
09 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A Formal Model of Network Policy Analysis / Valenza, Fulvio; Spinoso, Serena; Basile, Cataldo; Sisto, Riccardo; Lioy,
Antonio. - STAMPA. - (2015), pp. 516-522. (Intervento presentato al convegno RTSI 2015 - First International Forum on
Research and Technologies for Society and Industry tenutosi a Torino, Italy nel 16-18 September 2015)
[10.1109/RTSI.2015.7325150].

Original

A Formal Model of Network Policy Analysis

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/RTSI.2015.7325150

Terms of use:

Publisher copyright

©2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2621143 since: 2021-01-28T18:16:36Z

IEEE

A Formal Model of Network Policy Analysis
Fulvio Valenza, Serena Spinoso, Cataldo Basile, Riccardo Sisto and Antonio Lioy

Dipartimento di Automatica e Informatica, Politecnico di Torino, Torino, Italy
Email: {fulvio.valenza, serena.spinoso, cataldo.basile, riccardo.sisto, antonio.lioy}@polito.it

Abstract—The complexity of network topology together with
heterogeneity of network services make the network configuration
a hard task, even for skilled and experienced administrators.
In order to reduce the complexity of the network configura-
tion, administrators have leveraged network policies, introducing
hence new possibility of error. Indeed, erroneous and unexpected
network behaviour (e.g., security flaws) can derive from the
wrong network policy definition, but also from the possible
anomalies among policies of different domains.

This paper presents a formal model for detecting inter- and
intra-domain policy anomalies. Policy anomalies allow admin-
istrators to identify all the network behaviours they consider
erroneous or to be monitored. To validate the generality of
the proposed solution, the model has been applied to three
policy domains (packet filtering, communication protection and
service function chaining) and the impact of an anomaly detection
analysis was tested in different sized networks.

I. INTRODUCTION

Nowadays networks are very complex systems to manage
for administrators, due to the number and type of services
available: for example, monitoring on network nodes, traf-
fic steering and also network security and traffic filtering
assurances. Due to this complexity, administrators can in-
troduce errors and redundancy in the configuration of the
available services, causing erroneous and unexpected network
behaviours [1].

In order to simplify the administrator work, a different
network configuration approach based on the use of network
policies was suggested in literature in [2]. Even though this
policy-based system could appear as the solution, the prob-
lem of erroneous network configuration was just moved to
the possible wrong network policy definition. Indeed there
have been different works on the analysis of network policy
conflicts and anomalies. Those works have been carried on in
different policy application domains: communication protec-
tion [3], filtering [4], service function chaining [5] and others.
Unfortunately, such works have not been applied into the real
activities of a network administrator, as well as the major part
of them generally is limited to a specific policy application do-
main (intra-domain), overlooking anomalies between different
policy domains (inter-domain).

Hence it could be useful a detection system that gives an
overview of the network errors and conflicts deriving from
the wrong policy definition. Moreover, having a dashboard
containing any irregular network conditions and events that
an administrator wants to monitor and to be alerted (i.e., no
errors and conflicts) could make more flexible and efficient
the network configuration task. Such network errors, conflicts,
irregular events can be identified through the definition of

policy anomalies, either intra-domain or inter-domain. In our
view, an anomaly arises when the effects of one network policy
is influenced or altered by other policies (one or more).

To better understand such policy anomalies, let us consider
an enterprise network, where communication protection poli-
cies are defined to encrypt all the traffic sent to the Internet.
In this example, an administrator would like to be advertised
if there are gateways that decrypt and encrypt the received
packets to forward them through the secure path, in order to
check the trustworthiness of that nodes. This is due to fact that
the secure path between the source and destination nodes can
be composed of multiple channels (e.g., remote access VPN),
of which the end-points could be untrusted. Also an example
of inter-domain policy anomalies is when an administrator
configures a filtering policy to drop all encrypted traffic sent
to the Internet for monitoring activities. Hence, this filtering
policy collides with the communication protection policy of
the previous example, where all traffic routed to the Internet
is encrypted.

