
19 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Robust robot tracking for next-generation collaborative robotics-based gaming environments / Piumatti, Giovanni;
Lamberti, Fabrizio; Sanna, Andrea; Montuschi, Paolo. - In: IEEE TRANSACTIONS ON EMERGING TOPICS IN
COMPUTING. - ISSN 2168-6750. - STAMPA. - 8:3(2020), pp. 869-882. [10.1109/TETC.2017.2769705]

Original

Robust robot tracking for next-generation collaborative robotics-based gaming environments

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/TETC.2017.2769705

Terms of use:

Publisher copyright

©2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2688768 since: 2020-12-23T18:19:28Z

IEEE



IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING 1

Robust Robot Tracking for Next-Generation
Collaborative Robotics-based Gaming

Environments
Giovanni Piumatti, Fabrizio Lamberti, Senior Member, IEEE,

Andrea Sanna, and Paolo Montuschi, Fellow, IEEE

Abstract—The collaboration between humans and robots is one of the most disruptive and challenging research areas. Even
considering advances in design and artificial intelligence, humans and robots could soon ally to perform together a number of
different tasks. Robots could also became new playmates. In fact, an emerging trend is associated with the so-called phygital
gaming, which builds upon the idea of merging the physical world with a virtual one in order to let physical and virtual entities,
such as players, robots, animated characters and other game objects interact seamlessly as if they were all part of the same
reality. This paper specifically focuses on mixed reality gaming environments that can be created by using floor projection, and
tackles the issue of enabling accurate and robust tracking of off-the-shelf robots endowed with limited sensing capabilities.
The proposed solution is implemented by fusing visual tracking data gathered via a fixed camera in a smart environment with
odometry data obtained from robot’s on-board sensors. The solution has been tested within a phygital gaming platform in a real
usage scenario, by experimenting with a robotic game that exhibits many challenging situations which would be hard to manage
using conventional tracking techniques.

Index Terms—Online tracking, TLD, odometry, data fusion, gaming, projected environment, mixed reality, collaborative robots.

F

1 INTRODUCTION

IN 2015, the World Economic Forum identified
“Next-generation robotics” as one of the top 10

emerging technologies, by outlining how in the near
future robots will allow humans to evolve through
alliances with machines ever more intelligent, collab-
orative, adaptive and flexible [1]. Collaboration be-
tween humans and robots has the potential to change
our everyday lives. In fact, from purely industrial and
scientific tools used to replace humans for laborious
or uncomfortable operations, robots are becoming
true “companions”, helping humans in a variety of
tasks. Many so-called service robots are already on the
market, ranging from household appliances, such as
vacuum cleaners [2] or lawn mowers [3], to toys for
both entertainment [4] and educational [5] purposes.

In most of these application scenarios, robots must
autonomously perform several common tasks that
are essential to their functioning. One such task is
localization within the environment. The ability to
accurately pinpoint a robot’s position (and, usually,
also orientation) is extremely important, as it enables
high-level capabilities such as global path planning
and goal-based navigation [6] that are the starting
point for more complex tasks (such as collaborative
ones).

• The authors are with the Dipartimento di Automatica e Informatica of
Politecnico di Torino, Corso Duca degli Abruzzi 24, I-10129, Torino,
Italy. E-mail: see http://grains.polito.it/people.php

A large amount of research has been devoted to en-
abling robots to self-localize, i.e., to estimate their own
pose (position and orientation) using only their on-
board sensors. This approach is considered the most
advantageous for mobile robots as it allows them to
navigate most of the environments. State-of-the-art al-
gorithms such as Simultaneous Localization and Map-
ping (SLAM) [7] allow robots to autonomously build
a map of a previously unknown environment and lo-
cate in it. However, self-localization algorithms often
require sophisticated sensors and high computational
power. Therefore, robots used, e.g., in consumer-level
applications (such as gaming) are often built using
cheaper sensors and simpler algorithms at the expense
of accurate localization [8].

