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Reliability-based design of rockfall passive systems

heightI
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Abstract

Passive structural systems against rockfalls, as net fences and embankments,
are among the most effective mitigation measures for high energy events.
Although largely adopted, the design of these systems has not been codi-
fied yet. A profitable time-dependent reliability approach has been recently
introduced by the Authors, accounting for different possible probability dis-
tributions of velocity, mass, and height of the impacting block. Two failure
modes were considered, related to the energy absorption capacity and the
intercepting height of the systems. As the current design approach is based
on partial safety factors, several sensitivity analyses are herein presented,
with a particular focus on the height, firstly to define a suitable combination
of equivalent partial safety factors, and, secondly, to investigate the param-
eters related to the geometry and the kinematics of the block which mostly
affect the factors. Moreover, for a given failure probability, two shallow neu-
ral network were built, one for each failure mode, considering the possible
range of all the input parameters, creating thus two input-output relation-
ships that can be used to evaluate the partial safety factors for the height
and the energy.
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embankment, neural networks

1. Introduction

Among the natural hazards, rockfalls constitute a serious threat to life,
properties and infrastructures, due to their spatial and temporal unpre-
dictability and high energy involved [1, 2]. This kind of event can severely
affect civil structures and infrastructures as hamlets, roads, railways [3, 4, 5]
but has also industrial implications related, e.g. to quarries and open pit
mines, also linked with the optimization of the orebody exploitation pro-
cess [6, 7, 8, 9]. As a consequence, rockfall risk reduction can represent one
of the most significant aspects in various engineering and human activities.
Concern about passive mitigation measures has become a central issue in
rockfall risk management [10, 11] and, as a result, much research in the last
decades has focused on the development of new technologies. Among these
structures, rockfall net fences and embankments represent the most effective
solutions in case of events characterized by large energy and/or high trajec-
tories [12]. The design of these protection measures is still under debate and
a standardized procedure is not yet available, due both to the complexity
of the problem and to the several technologies adopted [13, 14, 15, 16, 17].
Nowadays, following the CE marking procedure [18], the design of the net
fences is oriented towards a performance-based design approach, evaluating
energy absorption capacity and height. On the contrary, no codified proce-
dure exists either for CE making and the design of rockfall embankments
[19, 20].

The understanding and the modelling of the rockfall phenomenon is dif-
ficult to achieve [21] as appropriate assumptions, e.g. considering the source
zone location [22], the initial released volume and the impacting volume [23]
have to be made. Simplifications concerning the direction of the impact on
the barrier or the precise position of the system along the slope are gener-
ally introduced. Few papers analyze these aspects [24, 25, 26, 27] and the
different resisting mechanisms that can arise in passive protection system
according to the impacting block volume [28, 29] and the impacted element
[30]. Although complex numerical models have been realized [31, 32, 33],
the coupling between the impacting block and a retaining structure is tricky,
and difficulties often arise when merging the results of trajectory analyses
and the model of a net fence or an embankment [34].
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Mimicking the performance-based design approach, i.e. starting from the
assumption that the failure of the system can occur for block kinetic energies
or trajectory heights greater than the interception capacity of the system, and
the current practice based on the Eurocode 0 [35], the present work aims at
identifying a compelling solution for the design of these retaining systems.
This procedure is based on a time-dependent reliability-based approach in-
troduced in De Biagi et al. [36], discussed in Marchelli et al. [37], and here
enhanced (Sec. 2), which considers all the possible distributions of the ve-
locity, mass and height of the block impacting against the protective system
located in an arbitrary position along the slope. With the aim of merging it
with the ultimate limit state procedure suggested in the Eurocodes [35, 38],
which is based on safety factors applied to resistance and actions, equivalent
partial safety factors for the impacting block energy and height were derived,
with particular focus on the intercepting height of the systems.

Different combinations were analyzed, considering or not a mutual inde-
pendence between the two failure modes (Sec. 3.1). Sensitivity analyses were
performed to investigate the parameters which mostly affect the adopted
partial safety factors (Sec. 4). As already illustrated in the papers by the
Authors previously cited, the values of the factors largely depend upon many
variables. With the aim of providing a profitable tool for the design of such
structures, a shallow neural network was built in order to create two input-
output relationships that can be used to evaluate the partial safety factors
for the height and the energy, given a failure probability (Sec. 5). At the
end, conclusions and future perspective were suggested (Sec. 6).