Thanks to its usefulness, a detection system of policy
anomalies can be used by several actors (e.g., administrators,
network operators...) and applied to different scenarios. An
example is the Software Defined Networking (SDN) envi-
ronment, where the current trend is to make networks more
programmable [6]. Recent works propose the configuration of
forwarding policies [7] to specify which traffic flows should
be processed by an ordered and user-defined set of network
functions (e.g., DPI, NAT, load balancer, etc...), implementing
the Service Function Chain concept [8].

Hence, a possible extension is to enable the SDN controller
to perform the detection task before starting the policy re-
finement process and, of course, before changing the network
configuration. In this way, an administrator can be sure that
unexpected and erroneous network behaviour will not occur
after a network configuration update.

In line with the SFC paradigm, recently, the innovation of
the Network Function Virtualization (NFV) [9] has enabled
more powerful and flexible services to the end-users. Many
SDN/NFV-related solutions, in fact, allow users to define
their own service graph, where users can specify all the
desired network services for processing their traffics, such us
in the UNIFY project [10]. Here the use of network policies
belonging to different application domains (e.g, security, for-
warding, verification graph policy...) could enrich the provided
service, as it is already partially envisioned within the UNIFY
project [11][12]. In this kind of scenario, in fact, an inter-
domain anomaly detection is particularly meaningful in order

to guarantee a correct service provisioning to the end-users.
The contribution of this paper is to present a formal model

for detecting network conflicts and irregularities by defining
inter- and intra-domain policy anomalies, in order to avoid
erroneous and unexpected network behaviours. The proposed
model has been applied also to three case studies of different
policy domains. In order to simplify the model understanding,
one of such case studies (Filtering Policy) is analysed in line
with the model description (Section II). In Section III, the
other two case studies are described in detail, while Section
IV gives an overview of a possible implementation of the
proposed model. Finally, we conclude the paper by presenting
the different works that have provided our background on the
policy conflict analysis (Section V) and some possible future
works (Section VI).

II. THE APPROACH

In this section, we propose a formal model, which is able
to both represent network policies of different domains and
to detect the intra- and inter-domain anomalies among such
policies. In order to perform those targets, the model is
composed of four sets, that are:

• network fields, atomic elements that identify information
a network policy should keep trace. Examples of such
network fields (but are not limited to) could be the packet
headers. In fact, other information (e.g., network node
ID, traffic label, cipher algorithm etc...) could be needed
to designate the events and conditions an administrator
wants to manage;

• policy actions, a set of atomic elements that represent
either the real action performed by a network node (e.g.,
a firewall is configured to deny or allow a packet under
certain conditions), or the parameters and information that
characterized that action (e.g., algorithm, technologies,
protocols to use);

• Policy Implementations (PIs), data-structures to pinpoint
in a formal and abstract way the policy rules enforced
by a network node for a certain domain. This means
that the PI data-structure must be defined so that the PI:
(i) identifies the condition and events that administrators
want to manage through conditions expressed on the
network fields; (ii) knows the policy actions that describe
the way those events are managed; (iii) is designed to be
applied to a specific policy domain;

• detection rules are a set of conditions that distinguish the
possible anomalies among PIs. For a particular policy
domain, it is possible to exploit the existing works
on the policy analysis for that domain. Otherwise an
administrator could define his set of PI anomalies, either
intra-domain and inter-domain.

In order to simplify the understanding of this model and
its main elements, we can consider the real use case of the
Filtering Policies (FP) as example. FP are usually used in
a single- or multi-firewall environment to defend networks
by filtering unwanted or unauthorized traffic from or to the
secured network. Actually, many works exist in this domain,

which focus on the FP conflict definition like the work by Al-
Shaer et al. [4]. In particular we have extrapolated the main
network fields and actions needed to distinguish the filtering
conflicts presented by the authors in order to build the model
specific for the FP domain. Those fields and actions are:

• an incremental firewall identifier (f) to reflect the order
in which the received traffic is processed by a sequence
of firewalls;

• an incremental firewall rule identifier (r), valid within the
firewall identified by f ;

• the source and destination IP addresses of the traffic
(ip src and ip dst);

• the protocol type (t) that can assume TCP, UDP or *
(don’t care) as value;

• the ranges of the source and destination port numbers
(p src and p dst);

• the policy action (a) that the firewall must carry out if
the received traffic matches with the current policy and
that can assume either accept or deny as value.