A different approach to localization consists of
relying on smart environments, instrumented with
cameras, beacons, and other types of devices that
can be used to track the robot’s movements. The
main drawback of this approach is that the robot can
only be localized in that specific environment or in
similarly-instrumented ones [9]. On the positive side,
this approach enables the implementation of rather
sophisticated behaviors, such as dynamic obstacle
avoidance [10], object detection/recognition, complex
decision making [11], etc. in relatively simple and
cheap robots. Moreover, with this approach multiple
robots can be managed in a concurrent way, therefore
reducing their sensory and computational needs and,
hence, their cost. Lastly, a smart environment has the
advantage of providing greater situational awareness
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to robots operating in it, since its sensors will likely
capture more information than those of a single robot.
This is especially important, e.g., in safety-critical
settings, where robots may need to be aware of what
is happening outside their sensors’ range in order to
make the correct decisions.

The concept of smart environment has been already
investigated in a number of works [12], where it is
used, e.g., for people tracking, activity recognition,
etc. In this paper, considering also the fact that en-
abling technologies are expected to gain ever more im-
portance and become more affordable and ubiquitous
in the coming years [13][14], the concept is specifically
exploited in the context of gaming.

In particular, the work reported in this paper is part
of the activities that are being carried out to create
a platform for mixed reality gaming in instrumented
environments. The platform exploits the concept of
phygital gaming, which is the idea to merge the phys-
ical world and a digital game environment with the
aim to create the “perception” of a unified reality
where people, robots and digital objects can interact
seamlessly in various ways (a brief history of phy-
gital gaming and of so-called physically interactive
robogames is provided in [15] and [16]). The platform
is designed to project a dynamic playground on the
floor, where virtual elements can ultimately be drawn.
Physical entities, i.e., players and robots, are detected
and tracked using one or more cameras, whereas
a game engine manages the physics simulation (re-
sponsible, e.g., for handling the interaction between
physical and virtual objects) and the game logic.

The overall design envisaged for the platform, the
preliminary games created and the user studies car-
ried out so far have been presented in previous works
[17][18]. This paper specifically focuses on the robot
tracking algorithm, which has been designed by also
considering the outcomes of the above experiments.

The challenges for tracking mobile robots in this
type of environments mainly come from the design
requirements of the games themselves. The main
problems are: the presence of a dynamic background
and local changes in luminosity (due to the projected
virtual environment), which may interfere with the
detection of the target to be tracked; occlusions (e.g.,
caused by human players, which may happen as a re-
sult of certain game interactions between players and
robots), fast movement and abrupt direction changes,
as well as motion blur (since a fast-moving robot is
expected to make the game more engaging).

Moreover, the setup of the environment is not,
by design, particularly constrained. In order to keep
installation easy, it should be possible to position
cameras quite freely, as long as their combined fields
of view encompass the entire playground area. Lastly,
the gaming system is intentionally designed to lever-
age commercial off-the-shelf robots. Therefore, the
tracking algorithm should make few assumptions on

the physical aspect of the robots. Notwithstanding,
many commercial robots are equipped with inexpen-
sive sensors. For instance, some robots developed
as gaming companions include inertial measurement
units (IMUs) and wheel encoders. These sensors en-
able the robot to keep track of its own movements by
providing an odometry, i.e., a rough estimate of its
pose with respect to the starting pose, which could
be used to improve tracking performance.

Based on the above considerations, the goal of this
paper is to present a tracking algorithm that exploits
data fusion techniques to meet the aforementioned
requirements. The proposed algorithm is designed to
complement image data coming from a fixed RGB
camera in a loosely instrumented smart environment
with any type of odometry obtained with robot’s on-
board sensors. The problem of tracking a robot within
a projected environment is known in the literature and
many solutions have been proposed already. How-
ever, to the best of the authors’ knowledge, this is
the first one not requiring severe assumptions either
on the robot’s available sensors or on the setup of the
environment (e.g., on camera positioning).

The robot is firstly tracked using the state-of-the-
art Tracking-Learning-Detection (TLD) algorithm [19].
TLD has been selected based on an a preliminary
evaluation carried out by running a recent benchmark
on online visual tracking [20] over a number of video
sequences featuring challenges that may be found in
real gaming scenarios. The main issue with visual
tracking algorithms is represented by model drifting.
Internally, algorithms such as TLD use a classifier
trained on a few images of the target object, which
are updated as time passes. Problems occur when the
model starts to be updated with images that contain
unwanted information, causing it to drift.

