
saturation characteristics. Experimentally identified with the constant speed
test reported in [15].

whereGαβ is a 2×2 gain matrix, λ̂
i

d̂q is the current model flux
estimate and R̂s is the stator resistance used in the control. In
estimated rotor reference frame, (4) transforms to

s λ̂d̂q = vd̂q − R̂sid̂q − ω̂J λ̂d̂q +G
(
λ̂
i

d̂q − λ̂d̂q
)

(5)

where the gain matrix G is given by

G = e−Jθ̂Gαβ eJθ̂. (6)

In this work, a diagonal matrix G = g I is used; hence,
the equivalence G = Gαβ holds. The gain g dictates the
dominance of the current model on the flux observer; for
electrical speeds above g rad/s, the voltage model [back-emf
integration in (1)] prevails. Hence, for speeds below g, it is
recommended to switch to the high-frequency excitation based
sensorless schemes. The observer is called hybrid to signify
the combination of voltage and current models.

C. Linearized Error Dynamics

To aid in further analysis, the nonlinear flux estimation error
dynamics is derived from (1) and (5) as

s λ̃d̂q = −(G+ ω̂J) λ̃d̂q +G (λd̂q − λ̂
i

d̂q)− R̃sid̂q (7)
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Fig. 3. Hybrid flux observer in stator reference frame with the APP position observer augmented with flux adaptation for accurate torque estimation.

where λ̃d̂q = λd̂q− λ̂d̂q is the flux estimation error and R̃s =

Rs−R̂s is the error in temperature-dependent stator resistance.
Let Λ̂dq(idq) denote the estimated flux-map carrying pa-

rameter errors characterized as

λ̃
i

d̂q = Λdq(id̂q)− Λ̂dq(id̂q). (8)

Then, the discrepancy between the actual flux (3) and the
current model flux estimates, λd̂q − λ̂

i

d̂q , can be expressed
as

λd̂q − λ̂
i

d̂q = eJθ̃ Λdq(e
−Jθ̃ id̂q)− Λ̂dq(id̂q). (9)

Linearizing the term Λdq(e
−Jθ̃ id̂q) around an operating point,

marked by a subscript 0, gives

Λdq(e
−Jθ̃ id̂q) = Λdq(id̂q0)− ∂Λdq

∂id̂q

∣∣∣
id̂q0

J id̂q0 θ̃. (10)

The incremental inductance matrix L∂ is defined as

L∂ =
∂λdq
∂idq

=

[
ld ldq
ldq lq

]
(11)

where ld, lq represents the incremental inductance along direct
d and quadrature q axis, respectively, while ldq is the cross-
saturation term. All quantities are functions of idq . With
e−Jθ̃ = 1 − θ̃J and excluding the higher order terms, the
expression (9) becomes

λd̂q − λ̂
i

d̂q ≈
[
J Λ̂dq(id̂q0)−L∂ J id̂q0

]
θ̃ + λ̃

i

d̂q. (12)

The coefficient of position error in (12) is defined as the
auxiliary flux vector, given by

λ̂
a

d̂q0 = J λ̂
i

d̂q0 −L∂ J id̂q0. (13)

Finally, the expression (9) simplifies to

λd̂q − λ̂
i

d̂q = λ̂
a

d̂q0 θ̃ + λ̃
i

d̂q. (14)

Thus, the linearized flux estimation error dynamics as func-
tions of errors in position, resistance and current model flux
is derived as

λ̃d̂q = (sI +G+ ω0J)
−1
[
G (λ̂

a

d̂q0 θ̃+λ̃
i

d̂q)−R̃sid̂q0

]
. (15)

This will be used in Section III to formulate the position
error signal and in Section IV to express the torque estimation
error.

