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Markov jump processes and collision-like models

in the kinetic description of multi-agent systems

Nadia Loy∗ Andrea Tosin†

Department of Mathematical Sciences “G. L. Lagrange”

Politecnico di Torino, Torino, Italy

Abstract

Multi-agent systems can be successfully described by kinetic models, which allow one to
explore the large scale aggregate trends resulting from elementary microscopic interactions.
The latter may be formalised as collision-like rules, in the spirit of the classical kinetic ap-
proach in gas dynamics, but also as Markov jump processes, which assume that every agent
is stimulated by the other agents to change state according to a certain transition probability
distribution. In this paper we establish a parallelism between these two descriptions, whereby
we show how the understanding of the kinetic jump process models may be improved taking
advantage of techniques typical of the collisional approach.

Keywords: Transition probability, Boltzmann-type equation, quasi-invariant limit, Fokker-
Planck equation, Maxwellian, Monte Carlo algorithm
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1 Introduction

In recent times, the methods of kinetic theory have gained a lot of momentum in the modelling
and the mathematical-physical understanding of multi-agent systems, i.e. systems composed by a
large number of interacting individuals [35]. The theoretical paradigm of the kinetic theory, rooted
in the pioneering works by James C. Maxwell and Ludwig Boltzmann on gas dynamics [13], allows
one to investigate, from a truly multiscale perspective, the large scale collective trends emerging
spontaneously from elementary microscopic interactions among the agents, by which the latter
continuously change their microscopic state. Applications are nowadays variegated: an absolutely
non-exhaustive list includes wealth distribution [16], opinion formation [14, 43, 44], vehicular
traffic [30, 38, 40], crowd dynamics [1, 20], biomathematics [27, 31], up to control and uncertainty
quantification problems [2, 3, 4, 19, 29, 45, 46].

The kinetic approach relies on a description of the microscopic dynamics as binary random
processes. More specifically, the agents of the system are regarded as indistinguishable, therefore
a prototypical interaction between two of them is assumed to be representative of the interaction
of any randomly selected pair of agents. Typically, such a prototypical interaction is expressed by
a collision-like model, namely an explicit algebraic relationship between the pair of pre-interaction
states of the interacting agents and the pair of their post-interaction states. This description
is inspired by the well-known elastic collision rules of gas molecules, which prescribe that two
particles, with respective pre-collisional velocities v, v∗ ∈ R3, get the post-collisional velocities

v′ = v + [(v∗ − v) · n]n, v′∗ = v∗ + [(v − v∗) · n]n,
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†andrea.tosin@polito.it

1



n ∈ R3 being a unit vector in the relative direction of the centres of the two colliding particles.
Another possible description of the microscopic dynamics, often employed in biomathematics for
modelling particular types of cell motion [5, 15, 28, 31, 41] but sometimes used also in different
contexts [1, 8, 17, 18, 39], makes instead use of jump-like processes. In this case, the possible post-
interaction states of the agents are described by means of a transition probability distribution,
thereby assimilating the microscopic dynamics to a (possibly continuous state) Markov-type pro-
cess with state jumps as interaction outcomes. Both types of descriptions may be used as the basis
for a mesoscopic representation of the multi-agent system, whereby one may deduce conceptually
analogous but technically different kinetic models.

Collisional models are largely studied in the literature from both the analytical and the
numerical point of view, see e.g. [34, 35]. In particular, quite sophisticated tools have been
developed to investigate and approximate the asymptotic distributions and the trend to equi-
librium of these models, such as the quasi-invariant limit and structure-preserving numerical
schemes [23, 32, 36, 43]. On the contrary, for jump process models there are apparently much
less general tools by which to tackle the explicit characterisation of the asymptotic distributions,
which remains one of the major points in the study of kinetic models. Indeed, the asymptotic
distributions depict the emerging behaviour, namely the observable manifestations, of the multi-
agent systems at the aggregate level. Some results in this direction are available, however either
generically in terms of existence and uniqueness of the equilibrium distributions under possibly
restrictive assumptions on the admissible transition probabilities, see e.g. [22], or only for linear
kinetic models, i.e. those in which the agents do not interact with each other but with a fixed
background, see e.g. [31].

In this paper, we aim to establish a parallelism between the jump process and the collisional
descriptions of the microscopic dynamics of a multi-agent system, by which to investigate, in
a possibly approximate but explicit way, the large time trends of the former taking advantage
of theoretical tools typically applied to the latter. More specifically, in Section 2 we review
the microscopic and kinetic descriptions of either model and, in particular, we point out that
a certain structure of the collisional model is able to reproduce exactly the time evolution of
the mean and of the energy (i.e., the first two “thermodynamical” moments) predicted by the
jump process model. By relying on this basic parallelism, in Section 3 we compare the time
evolution of the kinetic distribution functions produced by either model in sufficiently simple
but representative cases. We show that the transient regime is, in general, different but that,
thanks to the same description of the first two thermodinamical moments, in some cases the
asymptotic distributions, i.e. the “Maxwellians”, actually coincide. Next, in Section 4 we focus
specifically on the explicit determination of the Maxwellian by considering, in particular, the
so-called quasi-invariant interaction regime. This is reminiscent of the grazing collision regime,
which, in the classical kinetic theory, has been introduced to approximate the large time trend of
the collisional Boltzmann equation by means of mean field-type Fokker-Planck equations [47, 48].
We generalise the definition of quasi-invariant interactions, so as to include also those described by
jump process models. Then, thanks to the above parallelism, from the collisional description we
determine explicitly some forms of the Maxwellian, which may consistently approximate the large
time distribution of the jump process model. By means of analytical and numerical examples, we
discuss the reliability of such an approximation with reference to applications such as cell motion
and opinion dynamics. Finally, in Section 5 we indicate how to extend the theory to cases in which
the microscopic states of the agents belong to bounded domains rather than to the whole real axis
and in Section 6 we briefly outline some conclusions. The paper is completed by Appendix A, in
which we report, for completeness, the Monte Carlo algorithm that we have used to produce the
numerical simulations of both the collisional and the jump process models.
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2 Microscopic interactions

2.1 Jump process-like models

Let us consider a large system of indistinguishable agents characterised by a microscopic state
v ∈ R, which evolves in consequence of stochastic interactions. A probabilistic description of such
interactions may be given as follows: if ′v, ′v∗ ∈ R are the pre-interaction states of the interacting
agents, we define a transition probability density T = T (v | ′v, ′v∗) such that the probability that
the post-interaction state v of the first agent belongs to a certain subset A ⊆ R is∫

A

T (v | ′v, ′v∗) dv.

Notice that v 7→ T (v | ′v, ′v∗) is a conditional probability density, the pre-interaction states ′v, ′v∗
playing the role of the conditioners. By choosing A = R we get, in particular,∫

R
T (v | ′v, ′v∗) dv = 1, ∀ ′v, ′v∗ ∈ R.

Such a microscopic description may be assimilated to a Markov-type jump process, T (v | ′v, ′v∗)dv
being the probability that an agent with state ′v jumps into [v, v + dv] because of an interaction
with an agent with state ′v∗.

If f = f(t, v) : R+ × R → R+ is the probability density function of the state v at time t in
the considered population of agents, the kinetic model describing the evolution of f under the
interaction rules encoded in T reads

∂tf =

∫
R

∫
R
T (v | ′v, ′v∗)f(t, ′v)f(t, ′v∗) d

′v d′v∗ − f. (1)

Remark 2.1. In the same spirit, also the homogeneous Boltzmann equation of gas dynamics may
be related to Poisson and Markov microscopic stochastic processes. We refer the interested reader
to [21, 42].

We will call (1) a jump process kinetic equation. In addition to the stochastic microscopic
dynamics described above, the basic ingredient leading to this equation is the so-called Boltzmann
ansatz, namely the assumption that the pre-interaction states ′v, ′v∗ are statistically independent
at the moment of the interaction.

The s-th statistical moment of the distribution function f is the quantity:

Ms(t) :=

∫
R
vsf(t, v) dv.

Multiplying (1) by vs and integrating over R yields the following equation for Ms:

dMs

dt
=

∫
R

∫
R

(∫
R
vsT (v | ′v, ′v∗) dv

)
f(t, ′v)f(t, ′v∗) d

′v d′v∗ −Ms,

whence we deduce, in particular, that the mean (s = 1) and the energy (s = 2) of the system
evolve according to

dM1

dt
=

∫
R

∫
R
VT (′v, ′v∗)f(t, ′v)f(t, ′v∗) d

′v d′v∗ −M1

dM2

dt
=

∫
R

∫
R
ET (′v, ′v∗)f(t, ′v)f(t, ′v∗) d

′v d′v∗ −M2,

where

VT (′v, ′v∗) :=

∫
R
vT (v | ′v, ′v∗) dv, ET (′v, ′v∗) :=

∫
R
v2T (v | ′v, ′v∗) dv

denote the mean and the energy, respectively, of T for a given pair (′v, ′v∗) ∈ R×R of pre-interaction
states.
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2.2 Collision-like models

Modelling the interactions by providing such a detailed microscopic description of the system as
imposed by the full specification of the transition probability density may actually not be straight-
forward. It may be doable if one resorts to relatively simple expressions of T , cf. e.g. [22, 40].
Nevertheless, as soon as one tries to make the microscopic model richer, cf. e.g. [8, 18], the
expression of T gets inevitably more complicated and often hardly amenable to deep analytical in-
vestigations, such as e.g. the identification of the asymptotic distributions (steady states) emerging
from the interactions.