To cope with the above issue, TLD was modified to
make model updates occur only once the candidate
bounding box that is supposed to contain the target is
validated against the robot’s odometry. The resulting
visual tracking algorithm balances drifts that might
be introduced by on-board sensors. It also provides
an updated transformation matrix between the global
(absolute) and the robot’s local (relative) coordinate
systems. This matrix allows to transform points from
the robot’s (i.e., the odometry) coordinate system to
the global one, thus enabling absolute localization
even when visual tracking fails, e.g., due to occlusion
of the target. A further benefit of this approach is that
it allows to use a fast control loop, since the robot’s in-
ternal sensors have typically a higher throughput than
visual tracking. It is worth noting that even though
design requirements for the algorithm described in
this paper stem from its expected usage within a
projected playground, the proposed approach could
be applied to other types of smart environments, like
smart homes, smart factories, etc. [11][21][22].

The rest of the paper is organized as follows: Sec-
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tion 2 reviews the state of the art in visual tracking.
Section 3 discusses the process that led to the selection
of TLD. Section 4 presents the design and imple-
mentation of the proposed odometry-assisted visual
tracking system. Section 5 reports on the experimental
evaluation. Lastly, Section 6 concludes the paper.

2 BACKGROUND

Robot localization and mapping are arguably among
the most important problems to solve in autonomous
and collaborative mobile robotics [23]. On their own,
the two problems are not particularly complex, and
many solutions have already been developed. For in-
stance, given the map of an indoor environment, vari-
ous approaches to the localization problem have been
proposed, which can be divided in two categories:
position tracking and global position estimation [24].

The first approach assumes that the initial pose
of the robot is known (or defined arbitrarily). Then,
sensor measurements are used to estimate how the
pose evolves over time. The main difficulty lays in
modeling and recovering from measurement errors.
Measurement errors can grow unbounded, inducing
drifts in the pose estimation. An algorithm representa-
tive of this category is optical flow [25]. The algorithm
has found many applications in visual odometry or
stereo vision, where it is used to reconstruct a 3D
scene from two or more images taken from different
viewpoints. To partially solve the problem of drifts,
the authors of [26] suggest to use geometric beacons,
i.e., distinctive features of the environment such as
walls or corners, to limit uncertainty. By using an
extended Kalman filter and an a priori map of the
beacons’ location, the proposed method is able to limit
error growth along different dimensions, depending
on the feature observed. For instance, observing a wall
reduces uncertainty along the direction perpendicular
to the wall but not along the parallel direction.

The main limitation of position tracking algorithms
is that they are not able to determine the robot’s pose
globally, but are dependent on a manual initialization
of the starting pose. More importantly, if at any point
the algorithm loses track of the current position, it
cannot, by definition, recover it.

Global position estimation algorithms were devel-
oped to cope with such limitations. These techniques
use more sophisticated belief models such as, for
instance, Markov processes [27]. The idea is to model
robot’s pose as a set of posterior probabilities calcu-
lated over the whole state space (i.e., all the possible
poses). The state space must be discretized in order
to compute the posteriors. Different approaches were
developed, characterized by various granularities.

For instance, in [27], the environment is sampled in
a dense grid. Each cell stores the conditional proba-
bility for the robot to be at that location, given the
current sensor readings. Once the robot has been

globally located, the state space is reduced to a grid
surrounding the robot’s current position. The main
problem with this approach is that grid size, resolu-
tion and, therefore, accuracy in the position estimation
have to be predetermined. Some works showed that it
possible to use space subdivision to implement adap-
tive grids, whose resolution changes where needed
[28]. A coarser approach involves topological instead
of metric maps. In [29], the authors start with the
assumption that the robot has access to robust, low-
level navigation skills (such as going through a door
or around a corner), and posit that the robot does not
actually need to know its exact position, but just a
coarse location, such as a room or a corridor. The algo-
rithm exploits a pre-built topological map connecting
areas of interest in the environment, sensor readings
and high-level commands to refine the probability
distribution as it moves. The accuracy of the estimated
position depends, therefore, on the map resolution.