D. Projection Vector Framework

The error signal ε driving the observer adaptation law is
expressed in general form as the projection of the difference
in observed and current model flux estimates on a projection
vector φ, according to [10] [12], as

ε = φT (λ̂d̂q − λ̂
i

d̂q). (16)

This will be used for position tracking and current model flux
adaptation. Using flux estimation error λ̃d̂q = λd̂q − λ̂d̂q and
(14), the linearized form of (16) becomes

ε = φT (λ̂ad̂q0 θ̃ + λ̃
i

d̂q − λ̃d̂q
)
. (17)

Following the results of flux estimation error dynamics (15),
the error signal (17) is decomposed in terms of the constituent
errors as

ε = φT [hθ̃ H
λ̃

i hR̃
]
ỹ (18a)

hθ̃ = (sI +G+ ω0J)
−1

(sI + ω0J) λ̂
a

d̂q0

H
λ̃

i = (sI +G+ ω0J)
−1

(sI + ω0J)

hR̃ = (sI +G+ ω0J)
−1
id̂q0 (18b)

where ỹ =
[
θ̃ (λ̃

i

d̂q)
T R̃s

]T
. The transfer function matrices

hθ̃ and hR̃ are of length 2×1 while H
λ̃

i is 2×2.

III. APP POSITION OBSERVER

This section briefly reviews the APP scheme proposed in
[12]. The framework developed will be used in Section IV
for accurate torque estimation and control. The block diagram
of the proposed position observer with current model flux
adaptation is shown in Fig. 3.

A. APP Projection Vector

Let εθ denote the position error signal. In the absence of
parametric errors, the position error projection vector φθ is
designed to hold the equality between position error signal
and position error, barring dynamics as

εθ
∣∣
s=0

= φT
θ (λ̂d̂q − λ̂

i

d̂q)
∣∣
s=0

= θ̃. (19)



4

Fig. 4. Steady-state position error θ̃0 in degrees (electrical): (a) +30% error
in d-axis, λ̃id = 0.3λd; (b) +30 % error in q-axis, λ̃iq = 0.3λq . In red is
the MTPA trajectory.

The equality (19) is satisfied when φT
θ hθ̃

∣∣
s=0

= 1; from (18),
this leads to a projection vector of nature

φT
θ =

−1

ω0 |λ̂
a

d̂q0|

(
ûa
)T J

(
G+ ω0 J

)
. (20)

where ûa is an unit vector along the auxiliary flux vector as

ûa =
λ̂
a

d̂q0

|λ̂
a

d̂q0|
. (21)

B. Speed and Position Observer

A conventional phase lock loop (PLL) with a proportional-
integral (PI) controller is employed to drive the position error
signal εθ to zero as

ω̂ = kp εθ + ωi ωi =

∫
ki εθ dt θ̂ =

∫
ω̂ dt (22)

where kp and ki are the respective gains. The gains of the PLL
are tuned for a critically damped response considering εθ = θ̃
by placing the two poles at s = −Ωω:

kp = 2 Ωω ki = Ω2
ω. (23)

For the PLL defined in (22), the closed loop transfer
function is given by

θ̂(s)

θ(s)
=

(skp + ki)φ
T
θ hθ̃

s2 + (skp + ki)φ
T
θ hθ̃

(24)

where the transfer function between the position error signal
and position error for the projection vector (20) is derived from
(18) as

φT
θ hθ̃ =

εθ

θ̃
=
s2 + sg + g2 + ω2

0

(s+ g)2 + ω2
0

. (25)

The transfer function (25) is observed to be independent
of the operating point idq0 and the sign of rotation. It can
be inferred that the steady-state gain φT

θ hθ̃
∣∣
s=0

= 1. The
stability is evaluated from the frequency response plot of the
closed loop transfer function (24) in [13].

Fig. 5. (a) Contour of derivative of torque w.r.t current angle in (27) for
MTPA adaptation; (b) Contour of derivative of torque w.r.t current amplitude
in (31) for reference torque tracking. Red curve is the MTPA trajectory.

C. Sensitivity to Parameter Errors

Under parameter errors, the steady-state position error θ̃0 is
determined using the projection vector (20) in the linearized
model (18) at εθ = 0 as

θ̃0 =
−1

|λ̂
a

d̂q0|

(
ûa
)T
λ̃
i

d̂q0 +
R̃s

ω0 |λ̂
a

d̂q0|

(
ûa
)T J id̂q0. (26)

It is to be noted that (26) may not hold for large parameter
errors since it is based on the linearized model. It can be
observed that the coefficient of R̃s resembles the MTPA law
definition (28) defined later in Section IV-A; this relates to
the resistance immunity property of APP along the MTPA
trajectory as reported in [13].