2. Time-dependent reliability approach

This section provides the fundamental principles of the reliability ap-
proach adopted for rockfall protection structures. The proposed method
constitutes an improvement of the method proposed in [36] and discussed
in [37]. Basically, rockfall passive mitigation measures as net fences and
embankments have to intercept a falling block and withstand its dynamic
impact without exceedingly deforming, breaking, or collapsing. As a result,
the possible failure modes of these structures can be simplified into a failure
mode related to the exceeding height (to which a failure probability Fh is
associated) when the block is not intercepted, and one related to the ex-
ceeding kinetic energy, Fk, when the absorption capacity of the system, i.e.
reference energy capacity evaluated according to the assessment procedure
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of EAD 340059-00-0106 [18], is smaller than block translational energy. The
total failure probability of the system pf accounts for both modes and can
be precautionary considered as the sum of the failure probabilities Fh and
Fk [36]. Each of the two failure modes represents a scenario mathematically
described through a limit function, i.e. the boundary between failure and
safety, derived from a state function. The limit function allows to assess the
reliability of a system or, vice versa, for a given failure probability pf , to
obtain the design values of the variables (denoted with subscript d) compos-
ing the state function. Considering the temporal variability of some of the
variables, e.g. the mass of the impacting block, the proposed approach is
time-integrated. For a given return period T , the mass is assumed to follow
a normal distribution, whose mean value m50(T ) can be computed through
a power-law rule, as suggested in [39]:

m50 (T ) = Mth (λT )1/α , (1)

where α is the shape coefficient of a Pareto Type I distribution accounting
for the heterogeneity of the size of the possible impacting blocks, Mth is
the threshold mass, i.e. the minimum mass of an impacting block whose
occurrence frequency is λ. Refer to [39] for details about the law. The
ratio between the standard deviation and the mean value, named COVm
represents the spread of the distribution. The estimation of the heterogeneity
of the blocks in the location where the passive structural system is assumed
to be installed is obviously function of the number of observed blocks N that
lead to the estimation of the shape coefficient α.

In the following, the failures modes are presented. In the analysis, lumped-
mass assumptions were considered, i.e neglecting the influence of block mass
on its kinematics. The restitution coefficients were normally distributed
whose mean values are selected to account for the variability of block-slope
interaction phenomena.

2.1. Failure due to the exceeding height

The analysis of the failure mode associated to exceeding trajectory height
accounts for the variability of the impacting block size (or mass), which
can differ from event to event. Fh represents the probability associated to
this failure mode and encompasses all the possible rock block sizes that can
fall along the slope. Considering that an event occurs, the probability of
failure due to exceeding height, pfa,h, depends on the occurrence of specific
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probability distributions of the mass, m, and of the height of the impacting
block, hb, described through quantities defined as representative, namely the
characteristic values (denoted with subscript k):

pfa,h =

∫ ∞
0

∫ ∞
0

pfh| (mk = µ and hb,k = η) fmk,hb,k (µ, η) dµ dη, (2)

where fmk,hb,k (µ, η) is the joint probability density function of having a distri-
bution of masses and heights defined through their characteristic values that
assumes the values of µ and η, respectively, considered as random variables.
Under the lumped-mass assumption, it can be assumed that the trajectory
height of the block does not depend on the mass [40, 41, 42, 43] and, conse-
quently, fmk,hb,k (µ, η) is equal to the product of the single probability density
functions, i.e. fmk

and fhb,k . Relaxing the assumptions, the simplification
cannot be performed and, thus, the joint probability density function depends
both on the mass and on trajectory height. Thus, the integral of Eqn. (2)
should be numerically performed. Provided that the block releasing condi-
tions remain unchanged in terms of location and initial velocity, for a given
slope, the lumped-mass trajectory analysis outputs a unique distribution of
the heights, independently from the released volume, resulting in fhb,k equal
to one. Hence, Eqn. (2) turns into:

pfa,h =

∫ ∞
0

pfh| (mk = µ) fmk
(µ) dµ. (3)

The probability density function fmk
(µ) related to the distribution of the

mass, referred through its characteristic valuemk, differing for each T (Eqn. (1)),
can be described through a Pareto Type I distribution, according to [44], as:

fmk
(µ) =

0 µ < Mth

α
Mth

(
µ
Mth

)−α−1
µ ≥Mth

. (4)

The conditional failure probability pfh| (mk = µ) is studied through a
state function accounting for the exceeding of the protection system height,
hB, expressed as:

H (h) = H

hBhb
m

 = hB − hb − 3

√
3m

4πρ
, (5)
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where ρ is the density of the block. This formulation considers that hb is
evaluated in the center of mass of the impacting block and, consequently, a
tolerance of half of its characteristic dimension has to be inserted. In the
present work, a spherical block is assumed. Finally, the conditional failure
probability pfh| (mk = µ) related to the state function is computed as:

pfh| (mk = µ) = P (H (h) | (mk = µ) ≤ 0) =

∫∫∫
H(h)≤0

fH | (mk = µ) (h) dhB dhb dm,

(6)
where fH | (mk = µ) is the joint probability density function of the mass (with
characteristic value equal mk = µ) and the height of the impacting block,
and the nominal height of the protection system. Following the approach
reported in [36], the failure probability in a given time period, τ , which can
be assumed equal to one year or to the expected working life of the protection
system, can be obtained as:

Fh (τ) = pf,h (t) ≈ 1− exp (−ντpfa,h) , (7)

where ν can be assumed equal to λ.