Hence the PI that defines a filtering policy is an ordered set of
network fields and policy actions and can have the following
structure:

pifp = (f, r, ip src, ip dst, t, p src, p dst, a)

Now we start to analyse in depth the PI structure and then
the PI anomalies.

A. The PI structure

A PI has a structure composed of a sequential set of network
fields (n) and a set of policy actions (a):

pii = (ni1, ni2, ..., nin, ai1, ai2, ..., ain)

Actually, a PI has a different set of network fields and policy
actions, based on the domain where the PI is defined. In
addition, among the network fields and policy actions of the
PIs, a set of relations R must be defined in order to establish
the PI anomalies. In detail, the proposed model supports four
relations R between network fields (the same relations can be
defined for the policy actions):

• equivalence: two network fields are equivalent (or equal)
if they have exactly the same value;

ni1 = nj1

• dominance: a network field dominates another one if it
is a generalization of the latter. For example, ni1 is the
IP addresses 1.1.*.* and nj1 is the IP address 1.1.1.*, in
this case ni1 dominates nj1;

ni1 � nj1

• correlation: two network fields are correlated if they
share some common values, but none of them includes
(or dominates) the other one. For example, if ni1 and
nj1 are port number and ni1 ranges from 1 to 75, while

nj1 from 50 to 100, then they are correlated because the
range [50, 75] is shared by both fields;

ni1 ∼ nj1

• disjointness: two network fields are disjoint if they do
not share any value. On the other hand, if a network field
is equivalent, correlated or dominates another, those fields
are not-disjointed (ni1 6⊥ nj1).

ni1 ⊥ nj1

A certain relation can be applied to a network field (or a
policy action) depending on the type of the network field value
(e.g., integer, IP address, boolean, enumeration and more). For
example, a port number can be equal to another one, but it
cannot dominate a range of port numbers. Instead a range of
port numbers can dominate a single value of port number.

The proposed set of relations allows the model to achieve
high-level flexibility and generality in order to: (i) do not be
limited to a single policy domain; (ii) detect policy anomalies
among different domains; (iii) enrich the set of policy anoma-
lies (inter- and intra-domain) by allowing administrators to
define their own set of anomalies. In fact this set of relations
R gives the means to impose conditions on PI elements, whose
value types are not known a-priori.

To clarify how those relations can be applied, let us consider
again the example of a filtering policy. Having identified the
PI structure to detect the filtering policy anomalies that Al-
Shaer et al. have defined [4], the set of the relations R can be
applied to the FP network fields and policy action so that:

• fi and ri can be equal to or can dominate the relative
field of pij (e.g., fi � fj , if fi is equal to 6, while fj is
equal to 3);

• ip src, ip dst, p src and p dst can be equal, disjointed
or can dominate the relative fields of pij ;

• finally, ai and ti can be equal or disjointed to tj and aj .

B. The PI anomaly detection rules

The PI anomalies (I) are defined in form of detection
rules. The detection rules are, in turn, defined according to
the existing relations R among the network fields and policy
actions of a PI.

In the proposed model, the detection rules are based on the
First Order Logic (FOL) and are expressed using the Horn
clauses. Horn clauses are frequently encountered in model
theory because they exhibit a simple and natural rule-like
form. Also, these clauses can be easily translated in many
different logic programming languages, such as Prolog, or
generic programming language such as C or Java. In particular,
the Horn clauses can be simply used to represent all the
axioms used in the proposed model, expressed in the form
of disjunction of literals (clauses) with at most one positive
literal:

¬C1 ∨ ¬C2 ∨ · · · ∨ ¬Cn ∨ I

Alternatively, they can be expressed in a more natural way as
a set of positive conditions implying an assertion and this is
the form chosen in our model:

C1 ∧ C2 ∧ · · · ∧ Cn ⇒ I

In our model, also, every clause is the relation between
network fields (e.g., nk) or policy actions (e.g., ak) of one
or more PIs (e.g., pii and pij), even belonging to different
domain, like this example:

C1 := nik R nih, C2 := nik R njh

C3 := aik R aih, C4 := aik R ajh

where nik and njh (or aik and ajh) identify two generic
network fields (or policy actions) in the ordered sequence of
network fields (or actions) in the PI structure.