An alternative kinetic description [35], more closely inspired by the classical kinetic theory of
gas dynamics, is based on microscopic “collisions” expressed as

v′ = I(v, v∗) +D(v, v∗)η, v′∗ = I(v∗, v) +D(v∗, v)η∗, (2)

where now v, v∗ ∈ R denote the pre-collisional states of the interacting agents and v′, v′∗ ∈ R
their post-collisional states. Here, I : R × R → R is a function modelling the deterministic part
of the collision, while D : R × R → R+ is a diffusion coefficient expressing the intensity of the
stochastic fluctuations of the post-collisional states. Such stochastic fluctuations are modelled by
the independent and identically distributed random variables η, η∗ ∈ R, which are taken with zero
mean and unitary variance:

〈η〉 = 〈η∗〉 = 0, 〈η2〉 = 〈η2
∗〉 = 1, (3)

the symbol 〈·〉 denoting, here and henceforth, expectation with respect to the common law of η,
η∗. Notice that the collisions (2) are symmetric, in the sense that by switching v and v∗ in the
second rule one obtains the first rule. Therefore, in the following, it will be generally sufficient to
refer only to the first rule in (2).

If f = f(t, v) is again the probability density function of the state v at time t, the Boltzmann-
type kinetic equation ruling the evolution of f under the microscopic model (2) is written as

∂tf =

〈∫
R

1
′J
f(t, ′v)f(t, ′v∗) dv∗

〉
− f, (4)

where the pre-collisional states ′v, ′v∗ have to be understood as functions of the post-collisional
states v, v∗ according to the inverse of (2) and where ′J is the Jacobian of the transformation (2)
as a function of the pre-collisional states. In order to avoid the necessity of invertible and smooth
enough collision rules, it is customary to rewrite (4) in weak form, namely to multiply it by a test
function ϕ : R → R, which in this context is called an observable quantity, i.e. a quantity which
may be expressed as a function of the microscopic state of the agents, and to integrate it on R:

d

dt

∫
R
ϕ(v)f(t, v) dv =

∫
R

∫
R
〈ϕ(v′)− ϕ(v)〉f(t, v)f(t, v∗) dv dv∗. (5)

In this form, the equation expresses the fact that the time variation of the expectation of ϕ (left-
hand side) is due to the mean variation of ϕ in a binary collision (right-hand side). We will call (4),
as well as its weak form (5), a collisional kinetic equation.

Choosing ϕ(v) = vs, we get from (5) the evolution of the statistical moments of f . In particular,
for s = 1 we obtain

dM1

dt
=

∫
R

∫
R
I(v, v∗)f(t, v)f(t, v∗) dv dv∗ −M1,

while for s = 2, considering that

〈(v′)2 − v2〉 = 〈I2(v, v∗) + 2P (v, v∗)D(v, v∗)η +D2(v, v∗)η
2 − v2〉

= I2(v, v∗) +D2(v, v∗)− v2,

we discover
dM2

dt
=

∫
R

∫
R

(
I2(v, v∗) +D2(v, v∗)

)
f(t, v)f(t, v∗) dv dv∗ −M2.
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By comparing these results with the analogous ones found in Section 2.1, we see that (5) provides
the same evolution of the mean and of the energy as (1) if we choose

I(v, v∗) = VT (v, v∗), D(v, v∗) =
√
ET (v, v∗)− V 2

T (v, v∗) =: DT (v, v∗),

where DT (v, v∗) is the standard deviation of T for a given pair (v, v∗) ∈ R × R of pre-collisional
states. With these identifications, we may regard the collisional kinetic model (2)-(5) as an altern-
ative to the jump process kinetic model (1), which reproduces correctly the evolution of the first
two moments of the distribution function f . It is not superfluous to point out that these moments
are typically involved in the hydrodynamic derivation of macroscopic equations from the kinetic
description of the system.

Therefore, from now on we will consider the collisions

v′ = VT (v, v∗) +DT (v, v∗)η, v′∗ = VT (v∗, v) +DT (v∗, v)η∗. (6)

Remark 2.2. In general, (1) and (4) are not the same kinetic equation, although with the choice (6)
they account for the same evolution of the first and second statistical moment of f . Nevertheless,
if in (1) we take

T (v | ′v, ′v∗) = δ(v − VT (′v, ′v∗)),

where the right-hand side is the Dirac delta centred in v = VT (′v, ′v∗), then we can formally
show that (1) becomes exactly (4) with ′J the Jacobian of the transformation (6) with DT ≡ 0
(i.e. without stochastic fluctuations). Hence we conclude that if the microscopic setting is purely
deterministic the two kinetic descriptions (1), (4) coincide.

3 Comparison of the kinetic descriptions

Although models (1) and (5)-(6) account for the same evolution of the mean and of the energy,
hence also of the variance, of f , they are in general not the same model for an arbitrary choice of
the stochastic fluctuation η. In this section, starting from sufficiently simple motivating examples,
which allow for detailed explicit computations, we show that, nonetheless, a proper choice of the
law of η actually makes the two models coincide.

Unconditional transition probability Assume that the transition probability density T does
not depend on the pre-interaction states ′v, ′v∗, thus T = T (v). This is, for instance, the case
considered in [15] to model cell-cell interactions in a biological context, v being the cell velocity.
Hence, the jump process model (1) simplifies to

∂tf = T − f,

which, starting from an initial probability density f0, admits for t > 0 the solution

f(t, v) = e−tf0(v) +
(
1− e−t

)
T (v). (7)

Concerning the collisional model (5)-(6), we notice that in this case both VT and DT are
constant, therefore the collision rule reduces to v′ = VT + DT η. Let us consider ϕ(v) = e−iξv

in (5), where i is the imaginary unit and ξ ∈ R. Denoting by f̂(t, ξ) :=
∫

R f(t, v)e−iξv dv the
Fourier transform of f at time t, we obtain:

∂tf̂ = e−iVT ξ
〈
e−iDT ξη

〉
− f̂

i.e., if h = h(η) : R→ R+ is the probability density of η,

= e−iVT ξ
∫

R
e−iDT ξηh(η) dη − f̂
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= e−iVT ξĥ(DT ξ)− f̂ .

Going back to the physical variable v by means of the inverse Fourier transform, we obtain the
equation

∂tf =
1

DT
h

(
v − VT
DT

)
− f,

whose solution issuing from an initial probability density f0 is

f(t, v) = e−tf0(v) +
(
1− e−t

)
· 1

DT
h

(
v − VT
DT

)
. (8)

Clearly, (7) and (8) are, in general, not the same kinetic distribution. Nevertheless, owing to
the structure (6) of the collision rules, they have the same mean and energy at every time t ≥ 0
for every choice of the probability density h complying with (3). Moreover, if we let in particular

h(η) := DTT (DT η + VT )

then (7) and (8) become actually the same distribution. In practice, denoting by V ∼ T (·)
the random variable which represents the post-interaction state of an agent in the jump process
model (1), this amounts to choosing the stochastic fluctuation of the collisional model (6) as

η :=
V − VT
DT

,

namely as the standardisation of V , which indeed satisfies (3).
Notice that the asymptotic distribution approached by either model for t → +∞, i.e. the

equivalent of the Maxwellian of the classical Boltzmann equation, is T (v) in (7) and 1
DT

h( v−VTDT
)

in (8). The convergence is in the 1-Wasserstein metric and also in the L1-norm if f0, T, g ∈ L1(R).
Clearly, if η is linked to V as indicated above then the two Maxwellians coincide.

Run-and-tumble-like transition probability As a second example, we consider the case in
which T does not depend on the pre-interaction state ′v∗ but may depend on ′v, so that T = T (v | ′v).
This is, for instance, the formulation of the run-and-tumble model introduced in [5, 41] to describe
the random motion of some species of bacteria, the variable v representing the velocity of the
bacteria. To be definite, let us consider e.g.

T (v | ′v) =
1

2
√

3λ
χ(v ∈ [′v −

√
3λ, ′v +

√
3λ]),

where λ > 0 is a parameter and χ denotes the characteristic function. Hence, the post-interaction
velocity v is uniformly distributed in a neighbourhood of amplitude 2

√
3λ of the pre-interaction

velocity ′v.
With T given by this expression, let us multiply the jump process kinetic equation (1) by e−iξv

and let us integrate it on R. We obtain:

d

dt

∫
R
f(t, v)e−iξv dv =

1

2
√

3λ

∫
R

(∫ ′v+
√

3λ

′v−
√

3λ

e−iξv dv

)
f(t, ′v) d′v −

∫
R
f(t, v)e−iξv dv,

whence

∂tf̂ =

(
sin (
√

3λξ)√
3λξ

− 1

)
f̂ ,

which, starting from a Fourier-transformable initial probability density f0, yields

f̂(t, ξ) = f̂0(ξ)e

(
sin (
√

3λξ)√
3λξ

−1
)
t
. (9)
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Although it may be hard to obtain f(t, v) explicitly by the inverse Fourier transform, this repres-

entation characterises f univocally. Since Ms(t) = is∂sξ f̂(t, 0), s ∈ N, we compute in particular:

M1(t) = i∂ξ f̂(t, 0) = M1,0, M2(t) = −∂2
ξ f̂(t, 0) = M2,0 + λ2t,

where M1,0, M2,0 denote, respectively, the mean and the energy of the initial condition f0. There-
fore, we discover that the mean of the system is conserved, while the energy, hence also the
variance, grows linearly in time at rate λ2.

Concerning instead the collisional model (5)-(6), we observe that, due to the structure of T ,
in this case we have VT (v, v∗) = VT (v), DT (v, v∗) = DT (v) with, in particular,

VT (v) = v, DT (v) = λ,

thus the collision rule (6) specialises as v′ = v + λη. From (5) with ϕ(v) = e−iξv, we compute

∂tf̂ =
〈
e−iξλη − 1

〉
f̂ ,

whence, denoting again by h the distribution of η, we get

∂tf̂ =
(
ĥ(λξ)− 1

)
f̂ .

Starting from a Fourier-transformable initial probability density f0, this yields

f̂(t, ξ) = f̂0(ξ)e(ĥ(λξ)−1)t. (10)

Also in this case we cannot obtain f(t, v) explicitly by the inverse Fourier transform. Nevertheless,
since this representation characterises f univocally, we conclude that, in general, f is not the same
distribution as the one obtained with the jump process model. Yet, the theory developed in
Section 2, or alternatively a direct computation using the link between the derivatives of the
Fourier transform and the moments of f recalled before, reveals that, for every choice of h (with

ĥ(0) = 1, ĥ′(0) = 0, ĥ′′(0) = −1 to be consistent with (3)), the trends of the first two statistical
moments are exactly the same as those computed above.