It is discerned from (26) that the steady-state position error
is dependent on the parameter error in the direction along the
auxiliary flux vector. The steady-state position error due to
+30% error in d and q-axes flux-map, separately considered,
is shown in Figs. 4(a) and 4(b) respectively. The steady-state
position error in Fig. 4(a) is approximately 15◦ along the
MTPA trajectory while in Fig. 4(b), it is approximately 4◦ at
the rated torque. The control is more susceptible to d-axis due
to the relatively large error in absolute value, i.e., λ̃d > λ̃q .

IV. PROPOSED MTPA CONTROL SCHEME

This Section presents the new model-based torque control
scheme and the current model flux adaptation for accurate
torque estimation under parameter errors.

A. MTPA Law

Let γ denote the current angle. The change of torque w.r.t
current angle for a given current amplitude i = |idq| is
computed as

dT
dγ

∣∣∣
i

=
3p

2

(
didq
dγ

T

Jλdq + iTdq J
dλdq
dγ

)

=
3p

2

(
Jλdq −L∂ J idq

)T

J idq. (27)
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The contour of (27) for machine under test is shown in
Fig. 5(a) where the zero locus is observed to be coincident
with the MTPA trajectory. Using the auxiliary flux vector (13),
the MTPA law is defined as

dT
dγ

∣∣∣
i

= 0 ⇒ 3p

2

(
λadq
)T J idq = 0. (28)

The expression (28) dictates that the MTPA criterion is re-
spected if and only if the stator current is in phase with the
auxiliary flux vector, i.e., γMTPA = ∠λadq .

B. Optimal Current Reference Computation

For the commanded torque reference T ∗, the current refer-
ence magnitude i∗ is analytically derived as

i∗ = i+
∣∣∣ di
dT

∣∣∣
γ
·
(
|T ∗| − |T̂ |

)
(29)

where the estimated torque T̂ is computed with the observed
flux in the torque equation (2). The derivative of torque w.r.t
current amplitude for a given current angle can be expressed
in dq reference frame as

dT
di

∣∣∣
γ

=
3p

2

(
iTdq
i

Jλdq + iTdq JL∂
idq
i

)
. (30)

Upon manipulation,

dT
di

∣∣∣
γ

=
3p

2

iTdq
i

J
(
λdq +L∂ idq

)
. (31)

The contours of (31) for the machine under test is shown in
Fig. 5(b). These are representative of the torque factor (Nm/A),
being maximum along the MTPA trajectory shown in red. Note
that care must be taken at very low loads as the quantity in (31)
approaches zero at either axes as seen in Fig. 5(b): otherwise
said, the SyR machine cannot produce torque without current
excitation in both the axes.

The inverse of the quantity (31) can be real-time computed
using the measured current angle, the observed flux and
the incremental inductances retrieved from flux-map, all in
estimated coordinates.

Finally, the optimal reference current is computed as

i∗
d̂q

= i∗
[
cos γ∗

sin γ∗

]
. (32)

The reference current angle magnitude is determined by the
MTPA criterion, |γ∗| = |γMTPA| and it takes the sign of T ∗,
as shown in Fig. 1.

C. Torque Estimation Error

The parameter dependent position error (26) and the direct
effect of parameter errors contribute to the torque estimation
error. This directly translates to the error in torque output w.r.t
commanded torque through (29). The steady-state error of the
estimated electromagnetic torque T̃0 is given by

T̃0 =
3p

2
iT
d̂q0

J λ̃d̂q0. (33)

Fig. 6. Steady-state torque estimation error T̃0 in Nm at +30% error in d-axis,
λ̃id = 0.3λd: (a) ω = 0.33 p.u. (500 rpm); (b) ω = 0.8 p.u. (1200 rpm). In
red is the MTPA trajectory. Rated torque Tn = 7.1 Nm; g = 2π · 10 rad/s.

Fig. 7. Steady-state torque estimation error T̃0 in Nm at +30% error in q-axis,
λ̃iq = 0.3λq : (a) ω = 0.33 p.u. (500 rpm); (b) ω = 0.8 p.u. (1200 rpm). In
red is the MTPA trajectory. Rated torque Tn = 7.1 Nm; g = 2π · 10 rad/s.