Hence possible detection rules can take a form like the
following, but they are not limited to this structure:

niq R njq ∧ ... ∧ nik R njh ∧ ... ∧ aik R ajh ⇒ I

As example of detection rules, we can consider again the
anomaly classification of filtering policy proposed in [4].
In this case, we show the detection rules of two examples of
anomalies. Those detection rules follow the aforementioned
definition of PI for FP and are:

• Intra-Firewall Shadowing anomaly occurs when two PIs
(pii and pij) match the same traffic, but they enforce
different actions

fi = fj ∧ rj � ri ∧ ip srci � ip srcj ∧ ti � tj∧
ip dsti � ip dstj ∧ p srci � p srcj ∧ p dsti � p dstj

∧ ai 6= aj ⇒ Shadowing(pii,pij)

• Inter-Firewall Redundancy anomaly occurs when PIs,
belonging to different firewalls, have the same pattern
matching and the same action of blocking the traffic

fj � fi ∧ ip srci � ip srcj ∧ ip dsti � ip dstj∧
p srci � p srcj ∧ p dsti � p dstj ∧ ti � tj∧
ai = aj = deny⇒ Redundacy(pii,pij)

It is worth noting that detection rules identify the anomaly
scenarios in the network, but the administrator is the only who
decides which anomaly is a real unwanted situation.

Hence he can decide when and what should be changed
in the PI set. Certainly there could be automatic resolution
processes that figure out how to solve the PI anomalies
(inter- and intra-domain) by following some decision strategies
chosen by the administrator. However resolving the anomalies
automatically or not is out of scope of this work, even if it
could be an interesting topic to be investigated as future work.

III. CASE STUDIES

In this section, we analyse two more policy domains: the
communication protection and service function chain policies.
For each of them, we describe an example of possible PI
structure and a definition of detection rules that represent the

PI anomalies (both intra- and inter-domain). The first case
study exploits an existing work in its domain presented in
literature. As concerning the latter, a new definition of PI
structure and detection rules is proposed to validate that the
proposed model is able to support administrator-defined policy
anomalies for a given domain.

A. Communication Protection Policy

Communication Protection Policies (CPPs) allow the defi-
nition of how to make the network communications secure in
critical contexts, like financial or corporate. Several proposals
have been presented in literature for detecting CPP conflicts,
but most of them focus only on a single security technology.
This is the reason why, we exploit the model proposed in [13],
since the authors consider more than one security protocols.

Briefly, in this model a CPP pi has the following structure:

pi = (s, d, t, G, ch, cp, cc)

where:

• s and d symbolize the source and destination nodes and
their possible value could be either the network node id
(Node) or an its IP address (IP), port number (Port)
or URI (URI);

• t specifies the adopted technology, that could be IPsec,
TLS, SSH, WS-Security or NULL;

• G = (g1, . . . , gn) is an ordered list of crossed gateway
nodes, in the case of site-to-site or remote access com-
munications;

• ch, cp and cc characterize the policy actions and are three
Boolean values that denote if the header integrity, payload
integrity and confidentiality are required.

In addition, the main relations R among network field and
policy actions of CPPs can be summarized as follows:

• the source and destination values are designed in a
hierarchical way, so that for a certain network node the
following condition holds:

Node � IP � Port � URI

• a source (s) must assume different values from any other
nodes in the network, independently from the type of
value that s assumes (i.e., Node, IP, etc..). The same
assumption must be done for the destinations (d) and it
can be expressed as:

{Node, IP, Port, URI}i ⊥ {Node, IP, Port, URI}j

• the relations on the technology (t) values satisfy the
following formulas:

{IPsec, SSH, TLS, WS-Security} ⊥ NULL
IPsec � SSH �WS-Security
IPsec � TLS �WS-Security
SSH ∼ TLS

• header integrity, payload integrity and confidentiality
flags (ch, cp and cc) dominate the relative flags of another
PI, it they assume True as value:

True � False

Two examples of the CPP detection rules defined in [13] are:
• the Single-PI Irrelevance anomaly occurs when pii can

be removed without changing the network behaviour be-
cause it would establish a secure communication between
a source and a destination that lay on the same node

si 6⊥ di ⇒ Irrelevant(pii) (1)