The last point allows us to conclude that both models have invariably the same time-asymptotic
trend. In fact, since in both cases the variance of f grows unboundedly in time, the asymptotic
distribution spreads on the whole real line independently of the initial condition. Hence, f(t, v)→
0 for a.e. v ∈ R when t→ +∞. Notice, however, that f does not converge to 0 in L1(R), because

‖f(t, ·)‖1 = f̂(t, 0) = f̂0(0) = ‖f0‖1 = 1 for all t ≥ 0.
Finally, we observe that (9), (10) are the Fourier transform of the same distribution for every

t ≥ 0 if

h(η) :=
1

2
√

3
χ(η ∈ [−

√
3,
√

3]) = λT (λη + v | v),

for then it results ĥ(ξ) = sin(
√

3ξ)√
3ξ

. Once again, this corresponds to defining η as the standardisation

of V , i.e. η := V−v
λ .

The general case If we admit that η may depend on the pre-collisional states v, v∗, which thus
parametrise its law, then we may generalise the previous results by setting

η :=
V − VT (v, v∗)

DT (v, v∗)
, (11)

which, considering that V ∼ T (· | ′v, ′v∗), implies

h(η | v, v∗) := DT (v, v∗)T
(
DT (v, v∗)η + VT (v, v∗) | v, v∗

)
.
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We are implicitly assuming that DT (v, v∗) > 0 for all v, v∗ ∈ R, so as to avoid inessential technical
difficulties with the standardisation (11). Recalling (6), this produces

〈ϕ(v′)〉 =
〈
ϕ
(
VT (v, v∗) +DT (v, v∗)η

)〉
=

∫
R
ϕ
(
VT (v, v∗) +DT (v, v∗)η

)
·DT (v, v∗)T

(
DT (v, v∗)η + VT (v, v∗) | v, v∗

)
dη,

which, with the substitution v′ := VT (v, v∗) +DT (v, v∗)η for fixed v, v∗ ∈ R, yields

=

∫
R
ϕ(v′)T (v′ | v, v∗) dv′.

Plugging this into (5) and renaming conveniently the dummy integration variables, we see that (5)
reduces to the weak form of (1), thereby confirming that the choice (11) makes the jump process
model and the collisional model equivalent.

Remark 3.1. An important consequence of the equivalence between the kinetic models (1) and (5)-
(6) with (11) is that the former may be simulated numerically by taking advantage of Monte
Carlo algorithms typically used for the latter [12, 35], though at the cost of sampling a stochastic
fluctuation whose law changes with the pre-collisional states of the agents. See Appendix A.

4 Quasi-invariant interactions

One of the main goals in the study of kinetic models is to characterise the stationary distributions
arising asymptotically for t → +∞, for they depict the emergent behaviour of the system of
interacting agents.

As a matter of fact, the jump process model (1) hardly allows one to investigate in detail
the trend to equilibrium. Some general results about the existence and uniqueness of equilibrium
distributions are available, under possibly restrictive assumptions [22]. More detailed analytical
investigations have been performed in the case of linear equations, i.e. when the transition prob-
ability T does not depend on the pre-interaction state ′v∗, cf. [28]. Nevertheless, typically the
explicit expression of the Maxwellian f∞ can be inferred only in remarkable special cases, such as
those dealt with in Section 3 and e.g. in [17, 40]. In most situations, one needs to rely mainly on
numerical simulations, which, on the other hand, may require very accurate numerical schemes
in order to escape the trap of possible spurious equilibria, see e.g. [39, 40]. For completeness, we
report here, in the notation of this paper, the statement of the result proved in [22, Appendix A]
about the existence and uniqueness of equilibrium distributions for models of type (1):

Theorem 4.1. Let the mapping (′v, ′v∗) 7→ T (· | ′v, ′v∗) be Lipschitz continuous with respect to the
1-Wasserstein metric W1 in the space of the probability measures on I ⊆ R (where I may be either
bounded or unbounded), i.e. let a constant Lip (T ) > 0 exist such that

W1

(
T (· | ′v, ′v∗), T (· | ′w, ′w∗)

)
≤ Lip (T )

(
|′w − ′v|+ |′w∗ − ′v∗|

)
, ∀ ′v, ′v∗, ′w, ′w∗ ∈ I.

If Lip (T ) < 1
2 then (1) admits a unique equilibrium distribution f∞, which is a probability measure

on I and which is also globally attractive, i.e.

lim
t→+∞

W1(f(t, ·), f∞) = 0

for every solution f to (1).

Conversely, the collisional model (5)-(6) offers several analytical tools, which often permit to
recover explicitly accurate approximations of f∞ by means of suitable asymptotic procedures. The
basic idea of such procedures is to approximate the integro-differential equation (5) with partial
differential equations, more amenable to analytical investigations, at least in some regimes of the
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parameters of the microscopic collisions. Indeed, identifying the equilibrium distributions directly
from (5) by setting the right-hand side to zero remains a quite difficult, and often unsolvable, task.

A remarkable case in which this type of asymptotic analysis is successfully applied to (5) is
that of the quasi-invariant interactions. Let ′V, V ∈ R be the random variables representing the
pre- and post-interaction states, respectively, of an agent and ′V∗ ∈ R the one representing the
pre-interaction state of the other agent involved in the interaction. In the probabilistic description
via the transition probabilities, we say that interactions are quasi-invariant if, given 0 < ε� 1,

Prob(|V − ′V | > ε | ′V, ′V∗) ≤ ε. (12)

In other words, if the post-interaction state is, in probability, close to the pre-interaction state, so
that the interactions produce a small transfer of microscopic state between the interacting agents.
This concept was first introduced in the kinetic literature on multi-agent systems in [16, 43] as a
reminiscence of the grazing collisions studied in the classical kinetic theory, see [48].

A class of transition probabilities T satisfying (12) is

T (v | ′v, ′v∗) = (1− ε)δ(v − ′v) + εT (v | ′v, ′v∗), 0 < ε ≤ 1, (13)

where T (· | ′v, ′v∗) is, for every ′v, ′v∗ ∈ R, a probability density. Indeed, since V ∼ T (· | ′v, ′v∗), it
is straightforward to compute

Prob(|V − ′V | > ε | ′V, ′V∗) = 1− Prob(|V − ′V | ≤ ε | ′V, ′V∗)

= ε

(
1−

∫ ′v+ε

′v−ε
T (v | ′v, ′v∗) dv

)
≤ ε,

thus the interactions described by (13) are quasi-invariant. Roughly speaking, (13) says that with
probability 1− ε an agent will not change his/her microscopic state after an interaction, whereas
with probability ε s/he will change it according to the law encoded in T . In particular, it is easy
to see that T (· | ′v, ′v∗) converges to δ(· − ′v) in the 1-Wasserstein metric as ε → 0+, provided
T (· | ′v, ′v∗) ∈ P1(R) for every pair of pre-interaction states (′v, ′v∗) ∈ R × R (see e.g. [6, Eq.
(5.1.22)] for the precise definition of the space P1(R)).

Plugging (13) into (1) yields

∂tf = ε

(∫
R

∫
R
T (v | ′v, ′v∗)f(t, ′v)f(t, ′v∗) d

′v d′v∗ − f
)
,

which indicates that the evolution of the jump process is now basically ruled by T but slowed
down by a factor ε. This suggests that we introduce the new time scale τ := εt, which is much
larger than the t-scale, hence more suited to show the large time behaviour of the system. Scaling
consequently the distribution function as g(τ, v) := f( τε , v) and considering that ∂τg = 1

ε∂tf , we
see that g satisfies the equation

∂τg =

∫
R

∫
R
T (v | ′v, ′v∗)g(τ, ′v)g(τ, ′v∗) d

′v d′v∗ − g, (14)

which is structurally identical to the very general equation (1). Therefore, in spite of the quasi-
invariant structure of the interactions, it is in principle not easier to extract from (14) any more
detailed information about the asymptotic trends.

4.1 Fokker-Planck asymptotic analysis

Let us consider instead the collisional model (5)-(6) deduced from the transition probability (13).
First of all, we compute:

VT (v, v∗) = v + ε(VT (v, v∗)− v)

9



ET (v, v∗) = V 2
T (v, v∗) + ε(1− ε)(VT (v, v∗)− v)

2
+ εD2

T (v, v∗),

where, obviously, VT (v, v∗) and DT (v, v∗) denote the mean and the standard deviation of the
distribution T for a fixed pair (v, v∗) ∈ R×R of pre-collisional states. From here, we also deduce:

DT (v, v∗) =
√
ε

√
(1− ε)(VT (v, v∗)− v)

2
+D2

T (v, v∗),

thus, recalling (6), we are led to consider the collision rule

v′ = v + ε(VT (v, v∗)− v) +
√
ε

√
(1− ε)(VT (v, v∗)− v)

2
+D2

T (v, v∗)η. (15)

Notice that this collision is quasi-invariant, in the sense that if ε is small then v′ ≈ v.
In order to investigate the large time behaviour of (5) with the collision rule (15), we scale

again the time as τ := εt and refer to the scaled distribution function g(τ, v) introduced above,
which, in this case, satisfies the equation

d

dτ

∫
R
ϕ(v)g(τ, v) dv =

1

ε

∫
R

∫
R
〈ϕ(v′)− ϕ(v)〉g(τ, v)g(τ, v∗) dv dv∗. (16)

We observe that, if ϕ is sufficiently smooth, say ϕ ∈ C3(R), when collisions are quasi-invariant we
may expand:

1

ε
〈ϕ(v′)− ϕ(v)〉 =

1

ε

〈
ϕ′(v)(v′ − v) +

1

2
ϕ′′(v)(v′ − v)2 +

1

6
ϕ′′′(v̄)(v′ − v)3

〉
,

where v̄ ∈ (min{v, v′}, max{v, v′}), and further, using (15) and recalling (3):

= ϕ′(v)(VT (v, v∗)− v) +
1

2
ϕ′′(v)

(
(VT (v, v∗)− v)

2
+D2

T (v, v∗)
)

+ o(
√
ε),

where o(
√
ε) denotes, for every v, v∗ ∈ R, a remainder negligible with respect to

√
ε, see [43] for

details. Therefore, the equation satisfied by g takes the form

d

dτ

∫
R
ϕ(v)g(τ, v) dv =

∫
R

∫
R
ϕ′(v) (VT (v, v∗)− v) g(τ, v)g(τ, v∗) dv dv∗

+
1

2

∫
R

∫
R
ϕ′′(v)

(
(VT (v, v∗)− v)

2
+D2

T (v, v∗)
)
g(τ, v)g(τ, v∗) dv dv∗

+Rεϕ(g, g)(τ),

where Rεϕ(g, g) is a remainder still negligible with respect to
√
ε, i.e. Rεϕ(g, g) = o(

√
ε), if, for

instance, VT (v, v∗), DT (v, v∗) have a polynomial growth of some maximum degree n ∈ N, η has

finite third order moment, i.e. 〈|η|3〉 < +∞, and g has integrable moments of order 3 max{1, n}+ν
for some ν > 0. In fact, the detailed expression of Rεϕ(g, g) is

Rεϕ(g, g)(τ) =
1

6

∫
R

∫
R
ϕ′′′(v̄)

[
ε2(VT (v, v∗)− v)

3

+ 3ε (VT (v, v∗)− v)
(

(1− ε)(VT (v, v∗)− v)
2

+D2
T (v, v∗)

)
+
√
ε
(

(1− ε)(VT (v, v∗)− v)
2

+D2
T (v, v∗)

)3/2

〈η3〉
]
g(τ, v)g(τ, v∗) dv dv∗.

Under these assumptions, it results Rεϕ(g, g)→ 0 for ε→ 0+. In such a limit, which is called the
quasi-invariant limit [16, 43], we find therefore that g solves

d

dτ

∫
R
ϕ(v)g(τ, v) dv =

∫
R

∫
R
ϕ′(v) (VT (v, v∗)− v) g(τ, v)g(τ, v∗) dv dv∗

+
1

2

∫
R

∫
R
ϕ′′(v)

(
(VT (v, v∗)− v)

2
+D2

T (v, v∗)
)
g(τ, v)g(τ, v∗) dv dv∗.

(17)
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Notice that, for every fixed τ > 0, if ε is small then t = τ
ε is large, therefore the limit ε→ 0+

describes the large time behaviour of the collisional model (5)-(15). As a consequence, the solution
g to (17) is expected to match with f for large times and, in particular, the asymptotic distribution
function g∞ obtained for τ → +∞ to match with the Maxwellian f∞ of the collisional model when
in the latter ε is sufficiently small. The advantage of (17) is that, unlike (5), it might not be an
integro-differential equation. In fact, integrating by parts the right-hand side and invoking the
arbitrariness of ϕ, we recognise that (17) is the weak form of the following Fokker-Planck equation:

∂τg =
1

2
∂2
v

{[∫
R

(
(VT (v, v∗)− v)

2
+D2

T (v, v∗)
)
g(τ, v∗) dv∗

]
g

}
− ∂v

[(∫
R
VT (v, v∗)g(τ, v∗) dv∗ − v

)
g

]
, (18)

provided g satisfies suitable conditions for v → ±∞, which ensure that the boundary terms
appearing from the integration by parts vanish. For instance, one such sufficient condition is
g, ∂vg → 0 quickly enough for v → ±∞. Moreover, the specific expressions of VT and DT allow,
in many cases, for an explicit computation of the remaining integrals in terms of moments of
g, which finally reduces (18) to a linear partial differential equation with possibly non-constant
coefficients.

Before proceeding further, we notice that if we choose ϕ(v) = v, v2 in (17) we get that the first
and second moments of g evolve as:

dM1

dτ
=

∫
R

∫
R
VT (v, v∗)g(τ, v)g(τ, v∗) dv dv∗ −M1

dM2

dτ
=

∫
R

∫
R
ET (v, v∗)g(τ, v)g(τ, v∗) dv dv∗ −M2,

where ET (v, v∗) := V 2
T (v, v∗) + D2

T (v, v∗) is the energy of the distribution T for a fixed pair
(v, v∗) ∈ R× R of pre-collisional states. Therefore, we conclude that the Fokker-Planck equation
reproduces correctly the large time evolution of the first two statistical moments of the jump
process model (1)-(13).

On the other hand, we observe that the asymptotic procedure leading to (17), (18) is actually
independent of the specific law of η, the only important features being (3). Therefore, we expect
that the asymptotic distribution g∞ given by the Fokker-Planck equation (18) may be, in general,
only a possibly rough approximation of the Maxwellian of model (14). Nevertheless, it may still
be useful to catch qualitatively the big picture of the asymptotic trend, if the latter cannot be
determined more accurately.

Remark 4.2. The quasi-invariant limit of the jump process model (1)-(13) is (14), i.e. still a model
in which particle interactions drive the dynamics of the system. Conversely, the quasi-invariant
limit of the collisional model (5)-(15) is (18), i.e. a model in which mean-field interactions emerge
as the long-run effect of the collisions. This explains why (18) is independent of the specific law
of η. On the other hand, from Section 3 we know that the law of η is important in order to
catch exactly the dynamics of the jump process model (1) by means of the collisional model (5)-
(6). Therefore, we understand why the mean-field model (18) may be only a (possibly rough)
approximation, however useful, of (14).

4.2 Explicit determination of the Maxwellian

We now review some meaningful examples, including the cases discussed in Section 3, in the frame
of the quasi-invariant interactions (13), (15), focusing specifically on the explicit determination of
the asymptotic distribution.
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Figure 1: The distribution (19) with mean VT > 0 and increasing values of the variance D2
T .

Unconditional dynamics If T does not depend on the pre-interaction states ′v, ′v∗, so that VT
and DT are constant, the collision (15) reads

v′ = v + ε(VT − v) +
√
ε

√
(1− ε) (VT − v)

2
+D2

T η

and the Fokker-Planck equation (18) becomes

∂τg =
1

2
∂2
v

[(
(VT − v)

2
+D2

T

)
g
]
− ∂v ((VT − v)g) .

The stationary distribution g∞ = g∞(v) solves

1

2
∂v

[(
(VT − v)

2
+D2

T

)
g∞

]
− (VT − v)g∞ = 0,

whence we compute that the unique solution with unitary mass is

g∞(v) =
2

πDT

[
1 +

(
v−VT
DT

)2
]2 , (19)

see Figure 1. It can be checked that the mean and the variance of such a g∞ are the expected
ones, i.e. VT and D2

T , respectively. Moreover, since g∞(v) � v−4 for v → ±∞, we observe that
g∞ is a fat-tailed distribution. Heuristically, this means that agents characterised asymptotically
by a large value of |v| may be rare but not that improbable compared to what happens in classical
physical phenomena, where the agent probability distribution typically decays exponentially fast
at infinity.

From Section 3, we know that the stationary solution to (14) is actually g∞(v) = T (v). Clearly,
this is different from the Maxwellian computed from the Fokker-Planck equation, apart from the
very special case in which T is chosen a priori precisely as the distribution (19). This confirms
that, as already observed in Remark 4.2, the Fokker-Planck equation (18) depicts, in general, only
an approximation of the large time behaviour of (14), however with the right macroscopic trends
(mean and energy).

Run-and-tumble-like dynamics Consider now a transition probability distribution T inde-
pendent of the pre-interaction state ′v∗, like in the case of the run-and-tumble dynamics. Then
VT = VT (v) and DT = DT (v), so that the Fokker-Planck equation (18) becomes

∂τg =
1

2
∂2
v

[(
(VT (v)− v)

2
+D2

T (v)
)
g
]
− ∂v ((VT (v)− v)g) (20)
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and, in particular, the stationary distribution g∞ solves

1

2
∂v

[(
(VT (v)− v)

2
+D2

T (v)
)
g∞

]
− (VT (v)− v)g∞ = 0.

Setting H(v) := (VT (v)− v)
2

+ D2
T (v) for brevity, this equation produces the following general

representation formula for g∞:

g∞(v) =
C

H(v)
exp

(
2

∫
VT (v)− v
H(v)

dv

)
, (21)

where C > 0 is a constant to be fixed so as to fulfil the normalisation condition
∫

R g∞(v) dv = 1
and where the integral on the right-hand side denotes any antiderivative of (VT (v)− v)/H(v).

Remark 4.3. For a general T = T (v | ′v), the jump process model (1)-(13) typically does not allow
one to compute an asymptotic trend as detailed as (21).

Notice, however, that formula (21) may fail in some circumstances, for example if VT (v) − v
is constant and DT (v) does not guarantee the integrability of g∞ on R. This happens in the
run-and-tumble-like case studied in Section 3, i.e. with

T (v | ′v) =
1

2
√

3λ
χ(v ∈ [′v −

√
3λ, ′v +

√
3λ]),

which, from (15), induces the collision rule v′ = v+
√
ελη. The Fokker-Planck equation (18) takes

then the form

∂τg =
λ2

2
∂2
vg,

which, passing to the Fourier transform, is solved by ĝ(τ, ξ) = ĝ0(ξ)e−
λ2

2 ξ
2τ , where ĝ0 is the

Fourier transform of the initial distribution g0. In particular, for g0(v) = δ(v), i.e. ĝ0(ξ) = 1, by
the inverse Fourier transform we determine that g is, at every time, a Gaussian:

g(τ, v) =
1√

2πλ2τ
e−

v2

2λ2τ

with zero mean and variance equal to λ2τ . Then, of course, g(τ, v) → 0 for a.e. v ∈ R when
τ → +∞, so that the pointwise limit g∞ is actually not a probability density function. Notice,
however, that g does not converge to g∞ = 0 in L1(R), because ‖g(τ, ·)‖1 = 1 for all τ > 0.
Recalling the results of Section 3, we see that, in this case, the Fokker-Planck equation (18)
catches the qualitatively correct asymptotic trend of (14).

