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A B S T R A C T

A point cloud is a representation of a 3D scene as a discrete collection of geome-
try plus other attributes such as color, normal, transparency associated with each point.
The traditional acquisition process of a 3D point cloud, e.g. using depth information
acquired directly by active sensors or indirectly from multi-viewpoint images, su↵ers
from a significant amount of noise. Hence, the problem of point cloud denoising has re-
cently received a lot of attention. However, most existing techniques attempt to denoise
only the geometry of each point, based on the geometry information of the neighboring
points; there are very few works at all considering the problem of denoising the color
attributes of a point cloud. In this paper, we move beyond the state of the art and we
propose a novel technique employing graph-based optimization, taking advantage of
the correlation between geometry and color, and using it as a powerful tool for several
di↵erent tasks, i.e. color denoising, geometry denoising, and combined geometry and
color denoising. The proposed method is based on the notion that the correct location
of a point also depends on the color attribute and not only the geometry of the neigh-
boring points, and the correct color also depends on the geometry of the neighbors.
The proposed method constructs a suitable k-NN graph from geometry and color and
applies graph-based convex optimization to obtain the denoised point cloud. Extensive
simulation results on both real-world and synthetic point clouds show that the proposed
denoising technique outperforms state-of-the-art methods using both subjective and ob-
jective quality metrics.

c� 2021 Elsevier B. V. All rights reserved.

1. Introduction

In the new era of graphics technology, 3D point clouds have gained increasing attention as a signal representation of volumetric

objects, real scenes, or 3D objects [1, 2, 3]. A point cloud comprises a set of points with 3D geometric information along with

attribute data, i.e., color. Point clouds have been widely applied in many fields such as 3D broadcasting, 3D immersive telepresence,

culture and heritage reconstruction, and navigation of unmanned vehicles [4]. A point cloud can be acquired directly using low-cost

depth sensors like Microsoft Kinect or high-resolution 3D scanner like LiDAR. Moreover, in the past few years, multi-view stereo-

matching techniques have been extensively studied to recover a 3D model from videos and images, where the output is typically
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a point cloud [5]. However, in each case, the generated point cloud is intrinsically noisy, which has called for new methods for

point cloud denoising [6, 7, 8, 9]. Moving least squares (MLS)-based methods [10, 11], and locally optimal projection (LOP)-based

approaches [12, 13] are considered as two main classes of point cloud denoising techniques. Still, these are usually prone to over-

smoothing [8, 9] due to the utilization of local operators. Sparse-based methods [8, 14] assume sparse representation of the point

normals and achieve good performance [15]. However, at the higher noise levels, the inaccurate estimation of normal or the local

plane can lead to over-smoothing or over-sharpening [7, 8]. The denoising process can be categorized into outlier removal and noise

removal; this latter often applies surface smoothing, moving points towards their correct positions based on a smoothing prior.

With the improvement of computer graphics, computer vision technology, and optical components, in addition to laser scanning

sensors, economical low-cost RGB-D cameras have been developed such as the Astra, Astra S, Astra Pro, Intel RealSense [16, 17,

18], and Microsoft Kinect [19, 20]. With the advent of RGB-D cameras, it is quite easy to generate the point cloud of an object.

However, the point cloud obtained with these cameras will have significant noise in geometry and color, exhibiting artifacts because

of various view angles, reflective material or characteristics of the surfaces of the objects, light intensities, as well as the limitations

of sensors [21]. Alongside the geometry of objects and scenes, which is important for many applications, surface colors and details

play an essential role in several virtual and augmented reality applications [22]. The color is an essential attribute of a point cloud,

and it has been considered a key feature for point cloud segmentation [23, 24, 25] and retrieval of 3D models [26, 27]. Noise

in the colors of a point cloud may lead e.g. to wrong segmentation. In recent works, geometry denoising has received a lot of

attention, whereas there is just one work for denoising the color of a point cloud using Graph Laplacian regularizer (GLR) coupled

with alternating direction method of multipliers [28]; yet, there are numerous applications employing both the geometry and color

attribute of a point cloud.

In current literature, the geometry of a point cloud is expressed as a graph, which is used for denoising by convex optimization

[29]. In this paper, we propose the joint use of the geometry and the color attribute of the points in a point cloud to remove noise. We

note that the color attribute is a powerful and very informative feature that is indeed correlated with the geometry, as also observed

in [25, 28, 30]. Knowledge of the color can be exploited to improve the denoising process for geometry noise, and indeed geometry

and color can be jointly employed to remove geometry and color noise. Based on this notion, the main contributions of our work

are as follows:

1. Construction of a k-Nearest Neighbor (k-NN) graph based on geometry and color and use of convex optimization for denois-

ing the color of a point cloud.

2. Construction of a joint geometry and color k-NN graph and denoising of the geometry of a point cloud.

3. Construction of a joint geometry and color k-NN graph and denoising of both color and geometry of a point cloud.

We note that this paper is the first to construct joint geometry-color graphs, as well as the first to address the problem of joint

geometry-color denoising. Extensive simulation results on synthetic and real point clouds show that our proposed algorithm for

color, geometry, and joint geometry-color denoising outperforms state-of-the-art techniques using both subjective and objective

quality metrics.

The rest of the paper is organized as follows. In Sec. 2, an overview of related works is presented. Sec. 3 reviews the basics

of graph signals and describes the construction of various graphs. Sec. 4 explains the proposed algorithms, which incorporate

color-only, geometry-only, and joint geometry and color denoising. Performance evaluation metrics are discussed in Sec. 5. The

subjective and objective experimental results are presented in Sec. 6. Finally, conclusions are drawn in Sec. 7.
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2. Related Work

In the literature, point cloud denoising techniques can be classified into two categories: outlier removal and noise removal, i.e.,

surface smoothing techniques. Outlier removal techniques can be classified into two main approaches: statistical and model-based.

Statistical approaches: The primary purpose of the statistical methods is to remove the outliers based on the distribution of

each point with respect to its neighbors or the number of neighbors to each point. The statistical outlier removal approach proposed

in [31] computes the mean distance of each point from all its neighbors. The mean and standard deviation identify likely intervals

of the global distances, and all the points whose mean distance is outside the defined range are counted as noise and eliminated from

the point cloud. An alternate extensively used approach called radius outlier removal (ROR) is based on the number of neighbors;

here, the number of neighbors of each point is computed in a defined radius and the points whose number of neighbors are less than

a threshold are considered outliers and are eliminated from the point cloud [1].

Model-based approaches: These approaches employ the notion that noisy points are generally distant from the surface of the

object. Due to the unknown underlying surface, the general idea is to approximate the surface with some model, e.g., sphere, plane,

square, and so forth, and then compute the distance of each point to the surface of the model. The points having significant distance

are considered as noise and removed [32]. A progressive plane algorithm is described in [33], whereby using the average normal

and 3D coordinates of a given point set, a plane is estimated. A least-square plane fitting technique is used for computing the

distances between each point to the plane and construct a progressive plane; a hybrid algorithm is introduced in [34] based on [33].

The issue with these methods is that in complex geometry, details can be missed because it is hard to estimate complex regions with

simple models.

Surface smoothing techniques mainly contain moving least squares (MLS), locally optimal projection (LOP)-based methods,

sparsity-based methods, and graph based-methods.

MLS-based methods: MLS-based methods typically use an estimated smooth surface from the given input to fit the point

cloud, and then the points are projected onto the fitted surface. The MLS projection operator in [35] is used by [36] to compute the

optimal MLS surface of the point cloud; this is considered a reference surface, and then the points are moved around the surface

towards it.

Spherical fitting denoising based on MLS algebraic point set surfaces is proposed in [10], along with its variant [37]. This

method overcomes unstable reconstruction in case of high curvature and enhances stability at a low sampling rate in comparison

to the MLS-based approach. Several extensions of MLS, such as robust MLS [38] and robust implicit MLS [11], have also been

proposed. These MLS-based methods can provide a smooth surface from significantly noisy input but are usually prone to over-

smoothing, and are very sensitive to outliers [8, 9].

LOP-based methods: Unlike MLS-based methods, these methods do not measure specific surface parameters; LOP [12]

enforces a uniform distribution over the given input point cloud and provides a set of points that represent the underlying surface.

Its variant weighted LOP (WLOP) [39] provides a more uniformly distributed output by modifying the repulse term according

to the local density. Moreover, anisotropic WLOP [13] remodels WLOP by using an anisotropic weighting function for better

preservation of sharp features. Due to the use of local operators, LOP-based methods are also a↵ected by over-smoothing [8, 9].

Sparsity-based methods: Sparsity-based methods seek a sparse representation of some features of geometry based on local

planarity assumption. These methods solve a global minimization problem in l1 [14] or l0 [8] norm for the sparse reconstruction

of surface normals and minimize a cost function to update the point positions with surface normals. Moving robust principal

components analysis [7] is an e�cient method for solving a minimization problem to update the position of each point. Weighted
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l1 minimization helps preserving sharp features. These approaches provide state-of-the-art performance [15]; however, the normal

approximation can be a↵ected by high-level noise, which leads to over-sharpening and over-smoothing [8].