2.2. Failure due to the exceeding kinetic energy

The study related to failure mode associated to exceeding kinetic energy
was recently reported by the Authors in previous papers [36, 37]. Briefly, the
state function accounting for the exceeding of the system energy capacity,
EB, expressed as:

K (e) = K

EBm
v

 = EB −
1

2
mv2, (8)

where v is the impacting block velocity. The proposed equation lacks for the
rotational term as it has been demonstrated that the influence of this last
on the global failure of the system is negligible [45, 46]. This assumption
is consistent with the full scale tests conducted to assess the performance
of a rockfall flexible barrier [18]. Under the lumped-mass assumption, as
for the failure mode associated to exceeding height, the trajectory analysis
provides a unique distribution of the velocity and, thus a unique characteristic
value of the velocity can be defined. Relaxing the lumped-mass assumptions,
considerations similar to the ones proposed for the other failure mode can be
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proposed. As a result, the conditional failure probability pfe| (mk = µ) can
be computed as:

pfe| (mk = µ) = P (K (e) | (mk = µ) ≤ 0) =

∫∫∫
K(e)≤0

fE| (mk = µ) (e) dEB dm dv,

(9)
where fE| (mk = µ) is the joint probability density function of the mass (with
characteristic value equal mk = µ) and the velocity of the impacting block,
and the barrier capacity. The failure probability due to exceeding kinetic
energy in a given time period τ is computed as:

Fk (τ) = pf,k (t) ≈ 1− exp (−ντpfa,k) . (10)

3. Equivalent partial safety coefficient: different combinations

The reliability level of a structure is related to a specific failure probability.
The proposed approach can be alternatively considered for the design or for
the calibration of the partial safety factors to be adopted in the current semi-
probabilistic design framework [47]. The partial safety factors, namely γ in
the design codes, say [35], are coefficients (always larger than one) that serve
for computing the design value of the variable, usually denoted with subscript

d, from its characteristic value. The design value of the action is the product
between the characteristic value and the factor, while the design value of the
resistances is the ratio between the characteristic value and the factor. In
this specific problem, different partial safety factors related to the actions, i.e.
the impacting block parameters, can be individuated: considering its mass,
height, and velocity as representative, three partial safety factors, namely, γm,
γh and γv, can be defined. The semi-probabilistic approach generally applies
a partial safety factor also to each resistance parameter, i.e. in the specific
case, to the nominal height hB (named γhB) and to the energy absorption
capacity EB of the system (named γEB

). Merging with the current practice,
the calculations can be simplified by considering the values of the absorption
capacity EB and the CE certified nominal height hB as Dirac-δ distributions,
and, thus, the design value is assumed equal to the characteristic one. All
these coefficients can be merged in a unique factor for each failure mode,
i.e. γH and γE, for the failure mode associated to the height and the energy,
respectively.

Referring to the European standards, the Italian recommendation UNI
11211-4 [48] applies a partial safety factor for each variable, assuming as
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characteristic values of the actions the 95th percentiles of the trajectory
height and velocity distributions of the block, i.e. hk = h95 and vk = v95,
while for the impacting block mass the choice of the characteristic value is
remitted to the designer with the condition that it has to be assumed equal
or greater than the 95th percentile of the distribution of possible masses. On
the contrary, in the Austrian recommendation [49], the characteristic mass
is defined as a given percentile depending by the occurrence probability of a
rockfall event and the consequence class of the elements at risk. Furthermore,
ONR 24810 [49] accounts for a unique partial safety term related to the action
for each failure mode, considering a characteristic value of the kinetic energy
of the impacting block, assumed equal to the 99th percentile of the energy
distribution. The characteristic value of the height is computed as the sum
between the 95th percentile of the trajectory height of the characteristic
block and half of its maximum dimension. In the end, considering the effects
of the resistance, both standards accounts for a partial safety factor for the
energy absorption capacity of the system, while only ONR 24810 [49] applies
a partial safety factor to the nominal height of the system.

The present research work aims at finding a profitable solution for the
designer, merging the proposed reliability-based approach with the current
semi-probabilistic one, finding the simplest way for introducing the uncer-
tainties related to the phenomenon (i.e. the kinematics of the block) into
the design process. This results in choosing the most suitable combination
of partial safety factors to adopt, i.e. one for each variable, or one for the
effect of the actions and of the resistance, or a unique for each failure mode.
In addition, as the variable related to the mass of the impacting block affects
both the two failure modes, the corresponding partial safety factor can be
taken as a unique value for each mode.

With particular reference to the exceeding height failure mode (with fail-
ure probability Fh), three different combinations of partial safety factors can
be identified:

1. different partial safety factors for each variable, assuming a mutual
independence between the two failure modes [36]:

hB
γhB

= γhbhb,k +

(
3

4πρ
γmh

mk

)1/3

, (11)

where γhB is the factor related to the height of the system, γhb to the
height of the trajectory, and γmh

to the size of the block (the mass).
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The γmh
differs from the factor of the mass computed to achieve a given

failure probability due to exceeding kinetic energy;

2. different partial safety factors for each variable, adopting, for the mass,
the same factor γmE

evaluated computing the failure related to the
kinetic energy, Fk:

hB
γhB

= γ∗hbhb,k +

(
3

4πρ
γmE

mk

)1/3

, (12)

where

γ∗hb =
1

hb,k

[
hB
γhB
−
(

3

4πρ
γmE

mk

)1/3
]
. (13)

Obviously, γhb 6= γ∗hb ;

3. a unique safety factor for the effect of the actions:

hB
γhB

= γH′

[
hb,k +

(
3

4πρ
mk

)1/3
]
. (14)

Merging the factors related to the effects of the action and of the resistance,
the last combination (Eqn. (14)) can be simply rewritten as:

hB = γH

[
hb,k +

(
3

4πρ
mk

)1/3
]
, (15)

where γH includes the effects of both actions (γH′) and resistances (γhB).
In the calculations that follows, the characteristic and the design protec-

tion system heights are assumed equal, and thus, neglecting model uncer-
tainties, γhB can be considered equal to 1, and, consequently γH′ = γH .