• the Pair-PI Inclusion anomaly occurs when two PIs are
not equivalent and all the network fields of pii dominate
or are equal to the ones of pij

si � sj ∧ di � dj ∧ ti � tj ∧ chi � chj ∧ cpi � cpj∧
cci � ccj ∧Gi � Gj ∧ pii 6= pij ⇒ Inclusion(pii,pij)

• the Pair-PI Alternative anomaly occurs when all the fields
of pii are equivalent to the fields of pij , but Gi is disjoint
with Gj

si = sj ∧ di = dj ∧ ti = tj ∧ chi = chj ∧ cpi = cpj∧
cci = ccj ∧Gi ⊥ Gj ⇒ Alternative(pii,pij)

B. Service Function Chaining Policy

Service Function Chaining (SFC) defines an ordered set
of network functions (e.g., NAT, load balancer, web cache,
etc.) that processes the incoming traffic. Here forwarding
policies can be used to configure the traffic flows that must be
processed by a given chain.

In literature, most of the existing works focused on the
OpenFlow protocol, which has been a successful SFC im-
plementation. The detection of errors among OpenFlow rules
deployed into the OpenFlow switches has been addressed in
depth, while the correct forwarding policy definition at the
SDN controller layer was overlooked.

In order to validate that the proposed model is able to
support administrator-defined policy anomalies, we propose
a new definition of PI structure and detection rules to detect
forwarding policy anomalies at controller layer, in the Service
Function Chaining (SFC) domain. The proposed PI is struc-
tured as follows:

pi = (ip src, ip dst, t, p src, p dst, C)

where ip src, ip dst, t, p src, p dst have the same meaning
of the network fields in the filtering PI, while the action C
specifies the ordered set of network functions to which the
incoming traffic should be forwarded. This means that also
the relations R between the network fields are similar to the
filtering policy case, while a policy action Ci of pii can be
equal, disjointed, correlated to or can dominate the Cj of pij .

Finally, we also propose an example of possible PI anoma-
lies between SFCPs, which are represented by the following
detection rules:

• Intra-PI Incorrect anomaly arises when the source and
destination of a traffic flow correspond. This means that
the ip src and ip dst fields of pii are equal and, hence,
a forwarding loop is generated in the network

ip srci = ip dsti ⇒ Incorrect(pii)

• Inter-PI Correlation anomaly occurs if all network fields
of pii and pij are equal, except Ci and Cj that are
correlated. Hence there will be ambiguity on which chain
should process the traffic:

ip srci = ip srcj ∧ ip dsti = ip dstj∧
ti = tj ∧ p srci = p srcj ∧ p dsti = p dstj∧
Ci ∼ Cj ⇒ Correlated(pii,pij)

C. Examples of inter-domain policy anomalies

The detection of policy anomalies defined among policies of
different domains (i.e., inter-domain anomaly) was generally
overlooked by the existing works on the policy conflicts.
However the inter-domain anomalies allow to achieve a higher
flexibility in the definition of network errors, events and
redundancies that administrators require to detect. In order to
validate that our model is able to support this new feature, we
can consider two examples of inter-domain policy anomalies.

Having presented the Filtering and Communication Pro-
tection Policies, a first example can be the Pair-PI Filtered
Anomaly. In particular such anomaly identifies when a cer-
tain traffic flow, belonging to a secured communication, is
discarded by a firewall because a rule is installed to deny
(aj = deny) such flow. This means that the secure commu-
nication (implemented by the CPP pii) is interrupted by the
FP pij installed in the firewall. Hence, in the proposed model,
the Pair-PI Filtered Anomaly can be expressed in this way:

si 6⊥ ip srcj ∧ si 6⊥ p srcj ∧ di 6⊥ ip dstj∧
di 6⊥ p dstj ∧ aj = deny⇒ Filtered(pii, pij)

Another example is the Inter-PI Interruption Anomaly that
arises between the FP and SFC domains: let us consider a
traffic flow (K) that should be processed by a service chain
that contains a firewall (Ci � {fj}), but a filtering policy was
defined so that the flow K must be dropped by the firewall.