Graph-based methods: Recently, graph-based techniques have been used for denoising point clouds. The conventional ap-

proach is to construct a k-NN graph as it makes geometric structure explicit [40]. The points in a given point cloud are considered

as nodes, and each node is connected through edges to its k nearest neighbors with weights that reflect inter-node similarities based

on geometric information [29, 41], and employ convex optimization to enforce smoothness on the geometry-only graph signal

[29]. Manifold denoising based on spectral graph wavelet (MSGW) [42] also used a geometry-only graph for denoising. The local

tangent space-based graph is used for robust denoising of piece-wise smooth manifolds (RPSM) [43]. The disadvantage of these

approaches is that holes are typically formed in the denoised output (see Fig. 1) as the correct position of a point is estimated based

on the noisy geometry. This can lead to errors in estimating the local surface as the information of the manifold is based only on

geometry. In this paper, we employ the same convex optimization as in [29], but we carefully exploit both geometry and color

to relocate each point to its correct position, avoiding the artifacts generated by denoising techniques employing only geometry

information.

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 

Fig. 1: Green monster model: Geometry denoised from geometry-only graph. The noisy points are moved towards their nearest neighbors rather than their correct
positions, opening holes in the surface [29].

2.1. Graph taxonomy

We provide a short review of basic concepts in graph signal processing [44, 45, 29, 41] that will be utilized in our denoising

approach. An undirected weighted graphG = {V,E,W} is defined for a finite set of verticesV of cardinality |V| = N, E representing

a set of edges connecting vertices of the form (vi, v j) 2 V, each edge having a non-negative weight wi, j. The corresponding adjacency

matrix W is a real symmetric N x N matrix. A graph signal g(G) for a given graph G is defined on the vertices of G as g : V ! Rn

for some dimension n. Fig. 2 shows an illustration of a graph for a point cloud.

3. Proposed method - Graph construction

3.1. Joint geometry/color graph construction from noise-free geometry and noisy color

For the color denoising of a point cloud, the graph is constructed from the geometry and color attribute of the points. In this

case, we are given an input point cloud having geometry and color information; this is denoted as P = {p1, p2, p3, ....., pN} with

pi = [Xi Ci] 2 R6 containing 3D Euclidean geometry coordinates Xi 2 R3 and RGB color information Ci 2 R3 for point pi and N

is the total number of points. In the case of joint geometry/color graph construction, we employ a k-NN graph to express an explicit

geometric structure [40]. Every vertex is connected through an edge to its k nearest neighbors with an associated weight, which is
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Fig. 2: Bunny model: An illustration of graph construction from geometry of a 3D point cloud.

(a) (b)

Fig. 3: (a) Illustration of a joint geometry and color k-NN graph for k = 4; node A is connected to the nodes that are closer to it by geometric and color distance,
blue colored nodes are analogous to same color within proximity. (b) Illustration of a geometry only k-NN graph for k = 4; node A is connected to nodes that are
within its proximity regardless of color of each connected node.

computed using some metric. In this context, we choose to use the Euclidean distance. A very standard choice for the weighting

function is to use the thresholded Gaussian kernel [46]:

wi, j =

8>>>>>><
>>>>>>:

exp
✓
�kXi�X jk2

2✓2X
� kCi�C jk2

2✓2C

◆
if pj 2 �k(i)

or pi 2 �k( j)
0 otherwise

(1)

Parameters ✓X and ✓C determine the relative contribution of geometry and color in the construction of the resulting k-NN graph,

�k(i) is the set of k nearest neighbors to point pi, and �k( j) is the set of k nearest neighbors to point pj. We stress that in this setting,

a color-only graph is not a good choice because geometrically distant points may have the same color and di↵erent contents, which

may lead to the construction of a wrong graph. Fig. 3 illustrates how color can positively a↵ect the graph construction by generating

a set of neighbors that is more semantically meaningful than a geometry-only graph. The resulting k-NN graph is denoted as G1.

3.2. A joint geometry/color graph construction from noisy geometry and noise-free color

In the setting considered here, the given point cloud P contains noisy geometry and noise-free color information for point pi.

The proposed approach described in Eq. 1 generates a k-NN graph based on color similarity and geometry proximity in a 3D plane,

with a suitable choice of ✓X and ✓C . The resulting k-NN graph is denoted as G2.
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3.3. A joint geometry/color graph construction from noisy geometry and noisy color

A joint k-NN graph constructed from the noisy geometry and color is used for the denoising of both the geometry and color of

a point cloud. The given noisy point cloud P consists of noisy geometry and noisy color information for point pi, with a potentially

di↵erent choice of ✓X and ✓C . The resulting k-NN graph is denoted as G3.

4. Proposed algorithm - Optimization

Having introduced the mechanism of graph construction for the di↵erent denoising scenarios we are interested in, we now

present the proposed approach for denoising the color-only, geometry-only, and combined geometry and color noise of a point

cloud.

The very first step is to remove the outliers from the entire point cloud. The outliers have distinct characteristics in that each

outlier has a sparse neighborhood; therefore, the detection and removal of outliers are density-based [29, 32]. In the following, we

follow the ROR approach, in which a sphere with a predefined radius r is formed, having each point pi as its center. ui denotes

the number of points contained in each sphere. We then calculate ū =

nP
i=1

ui

N , where N is the total number of points. A point pj is

considered as an outlier if u j < ū.

4.1. Color denoising

The algorithm presented in the following has the objective to perform color denoising by exploiting the graphG1 from geometric

and color information of the noisy point cloud. We define a graph signal g(G1), where each vertex of G1 is associated with the

geometry Xi and color Ci of the corresponding point pi of a point cloud P. The input noisy point cloud consists of both geometry

and color. Each point can be expressed as pi= [Xi, Ci +Wi], Xi being the geometry, Ci being the unknown true color, and Wi the

color noise. The objective is to estimate Ci for each point of the cloud.

For denoising, we exploit the regularity of the color and its correlation with the proximity of the points. Graph gradient can be

used to measure the degree of smoothness of a graph signal [46]. In the following, we propose a convex optimization technique that

enforces the regularity of the denoised color attributes on G1. In particular, the denoising problem can be written as follows:

bC = arg min
C
kC � gk22 + �krG1Ck22 (2)

Here, C = C(G1) is a graph signal on G1 containing an RGB color attribute on each node; the estimated denoised color for the

whole point cloud is referred to as bC, the observed noisy signal is represented by the graph signal g defined above, � is a parameter

for regularization and rG1C represents the gradient of the graph signal C on the graph G1 (see [46]). Eq. 2 has two terms; the

first is a fidelity term that enforces the denoised point to be not too far from its observed color, while the second term promotes

smoothness of the denoised point cloud on G1 via Tikhonov regularization. The same method can also employ Total Variation (TV)

regularization with the constraint that the underlying manifold of a point cloud is piece-wise smooth. This leads to the following

convex optimization problem:
bC = arg min

C
kC � gk22 + �krG1Ck1 (3)

The problems in Eq. 2 and 3 can be solved by alternating direction method of multipliers (ADMM) [47]. This yields the

denoised point cloud bpi = [Xi bCi], where bCi is the denoised color attribute for point pi.
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4.2. Geometry denoising

For geometry denoising, we exploit the graph G2 constructed from both geometry and color information of the noisy point cloud

defined in Sec. 3.2. We define a graph signal g(G2), where each vertex of G2 is associated with the geometry information Xi and

color information Ci of the point cloud. The point pi can be expressed as pi = [Xi + Zi, Ci], Xi being the unknown true geometry of

pi, Zi the geometry noise, and Ci the color attribute, with Xi, Zi,Ci 2 R3. The objective is to estimate Xi for each point. This can

be done using the following denoising algorithm described in Eq. 4, which moves the points closer to their exact location based on

a smoothness assumption applied to the joint geometry and color information embedded in graph G2. Graph G2 can be considered

an approximation of a 3D manifold. The regularity of the combined geometry and color is therefore associated with the proximity

of the points to the manifold.

bX = arg min
X
kX � gk22 + �krG2 Xk22 (4)

Here, X = X(G2) is a graph signal on G2 containing geometry values on each node; the estimated denoised geometry for the

whole point cloud is referred to as bX. The convex optimization problem in Eq. 4 promotes the smoothness of the graph signal X

defined on G2 utilizing the combined geometry and color k-NN graph. The fidelity term in Eq. 4 enforces the denoised points to

move to their observed position. The smoothness of the graph can be measured by graph gradient rG2 X of the signal X. This can

also be done by Total variation using Eq. 5. This yields the denoised point cloud bpi = [bXi Ci], where bXi is the denoised geometry

for point pi.

bX = arg min
X
kX � gk22 + �krG2 Xk1 (5)