To overcome most of the limitations of global po-
sition estimation techniques, the authors of [30] pro-
pose the Monte Carlo (MC) approach. This approach
represents the state space as a finite set of weighted
particles, the weight being the probability of that state.
This representation allows the algorithm to approxi-
mate any arbitrary probability distribution, making it
very suitable for localization. At each time step, the
algorithm updates the distribution by randomly ex-
tracting particles based on their weight and a motion
model. Then, weights are adjusted based on sensor
readings. The algorithm is able to maintain multiple
hypothesis and to refine and resolve ambiguities as
more information is gathered. It can determine the
robot’s position globally, and is able to recover during
operation if tracking is lost.

In [28], the two classes of map-based algorithms
(position tracking and global position estimation) are
integrated into a single hybrid algorithm. The algo-
rithm adapts its computational and memory require-
ments depending on its confidence in the robot’s
position. When confidence is high, the algorithm be-
haves like a position tracking algorithm, maintaining
a small search space. When tracking is lost, or con-
fidence degrades, the system transitions towards a
global positioning technique. Although this algorithm
is probably the most efficient and accurate one, similar
to the other techniques reported above, it suffers from
a major drawback: it requires a pre-existing map of the
environment, which greatly reduces its ability to be
deployed quickly and easily. In order to remove this
requirement, the robot must be able to simultaneously
map the environment as well.

The algorithms able to concurrently carry out map-
ping and localization within an environment are
known, collectively, as SLAM. Specifically, probabilis-
tic SLAM techniques estimate, at every time step,
both the robot’s pose and a map of the environment
the robot is working in. Early approaches adopted
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extended Kalman filters to model their beliefs [7].
More recently, influenced by [28] and [30], the authors
of [31] adopted the same MC technique of [30] in their
SLAM implementation. Its main benefits being the
possibility to explicitly model non-linear probability
distributions and its reduced computational complex-
ity, the MC-based solution represents the state-of-the-
art for localization and mapping. Nonetheless, SLAM
still presents many open problems. In fact, most of the
current implementations work correctly only in struc-
tured environments (e.g., indoors) and virtually all
of them are based on a static world assumption (i.e.,
landmarks do not move). These assumptions limit the
applicability of SLAM in real-world scenarios, where
environments are rarely completely static.

Considering the main target application for which
the tracking system reported in this paper was built,
self-localization techniques are not particularly appro-
priate. Firstly, the mixed reality gaming system is ex-
pected, by design, to be used with small off-the-shelf
toy robots, which are often equipped with low-cost
sensors. Unfortunately, the tracking algorithms in the
above review generally require high-quality sensors,
such as laser range finders, sonars, etc. Secondly, the
robot is going to operate in a highly dynamic environ-
ment, with moving people/robots in close proximity,
which might interfere with its mapping capabilities.
Finally, in order to correctly map the physical world
to the digital one, the robot’s position must be trans-
formed into the projection’s coordinate system. The
transformation matrix between this coordinate system
and the robot’s coordinate system is dynamic and
must be determined at every time step, a task not
easily to be accomplished.

These considerations, coupled with the fact that
the gaming system is expected to be deployed inside
a smart environment, led to the choice of an exter-
nal tracking mechanism. In particular, since the only
constraint on the hardware available on the robots
is that it exposes some sort of odometry, specialized
methods such as magnetic or ultrasonic trackers are
not applicable. Therefore, visual tracking techniques
are arguably the most appropriate choice in this case.

The idea of exploiting external vision sensors to
localize and track a robot has received little attention
compared to the task of self-localization. For instance,
in [10] and [13], a network of cameras is used to
track both robot and obstacles in the environment.
Images captured by the cameras are fed to a planning
algorithm in order to implement path following and
obstacle avoidance. A similar system is presented in
[9] and [32], where on-board sensors are taken into
consideration as well. The robot’s sensors are used
to integrate missing data when visual tracking fails
(e.g., because the robot goes out-of-frame). In both
the systems, the robot is outfitted with IR beacons,
which help the vision system determine position and
orientation with great accuracy. In [33], the authors

propose a system that is able to autonomously learn
a robot’s appearance model and subsequently track it
by using an external camera and the robot’s odometry.
In order to distinguish the robot from the background,
the vision system uses a discriminative background
model initialized with a single frame of the back-
ground. Such an approach requires the environment
to be mostly static, otherwise features of the environ-
ment may be mistaken for features of the robot. The
authors state their solution is robust against short-
term occlusions, since a Kalman filter allows to predict
the robot’s position quite reliably over short peri-
ods of time. However, the algorithm’s performance
in such situations was not quantified, and it is not
stated whether the algorithm is robust against out-of-
frame events or false positives. A similar concept is
proposed in [14], where authors present a large-scale
smart environment composed of a scalable network of
cameras and other sensing units. Besides implement-
ing robot tracking, their smart environment is able to
detect the movement of people or other objects.