In the present research work, according to the aforementioned national
recommentations [48], the 95th percentile of the distribution of the velocity
and the height of the block were assumed as characteristic values. Referring
to the mass, accounting for its variability in time, a reference time period Tk
was considered, and the associated mean value m50 (Tk) was adopted as char-
acteristic value. This hypothesis differs from the national recommendations,
which do not tackle the temporal problem, even.
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3.1. Through the most efficient solution

Aiming at evaluating the most efficient and easy-to-use solution to treat
the problem, the three aforementioned combinations of the partial safety
factors were examined through a parametric analysis. According to the pre-
vious works by the Authors [36, 37], all the variables which can affect the
failure of the system were considered, assuming an annual failure probability
pf of 10−4 (and thus τ = 1,), equally distributed between Fh and Fk, i.e.
Fh = Fk = 0.5pf . The adopted values of the variables for the parametric
analysis encompass the most probable real situations, as found in Marchelli
et al. [37]. The density of the block is assumed equal to 2700 kg/m3, the
reference return period Tk equal to 50, 100, and 200 years and the value of
COVm was defined according to the approximate expression [37]:

COVm ≈ 1.3606
(λT )0.3

N0.525α
. (16)

The value of the parameter α, as well as the number of surveyed blocks N
and the frequency of an event λ are thoroughly site specific, and thus a great
variability was assumed precautionary. A number of event spanning from
each 2 and 10 years were supposed, with α between 0.8, i.e. heterogeneous
deposit, and 1.3, i.e. very homogeneous deposit. The number of surveyed
blocks N varies between 300 and 1000. The volume associated to the thresh-
old mass Mth (Vth) varies from 0.5 m3 to 1.5 m3. As proven in the previous
work [36], the adopted characteristic value of the distribution of the impact-
ing block velocity does not affect the result, thus it was assumed equal to 20
m/s, while the ratio v99/v95 characterizing the tail of the distribution plays
an important role. As reported in De Biagi et al. [36], the right tails of
the distribution of height and velocity are approximated with normal distri-
butions. For v99/v95, values spanning from 1.01 and 1.03 were considered.
The height of the impacting block was assumed between 2 m and 6 m, while
the ratio h99/h95 between 1.1 and 1.3. The design values of the variables
were computed applying the reliability detailed in Sec. 2, and all the possi-
ble combinations of the above-mentioned parameters were evaluated and all
the partial safety factors computed according to Eqn. (11), Eqn. (12), and
Eqn. (14).

Figure 1 displays the boxplots of the partial safety factors for the three
combinations in the case Tk = 100 years, revealing their variation.Through
this representation, the degree of dispersion, the skewness, and the presence
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of outliers values can be appreciated and discussed. The median value is
indicated by the central red line, while the bottom and the top edges indicate
the 25th (Q1) and 75th (Q3) percentiles, respectively. The top of the upper
whisker is located at Q3 + 1.5 (Q3 −Q1). Larger values, namely, the outliers,
are plotted as red crosses. Different trends can be observed among all the
partial safety factors. Considering the first combination, γh displays a left-
skewed boxplot (i.e. a negative skew), with a wide upper quartile and several
values over the upper whisker limit. Neglecting these lasts, the value of
γhb spans between 1.20 and 2.24. The boxplot of γmh

shows several values
over the upper whisker limit, set at 1.20, and a narrow interquartile range.
Referring to the second combination, an opposite tendency can be observed:
a narrow interquartile range for γ∗hb , with values spanning between 1 and 1.92,
accounting for the whisker; while γmh

, related to the failure due to exceeding
kinetic energy, shows very high values with an upper whisker limit set at
5.38, and two outliers at about 7.1. The third combination, accounting for a
unique partial safety factor, displays a slightly left-skewed boxplot, without
values over the last quartile, meaning that the minimum and the maximum
values coincide with the whisker limits, at about 1.16 and 1.69, respectively.

Table 1 reports the relevant values, i.e. minimum and maximum and
whisker limits, accounting for the different reference return periods Tk. The
minimum value coincides in all the cases with the lower whisker limit. Con-
cerning the first combination, the influence of Tk is more evident for γhb than
for γmh

, but several outliers are observed for γmh
, increasing the uncertain-

ties related to its value. The second combination highlights very high values
of γme , which tends to be greater as Tk decreases. Conversely, γH exhibits
maximum values coincident with the upper whisker limits, for all the Tk in-
vestigated. The observed values span between a minimum of 1.10 for Tk
equal to 200 years and a maximum of 2.01 for Tk equal to 50 years.