This means that the flow K will not traverse the entire
service chain:

ip srci = ip srcj ∧ ip dsti = ip dstj ∧ ti = tj∧
p srci = p srcj ∧ p dsti = p dstj ∧ aj = {deny}∧
Ci � {fj}∧ ⇒ Interruption(pii, pij)

IV. IMPLEMENTATION AND TESTING

The prototype implementation of the proposed model is
based on an ontology. In our ontology-based prototype, the
model was implemented using the OWL2 [14] language:

• a class was defined for each definition of PI structure
and also for each network field and policy action of the
PI (an individual element is created when a new PI is
instantiated);

• the network field (or action) relations are represented by a
set of object property assertions that connect the different
classes of that network fields (or actions);

• a PI anomaly is established by defining the object prop-
erty assertion that links, in turn, the PI classes involved
into the anomaly;

• the detection rule that implements a PI anomaly is
expressed in the SWRL [15] language that allows to
specify them in a similar way of the Horn clauses.

An example of SWRL rule is shown below, where the
Single-PI Irrelevance anomaly (equation 1) is defined:

h a s S r c (? pi1 , ? s1) , h a sD s t (? pi1 , ? d1) ,
N o t D i s j o i n t (? s1 , ? d1)−> I r r e l e v a n c e (? p i 1)

Finally we tested this prototype implementation in the
context of Communication Protection Policy anomalies with a
growing number of PIs. In addition, the PIs have been defined
in such a way that 40% of the defined PIs present an anomaly
with other PIs. Moreover, multiple tests have been performed
to evaluate the elapsed time for detecting the CPP anomalies,
considering different network scenarios: the tests have been
run in networks composed of 100, 250 and 500 end-hosts.

As shown in Fig. 1, it is worth to note that in the tests
upon the biggest network (that is the 500 end-hosts case), we
achieve a reasonable detection time of no more than 45s.

100 200 300 400 500

10

20

30

40

number of PIs

tim
e

(s
)

100 end-hosts
250 end-hosts
500 end-hosts

Fig. 1. Detection time vs. number of PIs in a CPP domain.

V. RELATED WORK

The network policies have been treated by many works,
which analysed anomaly scenarios in different application
domains. In this section our target is to examine the seminal
works on the three domains of our case studies.

Concerning the filtering policy domain, the main work was
presented by Al-Shaer et al. that focus on anomalies occurring
in a distributed firewall [4]. In spite of our work, authors

treat anomalies between pair of rules, overlooking the case of
anomalies generated by one or more than two rules. Moreover,
they perform the anomaly detection by checking the packet
header fields, without dealing with external information (e.g.,
algorithms, timestamps, etc...).

Khakpour et al. [16] have proposed a completely different
approach to detect filtering anomalies based on a query engine
system. However, this query-based approach does not find all
the anomalies, as it checks only the scenarios specified by the
administrator. In this approach, the impact of the human factor
is very significant in the selection of the correct set of queries:
an anomaly can be overlooked because it was not selected.

Other works, which take Al-Shaer et al. works as reference,
were presented in literature. Basile et al. [17], [18] extend
the Al-Shaer’s conflict classification and propose a formal
policy specification model. The proposed model is based on a
geometrical representation: the set of all packet header fields
(namely the ”selectors”) generate an hyper-space, where the
policy rules can be represented. Here, an anomaly is seen as
the intersection of the space of two or more rules. Even though
the authors fill the limitations of the Al-Shaer’s work, they do
not represent the anomalies generated by a single rule.

On the other hand, Garcia-Alfaro et al. [19], [20] detect
and resolve filtering anomalies thought the use of specific
algorithms in distributed system, where NIDSs, VPN routers
and other security controls are considered. However this is a
radical different approach from our model, since rule-based
inferential systems (formal ontologies, rule-based systems,
SMT solver, etc...) do not use algorithms to detect anomalies.

Concerning the communication protection policy, a greater
emphasis was given only to IPsec configuration anomaly,
starting form the common idea, initially introduced by Zao
in [21], to combine conditions that belong to different IPsec
fields. An early work has been presented by Fu et al. [3], which
verify the correctness of the deployed policies comparing them
with high-level policies. In this way the authors give another
interpretation of the anomaly concept. In fact, in our vision,
an anomaly can be seen as an erroneous interaction among
policies, while Fu et al. support that an anomaly derives from
an incorrect deployment of the policy.