4.3. Combined geometry and color denoising

Up to this point, we have taken advantage of the correlation between geometry and color to remove one type of noise, either

on the geometry or on the color. In the following, we consider the case of simultaneous denoising of geometry and color noise

employing the constructed k-NN graph G3 described in Sec. 3.3. The point pi can be expressed as pi = [Xi + Zi, Ci + Wi],

Xi being the unknown true geometry and Ci the noisy RGB color of pi, Zi the geometry noise, and Wi is the color noise, with

Xi, Zi,Ci,Wi 2 R3. The objective is to estimate Xi and Ci for each point. In the proposed algorithm, we use a weighting procedure

for each component in the feature vector representing a point in the cloud to generate a weighted input signal X̃i = [⌦1Xi,⌦2Ci]

where, ⌦1 and ⌦2 2 R. X̃i is then denoised using Eq. 6, which moves the points closer to their actual position and their true color

based on the smoothness assumption in graph G3. The weights ⌦1 and ⌦2 enforce the fidelity term in Eq. 6 that the geometry and

color of the denoised points do not move too far from their observed position and their actual color.

b̃
X = arg min

X̃
kX̃ � gk22 + �krG3 X̃k22 (6)

Here, X̃ = X̃(G3) is a graph signal on G3 containing a geometry value and color value on each node; b̃
X represents the estimated

geometry and color denoised values. The convex optimization problem in Eq. 6 promotes the smoothness of the graph signal X̃

defined on G3 utilizing the combined geometry and color k-NN graph. The smoothness of the graph can be measured by graph

gradient rG3 X̃ of the signal X̃. This yields the denoised point cloud bpi = [bXi bCi], with bXi being obtained from the first three

components of b̃
X divided by ⌦1, and bCi being obtained from the last three components of b̃

X divided by ⌦2.
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Table 1: Parameter setting of the proposed denoising techniques for both the synthetic and natural point cloud models with di↵erent noise levels.

Techniques
Noise level in

color
distribution

Noise added in
color

attribute

Noise added in
geometry
attribute

Noise level in
geometry

distribution

k
(Synthetic

point clouds)

�
(Synthetic

point clouds)

k
(Natural

point clouds)

�
(Natural

point clouds)
✓X ✓C ⌦1 ⌦2

Color
denoising

� = 10

100% 0% —

8 0.05

25 1.5 0.88 3.5 — —

� = 15 8 0.08
� = 20 8 0.13
� = 25 8 0.16
� = 30 8 0.20
� = 40 8 0.28

Geometry
denoising — 0% 50%

� = 0.3 15 0.075
10 0.075 1.0 2.4 — —� = 0.4 15 0.075

� = 0.5 15 0.1

Combined
geometry &

color denoising

� = 20
100% 50%

� = 0.3 100 0.025
70 0.075 0.7 14 0.20 0.80� = 30 � = 0.4 100 0.025

� = 40 � = 0.5 100 0.04

5. Evaluation Metrics

5.1. Evaluation Metrics for color denoising

The metrics used for the objective evaluation of the proposed color denoising algorithm are mean-squared-error (MSE) and

peak signal-to-noise ratio (PSNR):

MSE =
1
N

NX

i=1

kCi � bCik2 (7)

PSNR = 10 log10

 
2552

MSE

!
(8)

where Ci and bCi represent the color attribute of the points in ground-truth and denoised point cloud, respectively, N is the number

of points in a point cloud P.

 

  

(a)

 
 

  

(b)

 
 

  

(c)

 

  

(d)

Fig. 4: Palazzo Carignano Dense model illustration. (a) noisy input, (b) outlier-free input, color denoised results by (c) proposed algorithm using Tikhonov
regularization, and (d) using TV.

5.2. Evaluation Metrics for geometry denoising

For image denoising, quality metrics are based on a one-to-one correspondence between the samples of ground-truth and

denoised data. However, in the case of point clouds, such constraint would be practically too restrictive. The Hausdor↵ distance

overcomes the notion of a vertex to vertex distance [48, 49, 50, 51]. A triangular meshM consists of a set pi of points and a set T
of triangles defining how the vertices from pi are associated together, denoted byM = (pi,T ). We consider a mesh corresponding

to pi asM = (pi,T ) and a denoised point cloud bpi. We are interested in measuring the distances between sets of points in the two

point clouds.
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(d)

Fig. 5: Arco Valentino model illustration. (a) noisy input, (b) outlier-free input, color denoised results by (c) proposed algorithm using Tikhonov regularization, and
(d) using TV.

(a) (b)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 

(c) (d)

Fig. 6: Green monster model: (a) ground-truth (b) noisy point cloud with noise level of µ = 0 and � = 30, color denoised results by (c) proposed algorithm using
Tikhonov, and (d) using TV.

5.2.1. Hausdor↵ distance

The distance d(bXi,M) between a given point bXi 2bpi and any point Xi 2M is defined as:

d(bXi,M) = min
Xi2M
kXi � bXik2 (9)

The Hausdor↵ distance between bX andM is denoted as dH(bX, M) and is given by:

dH(bX,M) = max
bXi2bpi

d(bXi,M) (10)

The dH(bX,M) and dH(M,bX) are referred to as forward and backward distance, respectively. These distances are not symmet-

rical, i.e., dH(bX,M) , dH(M,bX). The symmetrical Hausdor↵ distance dS (bX,M) can be computed as:

dS (bX,M) = max (dH(bX,M), dH(M,bX)) (11)

The distance between any point Xi belonging toM and bX can be computed analytically, as it can be reduced to the minimum of

the distances between Xi and all the triangles T 2 T . If the orthogonal projection bXi of Xi on the plane of T is inside the triangle, the

point-to-triangle distance is nothing but a point-to-plane distance. When the projection lies outside T , the point-to-triangle distance

is the distance between Xi and the closest point bX
0
i of T , which lies necessarily on one of the sides of T [48, 49, 50].

The point-to-mesh distance in Eq. 9 can also be used to calculate the mean distance dm between bX andM:

dm(bX,M) =
1
N

X

bXi2bX

d(bXi,M) (12)

⇣ =

vut
1
N

NX

i=1

(di � dm)2 (13)
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(a) (b)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 

(c) (d)

Fig. 7: Asterix model: (a) ground-truth (b) noisy point cloud with noise level of µ = 0 and � = 30, color denoised results by (c) proposed algorithm using Tikhonov,
and (d) using TV.
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(d)

Fig. 8: Palazzo Carignano Dense model illustration. (a) noisy input, (b) outlier-free input, geometry denoised results by (c) proposed algorithm, and (d) geometry-
only graph [29].

where di = kpi �bpik2; ⇣ represents the standard deviation of the distance between the point bpi and the corresponding point pi. We

computed the Hausdor↵ distance using the cloud-to-mesh (C2M) metric in CloudCompare [52]. The ground-truth 3D models act

as the reference meshes to their respective denoised point clouds. The outputs of the C2M metric are dH , dm.

For performance comparison between the proposed algorithm and RPSM [43], we need a ground-truth mesh for each point

cloud of the Greyc dataset [53]. Due to the large memory requirement of RPSM, we performed experiments on sub-sampled point

clouds, for which the sub-sampled ground-truth mesh is not available. Hence, we employ on these sub-sampled point clouds the

same metrics as in [54]. Assume Q and Q0 represent the geometry of the noise-free and denoised point cloud respectively, where Q
= {qi}N1

i=1 Q0={q0i}
N2
i=1, such that qi, q

0
i 2 R3. We define distance metrics as follows.

Mean-square-error (MSE): It is computed as an average of the squared Euclidean distance between each point in Q and its

corresponding nearest point in Q0, and also between each point in Q0 and its corresponding nearest point in Q:

MSE =
1

2N1

X

qi2Q
min
q
0
i2Q0
kqi � q

0
ik22 +

1
2N2

X

q
0
i2Q0

min
qi2Q
kq0i � qik22 (14)

Mean city-block distance (MCD): MCD uses l1 norm instead of l2 norm.

MCD =
1

2N1

X

qi2Q
min
q
0
i2Q0
kqi � q

0
ik +

1
2N2

X

q
0
i2Q0

min
qi2Q
kq0i � qik (15)

5.3. Experimental setup

For our experiments, we assume that the noise follows a uniform and Gaussian distribution for geometry and color of a point

cloud, respectively. This is a common assumption, see e.g. [55, 28]. The graph signal processing in our denoising algorithm has

been implemented using GSPBOX [56] , and for the convex optimization we have used UNLocBox [57].
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Fig. 9: Arco Valentino model illustration. (a) noisy input, (b) outlier-free input, geometry denoised results by (c) proposed algorithm, and (d) geometry-only graph
[29].

For the outlier removal we have set ✏ = 0.01, k = 5 and ⌧ = 1 as in [29]. The parameters setting that provides the best results

for the proposed algorithms for both the synthetic and real-world point clouds is shown in Tab. 1.

6. Experimental Results

This section focuses on the analysis of the experimental results, both subjective and objective on static real-world point cloud

dataset available in the JPEG PLENO (GTI-UTM) database [58] and Greyc dataset of synthetic point clouds [53]. Each point cloud

in real-world and synthetic dataset contains geometry and color attributes.