Using the steady-state flux estimation error, s = 0 in (15), the
torque estimation error becomes

T̃0 =
3p

2
iT
d̂q0

J (G+ ω0J)
−1 [

G (λ̂
a

d̂q0 θ̃0 + λ̃
i

d̂q)− R̃sid̂q0
]
.

(34)
Substituting position error (26) into (34) and considering
accurate stator resistance, the terms in phase with the auxiliary
flux vector cancel out and the torque estimation error simplifies
to

T̃0 =
3p

2
iT
d̂q0

J (G+ ω0J)
−1
G J ûa ·

(
J ûa

)T
λ̃
i

d̂q. (35)

The expression (35) states that the torque estimation error is
a function of the operating speed and is proportional to the
current model flux error orthogonal to auxiliary flux vector,
i.e., J ûa.

The steady-state torque estimation error contour (35) for
+30% errors in the d-axis flux-map (λ̃id = 0.3λd) at speeds
ω = 0.33 p.u. and ω = 0.8 p.u.. is shown in Figs. 6(a) and 6(b),
respectively. The same plots are reproduced for +30% errors
in the q-axis flux-map (λ̃iq = 0.3λq) in Fig. 7. It is observed
that the torque error is more sensitive to the d-axis parameter
error and the estimation accuracy degrades with decreasing
speed.
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Fig. 8. Steady-state torque estimation error T̃0 in Nm at R̃s = 1Ω (0.16
p.u.): (a) ω = 0.2 p.u. (300 rpm); (b) ω = 0.8 p.u. (1200 rpm). In red is the
MTPA trajectory. Rated torque Tn = 7.1 Nm; g = 2π · 10 rad/s.

D. Current Model Flux Adaptation

Exploiting the two degrees of freedom of the error domain
in (16), a second projection vector orthogonal to APP

(
Jφθ

)
can be utilized to adapt flux-map. In [13], the feasibility
of the stator resistance and the inductance adaptation were
investigated. However, adapting a single parameter (eg. d-axis
inductance) in the presence of flux-map error in both d and q-
axes introduces coupling and could, in some cases, negatively
influence the position observer.

A new flux adaptation law is developed to be decoupled and
independent of the position observer. To this end, the error
signal εj for flux adaptation is given by

εj =
(
Jφθ

)T
(λ̂d̂q − λ̂

i

d̂q). (36)

Owing to the orthogonality, it follows from (18) that the error
signal (36) is independent of the position error, barring the
dynamics, as (

Jφθ
)T
hθ̃
∣∣
s=0

= 0. (37)

The feasibility of current model flux adaptation is examined
using the transfer function matrix H

λ̃
i in (18b) as(

Jφθ
)T
H
λ̃

i

∣∣
s=0

=
1

|λ̂
a

d̂q0|

(
J ûa

)T
. (38)

The expression (38) implies that the error signal εj is propor-
tional to the current model flux error along the vector J ûa.
Hence, the flux adaptation law is formulated along this vector,
depicted in Fig. 3, as

λ̂
i

d̂q = Λ̂dq(id̂q) + J ûa · k′j
∫

εj dt (39)

where k′j = |λ̂
a

d̂q0| kj is the integral gain.
In steady-state, the adaptation (39) mitigates the current

model flux error along the vector J ûa. Consequently, the
torque estimation error in (35) converges to zero and accurate
torque control becomes realizable. It is worth pointing out that
the steady-state position error remains unaffected by the flux
adaptation. It can also be shown that the flux estimation error
in (15) converges to zero under adaptation.

Fig. 9. Locus of poles of the position observer with flux adaptation for ω =
0.1. . . 1 p.u. at rated T = 7.1 Nm (MTPA) where the markers ◦ and ∗ denote
the speeds 0.1 and 1 p.u., respectively. Color code: PLL poles are denoted in
green, flux observer in red, current model flux adaptation in blue.