Considering the domain of mixed reality robotic
gaming, most of the existing works exploit custom
sensors, markers or similar devices to assist tracking.
For example, in [34], colored markers on the robots
allow the tracking system to accurately determine
their identity, position and orientation. Tracking is
performed with an overhead camera, and occlusions
are not handled (as they cannot occur). In [35], the
robots are outfitted with simple light sensors. By
projecting carefully-designed fiducial markers on the
robots, after an initialization phase devoted to de-
termine their starting position, the system is able to
locate the robots in the projected area. The need for
camera-projector calibration is bypassed, since track-
ing is performed in the same coordinate system as the
projection. In [36] the authors use a combination of
display-based tracking, special IR markers and depth
cameras to track robots, pens or other objects all
interacting within a projected environment.

All of these works show how it is possible to exploit
a great number of different devices and techniques
to track people, robots and objects. Such technologies
are used by the various authors to enable complex
interaction paradigms between humans and machines
(both robots and computer systems). Although the
interaction mechanisms proposed in the works above
show great promise, the underlying enabling tech-
nologies (i.e., the tracking systems) require certain
constraints on the objects being tracked (e.g., active
IR transmitters, known appearance, etc.).

This paper proposes a solution to the robot tracking
problem which does not impose constraints on the
appearance of either the robot or the environment (for
the purpose of tracking), and only requires the robot
to provide some form of odometry. Odometry data
are fused with position information provided by an
online visual tracking algorithm. This choice avoids
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the need of fiducial markers, special sensors or other
devices on the robot, as the tracker is quickly trained
on the robot’s own appearance. The robot’s orienta-
tion can be inferred from its motion, by considering
its position in previous frames.

The robot’s odometry, in particular, is exploited in
different ways: it is used to validate the trajectory
reported by the visual tracker in order to avoid per-
forming the training with incorrect data; it is fused
with visual tracking data in an extended Kalman filter
to obtain a more robust estimate (the filter lets the
algorithm compensate for the possibly different frame
rates of odometry and visual tracking data, as well as
to deal with occlusions and out-of-frame situations); it
provides a search window for the visual tracker that
reduces the probability to select a wrong target.

3 REQUIREMENTS AND VISUAL TRACKING
By focusing on the target application, which requires
tracking sensor-enabled mobile robots in a mixed
reality-based gaming environment instrumented with
a RGB camera, the first step in the design methodol-
ogy pursued in this work was to define the funda-
mental requirements the system should implement.
Requirements can be summarized as reported below.

• Real-time tracking: the tracking system must be
able to work in real-time, i.e., it must be able to
process data collected from available sensors as
quickly as they are produced.

• Online learning: the algorithm must be able to
adapt to changing conditions in lighting, back-
ground and robot’s appearance. The algorithm
should not require the user to perform supervised
training before it can be used.

• Robustness: tracking must be robust against oc-
clusions, rapid changes in robot’s direction, false
positives, etc. It should also be possible to auto-
matically resume the tracking once the robot exits
and reenters the camera’s field of view.

• Accuracy: the estimated pose returned by the
tracking system must match the robot’s real pose
within an arbitrarily small error range.

Real-time tracking is an essential requisite to correctly
implement the illusion of mixed reality. For example,
to simulate a collision between a robot and a virtual
ball the tracker must be able to communicate the
robot’s position to the game engine as soon as it
touches the virtual ball’s edge. The physics engine
will then simulate the collision and change the ball’s
trajectory accordingly. If the tracker is too slow, the
simulated collision will start too late and the human
observer will not be able to correlate cause and effect,
thus breaking the virtual-real continuum. Further-
more, real-time tracking is necessary to implement the
feedback controller driving the robot.

Online learning is the requisite that provides the
system with the necessary flexibility to operate un-
der different environmental conditions and to track

arbitrary-looking robots. Additionally, online learning
does not require lengthy training to take place before
the tracking can start, which improves ease of use.