The performed analyses lead to identify the third combination, expressed
through Eqn. (14), as the most affordable and straightforward solution since
it is characterized by a smaller dispersion of a single partial safety factor.
In addition, in this case, a partial safety factor accounting for the effects
of the resistance can be easily introduced. This would be mathematically
possible by turning the barrier height into a random variable described by
a distribution (say normal) and repeating the reliability analysis previously
described.

Starting from this assumption, the present research work analyses the
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Tk (years)

50 100 200

γhb

minimum 1.2334 1.2042 1.1464
upper whisker limit 2.4103 2.2402 1.8388

maximum (outliers included) 3.0913 2.5276 1.8388

γmh

minimum 1.0006 1.0001 1.0020
upper whisker limit 1.1256 1.1975 1.2946

maximum (outliers included) 2.3163 2.6469 2.5609

γ∗hb

minimum 1.0961 1.0043 0.7314
upper whisker limit 2.1498 1.9185 1.7200

maximum (outliers included) 2.4204 1.9185 1.7200

γmE

minimum 1.5828 1.4581 1.3085
upper whisker limit 7.4741 5.3765 3.9802

maximum (outliers included) 10.2252 7.0523 3.9802

γH

minimum 1.2032 1.1639 1.1012
upper whisker limit 2.0136 1.6881 1.5999

maximum (outliers included) 2.0136 1.6881 1.5999

Table 1: Values of of the partial safety factors γhb
, γmh

, γ∗hb
, γmE

and γH for different
reference return periods Tk.
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influence of the different input variables in the evaluation of γH .

4. Influence of the variables on γH

The purpose of this section is to deeply investigate the influence of the
input variables on the value of the partial safety factor γH . The adopted
variables are within a range that encompasses the majority of the scenarios
that can occur in a real slope [37]. Although an annual failure probability pf
equal to 10−4 is considered for the study, it has to be remembered that pf
has to be properly chosen according to a risk analysis. Following Authors’
judgment, the chosen pf is realistic and can be applied in the majority of
real cases on engineered slopes. As already illustrated, although the design
parameters are fixed for a specific site, the value of the coefficient depends on
the chosen return period Tk of the characteristic mass. It is worth recalling
that in the proposed time-dependent reliability method, for a given site,
the integration of Eqn. (2) is performed on all the possible masses, thus all
the possible return periods are considered. Hence, a reference return period
has not to be selected. On the contrary, the partial safety factor approach
starts assuming a characteristic value of the mass, defined through its return
period. With this purpose, three different reference return periods Tk, i.e.
50, 100 and 200 years, were considered and likewise series of simulations
were performed adopting the sets of input parameters described in Sec. 3.1.
Figure 2 graphically reports what observed in Table 1, displaying the boxplots
for γH for the three Tk. As observed from what reported also in Table 1, the
minimum and maximum values coincide with the whisker limits for all the
Tk. A slightly left-skewed tendency is observed in all the cases, decreasing the
interquartile range increasing Tk. Similarly, the spread of the distributions,
i.e. the extent of the whiskers, decreases for greater Tk.

It emerges from the plot that the adoption of a Tk equal to 200 years
decreases the range of variability of γH , as already observed for the energy
[37], even more evidently. Considering Tk = 200 year as representative, and
with the same pf assumed in Sec. 3.1, parametric analyses were performed
varying, in pairs, the values of h95, h99/h95, the volume of the block Mth/ρ,
λ, α, and N . Table 2 indicates the range of each variable. Each analysis
was performed setting the not-varying parameters at the value reported in
the third column of Table 2, which corresponds to the mean value of the
correspondent range, except for λ = 0.5 and N = 500.
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Figure 3: Contour plots of the partial safety factor γH , as function of h95, h99/h95, Vth,
λ, α, and N .

Figure 3 shows the contour plots of the partial safety factor γH for the
15 possible combinations of pair variables. To understand the plots, it has
to be noted that the coefficient is independent from a variable represented
on a given axis if the contour plot shows bounds parallel the corresponding
axis. In this sense, it emerges that the dependence of γH on N is negligible
for N greater than 200. As expected, the highest influence appears on h95
vs h99/h95 plot. Increasing h99/h95, γH increases almost independently from
Mth/ρ, λ and N . The pattern changes for the remaining variables, where
larger increments are seen for high values of either h95 and α. The obtained
values are within the bounds of the boxplot sketched in Figure 2, which
reveals a maximum value of γH at about 1.6, and a median value at about
1.3.
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Variable Minimum Maximum Fixed value
h95 (m) 1 8 4.5
h99/h95 (-) 1.1 1.4 1.25
Mth/ρ (m3) 0.5 1.5 1
λ (event/year) 0.1 1 0.5
α (-) 0.7 1.5 1.1
N (-) 200 1000 500

Table 2: Range of the variables h95, h99/h95, Mth/ρ, λ, α, and N adopted in the performed
simulations.

5. Function fitting with a shallow neural network

In the previous section the influence of h95, h99/h95, Mth/ρ, λ, α, N , and
Tk on γH , given a pf , was assessed. Similarly, in [36] the dependency of γE
to v99/v95, α, N , and Tk was highlighted. The purpose of this section is to
present a possible fitting for straightforwardly estimating γH and γE without
performing the integrals reported in Sec. 2.