Consensus/dissensus dynamics Finally, let us examine a case in which the transition prob-
ability T features a full dependence on the pre-interaction states ′v, ′v∗. To be definite, we take
inspiration from problems of opinion formation, therefore we assume that the microscopic state
v represents the opinion of the agents about a certain issue. For convenience, we may think that
v > 0 denotes agreement while v < 0 denotes disagreement. Unlike classical models of opinion
formation, see e.g. [14, 43], here we allow v to span the whole real line rather than being confined
to a bounded interval. In particular, we consider the following transition probability:

T (v | ′v, ′v∗) = pδ
(
v −

(′v + γ(′v∗ − ′v)
))

+ (1− p)δ
(
v −

(′v − γ(′v∗ − ′v)
))
, (22)

with p, γ ∈ (0, 1), which expresses the fact that:

• with probability p there is consensus between the interacting agents, indeed ′v moves towards
′v∗ because v = ′v + γ(′v∗ − ′v);

• with probability 1−p there is dissensus between the interacting agents, indeed ′v moves away
from ′v∗ because v = ′v − γ(′v∗ − ′v).

13



0

Global
dissensus

Global
consensus

M
ild

co
ns
en
su
s

1
2

1

1

p

γ

0 v

g∞(v)
σ2 = 1

σ2 = 4

σ2 = 9

Figure 2: Left: the asymptotic configurations produced by (23) in the quasi-invariant regime. The
black line is γ = 2p− 1. Right: the Maxwellian (24) with m = 0 and increasing variance σ2.

Since
VT (v, v∗) = v + γ(2p− 1)(v∗ − v), D2

T (v, v∗) = 4γ2p(1− p)(v∗ − v)2,

the collision rule (15) takes the form

v′ = v + εγ(2p− 1)(v∗ − v) +
√
εγ
√

1− ε(2p− 1)2 |v∗ − v| η. (23)

Let us investigate preliminarily the trend of the first two moments of the collisional model (16).
Since 〈v′ − v〉 = εγ(2p− 1)(v∗ − v), choosing ϕ(v) = v in (16) reveals

dM1

dτ
= γ(2p− 1)

∫
R

∫
R
(v∗ − v)g(τ, v)g(τ, v∗) dv dv∗ = 0,

therefore the mean opinion is conserved in time. We will henceforth denote it by m ∈ R.
Moreover, since 〈(v′)2 − v2〉 = εγ2(v∗ − v)2 + 2εγ(2p− 1)v(v∗ − v), choosing ϕ(v) = v2 in (16)

yields

dM2

dτ
= γ2

∫
R

∫
R
(v∗ − v)2g(τ, v)g(τ, v∗) dv dv∗

+ 2γ(2p− 1)

∫
R

∫
R
v(v∗ − v)g(τ, v)g(τ, v∗) dv dv∗

= 2γ(2p− 1− γ)(m2 −M2).

From here, we see that the coefficient 2p − 1 − γ is of paramount importance to determine the
asymptotic trend of M2 and, consequently, that of the kinetic distribution function g.

If 2p − 1 − γ > 0, i.e. 0 < γ < 2p − 1 with 1
2 < p < 1, then M2 → m2 when τ → +∞. This

implies that the Maxwellian g∞ has zero variance, thus it is necessarily g∞(v) = δ(v−m). In this
situation, the agents reach a global consensus on the mean opinion m.

Conversely, if 2p − 1 − γ < 0, i.e. max{0, 2p − 1} < γ < 1, then M2 → +∞ when τ → +∞
unless M2(0) = m2. This indicates that the previous Maxwellian becomes unstable: as soon as
the initial energy of the system is different from m2, or equivalently the initial variance of the
system is greater than zero, the asymptotic distribution spreads on the whole real line, meaning
that the dissensus prevails in the system.

Finally, if 2p − 1 − γ = 0, i.e. γ = 2p − 1 with 1
2 < p < 1, then also M2 is conserved in time.

In this case, let σ2 := M2 − m2 ∈ R+ be the conserved variance of the distribution function g.
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Figure 3: Mild consensus: comparison among the large time solution to the jump process
model (14)-(22) (cross markers), that to the collisional model (16)-(23) (circular markers) and
the analytical Maxwellian (24) (solid line). Parameters: p = 0.8, γ = 2p − 1 = 0.6, m = 0,
σ2 = 0.3, ε = 10−3.

We may investigate the asymptotic trend of the system taking advantage of the Fokker-Planck
equation (18), which reads

∂τg = (2p− 1)2

[
1

2
∂2
v

((
(v −m)2 + σ2

)
g
)
− ∂v

(
(m− v)g

)]
.

The unique solution with unitary mass to the stationary equation

1

2
∂v

((
(v −m)2 + σ2

)
g
)
− (m− v)g = 0

identifies the Maxwellian:

g∞(v) =
2σ3

π [(v −m)2 + σ2]
2 , (24)

which, as expected, has mean m and variance σ2. In this case, a sort of mild consensus around the
mean opinion m emerges, which leaves the dispersion of the opinions unchanged. Notice that (24)
is the same type of distribution as (19), but its parameters have a substantially different meaning.

In Figure 2, we summarise the types of asymptotic configurations reached by the system
depending on γ, p and we plot some asymptotic distributions (24) with zero mean, indicating a
neutral social opinion on average, and increasing variance.

It is worth pointing out that the qualitative diagram illustrated in the left panel of Figure 2
applies actually also to the jump process model (14) with (22). In fact, since the trends of M1,
M2 are the same, also the distribution function of this model either collapses to δ(v −m) (global
consensus) or spreads on the whole R (global dissensus) or conserves both the mean and the energy
(mild consensus) in correspondence of the same values of γ, p. Nonetheless, from (14)-(22) it is
not as straightforward to find explicitly the expression of the Maxwellian in the less trivial case of
mild consensus.

In Figure 3, we show the numerical computation of the large time solution to the jump process
model (14)-(22) in the case of mild consensus, obtained by means of a Monte Carlo algorithm (cf.
Appendix A). By comparing it with the numerical large time solution to the collisional model (16)-
(23), obtained in turn with a Monte Carlo algorithm, and with the analytical Maxwellian (24), we
notice that, on one hand, the latter providesan excellent approximationof the large time collisional
dynamics in the regime of quasi-invariant interactionsand, on the other hand, that the collisional
description is indeed a valid tool to catch qualitatively the large time trend of the jump process
model.
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4.3 Multidimensional extension

For multidimensional problems, i.e. those in which the microscopic state of the agents is a vector
variable v ∈ Rd, d > 1, the procedure leading to the Fokker-Planck equation may be repeated in
a conceptually analogous way, though at the cost of more tedious computations.

Let us consider, for simplicity, only the case in which T does not depend on the pre-interaction
state ′v∗. Denoting by VT (′v) ∈ Rd the mean of T for a given ′v and by

DT (′v) :=

∫
Rd

(v − VT (′v))⊗ (v − VT (′v))T (v | ′v) dv ∈ Rd×d

its covariance matrix, the Fokker-Planck equation (20) generalises as

∂τg =
1

2
div
{

div
[(

(VT (v)− v)⊗ (VT (v)− v) + DT (v)
)
g
]}
− div [(VT (v)− v) g] , (25)

where div is the divergence operator with respect to the variable v. Clearly, this equation does not
allow, in general, for the analytical computation of either g or the Maxwellian g∞. Nevertheless, by
means of suitable numerical schemes, see e.g. [32, 36], one may compute accurate approximations
of the steady states of (25) with much higher precision and efficiency than by tackling numerically
the original collisional equation (16).

4.4 Other quasi-invariant scalings

The definition (12) of quasi-invariant interactions may be replaced by the perhaps more intuitive,
but weaker, requirement that T (· | ′v, ′v∗)→ δ(·− ′v) when a certain parameter ε, characterising the
expression of the transition probability density T , tends to zero. The convergence of T (· | ′v, ′v∗)
to δ(· − ′v) may be conveniently meant in the sense of the 1-Wasserstein distance W1, at least for
transition probability densities such that T (· | ′v, ′v∗) ∈P1(R) for all ′v, ′v∗ ∈ R.

This definition may be implemented as follows. Given T (· | ′v, ′v∗) ∈ P1(R), let us consider,
for every fixed ′v, ′v∗ ∈ R, the scaled transition probability density

T (v | ′v, ′v∗) :=
1

ε
T
(
v − ′v
ε

∣∣∣ ′v, ′v∗) , (26)

where ε > 0. Notice that

W1(T (· | ′v, ′v∗), δ(· − ′v)) =

∫
R

∫
R
|v − w|T (v | ′v, ′v∗)δ(w − ′v) dv dw

=
1

ε

∫
R
|v − ′v| T

(
v − ′v
ε

∣∣∣ ′v, ′v∗) dv

= ε

∫
R
|u| T (u | ′v, ′v∗) du

ε→0+

−−−−→ 0,

thus, for ε small, (26) describes quasi-invariant interactions in the sense introduced above. Moreover,
simple computations show that

VT (′v, ′v∗) = ′v + εVT (′v, ′v∗)

ET (′v, ′v∗) = (′v)2 + 2εVT (′v, ′v∗)
′v + ε2ET (′v, ′v∗),

whence we obtain also DT (′v, ′v∗) = εDT (′v, ′v∗). Consequently, from (6) we deduce that the
corresponding quasi-invariant collision rule is

v′ = v + εVT (v, v∗) + εDT (v, v∗)η. (27)

We observe that, unlike (15), in (27) the deterministic and stochastic parts are scaled at the
same order in ε. In the larger time scale τ = εt, this makes the diffusive contribution negligible with
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respect to the advective one, as we clearly see from the Fokker-Planck equation obtained from (5)
with (27) in the limit ε→ 0+ (following the very same procedure described in Section 4.1):

∂τg = −∂v
[(∫

R
VT (v, v∗)g(τ, v∗) dv∗

)
g

]
, (28)

which is indeed a purely advective equation. As a matter of fact, we claim that this is also the
limit equation resulting from (1) with (26) for ε → 0+. To check this, we multiply (1) by a test
function ϕ = ϕ(v), then we integrate on R and we use the transition probability density (26):

d

dt

∫
R
ϕ(v)f(t, v) dv

=
1

ε

∫
R

∫
R

(∫
R
ϕ(v)T

(
v − ′v
ε

∣∣∣ ′v, ′v∗) dv

)
f(t, ′v)f(t, ′v∗) d

′v d′v∗ −
∫

R
ϕ(v)f(t, v) dv

=

∫
R

∫
R

(∫
R
ϕ(′v + εu)T (u | ′v, ′v∗) du

)
f(t, ′v)f(t, ′v∗) d

′v d′v∗ −
∫

R
ϕ(v)f(t, v) dv.