6.1. Subjective assessment of color denoising algorithm

The subjective analysis of color denoising algorithms has been performed for both synthetic and natural point clouds.

6.1.1. Color denoising of natural point clouds

The visual results of the proposed color denoising algorithm on natural point clouds are presented here. To the best of our

knowledge, there is not much literature available for color denoising of the point cloud as anticipated in Sec. 1. Here, the qualitative

results show the comparison between the proposed algorithm using Tikhonov and TV regularization. Fig. 4a and Fig. 5a show the

real noisy point clouds; it can be seen that the details are not very clear due to a large amount of color noise. In some areas, two

distinct regions are overlapped with each other due to the color noise.

Fig. 4b and Fig. 5b show the resulting point clouds after outlier removal. For the color denoising, the outliers must be removed

before applying the proposed algorithm as they may lead to construct a wrong graph, which in turn a↵ects the color denoising

process. Fig. 4c and Fig. 5c depict the point cloud denoised using the proposed algorithm. Here, the colors are much smoother and

natural by exploiting the relation of the color of the points within proximity. Due to the noise in the point cloud, details are missing,

and one can not see the contours in the real point cloud. The denoised point clouds look sharper in comparison to the input noisy

point clouds. The color denoising procedure helps to preserve object boundaries. Fig. 4d and Fig. 5d show the denoised point cloud

using TV; it can be seen that the color is still noisy, and there is lack of details in the output point clouds. TV is not very e↵ective

at enforcing color smoothness in comparison to the proposed algorithm using Tikhonov regularization.

6.1.2. Color denoising of synthetic point clouds

The proposed algorithm for color denoising has been applied to noise-free point clouds a↵ected by synthetic color noise;

Gaussian distribution is used to add noise to the color attribute of every point in a reference point cloud while keeping the geometry

noise-free. Fig. 6a and Fig. 7a present the ground-truth point cloud having noise-free geometry and color. Fig. 6b and Fig. 7b show
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Fig. 10: Green monster model: (a) ground-truth (b) noisy input, geometry denoised results by (c) proposed algorithm using Tikhonov regularization (d) geometry-
only graph [29], and (e) MSGW [42].

the point cloud a↵ected by Gaussian noise with µ = 0 and � = 30; adding noise to the color a↵ects the details and causes blurring

of boundaries. Fig. 6c and 7c depict the denoised output of the proposed algorithm using Tikhonov regularization. The color of

the output point cloud is denoised by exploiting the correlation of color within the proximity, and the points in the k-neighborhood

have a high probability of having a similar color as the surface has smooth color. Fig. 6d and Fig. 7d illustrate the denoised output

using TV. The output point clouds are still noisy, and the details are not preserved. The TV technique is the least e↵ective in terms

of color denoising.
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Fig. 11: Asterix model: (a) ground-truth (b) noisy input, geometry denoised results by (c) proposed algorithm using Tikhonov regularization (d) geometry-only
graph [29], and (e) MSGW [42].

(a) (b)

Fig. 12: Green monster model: (a) denoised results by proposed algorithm, and (b) RPSM [43].

6.2. Subjective assessment of geometry denoising algorithm

The visual results of the geometry denoising algorithm applied to Greyc datasets and natural point clouds are discussed here.

6.2.1. Geometry denoising of natural point clouds

We show a visual comparison between the point cloud denoised by the proposed algorithm and denoised using a graph con-

structed from only geometry as in [29]. The experiment is performed on real-world natural point clouds, for which we do not have
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(a) (b)

Fig. 13: Asterix model: (a) denoised results by proposed algorithm, and (b) RPSM [43].

a noiseless reference; hence, the results are only qualitative. Fig. 8a and Fig. 9a show the point clouds with real noise; it can be

seen that the points with the same color are typically in a small neighborhood. Fig. 8b and Fig. 9b are the resulting output after

outlier removal. Fig. 8c and Fig. 9c depict the denoised point cloud using the proposed algorithm. Here the noisy points are moved

close to their original position by exploiting the correlation between the geometric coordinates and the color attribute. Fig. 8d and

Fig. 9d show the denoised point cloud using the geometry-only graph approach in [29]; it can be seen in the same region that, using

no color information, the noisy points are not moved to their correct location, leaving gaps as anticipated in Fig. 1, and generally

providing a noisier result near object boundaries. As can be seen, the proposed method does not generally create gaps and provides

a visually more natural result.

6.2.2. Geometry denoising of synthetic point clouds

The proposed denoising approach has also been applied to noise-free point clouds from the Greyc dataset [53], corrupted with

uniform zero-mean synthetic geometry noise applied to 50% of the points with � = 0.3, 0.4, and 0.5. Fig. 10a and Fig. 11a show

the noise-free point clouds. Fig. 10b and Fig. 11b show the noisy point clouds with � = 0.4. The denoised point clouds obtained

by our proposed algorithm are shown in Fig. 10c and 11c; it can be seen that the geometry noise has been regularized, and the

noisy points are moved close to their original positions. The resulting denoised point clouds using the geometry-only algorithm

[29] are shown in Fig. 10d and 11d. The output point clouds of MSGW [42] are shown in Fig. 10e and Fig. 11e. It can be seen

that the geometry is not quite as much regularized; moreover, as anticipated in Sec. 1, these approaches have an adverse e↵ect on

overall geometry, as they tend to open holes in the denoised point clouds. Overall, it can be seen from the qualitative results of both

the real-world and synthetic point clouds that the point clouds denoised by the proposed algorithm have better quality and fewer

artifacts.

We have also compared the proposed algorithm with RPSM [43]. Due to the limitations of RPSM as anticipated in Sec. 5.2,

we performed experiments on sub-sampled point clouds. The sub-sampling performed here is on a spatial basis, setting a minimum

distance between the two points equal to 0.80. The larger the distance, the fewer points will be retained in the sub-sampled output.

The number of points in the sub-sampled clouds is around 20000 on average. The subjective results are shown in Fig. 12 and Fig.

13. The proposed algorithm and RPSM [43] are applied to the noisy inputs shown in Fig. 10b and Fig. 11b; the reference noise-free

point clouds are shown in Fig. 10a and Fig. 11a. It can be seen that, while RPSM yields rather natural denoised color, it also tends

to over-regularize the point cloud and thereby opens large holes.

6.3. Subjective assessment of combined geometry and color denoising algorithm

Here, the proposed algorithm has been evaluated subjectively for both real-world and synthetic point clouds.

6.3.1. Denoising of natural point clouds

The proposed denoising algorithm is applied to the natural point cloud with real noise in geometry and color. The visual results

of the comparison between the point cloud denoising by the proposed technique using Tikhonov and TV are described here. Fig.
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Fig. 14: Palazzo Carignano Dense model illustration. (a) noisy input, (b) outlier-free input, combined geometry and color denoised results by (c) proposed algorithm
using Tikhonov regularizarion, and (d) using TV.
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Fig. 15: Arco Valentino model illustration. (a) noisy input, (b) outlier-free input, combined geometry and color denoised results by (c) proposed algorithm using
Tikhonov regularizarion, and (d) using TV.
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Fig. 16: Green monster model: Highlighting only the color denoising e↵ect in combined geometry and color denoising algorithm: (a) ground-truth (b) noisy point
cloud with � = 30 in color attribute, color denoised results in combined geometry and color by (c) proposed algorithm using Tikhonov, and (d) using TV.

14a and Fig. 15a show a real-world point cloud containing noise both in geometry and color. Due to the noise, the structural

information in the real point clouds is lost, and fine details are not visible. Fig. 14b and Fig. 15b are the outcome after applying

the outlier removal algorithm, which eliminates the noisiest points, thereby helping in the construction of a useful k-NN graph. Fig.

14c and Fig. 15c depict the denoised point clouds obtained by the proposed algorithm using Tikhonov regularization. The geometry

noise is removed by moving the noisy points closer to their original position, and also the color becomes smoother by exploiting

the correlation of geometry and color of points in a point cloud. Structural information is preserved in the resulting point cloud, and

one can see more details, which were partly hidden in the noisy point cloud. Fig. 14d and Fig. 15d show the denoised point cloud

by using TV. The TV also performs geometry denoising but has a very small denoising e↵ect on the color noise; it can be seen that

the details are not very well-defined in the output point clouds because the colors are not smooth enough.