Al-Shaer et al. [22] formalizes the classification of [3]
by proposing a model based on Ordered Binary Decision
Diagrams. The work can be seen as the extension of the
packet filter classification proposed by Al-Shaer et al. [4]. In
fact, this model incorporates both the encryption capabilities
of IPsec and its packet filter capabilities, but it does not fill
the limitations of the previous work [4].

Finally, the last case of network policy domain is the Service
Function Chaining (SFC), where the use of forwarding policy
is sustained by the active IETF working group [8]. Also the
need for a forwarding rule verification is suggested in [23]
in order to avoid that an incoming traffic could match more
traffic classification rules of different SFCs.

In this field, several studies addressed the detection of
possible anomalies between the most common SDN proto-
col, that is OpenFlow [5]. The existing works analyse the

anomalies among the OpenFlow rules installed in each switch
of the network. In particular several techniques to detect the
anomalies have been used by those works, such us Binary
Decision Diagrams by Al-Shaer et al. [24], hash-tree data
structure in the work of Natarajan et al. [25], and First Order
Logic by Batista et al. [26].

In our vision, the main limitation of these works is the
absence of interaction with other policy domains. In fact the
traffic forwarding does not depend only by the switch and
router configurations, but also it can be influenced by other
network functions (e.g., firewall, load balancer, VPN gateway,
etc...). Hence, an inter-domain anomaly analysis should be
more suited to verify the correctness of the network behaviour,
as well as it should be encouraged for all the other policy
domain analysis.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we propose a formal model for detecting net-
work policy anomalies, both in case of inter- and intra-domain.
This policy model allows the analysis of policy anomalies by
using a formal representation for the network policy, named
policy implementation (PI) and for their anomalies.

The generality of the solution was also validated by applying
the model to three case studies of different domains: communi-
cation protection, data filtering and service function chaining.
Finally we implemented a prototype, using ontological tech-
niques. The prototype was also tested in order to evaluate the
impact of a PI anomaly detection process in different sized
networks, obtaining good results.

As possible future work, we plan to extend the expressivity
and capabilities of our model to make it able to solve problems
like policy reachability and policy reconciliation. This will
require a deeper knowledge of the network state to ensure that
the best policies are chosen and to reconcile policy conflicts.

ACKNOWLEDGEMENT

The research described in this paper is part of the SE-
CURED project, co-funded by the European Commission (FP7
grant agreement no. 611458).

This work was also conducted within the framework of
the FP7 UNIFY project, which is partially funded by the
Commission of the European Union. Study sponsors had
no role in writing this report. The views expressed do not
necessarily represent the views of the authors’ employers, the
UNIFY project, or the Commission of the European Union.

REFERENCES

[1] A. Wool, “Firewall Configuration Errors Revisited,” CoRR, vol.
abs/0911.1240, pp. 103–122, 2009.

[2] J. Strassner, Policy-Based Network Management: Solutions for the Next
Generation (The Morgan Kaufmann Series in Networking). San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2003.

[3] Z. Fu, S. F. Wu, H. Huang, K. Loh, F. Gong, I. Baldine, and C. Xu,
“IPsec/VPN security policy: Correctness, conflict detection, and reso-
lution,” in International Workshop on Policies for Distributed Systems
and Networks, Bristol, UK, January 15–17 1999, pp. 39–56.

[4] E. Al-Shaer, H. Hamed, R. Boutaba, and M. Hasan, “Conflict classifi-
cation and analysis of distributed firewall policies,” IEEE Journal on
Selected Areas in Communications, vol. 23, no. 10, pp. 2069–2084,
October 2005.

[5] R. Bifulco and F. Schneider, “Openflow rules interactions: definition and
detection,” in Future Networks and Services (SDN4FNS), 2013 IEEE
SDN for. IEEE, 2013, pp. 1–6.

[6] N. Feamster, J. Rexford, and E. Zegura, “The road to sdn: an intel-
lectual history of programmable networks,” ACM SIGCOMM Computer
Communication Review, vol. 44, no. 2, pp. 87–98, 2014.

[7] R. Soulé, S. Basu, R. Kleinberg, E. G. Sirer, and N. Foster, “Managing
the network with merlin,” in Proceedings of the Twelfth ACM Workshop
on Hot Topics in Networks. ACM, 2013, p. 24.

[8] S. M. Boucadair, D. Lopez, I. Telefonica, D. J. Guichard, and C. Pig-
nataro, “Service function chaining: Framework & architecture draft-
boucadair-sfc-framework-00,” Tech. Rep., 2013.