For a sufficiently smooth ϕ, say at least ϕ ∈ C2(R), we can expand

ϕ(′v + εu) = ϕ(′v) + εϕ′(′v)u+
ε2

2
ϕ′′(v̄)u2,

where v̄ ∈ (min{′v, ′v + εu}, max{′v, ′v + εu}), whence, recalling that
∫

R T (u | ′v, ′v∗) du = 1 for all
′v, ′v∗ ∈ R,

d

dt

∫
R
ϕ(v)f(t, v) dv = ε

∫
R

∫
R
ϕ′(′v)

(∫
R
uT (u | ′v, ′v∗) du

)
f(t, ′v)f(t, ′v∗) d

′v d′v∗

+
ε2

2

∫
R

∫
R

(∫
R
ϕ′′(v̄)u2T (u | ′v, ′v∗) du

)
f(t, ′v)f(t, ′v∗) d

′v d′v∗

= ε

∫
R
ϕ′(′v)

(∫
R
VT (′v, ′v∗)f(t, ′v∗) d

′v∗

)
f(t, ′v) d′v

+
ε2

2

∫
R

∫
R

(∫
R
ϕ′′(v̄)u2T (u | ′v, ′v∗) du

)
f(t, ′v)f(t, ′v∗) d

′v d′v∗.

Scaling now the time as τ := εt and using g(τ, v) = f(t, v), we get

d

dτ

∫
R
ϕ(v)g(τ, v) dv =

∫
R
ϕ′(′v)

(∫
R
VT (′v, ′v∗)g(τ, ′v∗) d

′v∗

)
g(τ, ′v) d′v

+
ε

2

∫
R

∫
R

(∫
R
ϕ′′(v̄)u2T (u | ′v, ′v∗) du

)
g(τ, ′v)g(τ, ′v∗) d

′v d′v∗,

which, if we consider e.g., compactly supported test functions ϕ and assume that ET (v, v∗) < +∞,
yields, in the limit ε→ 0+, the weak form of (28).

We conclude that, with the scaling (26), the quasi-invariant regimes of the jump process model
and of the collisional model coincide and, in particular, that they consist in a pure advection, as
it has also been found in [7] with a similar quasi-invariant scaling in a different problem.

Another scaling of the transition probability density, which leads to quasi-invariant interactions,
is

T (v | ′v, ′v∗) :=
1

ε
T
(
v − ′v
ε

+ VT (′v, ′v∗)
∣∣∣ ′v, ′v∗) , (29)

which is in turn such that

W1

(
T (· | ′v, ′v∗), δ(· − ′v)

)
=

∫
R

∫
R
|v − w|T (v | ′v, ′v∗)δ(w − ′v) dv dw
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=
1

ε

∫
R
|v − ′v| T

(
v − ′v
ε

+ VT (′v, ′v∗)
∣∣∣ ′v, ′v∗) dv

= ε

∫
R
|u− VT (′v, ′v∗)| T (u | ′v, ′v∗) du

ε→0+

−−−−→ 0.

Since VT (′v, ′v∗) = ′v and ET (′v, ′v∗) = (′v)2 + ε2D2
T (′v, ′v∗), the corresponding quasi-invariant

collision rule reads
v′ = v + εDT (v, v∗)η,

which gives rise to a purely diffusive large time trend, as confirmed by the resulting Fokker-Planck
equation:

∂τg =
1

2
∂2
v

[(∫
R
D2
T (v, v∗)g(τ, v∗) dv∗

)
g

]
obtained under the time scaling τ := ε2t. Also in this case, it can be checked that this coincides with
the limit equation obtained from (1) with (29) for ε→ 0+, meaning that, under the scaling (29),
the quasi-invariant regimes of the jump process model and of the collisional model are again the
same.

Remark 4.4. The quasi-invariant scalings (26), (29) give rise to the same large time trend for
both the jump process model and the collisional model, regardless of the specific choice of the
stochastic fluctuation η in the latter. On the other hand, none of them catches asymptotically the
joint contribution of the deterministic and of the stochastic parts of the microscopic dynamics.
Conversely, the quasi-invariant scaling (13) catches such a joint contribution, but in this case the
large time trend of the collisional model is, in principle, only an approximation of the large time
trend of the jump process model (which, however, may hardly be investigated more precisely). The
main difference between (13) and (26), (29), possibly at the basis of the different properties of the
corresponding quasi-invariant regimes, may be summarised as follows. In (26), (29), the support of
the transition probability density shrinks around ′v when ε→ 0+ (this is evident thinking e.g., of a
compactly supported transition probability density), so that, when ε is sufficiently small, in every
interaction the post-interaction state cannot be pointwise too far from ′v. On the contrary, in (13)
the support of the transition probability density is the same for every ε > 0 but the probability
that the post-interaction state is far from ′v decreases while ε approaches zero. This, however,
does not prevent the post-interaction state to be pointwise far from ′v in some interactions, also
when ε is small.

5 Domains with restrictions

So far, we have considered only the case in which the microscopic state v may span the entire real
line. In many problems, however, the physically meaningful values of v are restricted to a proper
subset I ( R, which may have, for instance, one of these prototypical forms:

I = [−1, 1], I = [0, 1], I = R+. (30)

In order for both the pre- and the post-interaction states to belong to I, it is necessary that the
transition probability density T be supported in I for every pair of pre-interaction states. We
write:

suppT (· | ′v, ′v∗) ⊆ I ∀ ′v, ′v∗ ∈ I,

so that
∫
I T (v | ′v, ′v∗) dv = 1 for all ′v, ′v∗ ∈ I. Notice that, by definition of mean, this implies

VT (′v, ′v∗) ∈ I ∀ ′v, ′v∗ ∈ I.

As far as the description with the collision rules (6) is concerned, if η, η∗ are chosen like in (11)
then it results v′, v′∗ ∈ I for all v, v∗ ∈ I by construction. Thus, the choice (11) guarantees
straightforwardly the physical consistency of the collisional model also in subsets of R.
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If, conversely, η, η∗ are not chosen like in (11), for instance because the collisional model (5)-(6)
is of interest by itself, independently of the equivalence with the jump process model (1), then, in
general, v′, v′∗ may not belong to I, even if v, v∗ do. In order to deal with this issue, an option is
to correct the Boltzmann-type equation (5) as follows, see [35]:

d

dt

∫
I
ϕ(v)f(t, v) dv =

1

2

∫
I

∫
I
B(v, v∗)〈ϕ(v′) + ϕ(v′∗)− ϕ(v)− ϕ(v∗)〉f(t, v)f(t, v∗) dv dv∗,

(31)
where B : I × I → R+ is a collision kernel of the form

B(v, v∗) = χ(v′ ∈ I)χ(v′∗ ∈ I). (32)

Notice that if the collisions (6) actually ensure that v′, v′∗ ∈ I then B ≡ 1 and (31) reduces
to (5) thanks to the symmetry of the rules (6). Conversely, if, for certain values of v, v∗ ∈ I, the
collisions (6) produce either v′ 6∈ I or v′∗ 6∈ I then the kernel (32) has the effect of discarding those
collisions from the microscopic dynamics of the system.

Unfortunately, because of B, the Boltzmann-type equation (31) is much harder than (5) to
treat, as far as the study of both the statistical moments and the asymptotic trend of f are
concerned. Actually, in some cases it may still be possible to derive Fokker-Planck equations in
the quasi-invariant limit, see [16, 46]. However, the whole analysis is greatly simplified if one may
find conditions on the collision rules (6) ensuring v′, v′∗ ∈ I for all v, v∗ ∈ I, so as to get rid of
the kernel B and recover at once all the results valid in the case I = R.

With this idea in mind, let us consider the first case in (30), i.e. I = [−1, 1]. This is the
prototype of a symmetric interval about v = 0 for problems in which both the positive and the
negative values of the microscopic state are physically meaningful, provided they are bounded.
An example is given by opinion dynamics models, where v ∈ [−1, 1] represents the opinion of
the agents [14, 43]. We claim that it is actually possible to guarantee v′, v′∗ ∈ [−1, 1] for all
v, v∗ ∈ [−1, 1] by simply considering compactly supported random variables η, η∗ in (6). First, we
observe that, since VT (v, v∗) ∈ [−1, 1] and

ET (v, v∗) =

∫ 1

−1

(v′)2T (v′ | v, v∗) dv′ ≤ 1,

we have

DT (v, v∗) =
√
ET (v, v∗)− V 2

T (v, v∗) ≤
√

1− V 2
T (v, v∗) ≤ 1.