6.3.2. Geometry and color denoising of synthetic point clouds

Here we present the subjective results of the proposed combined geometry and color denoising approach applied to noise-free

point clouds a↵ected by synthetic geometry and color noise. The noise in the geometry is added to 50% of the points using a
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Fig. 17: Asterix model: Highlighting only the color denoising e↵ect in combined geometry and color denoising algorithm: (a) ground-truth (b) noisy point cloud
with � = 30 in color attribute, color denoised results in combined geometry and color by (c) proposed algorithm using Tikhonov, and (d) using TV.
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Fig. 18: Green monster model: Same output point cloud as Fig. 16, highlighting geometry denoised e↵ect in combined geometry and color denoising technique,
(a) ground-truth (b) noisy point cloud with noise level of µ = 0,� = 0.4 in geometry attribute, geometry denoised results in combined geometry and color by (c)
proposed algorithm, and (d) using TV.

zero-mean uniform noise with µ = 0 and �= 0.3, 0.4, and 0.5; the color of each point is corrupted by zero-mean Gaussian noise

with �= 20, 30, and 40. For clarity, the subjective results of combined geometry and color denoising are shown in separate figures

focusing on the color and geometry individually. The e↵ect of color denoising in the combined geometry and color denoising

algorithm is shown in Fig. 16 and Fig. 17. The noise-free point cloud is shown in Fig. 16a and Fig. 17a. Fig. 16b and Fig. 17b

depict the noisy point clouds highlighting only the color noise added in the noise-free synthetic point cloud. The denoised point

clouds obtained by our proposed algorithm using Tikhonov regularization are shown in Fig. 16c and 17c, highlighting the color

denoising e↵ect in combined geometry and color denoising. It can be seen that the denoised output is cleaned from the color noise,

and the colors in the output point cloud are closer to the exact color of the ground-truth input point cloud. Fig. 16d and Fig. 17d

are the resulting denoised point clouds of the proposed algorithm using TV. The TV has a small e↵ect at removing the noise from

the color.

The e↵ect of the proposed algorithm for geometry denoising can be seen in Fig. 18 and Fig. 19. The noise-free input point

clouds are shown in Fig. 18a and Fig. 19a. The noisy point clouds highlighting only the geometry noise can be seen in Fig. 18b and

Fig. 19b. The outcome of the proposed denoising algorithm is depicted in Fig. 18c and Fig. 19c, focusing only on the denoising

e↵ect on geometry. It can be seen that the geometry noise has been regularized, and the noisy points are moved close to their

original positions; moreover, as anticipated in Sec. 1, our approach avoids generating artifacts by leaving fewer holes in the output

denoised point cloud. Fig. 18d and Fig. 19d are the denoised output of TV regularization. The TV also helps in regularizing the

noisy points. Overall we can perceive from the qualitative results of the synthetic point clouds that the point clouds denoised by the

proposed algorithm using Tikhonov have better quality both in color and geometry denoising and exhibit fewer artifacts.

6.4. Objective evaluation on Greyc color mesh dataset

The quantitative evaluation has also been performed on the Greyc noise-free synthetic point clouds dataset [53].
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Fig. 19: Asterix model: Same output point cloud as Fig. 17, highlighting geometry denoised e↵ect in combined geometry and color denoising technique, (a)
ground-truth (b) noisy point cloud with noise level of µ = 0,� = 0.4 in geometry attribute, geometry denoised results in combined geometry and color by (c)
proposed algorithm, and (d) using TV.

Table 2: MSE comparison of color denoising algorithm for Greyc dataset.

Gaussian Noise Methods 4arms
monstre Asterix Cable

car Dragon Duck Green
Dinasour

Green
monster Horse Jaguar Long

Diansour Mario Mario
car

Pokeman
ball Rabbit Red

horse Statue

� = 20

Noisy 398.25 361.28 373.52 393.64 339.57 397.24 365.38 383.29 368.56 387.52 321.09 375.24 309.14 335.40 377.39 398.13

Proposed 77.75 103.56 145.23 82.80 130.65 63.04 91.64 150.11 85.83 77.90 95.91 89.56 149.53 93.75 82.52 84.77

TV 303.05 279.02 289.48 298.13 286.05 301.50 279.04 299.68 279.21 293.61 242.14 283.15 241.15 254.99 293.32 302.99

� = 30

Noisy 869.27 781.84 816.58 867.14 722.06 875.25 796.19 850.03 797.42 850.88 692.54 810.94 645.11 713.61 811.92 882.35

Proposed 109.74 148.53 214.89 120.77 189.47 89.12 138.24 217.08 130.09 112.13 157.44 136.40 250.35 148.58 133.63 123.06

TV 590.97 540.25 564.67 589.46 548.87 594.55 542.77 596.83 539.70 575.89 467.70 544.00 449.27 485.12 561.85 602.88

� = 40

Noisy 1506.10 1329.00 1384.60 1462.90 1241.90 1469.80 1347.80 1462.10 1355.50 1462.60 1171.90 1372.90 1092.10 1217.80 1376.20 1519.90

Proposed 137.31 210.90 281.89 149.67 262.51 133.94 184.53 279.98 175.90 144.71 228.37 185.25 385.53 213.93 242.06 154.26

TV 1119.50 995.38 1033.80 1081.70 979.85 1088.40 1000.40 1107.10 1000.90 1083.80 862.00 1005.10 816.02 903.14 1026.80 1131.90

6.4.1. Color denoising

The color attribute of each point cloud is corrupted with Gaussian noise applied to each point in a point cloud with � = 20, 30,

and 40. The MSE and PSNR comparisons between the proposed color denoising algorithm using Tikhonov and TV regularization

are shown in Tab. 2 and Tab. 3. The results of both metrics show that the proposed technique via Tikhonov regularization performed

far better than the TV regularization. The average gain in MSE and PSNR is shown in Fig. 20 for three di↵erent noise levels. It can

be seen that with the increase in the intensity of noise level, the proposed color denoising method using Tikhonov performs much

better than the TV regularization.

Gaussian noise with zero-mean and � = 10, 15, 20, and 25 is added to the color attribute of the noise-free point cloud models of

Greyc dataset for the comparison of the proposed color denoising algorithm with GLR [28, 60] and GTV [59]. Quantitative results

in terms of PSNR are shown in Tab. 4, where GTV and GLR show the highest average PSNR value for noise level � = 10 and

� = 15, respectively. With the increase in the noise level, the proposed algorithm performs better than GLR and GTV, with an

Table 3: PSNR comparison of color denoising algorithm for Greyc dataset.

Gaussian Noise Methods 4arms
monstre Asterix Cable

car Dragon Duck Green
Dinasour

Green
monster Horse Jaguar Long

Diansour Mario Mario
car

Pokeman
ball Rabbit Red

horse Statue

� = 20

Noisy 22.13 22.55 22.41 22.18 22.82 22.14 22.50 22.30 22.47 22.25 23.07 22.39 23.23 22.88 22.36 22.13

Proposed 29.22 27.98 26.53 28.95 26.97 30.13 28.50 26.38 28.80 29.19 28.33 28.61 26.43 28.41 28.96 28.84

TV 23.32 23.67 23.52 23.39 23.57 23.34 23.67 23.36 23.67 23.45 24.29 23.61 24.31 24.07 23.46 23.32

� = 30

Noisy 18.74 19.20 19.01 18.75 19.55 18.71 19.12 18.84 19.11 18.83 19.73 19.04 20.03 19.60 19.04 18.67

Proposed 27.72 26.41 24.81 27.31 25.35 28.63 26.72 24.76 26.98 27.63 26.15 26.78 24.14 26.33 26.87 27.23

TV 20.42 20.81 20.61 20.43 20.74 20.39 20.79 20.37 20.81 20.53 21.43 20.78 21.60 21.27 20.64 20.33

�= 40

Noisy 16.35 16.90 16.72 16.48 17.19 16.46 16.84 16.48 16.81 16.48 17.44 16.75 17.75 17.28 16.74 16.31

Proposed 26.36 24.90 23.63 26.38 23.95 26.86 25.47 23.66 25.68 26.53 24.54 25.45 22.27 24.83 24.29 26.25

TV 17.64 18.15 17.97 17.79 18.22 17.76 18.13 17.69 18.13 17.78 18.78 18.11 19.01 18.57 18.01 17.59
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Table 4: Color denoising comparison for Gaussian noise � = 10, 15, 20, and 25 with GLR-based [28] and GTV-based [59] in terms of PSNR and AET (s)

.

Model
� = 10 � = 15 � = 20 � = 25 AET (s)

Noise Proposed GLR GTV Noise Proposed GLR GTV Noise Proposed GLR GTV Noise Proposed GLR GTV Proposed GLR GTV

Asterix 28.38 31.32 32.03 31.61 24.94 29.21 29.66 29.53 22.53 27.98 28.10 27.56 20.68 26.69 26.12 27.05 2.55 5.20 211.00

Duck 28.53 30.77 30.40 30.60 25.20 28.63 28.42 28.14 22.71 26.97 26.89 26.35 20.90 25.81 25.68 25.04 0.792 1.70 58.00

Green Dinosaur 28.14 33.17 33.28 33.36 24.60 31.28 31.64 31.31 22.13 30.13 30.30 30.34 20.23 29.23 28.52 29.62 3.99 11.20 389.00

Red Horse 28.29 32.43 32.15 32.20 24.74 30.17 29.72 30.01 22.35 28.96 27.85 28.57 20.47 27.38 25.66 27.33 8.13 19.50 851.00

Average 28.30 31.92 31.87 31.94 24.85 29.82 29.86 29.75 22.44 28.51 28.29 28.20 20.61 27.27 26.495 27.26 3.86 9.40 377.25
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Fig. 20: (a): Average gain in MSE (dB) for the color denoising algorithm (b): Average gain in PSNR (dB) for the color denoising algorithm.

average PSNR increased by 0.25dB and 0.09dB, respectively. Besides PSNR, the average execution time (AET) per noise level for

the proposed, GLR and GTV algorithms is also shown in Tab. 4. The proposed method is faster because it denoises the color using

smaller �, which in turn performs regularization in a smaller number of iterations. AET has been measured in MATLAB 2017b on

a 3.5Ghz MacBook Pro with Intel Core i7 processor and 16GB memory.