With this purpose 85000 simulations were performed applying the pro-
posed time-dependent reliability method, with a Monte Carlo sampling tech-
nique of the input parameters, uniformly distributed in the range proposed
in Table 3. This allowed to create a sample statistically significant of com-
binations of input and resulting outputs, in terms of both γH and γE. The
creation of the dataset took 670 hours on a workstation with an Intel Silver
Xeon 4214 2.2 GHz CPU.

Figures 4 and 5 plot an empirical density function of the obtained partial
safety factors. The calculations for computing γE were performed according
to the procedure briefly illustrated in Sec. 2.2 and fully detailed in De Biagi et
al. [36]. Both the factors highlight a right-skewed distribution. Considering
γH , for a first attempt, the obtained values can be fitted by a log-normal
distribution, considering 0 as the starting point, i.e. fitting the expression
γH − 1. On the contrary, the law that best fits γE appears to be the Type II
Generalized Extreme Value distribution, i.e. with a shape parameter k > 0.

The results of the parametric analysis were used following the leading idea
to build an input-output relationship that can be used to evaluate the partial
safety factors, for a given pf . The inputs of the 85000 performed simulations
served for the supervised learning of a shallow neural network, adopting the
obtained γH and γE as the sets target outputs. A two-layer feed-forward
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Figure 4: Obtained value of γH for the 85000 performed analyses with the time-dependent
reliability approach. A lognormal fit of (γH − 1) was proposed, with the mean of the
logaritmic values µ = −0.972 and the standard deviation of the logaritmic values σ =
0.431.
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Figure 5: Obtained value of γE for the 85000 performed analyses with the time-dependent
reliability approach. A generalized extreme value fit of γE was proposed, with the shape
parameter k = 0.477, the scale parameter σ = 1.335, and the location parameter µ = 3.430.
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Variable Values
h95 (m) 1 – 8
h99/h95 (-) 1.1 – 1.4
v99/v95 (-) 1.01 –1.4
Mth/ρ (m3) 0.5 –1.5
λ (event/year) 0.1 – 1
α (-) 0.7 – 1.5
N (-) 200 – 1000
Tk (years) 50 – 200
v9 (m/s) 20
ρ (kg/m3) 2700

Table 3: Input parameters adopted in the performed simulations with a Monte Carlo
sampling technique. The variables h95, h99/h95, v99/v95, block volume Mth/ρ, λ, α, N ,
Tk span into the defied range, while v95 and ρ were kept fixed.

network with sigmoid hidden neurons and linear output neurons was built
to fit these two multi-dimensional mapping problems, i.e. finding γH and
γE, respectively. To briefly describe how the neural network works, for each
hidden neuron, the inputs are weighted and summed, then a bias is asso-
ciated. The resulting value is processed with a sigmoid transfer function,
which output is combined with a linear transfer function with the outputs
of all the hidden neurons, resulting in either γH or γE. A Matlab script was
predisposed to model and train the neural network. In both cases, the net-
works were trained with Levenberg-Marquardt backpropagation algorithm,
i.e. the Levenberg-Marquardt optimization was adopted to update weight
and bias values of the network training function. The number of hidden
neurons for each problem was chosen in order to maximize the goodness of
the fit, i.e. an R-square greater than 0.99 was required. For this purpose 4
and 2 hidden neurons were used, respectively. The training of the network
considered the 70% of the samples, a 15% of the samples were used to mea-
sure network generalization, and to halt training when generalization stops
improving. In the end, the remaining 15% were used as test (for computing
R-square statistics), providing an independent measure of network perfor-
mance during and after training. Figure 6 displays the correlation between
the network outputs (predicted γ values according to the created function fit-
ting neural network) and the associated target values (the values computed
with the time-dependent approach). The two regression plots show a lin-
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Figure 6: Goodness of the fitting function with the adopted shallow neural network to
estimate γH and γE , for a given set of input parameters, for pf = 10−4.

ear fit to the adopted output-target relationships that closely intersect the
bottom-left and top-right corners of the plot, i.e. when the outputs coincide
with the target values (the slope is nearly one). The good fit is confirmed by
the R-square values of 0.992 and 0.998 for γH and γE, respectively.

In Appendix A.1 and Appendix A.2, the Matlab neural network fitting
functions are reported.

6. Conclusions

The time-dependent reliability approach introduced for the design of rock-
fall passive measures [36] was enhanced accounting for the variability of the
impacting block mass on the intercepting height of the system. Starting from
the assumption that the failure of the system can occur for a kinetic energy
or a trajectory height of the block greater than the interception capacity
of the system, the proposed reliability-based approach takes into account
the variability in time of the block mass and the uncertainties related to its
kinematics and size.