Therefore, the condition v′ ∈ [−1, 1], or equivalently |v′| ≤ 1, is certainly satisfied if |VT (v, v∗)|+
DT (v, v∗) |η| ≤ 1 and even more so if |VT (v, v∗)|+ |η| ≤ 1. If we now assume that there exists a
constant c ∈ (0, 1) such that

|VT (v, v∗)| ≤ c ∀ v, v∗ ∈ [−1, 1],

we see that the restriction |η| ≤ 1 − c is sufficient to guarantee that v′ complies with the stated
bounds. Analogously, if |η∗| ≤ 1 − c then v′∗ ∈ [−1, 1]. Finally, we conclude that if the random
variables η, η∗ are such that

supp η, supp η∗ ⊆ [−(1− c), 1− c], 0 < c < 1,

then the post-collisional states v′, v′∗ never violate the prescribed bounds. We observe that it is
quite important that the obtained restriction on the supports of η, η∗ includes both positive and
negative values, for otherwise it would be impossible for η, η∗ to comply with (3).

Let us now consider the second case in (30), i.e. I = [0, 1]. This is the prototype of a
microscopic state space for problems in which the microscopic state is non-negative and bounded.
Examples include the speed of the vehicles or the safety of the drivers in vehicular traffic models [22,
45]; the social opinions in opinion dynamics models [8]; the estimated values of some traded goods
in market dynamics models [17]. In this case,

ET (v, v∗) =

∫ 1

0

(v′)2T (v′ | v, v∗) dv′ ≤
∫ 1

0

v′T (v′ | v, v∗) dv′ = VT (v, v∗),
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hence

DT (v, v∗) =
√
ET (v, v∗)− V 2

T (v, v∗) ≤
√
VT (v, v∗)(1− VT (v, v∗)) ≤

1

2

because VT (v, v∗) ∈ [0, 1]. Let us assume that there exists a constant c ∈ (0, 1) such that

c ≤ VT (v, v∗) ≤ 1− c ∀ v, v∗ ∈ [0, 1]. (33)

We observe that the condition v′ ≥ 0 is equivalent to η ≥ − VT (v, v∗)
DT (v, v∗)

, which, considering that
VT (v, v∗)
DT (v, v∗)

≥ 2c, is further enforced by imposing η ≥ −2c. Analogously, the condition v′ ≤ 1 is

equivalent to η ≤ 1−VT (v, v∗)
DT (v, v∗)

, which, since 1− VT (v, v∗) ≥ c and 1
DT (v, v∗)

≥ 2, is further enforced

by imposing η ≤ 2c. The same conclusions hold also for the random variable η∗. Summarising, if
η, η∗ are chosen in such a way that

supp η, supp η∗ ⊆ [−2c, 2c], 0 < c < 1,

then v′, v′∗ ∈ [0, 1] for all v, v∗ ∈ [0, 1]. Again, we notice that the restriction of η, η∗ to a bounded
interval including both positive and negative values is essential for consistency with (3).

Finally, let us consider the third case in (30), i.e. I = R+. This is the prototype of the domain of
a non-negative but possibly unbounded microscopic state, which is found e.g. in wealth distribution
problems [16], where v represents the wealth of the agents; in vehicular traffic problems [37, 38],
where v represents the speed of the vehicles; in models of human behaviour [25], where v may
represent e.g. the service time of the operators of a call centre [24], the number of inhabitants
of a city [26], the popularity of a product posted on a social network [44] or various other social
determinants. In this case, if we assume that there exist two constants c1 > 0 and 0 ≤ c2 < +∞
such that

VT (v, v∗) ≥ c1, DT (v, v∗) ≤ c2 ∀ v, v∗ ∈ R+

then, upon defining c := c1
c2
> 0, we see that the condition v′ ≥ 0, i.e. η ≥ − VT (v, v∗)

DT (v, v∗)
, is certainly

satisfied if one takes η ≥ −c. Therefore, with

supp η, supp η∗ ⊆ [−c, +∞), c > 0,

we guarantee that v′, v′∗ ∈ R+ for all v, v∗ ∈ R+ along with the consistency with (3).
The results just presented are sufficient conditions valid for very general expressions of VT , DT .

As such, they rely on some assumptions, such as the boundedness of VT away from the boundaries
of I or that of DT , which may not be met in particular cases. Nevertheless, one may often take
advantage of the specific expressions of VT , DT to still find suitable bounds on η, η∗ which make
the collisional model (6) physically consistent.

Random onset of Alzheimer’s disease in the brain For instance, in the model for the
onset and progression of Alzheimer’s disease presented in [9, 10, 11], one of the aspects taken into
account is the random damage of the neurons due to either external or genetic factors. This aspect
is modelled by assuming that the degree of malfunctioning v ∈ [0, 1] of a neuron (where v = 0
stands for a healthy neuron and v = 1 for a dead neuron) may randomly jump to a higher value
according to the transition probability density

T (v | ′v) =
2

1− ′v
χ

(
v ∈

[
′v,

1 + ′v

2

])
. (34)

Notice that suppT (· | ′v) ⊆ [0, 1] for all ′v ∈ [0, 1]. As it can be easily computed, it results

VT (′v) =
3′v + 1

4
, DT (′v) =

1− ′v
4
√

3
,

therefore, from (6), the corresponding collision rule is

v′ =
3v + 1

4
+

1− v
4
√

3
η. (35)
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Since VT (1) = 1, it is clear that (33) cannot be satisfied. Nevertheless, by rewriting the collision
rule as

v′ =
1

4

(
3− η√

3

)
v +

1

4

(
1 +

η√
3

)
,

we see that we can guarantee v′ ∈ [0, 1] by requiring

0 ≤ 1

4

(
1 +

η√
3

)
≤ 1 i.e. −

√
3 ≤ η ≤ 3

√
3. (36)

In fact, since v′ is a linear-affine function of v, it is necessary and sufficient that v′ ∈ [0, 1] for
v = 0, 1 in order for v′ ∈ [0, 1] for all v ∈ [0, 1]. The bounds obtained on η are still consistent
with (3).

With these restrictions on η, the evolution of the collisional model is described by a Boltzmann-
type equation of the form (5) but on I = [0, 1] rather than on R:

d

dt

∫ 1

0

ϕ(v)f(t, v) dv =

∫ 1

0

〈ϕ(v′)− ϕ(v)〉f(t, v) dv,

where the right-hand side is actually linear in f , because v′ does not depend on the pre-collisional
state v∗. From here, taking ϕ(v) = v, we obtain that the average degree of malfunctioning of the
neurons evolves according to the equation

dM1

dt
=

1

4
(1−M1) ,

which gives
M1(t) = (M1,0 − 1) e−

t
4 + 1 (37)

with M1,0 := M1(0). Analogously, taking ϕ(v) = v2, we obtain that the energy of the system is
ruled by the equation

dM2

dt
= − 5

12
M2 +

1

3
M1 +

1

12
,

whose solution is

M2(t) =
[
M2,0 + 2 (M1,0 − 1)

(
e
t
6 − 1

)
− 1
]
e−

5
12 t + 1 (38)

with M2,0 := M2(0).
In Figure 4, we show the time evolutions of M1, M2 computed numerically via a Monte Carlo

algorithm (cf. Appendix A) for both the collisional model and the jump process model (1) on
I = [0, 1], i.e.

∂tf =

∫ 1

0

T (v | ′v)f(t, ′v) d′v − f. (39)

Furthermore, we compare them with the analytical expressions (37), (38). As expected from the
general theory, we see that the two models predict the same instantaneous evolutionof these two
statistical moments.

Notice that M1, M2 → 1 when t→ +∞. Therefore, the variance M2 −M2
1 of the equilibrium

distribution is zero, whence we deduce that the Maxwellian is necessarily a Dirac delta centred in
the asymptotic mean:

f∞(v) = δ(v − 1) (40)

for both models. This describes the fact that successive random damages of the neurons lead
inevitably to a full damage of the brain, no matter what the initial condition is. Remarkably, in
this case the specific choice of the distribution of η in the collisional model is unimportant for the
asymptotic equivalence of the two kinetic models.

Conversely, the choice of η may affect the similarity of the transient solutions of the two kinetic
models, as we show in Figure 5. Starting from the initial condition f0(v) = δ(v), which models
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Figure 4: Random onset of Alzheimer’s disease: time evolution of M1 (left), M2 (right) computed
numerically (circular and cross markers) and analytically from (37), (38) (solid line).
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Figure 5: Random onset of Alzheimer’s disease: transient solutions, at the computational times
t = 1, 4, 20, of the jump process model (cross markers) and of the collisional model (circular
markers). Top row: discrete η. Bottom row: uniformly distributed η.

a fully healthy brain, we consider, in the top row, a discrete stochastic fluctuation η ∈ {−1, 1}
with law Prob(η = ±1) = 1

2 . In the bottom row, we consider instead a uniform stochastic

fluctuation η ∼ U([−
√

3,
√

3]), which corresponds to the standardisation (11) of the transition
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probability (34). The displayed numerical solutions have been computed by means of a Monte
Carlo algorithm (cf. Appendix A). Both choices of η are consistent with (36) and, as expected,
produce an evolution towards the Maxwellian (40). Nevertheless, we observe that the transient
evolution of the collisional model produced by the discrete η is, at the beginning, quite different
from that of the jump process model. On the contrary, the transient evolution produced by the
uniformly distributed η is immediately the same (at least within the tolerance of a stochastic
numerical method) as that of the jump process model.

6 Conclusions

In this paper, we have investigated two different classes of stochastic microscopic models of in-
teracting agents and their corresponding kinetic descriptions. On one hand, we have considered
microscopic jump process models, in which the transition from a pre-interaction state ′v to a post-
interaction state v of an agent interacting with another agent with state ′v∗ is modelled by means
of a conditional transition probability density T = T (v | ′v, ′v∗). On the other hand, we have con-
sidered collision-like models, in which the post-interaction state v′ depends on the pre-interaction
states v, v∗ of the interacting agents via a collision rule of the form v′ = I(v, v∗) + D(v, v∗)η,
where I represents the deterministic part of the collision while η is a stochastic fluctuation and D
a diffusion coefficient. The first type of models is especially used in biological applications, such as
e.g. cell motion, see [5, 15, 27, 28]. The second type of models, which takes inspiration from the
classical kinetic theory of gases, is instead typically used in socio-economic applications, see [35]
as a representative example, although in some cases socio-economic systems have been described
also by means of jump process models, see e.g. [8, 17, 18, 40].