Robustness is another critical requisite. The system
should keep tracking the robot as long as possible, by
avoiding to lock onto wrong targets. Consequences of
a false positive can be quite catastrophic. Any module
that is using the visual tracker output would start
receiving incorrect data. The game logic would believe
the robot is in a position different than the actual one.
If the robot is being driven by a feedback controller,
it would start behaving erratically, since the received
feedback would be incorrect.

The last requirement is about accuracy. Although
it may be regarded as the less critical requisite, it
is nonetheless important to maintain the illusion of
mixed reality. In fact, considering the typical size of a
projected playground and of the robots involved, the
acceptable error margin lies within a few centimeters.

The next step consisted in selecting a visual tracking
algorithm able to satisfy the requirements presented
above. There are many alternatives available, with
different characteristics and performance. A possi-
bility for exploring a rather comprehensive set of
algorithms for online visual tracking is to consider the
benchmark reported in [20]. Here, 29 algorithms were
reviewed, their source code or binaries provided, and
their overall performance assessed against a public set
of video clips showing a number of critical features.

However, the specific scenario of robot tracking in
a mixed reality playground requires the evaluation to
be performed under more specific conditions. Hence,
20 video sequences depicting situations that could
occur during real playing were recorded and used for
running the benchmark. Sequences were recorded in
the smart environment later used for the experimental
evaluation (Section 5), capturing both camera images
and robot odometry in a synchronized manner. The
Orbotix Sphero 2.01 robot was used. Sequences (in-
cluding tracking results) are available for download2.
Raw data are available on request.

In each sequence, the following attributes are
present in any combination (abbreviations used in
sequence names are given): occlusion (“occl”, the
robot is occluded in a variable number of frames, and
sometimes direction changes happen during occlu-
sion); projection (“proj”, the robot enters the projected
area, where a moving pattern is displayed); out-of-
frame (“oof”, the robot goes out of the camera’s field
of view, sometimes returning from a different point);
false positive (“fp”, there is a second, identical robot
in the field of view). Sequences are named after the
set of attributes they present. Sequence “baseline”
represents the reference, since attributes are all absent.
Two further sequences are introduced, which are ex-

1. http://www.sphero.com/sphero
2. https://goo.gl/q8RWC7
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(a) (b)

Fig. 1. Benchmark results (top 10 algorithms): a) success plot, sorted by AUC, b) precision plot, sorted by
precision at 20px error threshold. Abbreviations used for algorithms are the same of [20].

ploited to evaluate the impact of changing lighting
conditions (“lights change”) and reflections (“reflec-
tion”) on the floor. Finally, two additional projection
and false positive sequences are used to evaluate
different conditions (“projection2”, with a different
pattern projected on the floor, and “fp2”, where the
robot collides with the second false positive robot).

Sequences were manually labeled to build the
ground truth. Occlusions and out-of-frame events
were labeled too. The robot’s position in occluded
frames was estimated with the recorded odometry.

Benchmarking was performed using an Intel Core
i7-4810MQ at 2.8 GHz with 8GB RAM. Algorithms
were executed using default parameters. Results ob-
tained with one-pass evaluation (OPE) [20] are re-
ported in Fig. 1. As done in [20], only the top 10
algorithms are shown, ranked by success and preci-
sion. The success plot (Fig. 1a) indicates, for each algo-
rithm, the percentage of frames in which the tracked
object’s bounding box overlaps the ground truth by
more than a threshold, varying the threshold itself.
The precision plot (Fig. 1b) reports the percentage of
frames in which the distance of the tracked object
from the ground truth (considering bounding box’s
center) is less than a threshold. In the precision plot,
algorithms are ranked by precision with a 20 pixel
error threshold. In the success plot, the use of a
specific threshold value to rank the algorithms is not
deemed as significant [20]. Instead, a measure known
as Area Under the Curve (AUC) of the plot is used.
Further details on the evaluation process, e.g., the
performance achieved on each sequence and average
frame rate, are provided in Appendix A (included as
supplementary material).