6.4.2. Geometry denoising

Each point cloud has been corrupted with uniform synthetic geometry noise, applied to 50% of the points with � = 0.3, 0.4, and

0.5. The comparison between the proposed algorithm and the denoising approach used in [29] and MSGW [42] is shown in Tab. 7.

The results show that the proposed denoising technique performs better than [29] and [42] in terms of all the metrics in the cloud

to mesh distance at all noise levels. For � = 0.3, the Green monster, Mario, Pokeman ball, and Statue show good results for the

geometry-only algorithm [29]. Still, with the increase in noise intensity, the proposed algorithm performs better for all the models

in the Greyc mesh dataset. The gain is more significant as the noise level increases, showing that the proposed denoising method is

indeed better at removing geometry noise.

To check the robustness of the proposed algorithm to other noise distribution, Gaussian noise is added to each point cloud of

the Greyc dataset with � = 0.2, 0.3, and 0.4. The comparative results are shown in Tab. 8, proving that the proposed algorithm

yields good results with respect to the denoising techniques described in [29] and [42] at all noise levels for C2M distance. At noise

level � = 0.2, the geometry-only [29] algorithm performs better for Asterix, Pokeman ball, and Rabbit models; however, only the

duck shows good results for MSGW [42] for all the noise intensities. The proposed denoising algorithm performs better for all the

models except Duck as the noise level increases.

Tab. 5 and Tab. 6 show the MSE and MCD comparisons between the proposed algorithm and RPSM [43] on sub-sampled point

clouds. The results clearly indicate that the proposed algorithm performs better than RPSM [43].
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Table 5: MSE comparison on sub-sampled Greyc dataset.

Model
� = 0.3 � = 0.4 � = 0.5

Proposed RPSM
[43] Proposed RPSM

[43] Proposed RPSM
[43]

4arms
Monstre 0.29 0.48 0.34 0.51 0.42 0.52

Asterix 0.26 0.31 0.28 0.34 0.30 0.37
Cable

car 0.36 0.74 0.38 0.80 0.40 0.82

Dragon 0.25 0.44 0.26 0.48 0.28 0.50
Green

monster 0.33 0.62 0.36 0.65 0.37 0.67

Rabbit 0.31 0.58 0.32 0.60 0.35 0.63
Red

horse 0.34 0.51 0.36 0.55 0.39 0.58

Table 6: MCD comparison on sub-sampled Greyc dataset.

Model
� = 0.3 � = 0.4 � = 0.5

Proposed RPSM
[43] Proposed RPSM

[43] Proposed RPSM
[43]

4arms
Monstre 0.43 0.70 0.57 0.90 0.62 1.00

Asterix 0.38 0.45 0.41 0.48 0.44 0.53
Cable

car 0.51 0.92 0.54 0.98 0.57 1.05

Dragon 0.37 0.65 0.37 0.68 0.42 0.70
Green

monster 0.49 0.71 0.52 0.77 0.55 0.80

Rabbit 0.46 0.80 0.49 0.82 0.51 0.88
Red

horse 0.50 0.75 0.54 0.78 0.57 0.81

6.4.3. Combined geometry and color denoising

The geometry and color of each reference point cloud have been altered with uniform synthetic geometry noise and Gaussian

color noise, respectively. The geometry of 50% of the points in each point cloud is a↵ected with noise level � = 0.3, 0.4, and

0.5, however, the color of each point in a point cloud is a↵ected with � = 20, 30, and 40. The C2M metric with respect to the

corresponding reference point cloud has been computed for the denoised point cloud by the proposed algorithm using Tikhonov

regularization and using TV. The comparative quantitative results of geometry denoising in a combined geometry and color denois-

ing algorithm is shown in Tab. 9. For a better understanding of the results, we mapped the C2M distance on the reference point

cloud. The distances are represented by the color scale; blue, green, yellow, and red display the range of distances from minimum

to maximum. Fig. 21 shows the results of C2M distance for the Asterix model. The performance evaluation of the proposed

algorithm for color denoising has been done by computing the MSE and PSNR. The results of MSE and PSNR comparison with

di↵erent noise levels are shown in Tab. 10 and Tab. 11, respectively. Fig. 22 shows the average gain in MSE and PSNR, which

further verifies the better performance of the proposed algorithm. The results show that the proposed technique using Tikhonov

regularization performs significantly better than the TV for noise levels � = 0.3, 0.4, and 0.5 except for the Duck. The results also

indicate that the proposed algorithm is robust to the increase in noise intensity.
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Table 7: C2M metric comparison of the proposed geometry denoising algorithm with the geometry-only graph approach [29] and MSGW [42] for uniform noise.

Noise level
in geometry Methods Parameters 4arms

monstre Asterix Cable
car Dragon Duck Green

Dinasour
Green

monster Horse Jaguar Long
Diansour Mario Mario

car
Pokeman

ball Rabbit Red
horse Statue

� = 0.3

Proposed

dH 0.96 0.97 1.17 1.29 1.56 1.50 1.18 0.94 1.17 1.45 1.18 0.98 1.01 1.32 1.27 0.90

dm < 0.01 0.01 0.03 0.01 0.02 ⇡ 0.00 0.02 < 0.01 0.03 0.01 0.04 0.03 0.03 < 0.01 < 0.01 0.01

⇣ 0.07 0.07 0.16 0.11 0.18 0.04 0.10 0.06 0.14 0.13 0.15 0.14 0.11 0.06 0.10 0.09

Geometry-only
[29]

dH 0.96 0.75 1.17 1.29 1.56 1.50 0.75 0.94 1.17 1.02 1.02 0.98 0.64 1.33 1.28 0.90

dm 0.01 0.02 0.04 0.02 0.02 < 0.01 0.02 < 0.01 0.03 0.02 0.04 0.03 0.03 < 0.01 0.02 0.01

⇣ 0.08 0.08 0.18 0.14 0.19 0.08 0.10 0.08 0.15 0.15 0.15 0.14 0.11 0.08 0.14 0.08

MSGW [42]

dH 1.10 0.98 1.31 1.55 1.97 1.86 1.25 1.31 1.29 1.20 1.11 1.34 0.99 1.59 1.65 1.50

dm 0.02 0.10 0.09 0.08 0.11 0.01 0.08 0.01 0.07 0.05 0.07 0.18 0.07 0.01 0.04 0.01

⇣ 0.07 0.13 0.27 0.22 0.35 0.13 0.17 0.10 0.20 0.21 0.19 0.26 0.15 0.10 0.18 0.10

� = 0.4

Proposed

dH 0.96 0.97 1.17 1.29 1.56 1.50 1.18 0.94 1.17 1.45 1.18 0.98 1.01 1.32 1.27 0.90

dm 0.01 0.02 0.05 0.03 0.03 < 0.01 0.04 0.01 0.05 0.03 0.07 0.05 0.03 0.01 0.02 0.02

⇣ 0.09 0.11 0.21 0.17 0.20 0.09 0.15 0.10 0.20 0.19 0.20 0.19 0.13 0.11 0.17 0.12

Geometry Only
[29]

dH 1.18 0.97 1.17 1.29 1.57 2.12 1.18 1.32 1.18 1.45 1.32 1.20 1.01 1.32 1.80 1.27

dm 0.02 0.03 0.06 0.04 0.03 0.01 0.04 0.01 0.06 0.04 0.08 0.06 0.04 0.02 0.03 0.02

⇣ 0.14 0.11 0.22 0.19 0.21 0.13 0.15 0.11 0.21 0.20 0.21 0.20 0.14 0.12 0.20 0.12

MSGW [42]

dH 1.26 1.25 1.48 1.82 2.13 2.12 1.91 1.87 1.56 1.76 1.68785 1.86 1.35 1.86 1.87 1.79

dm 0.04 0.18 0.14 0.13 0.18 0.02 0.13 0.01 0.14 0.10 0.15 0.27 0.09 0.02 0.06 0.02

⇣ 0.17 0.23 0.31 0.32 0.50 0.19 0.23 0.11 0.31 0.30 0.29 0.32 0.19 0.15 0.28 0.13