E. Susceptibility to Stator Resistance

In the presence of stator resistance error, the steady-state
error in flux and torque estimation is inevitable. The flux
adaptation converges to an inaccurate value that is given by

εj =
(
Jφθ

)T
H
λ̃

i λ̃
i

d̂q0 +
(
Jφθ

)T
hR̃ R̃s = 0

⇒
(
J ûa

)T · λ̃
i

d̂q0 =
1

ω0

(
ûa
)T
id̂q0 · R̃s. (40)

Thus, the resistance error introduces a steady-state current
model flux error orthogonal to the auxiliary flux vector. Owing
to the inverse relation with the angular speed, the influence of
stator resistance diminishes at high speeds.

Finally, using (40) in (35), the steady-state torque estimation
error due to the resistance error is given by

T̃0 =
3p

2
iT
d̂q0

J (G+ ω0J)
−1

[
G Jûa

(
ûa
)T
id̂q0

ω0
−id̂q0

]
·R̃s.

(41)
The steady-state torque estimation error contour for R̃s = 1Ω
(0.16 p.u.) at ω = 0.2 p.u. (300 rpm) and ω = 0.8 p.u. (1200
rpm) is shown in Figs. 8(a) and 8(b), respectively. The torque
estimation error due to imprecise resistance is observed to
increase with the stator current magnitude and decrease with
the angular speed.

V. STABILITY ANALYSIS

The error dynamics of the position observer in (22) can be
expressed using the observed speed error ω̃i = ω − ω̂ as

s θ̃ = ω̃i − kp εθ s ω̃i = −ki εθ. (42)

It follows from (39) that the current model flux error dynamics
with adaptation along J ûa become(

Jûa
)T
sλ̃

i

d̂q = −k′j εj . (43)

Using the flux estimation error dynamics (15) and the error
signal dynamics (17), the small signal stability is analyzed as

sx = Ax (44)
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Fig. 10. Experimental Setup of 1.1 kW SyR motor under test on a dSPACE
DS1103 control platform at a sampling frequency of 10 kHz.

TABLE I
MOTOR PARAMETERS

Parameters Symbol Values Units

Rated power Pn 1.1 kW
Rated voltage Vn 340 V
Rated speed ωn 1500 rpm
Rated current In 2.3 A
Rated torque Tn 7.1 Nm
Pole pairs p 2 -
Stator resistance Rs 6.8 Ω
Shaft inertia J 0.04 kgm2

where x =
[(
λ̃d̂q
)T

θ̃ ω̃i
(
Jûa

)T
λ̃
i

d̂q

]T
and A =

−(G+ ω0 J) Gλ̂
a

d̂q0 0 G J ûa

kp φ
T
θ −kp φT

θ λ̂
a

d̂q0 1 −kp φT
θ J ûa

ki φ
T
θ −ki φT

θ λ̂
a

d̂q0 0 −ki φT
θ J ûa

k′j
(
Jφθ

)T −k′j
(
Jφθ

)T
λ̂
a

d̂q0 0 −k′j
(
Jφθ

)T J ûa

 .
(45)

The gains of the PLL are chosen for a critically damped
response (23) with the poles at s = −Ωω = −2π · 25 rad/s.
The flux observer gain is set to 0.2 p.u. of rated speed as
g = 2π · 10 rad/s. The gain of current model flux adaptation
is kj = 2π · 4 rad/s.

Fig. 9 shows the eigenvalues of (44) for ω = 0.1 . . . 1 p.u. at
rated torque T = 7.1 Nm on the MTPA trajectory. The closed
loop poles of the combined dynamics of the proposed control
system are observed to be stable.

VI. EXPERIMENTAL RESULTS

The proposed torque control scheme with current model
flux adaptation is validated experimentally with a 1.1 kW SyR
motor on a dSPACE DS1103 control platform running at a
sampling frequency of 10 kHz. A picture of the setup is shown
in Fig. 10. The parameters of the SyR motor under test are
tabulated in Table I.

The SyR machine operates in the torque control mode and
the auxiliary drive in the speed control mode. A minimum
stator current id,min = 1 A is imposed for fundamental
excitation at no load. The incremental inductance matrix L̂∂
is computed in real-time from the flux-map; as an example:

l̂d(idq) =
Λ̂d(id + δid, iq)− Λ̂d(id, iq)

δid
(46)

where δid is a small value (≈ 10 mA). The other incremental
inductances are computed in a similar fashion. Note that in

Fig. 11. Optimal torque control of the proposed scheme at rated speed ω = 1
p.u. (1500 rpm): (a) Rated torque step T ∗ = 0 → 7.1 Nm at t = 0 s; (b)
Incremental torque reference.