Referring specifically to the height of the protection system, the approach
was compared with the current semi-probabilistic ultimate limit state ap-
proach based on the application of partial safety factors. Three combinations
of partial safety factors were proposed considering:
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(i) different partial safety factors for each variable assuming a mutual
independence between the two failure mode;

(ii) different partial safety factors for each variable adopting, for the mass,
the same factor γmE

evaluated computing the failure related to the kinetic
energy;

(iii) a unique safety factor for the effect of the actions, named γH .
Sensitivity analyses were performed, varying the most important input

parameters, aiming at finding the most profitable and easy-to-use combina-
tion for the designer. The third combination reveals to be both straightfor-
wards and to have the less dispersion, with maximum values around 2 for
a reference return period of 50 years and an annual failure probability of
10−4. Furthermore, the third combination allows to accounts for the effect
of the resistance in a unique factor and, in the hypothesis to consider a δ-
Dirac distribution of the resistance, it coincides with the partial safety factor
associated with the effects of the actions only.

Once the partial safety factor unique for the effect of the actions, i.e. γH ,
was individuated as effective and easy-to-use, further sensitivity analyses
were performed, with the purpose og deeply investigating the parameters
which mostly affect its value. The h95, h99/h95 represent the variables which
have the most influence, increasing which higher values of γH are obtained.
On the contrary, for a significant number of surveyed blocks N , the influence
of this last appears to be negligible. From the results it is suggested to adopt
a reference return period for evaluating the characteristic mass equal to 200
years. In this framework, for pf equal to 10−4 a value of γH equal to 1.6 can
encompass the great variability of the input parameters, even though the site
specificity of the impacting block mass and frequency of the event has always
to be accurately evaluated.

With the purpose of preparing a tool that can be easily considered by
the designer to get the partial safety factors, a shallow neural network was
built and trained. The input values consist in the parameters of rockfall
occurrence law and point values of the distribution of heights and velocities at
the location of the protection system. The output are γH and γE, respectively,
for a given pf , i.e. 10−4. The training dataset consisted in the results of a
large number of simulations performed with the time-dependent reliability
approach. The obtained fitting functions allow to estimate the partial safety
factors with a very high goodness-of-fit, i.e. R-square greater than 0.99.

Further developments can focus on the definition of a correlation between
kinetic energy and height accounting for propagation parameters, such as the
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topography or the type of soil, or for the shape of the impacting block.
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Appendix A. Shallow Neural Networks functions

In this Section the Matlab codes of the fitting functions of γH and γE are
reported. The computed partial safety factor refer to a failure probability
pf = 10−4. The output of the function corresponds to the value of the factor.
The variables in the input vector are arranged as follows:

• x1(1): h95 in meters (m);

• x1(2): h99/h95;

• x1(3): v99/v95;

• x1(4): Mth/ρ in cubic meters (m3);

• x1(5): λ in events per year (1/yr);

• x1(6): α;

• x1(7): N ;

• x1(8): Tk in years (yrs);

Appendix A.1. Fitting function for the failure related to the intercepting
height

1 function [ y1 ] = NetworkFunction gammaH ( x1 )
2 x1 step1 . x o f f s e t =

[ 1 . 0 0 0 0 7 7 0 5 1 3 9 0 7 5 ; 1 . 1 0 0 0 0 3 2 5 6 2 7 0 3 6 ; . . .
3 1 .01000012450238 ;0 . 500022669004365 ; 0 . 100022076771101 ; . . .

4 0 .700000426754315 ;200 .004539009949 ;50 .0044576267548 ] ;
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5 x1 step1 . ga in = [ 0 . 2 8 5 7 2 5 2 1 0 5 7 4 2 4 2 ; 6 . 6 6 6 7 7 4 4 9 5 7 1 9 7 9 ; . . .
6 100 . 001737957821 ; 2 . 00006109248878 ; 2 . 22233592364953 ; . . .

7 2 .5000524617702 ;0 .0025000793124972 ;0 .0133340172249735 ] ;

8 x1 step1 . ymin = −1;
9

10 b1 = [ −0 .96994424341848373139 ;2 .4434931938144042185 ; . . .
11 0 .93632230418068318478 ;2 .6147332054610310514 ] ;
12 IW1 1 = [0 .6626552369493338146 0.30114462942269037971

0.0008056492358921626528 −0.10338475458880468094
−0.23606786259033188391 0.72362014896920678897
0.021297657205072473979
−0.081080858132982741582;0.4302835165370316739
0.080747465725212963505 0.0022677400790091554149
−0.061669127636850007423 −0.13984395884369371643
0.62310571127428959759 0.041585258818864809238
0.28680238300776356164;−0.64252896642660550786
−0.32471469700949423531 −0.00078770822910222669262
0.10217926565206587874 0.22524048868845417126
−0.70136966545215106983 −0.020577691139044868018
0.080394582948596471361;1 .1553121021136427693
−1.0949621524085095814 −0.0059651455104693549766
0.051857871447203142401 0.21977159642696225683
−1.1457661662696296823 −0.036390638618792062187
−0.11853874833516518661] ;

13

14 b2 = 7.765402085535460408;
15 LW2 1 = [−12.773539096945890847 −8.5142788550969807915

−13.408937654336398282 0 .21433821914027162414 ] ;
16

17 y1 step1 . ymin = −1;
18 y1 step1 . ga in = 1.31336136992816 ;
19 y1 step1 . x o f f s e t = 1.10423683202347 ;
20