� = 0.5

Proposed

dH 1.37 1.07 1.43 1.30 1.59 1.51 1.19 1.33 1.18 1.46 1.32 1.55 1.11 1.32 1.80 1.28

dm 0.02 0.04 0.09 0.06 0.03 0.01 0.07 0.02 0.08 0.05 0.11 0.08 0.05 0.02 0.05 0.03

⇣ 0.14 0.14 0.26 0.23 0.21 0.14 0.18 0.15 0.25 0.22 0.23 0.23 0.15 0.16 0.24 0.16

Geometry Only
[29]

dH 1.53 1.31 1.44 1.32 1.63 2.13 1.34 1.35 1.44 1.47 1.45 1.56 1.12 1.33 1.89 1.28

dm 0.03 0.05 0.12 0.07 0.05 0.02 0.08 0.03 0.09 0.07 0.12 0.10 0.06 0.03 0.07 0.04

⇣ 0.14 0.15 0.26 0.24 0.27 0.16 0.20 0.19 0.26 0.25 0.25 0.25 0.16 0.16 0.245 0.17

MSGW [42]

dH 2.05 1.77 1.75 1.98 2.45 2.50 1.99 1.89 1.86 1.77 1.96 1.87 1.63 2.09 1.90 1.48

dm 0.04 0.18 0.14 0.14 0.18 0.03 0.15 0.04 0.16 0.12 0.17 0.30 0.09 0.03 0.10 0.03

⇣ 0.18 0.24 0.32 0.33 0.51 0.20 0.26 0.24 0.34 0.51 0.32 0.34 0.19 0.17 0.29 0.20

7. Conclusion

In this paper, we proposed a novel and e�cient framework for point cloud denoising based on graph signal processing. Unlike

any other previous method, the proposed approach takes advantage of the correlation between the geometry and color attribute of a

point cloud. Such correlation is encoded in a k-NN graph, which can be used to denoise only the color, only the geometry, or both

of them jointly, by simply adapting the parameters to each denoising scenario. Denoising is performed as a convex optimization

problem on a suitably defined graph signal.

We have provided a large set of experimental results using real as well as synthetic point clouds, which support the conclusion

that the joint use of color and geometry is beneficial in all three denoising scenarios, providing denoised point clouds having higher

subjective and objective quality and being devoid of artifacts.

For the subjective evaluation, we showed results on both real-world and synthetic point clouds for color denoising, geometry

denoising, and combined geometry and color denoising procedure. The proposed color denoising algorithm has performed signif-

icantly well in both cases. The qualitative results for geometry denoising by the proposed algorithm are also very good, avoiding

the artifacts typically caused by other techniques. The last set of results is associated with the combined geometry and color de-

noising; the proposed algorithm performs very well using Tikhonov regularization. The TV performs similarly well in denoising

the geometry in the real-world point cloud, but not quite as well on color denoising. The overall results clearly show that Tikhonov

regularization outperforms TV.

We also performed an extensive quantitative analysis using multiple datasets, evaluating the performance of the proposed algo-

rithm for color denoising of point clouds using MSE and PSNR metrics. For geometry denoising, we computed the C2M metric

between the reference and denoised point cloud. Both the subjective and objective results show that the proposed techniques
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Table 8: C2M metric comparison of the proposed geometry denoising algorithm with the geometry-only graph approach [29] and MSGW [42] for Gaussian noise.

Noise level
in geometry Methods Parameters 4arms

monstre Asterix Cable
car Dragon Duck Green

Dinasour
Green

monster Horse Jaguar Long
Diansour Mario Mario

car
Pokeman

ball Rabbit Red
horse Statue

� = 0.2

Proposed

dH 0.68 0.61 1.16 0.91 1.56 1.49 1.06 0.94 1.17 1.02 0.98 1.18 0.64 0.93 1.26 0.90

dm < 0.01 0.01 0.02 0.01 0.02 < 0.01 0.01 < 0.01 0.01 0.01 0.02 0.02 0.03 < 0.01 < 0.01 < 0.01

⇣ 0.04 0.06 0.12 0.08 0.19 0.02 0.07 0.03 0.11 0.09 0.10 0.12 0.11 0.05 0.07 0.05

Geometry Only
[29]

dH 0.78 0.61 1.27 0.98 1.56 1.71 1.17 0.94 1.38 1.23 0.98 1.07 0.45 0.93 1.47 1.09

dm 0.01 0.01 0.04 0.02 0.02 < 0.01 0.01 < 0.01 0.02 0.01 0.02 0.03 0.03 < 0.01 0.01 < 0.01

⇣ 0.05 0.05 0.16 0.12 0.19 0.05 0.09 0.53 0.12 0.13 0.12 0.14 0.11 0.04 0.12 0.07

MSGW [42]

dH 1.37 0.97 1.18 0.92 1.56 1.51 1.07 0.95 1.41 1.02 0.99 1.18 0.91 0.94 1.81 1.28

dm 0.02 0.02 0.03 0.02 0.02 < 0.01 0.02 0.01 0.03 0.02 0.03 0.05 0.04 0.02 0.01 0.02

⇣ 0.11 0.09 0.17 0.12 0.16 0.07 0.11 0.11 0.15 0.12 0.15 0.17 0.12 0.12 0.13 0.12

� = 0.3

Proposed

dH 0.96 1.05 1.17 1.28 2.21 1.50 1.18 1.30 1.17 1.03 1.38 1.19 0.90 1.32 1.27 0.90

dm 0.01 0.02 0.04 0.03 0.05 < 0.01 < 0.01 < 0.01 0.03 0.02 0.04 0.06 0.04 0.01 0.02 0.01

⇣ 0.08 0.09 0.19 0.15 0.27 0.08 0.12 0.07 0.17 0.16 0.17 0.18 0.13 0.08 0.14 0.08

Geometry Only
[29]

dH 0.96 1.06 1.66 1.29 1.57 1.96 1.60 1.32 1.66 1.65 1.58 1.33 0.87 1.32 1.68 1.28

dm 0.01 0.04 0.07 0.04 0.05 0.01 0.04 0.01 0.05 0.03 0.06 0.09 0.03 0.01 0.02 0.01

⇣ 0.10 0.10 0.21 0.17 0.24 0.11 0.13 0.08 0.19 0.16 0.18 0.20 0.12 0.09 0.17 0.10

MSGW [42]

dH 1.53 1.31 1.67 1.83 1.56 2.13 1.20 1.88 1.86 1.50 1.56 1.34 1.30 1.88 1.98 1.82

dm 0.03 0.03 0.05 0.035 0.03 0.01 0.05 0.02 0.06 0.03 0.07 0.10 0.05 0.03 0.02 0.03

⇣ 0.14 0.12 0.23 0.16 0.23 0.09 0.16 0.14 0.22 0.18 0.22 0.23 0.14 0.16 0.16 0.15

� = 0.4

Proposed

dH 1.13 1.48 1.34 1.53 2.41 1.83 1.37 1.58 1.29 1.19 1.61 1.33 0.98 1.46 1.35 1.02

dm 0.02 0.05 0.07 0.05 0.07 0.01 0.05 0.02 0.05 0.03 0.06 0.07 0.05 0.01 0.03 0.01

⇣ 0.12 0.15 0.22 0.19 0.38 0.11 0.14 0.13 0.23 0.18 0.21 0.20 0.17 0.11 0.16 0.13

Geometry Only
[29]

dH 1.24 1.55 1.89 1.56 2.04 1.94 1.75 1.59 1.92 1.84 1.79 1.50 0.99 1.48 1.73 1.39

dm 0.03 0.06 0.10 0.06 0.08 0.02 0.07 0.03 0.08 0.04 0.08 0.11 0.06 0.02 0.04 0.03

⇣ 0.15 0.18 0.26 0.23 0.31 0.15 0.16 0.15 0.27 0.19 0.29 0.24 0.17 0.13 0.22 0.18

MSGW [42]

dH 1.66 1.77 1.94 2.01 1.97 2.39 1.46 1.84 2.17 1.76 1.83 1.51 1.47 2.07 2.03 1.97

dm 0.05 0.06 0.09 0.06 0.05 0.01 0.08 0.05 0.09 0.05 0.11 0.13 0.07 0.06 0.04 0.04

⇣ 0.19 0.21 0.27 0.21 0.29 0.13 0.19 0.20 0.30 0.21 0.32 0.28 0.19 0.22 0.19 0.26

Table 9: C2M metric comparison between the proposed combined geometry and color denoising algorithm using Tikhonov regularization and TV.