[9] R. Jain and S. Paul, “Network virtualization and software defined
networking for cloud computing: a survey,” Communications Magazine,
IEEE, vol. 51, no. 11, pp. 24–31, 2013.

[10] P. Skoldstrom, B. Sonkoly, A. Gulyás, F. Németh, M. Kind, F.-J.
Westphal, W. John, J. Garay, E. Jacob, D. Jocha et al., “Towards unified
programmability of cloud and carrier infrastructure,” in Software Defined
Networks (EWSDN), 2014 Third European Workshop on. IEEE, 2014,
pp. 55–60.

[11] R.Szabó, B. Sonkoly, and M.Kind, “Unify d2.2: Final architecture,”
2015. [Online]. Available: https://www.fp7-unify.eu/index.php/results.
html#Deliverables

[12] R.Steinert and W. John, “Unify d4.2: Proposal for sp-devops
network capabilities and tools,” 2015. [Online]. Available: https:
//www.fp7-unify.eu/index.php/results.html#Deliverables

[13] C. Basile, D. Canavese, A. Lioy, and F. Valenza, “Inter-technology
conflict analysis for communication protection policies,” in CRiSIS 2014
9th International Conference on Risks and Security of Internet and
Systems, Trento, Italy, August 6–8 2014.

[14] W. O. W. Group, “OWL 2 web ontology language document
overview,” Tech. Rep., Oct. 2009, http://www.w3.org/TR/2009/REC-
owl2-overview-20091027/.

[15] “SWRL: A Semantic Web Rule Language Combining OWL and
RuleML,” World Wide Web Consortium, Tech. Rep., May 2004.

[16] A. R. Khakpour and A. X. Liu, “Quantifying and querying network
reachability,” in IEEE Int. Conference on Distributed Computing Sys-
tems, Genova (Italy), June 21–25 2010, pp. 817–826.

[17] C. Basile, A. Cappadonia, and A. Lioy, “Network-Level Access Con-
trol Policy Analysis and Transformation,” IEEE/ACM Transactions on
Networking, vol. 20, no. 4, pp. 985–998, August 2012.

[18] C. Basile and A. Lioy, “Analysis of application-layer filtering policies
with application to http,” Networking, IEEE/ACM Transactions on,
vol. 23, no. 1, pp. 28–41, Feb 2015.

[19] J. G. Alfaro, N. Boulahia-Cuppens, and F. Cuppens, “Complete analysis
of configuration rules to guarantee reliable network security policies,”
Int. J. of Information Security, vol. 7, no. 2, pp. 103–122, April 2008.

[20] J. Garcia-Alfaro, F. Cuppens, N. Boulahia, and P. Stere, “MIRAGE: a
management tool for the analysis and deployment of network security
policies,” in SETOP 2010: 3rd International Workshop, Athens, Greece,
September 23 2011, pp. 203–215.

[21] J. Zao, “Semantic model for IPsec policy interaction,” Internet Draft,
Tech. Rep., March 2000.

[22] E. Al-Shaer, H. Hamed, and W. Marrero, “Modeling and Verification
of IPSec and VPN Security Policies,” in 13th IEEE Int. Conference on
Network Protocols, Boston, MA, November 6–9 2005, pp. 259–278.

[23] S. Lee and M. Shin, “Service function chaining verification draft-lee-
sfc-verification-00,” Tech. Rep., February 2014.

[24] E. Al-Shaer and S. Al-Haj, “Flowchecker: Configuration analysis and
verification of federated openflow infrastructures,” in Proceedings of the
3rd ACM workshop on Assurable and usable security configuration.
ACM, 2010, pp. 37–44.

[25] S. Natarajan, X. Huang, and T. Wolf, “Efficient conflict detection
in flow-based virtualized networks,” in Computing, Networking and
Communications (ICNC), 2012 International Conference on. IEEE,
2012, pp. 690–696.

[26] B. L. A. Batista, G. A. L. de Campos, and M. P. Fernandez, “Flow-
based conflict detection in openflow networks using first-order logic,”
in Computers and Communication (ISCC), 2014 IEEE Symposium on.
IEEE, 2014, pp. 1–6.