21 Q = s ize ( x1 , 1 ) ; % samples
22

23 x1 = x1 ’ ;
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24 xp1 = mapminmax apply ( x1 , x1 s tep1 ) ;
25

26 a1 = t an s i g app ly ( repmat ( b1 , 1 ,Q) + IW1 1∗xp1 ) ;
27

28 a2 = repmat ( b2 , 1 ,Q) + LW2 1∗a1 ;
29

30 % Output 1
31 y1 = mapminmax reverse ( a2 , y1 s tep1 ) ;
32 y1 = y1 ’ ;
33 end
34

35 % ===== MODULE FUNCTIONS ========
36 % Map Minimum and Maximum Input Process ing Function
37 function y = mapminmax apply (x , s e t t i n g s )
38 y = bsxfun (@minus , x , s e t t i n g s . x o f f s e t ) ;
39 y = bsxfun ( @times , y , s e t t i n g s . ga in ) ;
40 y = bsxfun ( @plus , y , s e t t i n g s . ymin ) ;
41 end
42

43 % Sigmoid Symmetric Transfer Function
44 function a = tan s i g app ly (n , ˜ )
45 a = 2 . / (1 + exp(−2∗n) ) − 1 ;
46 end
47

48 % Map Minimum and Maximum Output Reverse−Process ing
Function

49 function x = mapminmax reverse (y , s e t t i n g s )
50 x = bsxfun (@minus , y , s e t t i n g s . ymin ) ;
51 x = bsxfun ( @rdivide , x , s e t t i n g s . ga in ) ;
52 x = bsxfun ( @plus , x , s e t t i n g s . x o f f s e t ) ;
53 end

Appendix A.2. Fitting function for the failure related to the energy absorp-
tion capacity

1 function [ y1 ] = NetworkFunction gammaE ( x1 )
2

3 x1 step1 . x o f f s e t =
[ 1 . 0 0 0 0 7 7 0 5 1 3 9 0 7 5 ; 1 . 1 0 0 0 0 3 2 5 6 2 7 0 3 6 ; . . .
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4 1 .01000012450238 ;0 . 500022669004365 ; 0 . 100022076771101 ; . . .

5 0 .700000426754315 ;200 .004539009949 ;50 .0044576267548 ] ;

6 x1 step1 . ga in = [ 0 . 2 8 5 7 2 5 2 1 0 5 7 4 2 4 2 ; 6 . 6 6 6 7 7 4 4 9 5 7 1 9 7 9 ; . . .
7 100 . 001737957821 ; 2 . 00006109248878 ; 2 . 22233592364953 ; . . .

8 2 .5000524617702 ;0 .0025000793124972 ;0 .0133340172249735 ] ;

9 x1 step1 . ymin = −1;
10

11 b1 = [−5 .2355495278649977209 ;2 .9935483207957438445 ] ;
12 IW1 1 = [4 .3091351516700217931 e−06

0.00014938091770804072717 −0.018827107883444122588
0.0013818303542731200789 0.044839727305480206465
−1.4598652655344621643 −0.065346460756708399376
−1.4479608354462660813;−4.9177503041436997023 e−05
0.00018293655394017440882 0.025189616948156488829
3.1940124495348630083 e−05 −0.047403794007839346325
0.37330636595541399902 0.070505765509977738614
0 .41031632048195126883 ] ;

13

14 b2 = 83.32311606555633432;
15 LW2 1 = [53.245739252725059032 −31.104005154307117209] ;
16

17 y1 step1 . ymin = −1;
18 y1 step1 . ga in = 0.0588983480590955 ;
19 y1 step1 . x o f f s e t = 1.80303653966967 ;
20

21 Q = s ize ( x1 , 1 ) ; % samples
22

23 x1 = x1 ’ ;
24 xp1 = mapminmax apply ( x1 , x1 s tep1 ) ;
25

26 a1 = t an s i g app ly ( repmat ( b1 , 1 ,Q) + IW1 1∗xp1 ) ;
27

28 a2 = repmat ( b2 , 1 ,Q) + LW2 1∗a1 ;
29

31



30 y1 = mapminmax reverse ( a2 , y1 s tep1 ) ;
31 y1 = y1 ’ ;
32 end
33

34 % Map Minimum and Maximum Input Process ing Function
35 function y = mapminmax apply (x , s e t t i n g s )
36 y = bsxfun (@minus , x , s e t t i n g s . x o f f s e t ) ;
37 y = bsxfun ( @times , y , s e t t i n g s . ga in ) ;
38 y = bsxfun ( @plus , y , s e t t i n g s . ymin ) ;
39 end
40

41 % Sigmoid Symmetric Transfer Function
42 function a = tan s i g app ly (n , ˜ )
43 a = 2 . / (1 + exp(−2∗n) ) − 1 ;
44 end
45

46 % Map Minimum and Maximum Output Reverse−Process ing
Function

47 function x = mapminmax reverse (y , s e t t i n g s )
48 x = bsxfun (@minus , y , s e t t i n g s . ymin ) ;
49 x = bsxfun ( @rdivide , x , s e t t i n g s . ga in ) ;
50 x = bsxfun ( @plus , x , s e t t i n g s . x o f f s e t ) ;
51 end
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