Noise level
in geometry Methods Parameters 4arms

monstre Asterix Cable
car Dragon Duck Green

Dinasour
Green

monster Horse Jaguar Long
Diansour Mario Mario

car
Pokeman

ball Rabbit Red
horse Statue

� = 0.3

Proposed algorithm
using Tikhonov
regularization

dH 0.68 0.61 1.17 0.91 2.71 1.50 0.52 0.94 0.82 1.02 0.82 0.69 0.45 0.93 1.27 0.89

dm < 0.01 < 0.01 0.05 0.03 0.37 ⇡ 0.00 < 0.01 ⇡ 0.00 0.01 0.01 0.02 0.01 0.03 ⇡ 0.00 0.01 < 0.01

⇣ 0.04 0.06 0.19 0.15 0.68 0.03 0.07 0.02 0.10 0.10 0.11 0.10 0.11 0.03 0.11 0.04

TV regularization

dH 0.96 0.61 0.82 0.91 1.56 1.50 0.75 0.94 1.17 1.02 0.83 0.97 0.64 0.93 1.27 0.90

dm 0.01 0.01 0.04 0.02 0.07 < 0.01 0.02 < 0.01 0.03 0.02 0.05 0.03 0.03 < 0.01 0.01 0.01

⇣ 0.08 0.07 0.19 0.14 0.31 0.05 0.11 0.06 0.15 0.14 0.16 0.15 0.12 0.08 0.13 0.09

� = 0.4

Proposed algorithm
using Tikhonov
regularization

dH 0.68 0.74 1.16 0.91 2.71 1.50 0.74 0.98 0.83 1.02 1.02 0.98 0.63 0.93 1.27 0.89

dm < 0.01 0.01 0.06 0.03 0.37 < 0.01 0.02 < 0.01 0.02 0.02 0.04 0.03 0.03 < 0.01 0.02 < 0.01

⇣ 0.05 0.08 0.21 0.17 0.68 0.05 0.10 0.04 0.14 0.13 0.15 0.13 0.11 0.05 0.14 0.06

TV regularization

dH 0.96 0.87 1.43 1.29 1.61 1.54 1.06 1.08 1.18 1.02 1.18 0.98 1.01 1.32 1.80 0.90

dm 0.02 0.02 0.06 0.04 0.07 0.01 0.05 0.01 0.05 0.04 0.08 0.06 0.05 0.02 0.03 0.02

⇣ 0.12 0.10 0.22 0.19 0.33 0.09 0.16 0.10 0.20 0.19 0.21 0.20 0.14 0.12 0.19 0.13

� = 0.5

Proposed algorithm
using Tikhonov
regularization

dH 0.96 0.96 1.43 0.94 3.50 1.53 1.05 0.99 1.17 1.02 1.02 0.98 0.89 0.93 1.29 0.91

dm < 0.01 0.03 0.09 0.06 0.61 < 0.01 0.04 < 0.01 0.04 0.03 0.06 0.04 0.04 < 0.01 0.03 < 0.01

⇣ 0.08 0.12 0.26 0.23 0.83 0.07 0.13 0.05 0.18 0.17 0.18 0.16 0.12 0.06 0.19 0.06

TV regularization

dH 1.37 1.07 1.65 1.30 1.69 1.50 1.30 1.33 1.18 1.45 1.45 1.56 1.11 1.32 1.81 1.27

dm 0.03 0.04 0.10 0.07 0.08 0.01 0.08 0.02 0.09 0.06 0.11 0.09 0.06 0.03 0.05 0.03

⇣ 0.14 0.14 0.26 0.26 0.34 0.13 0.20 0.14 0.26 0.25 0.24 0.24 0.16 0.16 0.25 0.16

perform very well for point cloud denoising, outperforming state-of-the-art techniques.
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Fig. 21: Asterix model (noise level µ = 0 and � = 0.5) (a): C2M metric of denoised point cloud by proposed algorithm using Tikhonov regularization (b): C2M
metric of denoised point cloud using TV.

Table 10: MSE comparison of combined geometry and color denoising algorithm for Greyc dataset with three noise levels in color attribute.

Gaussian Noise Methods 4arms
monstre Asterix Cable

car Dragon Duck Green
Dinasour

Green
monster Horse Jaguar Long

Diansour Mario Mario
car

Pokeman
ball Rabbit Red

horse Statue

� = 20

Noisy 396.81 361.15 374.29 393.14 339.42 397.91 364.35 385.17 368.52 386.45 321.67 376.17 309.85 333.85 378.42 396.90

Tikhonov 107.03 164.03 172.73 116.33 564.41 97.96 125.90 173.33 127.41 105.68 130.65 121.52 269.01 119.79 219.17 119.52

TV 360.47 333.08 344.70 358.37 320.00 361.15 334.29 354.34 338.20 352.53 294.67 344.65 285.11 303.66 350.36 361.43

� = 30

Noisy 876.66 782.13 810.77 863.43 728.82 872.76 793.86 841.43 801.55 848.09 689.96 813.16 652.34 716.01 814.97 882.11

Tikhonov 199.35 269.90 275.74 202.90 647.76 174.94 235.39 267.61 242.29 200.79 252.53 251.17 385.45 216.69 316.62 215.98

TV 820.72 737.84 764.08 809.03 693.63 815.83 748.37 792.41 755.33 795.76 649.93 766.46 613.50 670.00 769.39 826.59

� = 40

Noisy 1505.90 1337.20 1384.60 1459.90 1243.80 1476.30 1353.50 1467.20 1357.00 1458.90 1167.20 1368.70 1088.30 1209.70 1380.00 1523.40

Tikhonov 241.45 386.44 395.22 246.54 884.03 202.77 321.99 375.98 340.35 254.89 372.51 350.60 658.49 308.36 445.18 275.12

TV 1390.60 1244.00 1286.80 1347.20 1162.90 1358.90 1258.70 1362.30 1262.80 1350.50 1087.20 1275.20 1009.70 1116.70 1283.10 1408.20

Table 11: PSNR comparison of combined geometry and color denoising algorithm for Greyc dataset with three noise levels in color attribute.

Gaussian Noise Methods 4arms
monstre Asterix Cable

car Dragon Duck Green
Dinasour

Green
monster Horse Jaguar Long

Diansour Mario Mario
car

Pokeman
ball Rabbit Red

horse Statue

� = 20

Noisy 22.15 22.55 22.40 22.19 22.82 22.13 22.52 22.27 22.47 22.26 23.06 22.38 23.22 22.90 22.35 22.14

Tikhonov 27.84 25.99 25.76 27.47 20.61 28.22 27.13 25.74 27.08 27.89 26.97 27.28 23.83 27.35 24.72 27.36

TV 22.56 22.91 22.76 22.59 23.08 22.55 22.89 22.64 22.84 22.66 23.44 22.76 23.58 23.31 22.69 22.55

� = 30

Noisy 18.70 19.20 19.04 18.77 19.50 18.72 19.13 18.88 19.09 18.85 19.74 19.03 19.99 19.58 19.02 18.68

Tikhonov 25.13 23.82 23.73 25.06 20.02 25.70 24.41 23.86 24.29 25.10 24.11 24.13 22.27 24.77 23.13 24.79

TV 18.99 19.45 19.30 19.05 19.72 19.01 19.39 19.14 19.35 19.12 20.00 19.29 20.25 19.87 19.27 18.96

�= 40

Noisy 16.35 16.87 16.72 16.49 17.18 16.44 16.82 16.47 16.81 16.49 17.46 16.77 17.76 17.30 16.73 16.30

Tikhonov 24.30 22.26 22.16 24.21 18.67 25.06 23.05 22.38 22.37 22.81 24.07 22.42 19.95 23.24 21.65 23.74

TV 16.70 17.18 17.046 16.84 17.48 16.80 17.13 16.79 17.12 16.83 17.77 17.08 18.09 17.65 17.05 16.64
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UMR 6072, 2017.
[54] J. Zeng, G. Cheung, M. Ng, J. Pang, C. Yang, 3D point cloud denoising using graph laplacian regularization of a low dimensional manifold model, IEEE

Transactions on Image Processing (2019).
[55] L. Jun, L. Wei, D. Donglai, S. Qiang, Point cloud registration algorithm based on NDT with variable size voxel, in: 2015 34th Chinese Control Conference

(CCC), IEEE, 2015, pp. 3707–3712.
[56] N. Perraudin, J. Paratte, D. Shuman, L. Martin, V. Kalofolias, P. Vandergheynst, D. K. Hammond, Gspbox: A toolbox for signal processing on graphs, arXiv

preprint arXiv:1408.5781 (2014).
[57] N. Perraudin, V. Kalofolias, D. Shuman, P. Vandergheynst, Unlocbox: A MATLAB convex optimization toolbox for proximal-splitting methods, arXiv

preprint arXiv:1402.0779 (2014).
[58] K. Fliegel, F. Battisti, M. Carli, M. Gelautz, L. Krasula, P. Le Callet, V. Zlokolica, 3D visual content datasets, in: 3D Visual Content Creation, Coding and

Delivery, Springer, 2019, pp. 299–325.
[59] C. Couprie, L. Grady, L. Najman, J.-C. Pesquet, H. Talbot, Dual constrained TV-based regularization on graphs, SIAM Journal on Imaging Sciences 6 (2013)

1246–1273.
[60] J. Pang, G. Cheung, Graph Laplacian regularization for image denoising: Analysis in the continuous domain, IEEE Transactions on Image Processing 26

(2017) 1770–1785.