Fig. 12. Dynamic MTPA adaptation with sinusoidal torque reference (25 Hz).
Operating speed: (a) ω = 0.33 p.u. (500 rpm); (b) ω = 0.8 p.u. (1200 rpm).



8

Fig. 13. Torque control at T ∗ = 7.1 Nm under parameter error in d-axis
varying from +30% (λ̂id = 0.7λd) to -30% (λ̂id = 1.3λd) in steps of -10%
increment every 0.5 s. Operating speed: (a) ω = 0.33 p.u. (500 rpm); (b)
ω = 0.8 p.u. (1200 rpm).

the following results, the quantity T , representing the real
torque, is computed from the accurate reference flux-map and
the position acquired using an encoder.

A. Optimal Torque Control

The proposed torque control scheme is validated at rated
speed with a rated torque step T ∗ = 0 → 7.1 Nm at t = 0 s
in Fig. 11(a). The control is stable with small transient position
error (< 5◦) and is observed to track the torque step reference
seamlessly.

In the second test, the torque reference is commanded in
small incremental steps at the rated speed, shown in Fig. 11(b).
For small loads (t < 1 s), the MTPA condition is not respected
due to the imposition of minimum stator current. For higher
loads (t > 1 s), the current angle is shown to be coincident
with the phase of auxiliary flux vector for MTPA operation,
i.e., γ = ∠λadq .

The dynamic capability of the proposed torque control to
track MTPA is evaluated with a sinusoidal torque reference at
25 Hz in Fig. 12 at two different speeds; the current angle is
observed to track the phase of auxiliary flux vector. The use
of analytical formulation to attain the MTPA state without an
additional regulator facilitates the dynamic tracking of MTPA.

Fig. 14. Torque control at T ∗ = 7.1 Nm under parameter error in q-axis
varying from +30% (λ̂iq = 0.7λq) to -30% (λ̂iq = 1.3λq) in steps of -10%
increment every 0.5 s. Operating speed: (a) ω = 0.33 p.u. (500 rpm); (b)
ω = 0.8 p.u. (1200 rpm).

B. Operation under Parameter Errors

The susceptibility of torque controller and position observer
in the presence of parameter error in d-axis without flux
adaptation is demonstrated in Fig. 13. A varying error from
+30% (λ̂id = 0.7λd) to -30% (λ̂id = 1.3λd) is imposed in
steps of -10% increment at rated torque reference T ∗ = 7.1
Nm and rotor speeds ω = 0.33 p.u. (500 rpm) and ω = 0.8
p.u. (1200 rpm) in Figs. 13(a) and 13(b), respectively. Higher
speeds are not feasible at rated torque due to voltage limitation
as the control diverges from the optimal MTPA point under
parameter error.

The maximum position error is observed to be θ̃0 ≈ 15◦,
drawing correlation to the steady-state position error (26) in
Fig. 4(a). It can be discerned from Fig. 13 that the position er-
ror is independent of operating speed. On contrary, the torque
estimation error is more prominent at low speed in Fig. 13(a)
where, at t < 0.5 s, it is approximately -0.75 Nm (-10%)
for +30% d-axis flux error, in accordance with the analytical
evaluation in Fig. 6(a). The torque error is diminished at high
speed in Fig. 13(b), as evaluated in Fig. 6(b).

A similar test is conducted for varying errors in the q-axis
flux-map in Fig. 14. The speed-independent steady-state posi-
tion error is observed to be θ̃0 < 5◦, supporting the analysis in
Fig. 4(b). The torque estimation shows more resilience towards
parameter error in q-axis, in accordance with Fig. 7.
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Fig. 15. Torque control at T ∗ = 1.4 p.u. (10 Nm) and ω = 0.33 p.u. (500
rpm) under parameter error in d-axis varying from 0% to -50% (λ̂id = 1.5λd)
in steps of -10% increment every 0.5 s: (a) Without flux adaptation; (b) With
flux adaptation.