We have established a parallelism between the corresponding aggregate kinetic descriptions,
whereby we have provided precise conditions for the equivalence of the two classes of models. First,
we have shown that, by suitably linking the functions I, D to the first and second order moments
of T , the two kinetic descriptions account for the same evolution of the mean and of the energy of
the system. Moreover, if, in the collisional model, one considers a suitably defined agent-dependent
stochastic fluctuation η, namely one which changes from pair to pair of interacting agents on the
basis of their pre-interaction states, then the two kinetic models admit the same solutions. This
allows one, in particular, to adopt the well-studied numerical techniques for collisional kinetic
equations, such as Monte Carlo algorithms, for the approximation of the solutions of the less
standard jump process kinetic models. Next, we have moved to the problem of determining the
asymptotic distribution functions, which depict the emerging aggregate trends of the system. For
the jump process model there are not, in general, techniques allowing one to recover reliable
approximations of the Maxwellian. Conversely, in the case of the collisional model one may take
advantage of powerful asymptotic procedures, such as the quasi-invariant limit [43], which, for large
times, transforms the collisional description into a mean field one expressed by a Fokker-Planck
equation. The latter is often amenable to detailed analytical investigations, especially as far as
the explicit determination of the Maxwellian is concerned. Thanks to the parallelism established
before, we have shown that this asymptotic procedure may also be used to obtain approximate
but explicit information on the steady distributions of the jump process model.

As concluding remarks, we would like to stress three relevant implications of the analysis
performed in this paper.

First, the quasi-invariant limit described in Section 4 may be used, in principle, to approximate
the Maxwellian distribution produced by any transition probability T , not just by those of the
form (13). Indeed, as shown by (14), the jump process model with (13) is actually ruled by the
transition probability T on a suitably large time scale. Therefore, in order to explore the large
time trend for a given T , it is sufficient to introduce fictitiously a small parameter ε > 0 and
to define the quasi-invariant transition probability T̃ (v | ′v, ′v∗) = (1 − ε)δ(v − ′v) + εT (v | ′v, ′v∗).
At this point, the collision rule (15), with VT , DT replaced respectively by VT , DT , provides the
basis for performing the quasi-invariant limit ε → 0+ on the larger time scale τ = εt, whence
to deduce an approximation of the large time kinetic distribution produced by the microscopic
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T -dynamics and, in particular, of the Maxwellian. It is worth pointing out that, for a generic
transition probability T , there are not, in many cases, other procedures able to yield more precise
descriptions of the steady state of the jump process model.

Second, we observe that the scaled collision rule (15) implies, on the larger time scale τ = εt,
an evolution of both the mean and the energy which, for every ε > 0, is identical to that of the
unscaled rule (ε = 1). This indicates that, starting from any given collision rule (2), the passage
through the quasi-invariant transition probability (13) may be used to obtain a quasi-invariant
scaling which, on the τ -scale, reproduces exactly the trends of the mean and also of the energy
for every ε > 0. For this, it is formally sufficient to consider any transition probability T such
that VT = I and DT = D. We stress that, while quasi-invariant scalings typically conserve the
evolution of the mean for every ε > 0, the same is in general not true for the energy, whose
equation normally contains a remainder, which vanishes only in the limit ε→ 0+, cf. [23].

Third, as already quickly implied along the paper, the link between the jump process equa-
tion (1) and the collisional equation (4) realised through the collision rules (6) suggests that the
collisional model may be used to obtain macroscopic models from the microscopic jump process
by means of the hydrodynamic limit. The latter relies on the local equilibrium closure of the
moment equations deduced by integrating (1) against suitable powers of the microscopic state v,
for which the knowledge of the Maxwellian is necessary. Since the collisional model reproduces
exactly the time evolution of the mean and of the energy of the jump process model, one may
profitably use the Maxwellian obtained from the quasi-invariant limit of the collisional model to
close the macroscopic equations derived in the hydrodynamic limit from the jump process model.
Indeed, such a closure requires typically only the first two moments of the local equilibrium dis-
tribution. This may allow for more accurate hyperbolic descriptions of the macroscopic dynamics,
as opposed to the diffusive ones typically recovered by means of the diffusive limit in the absence
of sufficiently detailed information on the Maxwellian, cf. [28]. This argument also stresses that
the jump process model and the collisional model are actually indistinguishable in terms of the
macroscopic physics. In addition to that, the collisional model often offers more precise insights
into the mesoscopic characteristics of the system.

A currently open problem, which may certainly deserve future attention, is the estimation of
a suitable distance between the (often unknown) Maxwellian of the jump process model and the
Fokker-Planck approximation of the Maxwellian of the collisional model determined in Section 4.1.
In particular, this could allow one to identify specific classes of transition probabilities T , hence
of jump process models, for which such an approximation is actually a priori reliable. As already
noticed, cf. Remark 4.4, we stress that this approximation catches, in the long run, the contribution
of both the deterministic and the stochastic parts of the microscopic dynamics, unlike the other
approximations discussed in Section 4.4.
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A The Monte Carlo method for collisional kinetic equations

For the sake of completeness, in this appendix we quickly review some basic notions about the
application of Monte Carlo algorithms to the approximate solution of collisional kinetic equations.
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Algorithm 1 Nanbu-like algorithm for (6)-(41), cf. [12, 33, 35]

1: fix N > 1 (number of particles, even), ∆t = ε
2: sample N particles from the initial distribution f0; let {v0

i }Ni=1 be their microscopic states
3: for n = 0, 1, 2, . . . do
4: sample uniformly N

2 pairs of indexes (i, j) with i, j ∈ {1, . . . , N}, i 6= j and no repetition
5: for every sampled pair (i, j) do
6: sample a value of η, η∗ from their (common) distribution

7: set

{
vn+1
i := VT (vni , v

n
j ) +DT (vni , v

n
j )η

vn+1
j := VT (vnj , v

n
i ) +DT (vnj , v

n
i )η∗,

(cf. (6))

8: end for
9: construct an approximation of fn+1 from the samples {vn+1

i }Nn=1

10: end for

The interested reader is referred to e.g., [34, 35] for more details and further references.
Let us consider the strong form of the collisional Boltzmann-type equation, cf. (4), which we

may conveniently rewrite as

∂tf =
1

ε

(
Q+(f, f)− f

)
, (41)

where

Q+(f, f)(t, v) :=

〈∫
R

1
′J
f(t, ′v)f(t, ′v∗) dv∗

〉
≥ 0

is the so-called gain operator. We have considered the coefficient 1
ε in order to include in this

discussion also the scaled equation (16). Notice that for ε = 1 we obtain, in particular, precisely (4).
Integrating both sides of (41) with respect to v ∈ R and recalling the mass conservation property,
we obtain

0 =

∫
R
Q+(f, f)(t, v) dv −

∫
R
f(t, v) dv =

∫
R
Q+(f, f)(t, v) dv − 1, ∀ t > 0,

whence we deduce that Q+(f, f)(t, ·) is, at every time, a probability density. Discretising now (41)
in time with the forward Euler formula, we find

fn+1(v) =

(
1− ∆t

ε

)
fn(v) +

∆t

ε
Q+(fn, fn)(v), (42)

where ∆t ∈ (0, ε] is a fixed time step and fn(v) ≈ f(tn, v) with tn := n∆t. Since both fn and
Q+(fn, fn) are probability densities and the right-hand side of (42) is a convex combination of
them, also fn+1 remains a probability density. The interpretation of (42) in terms of the underlying
stochastic particle system is clear: during a time step, two randomly chosen particles update their
microscopic states according to the collision-like rule (6), encoded in Q+, with probability ∆t

ε .

Alternatively, they do not interact with the complementary probability 1 − ∆t
ε , thereby leaving

the distribution function unchanged. If we fix, in particular, ∆t = ε then any two randomly chosen
particles always interact.

Starting from these considerations, a Monte Carlo approach for the numerical approximation of
the solution to (4) can be described as detailed in Algorithm 1, cf. also [12, 33, 35]. In particular,
as observed in Section 3, cf. Remark 3.1, the same algorithm may be used to approximate also
the solution to the jump process model (1), provided η, η∗ are chosen like in (11). In this case,
the sampling invoked in line 6 of Algorithm 1 needs to take into account that the distribution of
η, η∗ varies from pair to pair of interacting particles.

In the case of the consensus/dissensus dynamics, cf. Section 4.2, the numerical solutions
of the collisional model (4)-(23) and of the jump process model (14)-(13), cf. Figure 3, have
been computed by means of Algorithm 1 with N = 106 particles. The number of iterations of the
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algorithm has been taken sufficiently large, so as to ensure that the steady state was reached within
a resonable numerical tolerance. The L∞ relative error between the exact and the numerically
computed mean and energy of both models is O(10−3). Also the L∞ relative error between the
analytical Maxwellian (24) and the large time numerical solution of the collisional model (4)-(23)
is O(10−3). Finally, the L∞ relative error between the large time solution of the collisional model
and that of the jump process model is O(10−2).

In the case of the random onset of Alzheimer’s disease in the brain, cf. Section 5, the transient
solutions of the collisional model (4)-(35) and of the jump process model (34)-(39), as well as their
mean and energy, cf. Figures 4, 5, have been computed numerically by means of Algorithm 1 with
N = 106 particles. Furthermore, the reconstruction of fn, cf. line 9 of Algorithm 1, has been
performed by computing, at each time step, the normalised histogram of the microscopic states
{vni }Ni=1 with 103 uniform bins in the interval [0, 1].
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[6] L. Ambrosio, N. Gigli, and G. Savaré. Gradient flows in metric spaces and in the space of
probability measures. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, 2008.
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