C. Current Model Flux Adaptation

The efficacy of the current model flux adaptation is demon-
strated at ω = 0.33 p.u. (500 rpm) and at 40% overload
in torque T ∗ = 1.4 p.u. (10 Nm) with a varying error in
the d-axis flux-map from zero to -50% (λ̂id = 1.5λd) in
steps of -10% increment every 0.5 s, as shown in Fig. 15.
The performance of the control without and with the flux
adaptation is juxtaposed in Figs. 15(a) and 15(b), respectively.
A maximum torque error of +24% is observed in Fig. 15(a)
while in Fig. 15(b), accurate torque control is observed despite
the high position error.

The dynamics of the current model flux adaptation is
illustrated in Fig. 16 at T ∗ = 1.4 p.u. (10 Nm) and ω = 0.33
p.u. (500 rpm) where the adaptation is enabled at t = 0 s.
Fig. 16(a) considers a -30% flux-map error in either axes while
Fig. 16 has -30% error in d-axis and +30% error in q-axis.
For t < 0 s, the torque error is approximately 15% in both
the figures as it is dominated by the d-axis error. Conversely,
the q-axis flux-map error has a substantial influence on the
position error; hence, a high error θ̃ ≈ 19◦ is discerned in
Fig. 16(a) while it is reduced in Fig.16(b) where the flux-map
errors carry opposite signs.

Once the adaptation is enabled at t = 0 s, the observed and
current model flux quantities converge and accurate torque is
realized. It is worth highlighting that the position error remains

Fig. 16. Flux adaptation enabled at t = 0 s in torque control at T ∗ = 1.4
p.u (10 Nm) and ω = 0.33 p.u. (500 rpm) under parameter errors in both
axes: (a) -30% in d-axis (λ̂id = 1.3λd) and -30% in q-axis (λ̂iq = 1.3λq);
(b) -30% error in d-axis and +30% error in q-axis (λ̂iq = 0.7λq).

unaltered by the flux adaptation due to the orthogonality of
projection vectors. Moreover, the stator flux and currents in
estimated reference frame settle at different values in the two
figures due to the different position errors.

D. Susceptibility to Stator Resistance

The susceptibility of the proposed torque control scheme to
a stator resistance perturbation of R̃s = ±1Ω (0.16 p.u.) is
evaluated at speeds ω = 0.2 p.u. (300 rpm) and ω = 0.8
p.u. (1200 rpm) in Figs. 17(a) and 17(b), respectively. In
accordance to the analytical estimate in Fig. 8, the maximum
torque error is approximately 0.8 Nm at 300 rpm and less
than 0.2 Nm at 1200 rpm. It is worth pointing out that the
position error is null despite the variations in stator flux and
torque, attesting to the resistance immunity property of the
APP scheme.

VII. CONCLUSION

This paper proposed a torque control scheme for sensorless
synchronous motor drives with model-based optimal reference
generation for MTPA tracking. Following the linearized error
dynamics of flux observer, a comprehensive error signal is
expressed as a function of position error, resistance error and
current model flux error in a projection vector framework. A
position observer based on the adaptive projection vector for
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Fig. 17. Susceptibility of the proposed torque control to a stator resistance
perturbation of R̃s = ±1Ω (0.16 p.u.) at rated torque: (a) ω = 0.2 p.u. (300
rpm); (b) ω = 0.8 p.u. (1200 rpm).

position error estimation is designed, possessing immunity to
resistance error on MTPA trajectory.

The MTPA criterion is analytically shown to hold when
the current vector is in phase with the auxiliary flux vector.
Using the discrepancy in estimated and commanded torque,
a model-based optimal reference is generated, respecting the
current limits. Thus, the accuracy of torque control is directly
coupled to the accuracy of torque estimation.

Exploiting the additional degree of freedom, the orthogonal
projection vector to APP is used for current model flux error
adaptation. It has been shown that the flux adaptation mitigates
error in torque estimation; consequently, the accurate torque
control becomes realizable. Moreover, due to orthogonality,
the position observer is decoupled from the flux adaptation.

The performance of the proposed torque control sensorless
scheme with adaptation under parameter errors is experimen-
tally validated on a 1.1 kW SyR machine test bench.
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