Given the requirements set, and considering the
results obtained with the above sequences, it was
decided to ground the design of the fused tracking
system on the TLD algorithm. In fact, when the
average performance over all the sequences is con-
sidered, TLD is by far the most robust alternative.
Even though it appears to suffer in sequences with
false positives and changing lighting conditions, its

performance is only slightly below the best algorithms
for those sequences. The average frame rate achieved
by TLD (∼ 34 Hz) is lower than with some of the other
algorithms considered (see Table 1 in Appendix A).
Nonetheless, it can still guarantee a sufficient tracking
speed for real-time operations.

4 ODOMETRY-ASSISTED TRACKING

For the purpose of better understanding how visual
information gathered from the RGB camera is ex-
ploited in the design of the odometry-assisted track-
ing system proposed in this paper, it is necessary to
introduce the basics of the visual tracking algorithm
selected in Section 3. Hence, in the following, the
key concepts behind the TLD technique will first be
presented (for a complete formalization see [19]). Af-
terwards, the way odometry information is integrated
in the overall tracking system will be shown.

4.1 The TLD Algorithm
The TLD algorithm is composed of four main modules
(Fig. 2): a detector (a cascading classifier), a frame-to-
frame tracker, an integrator and a learning compo-
nent. When correctly trained, the detector is able to
locate the target within the whole frame. The tracker,
on the other hand, requires the bounding box from
the previous frame to estimate its displacement in the
next frame. The output of the detector and tracker are
combined by the integrator into a single bounding
box. The learning component manages to train the
classifier, when appropriate. It is assisted by two
“expert” processes (dashed block in Fig. 2), called “P-
expert” and “N-expert”, whose purpose is to analyze
the detector’s output and check for false positives (FP)
and false negatives (FN). If any are found, they are re-
labeled and used to train the classifier.

The algorithm is initialized by providing the bound-
ing box of the object to track in the initial frame.
The learning component bootstraps the classifier by
training it with synthesized positive patches extracted
from the initial bounding box and negative patches
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Fig. 2. Block diagram of the TLD algorithm [19]. Inputs
are the initial bounding box containing the target and
the unlabeled frames. The output is a bounding box
centered on the tracked object.

from the background. In the next frames, the tracker
and the PN-experts are used to validate the detector’s
results. The P-expert uses the tracker to check if the
candidate bounding box was correctly classified. If
the tracker’s result was classified as negative (i.e.,
the detector failed to identify the target), a set of
positive patches are synthesized and used for training.
Similarly, the N-expert checks for false positives: any
bounding box that was classified as positive and does
not overlap with the tracker output is used to extract
negative patches for training. Finally, the results of de-
tector and tracker are combined in a single bounding
box output by the integrator module. If the tracker
fails to provide a bounding box for the current frame,
the PN-experts are unable to validate the detector’s
output. In such cases, the algorithm outputs a result
only if the detector reports a single bounding box
candidate. Otherwise, if multiple potential candidates
are identified or if neither the detector nor the tracker
output a result, the object is declared as not visible.

In their formulation of the PN learning technique
summarized above, the authors demonstrated that the
number of errors in the two most common classes,
i.e., FN and FP, drops as the quality of the P- and
N-experts increases. Even though the PN-experts are
automatic processes which can make mistakes them-
selves, it can be proved that they compensate each
other’s errors. As long as the number of errors made
by one of them is lower than the number of patches
correctly re-labeled by the other, the detector will
converge to a state with less errors.

4.2 Integration of Odometry Information in TLD

After having analyzed the internal mechanisms of the
TLD algorithm and its performance on the proposed
sequences, it is possible to understand the reasons for
tracking failure in different situations. In fact, experi-
ments highlighted that performance suffers the most
in the presence of projection. Specifically, TLD fails
shortly after the robot enters the projection, possibly

locking onto a patch on the floor. Usually it is able to
recover when the robot moves outside the projected
area, but not in all the cases. Tracking fails when
neither the tracker nor the detector are able to provide
a valid estimate of the robot’s position. This behav-
ior implies that the projection interferes with both
processes. When the algorithm loses the target and
starts tracking the floor, the detector is being trained
with false positives, meaning the internal appearance
model is being wrongly updated. If the robot exits
the projected area, the detector can identify it and
resume correct tracking only if the internal model
was not completely overwritten by incorrect data.
Additionally, in case of occlusions or out-of-frame
events, it is possible for the TLD algorithm to detect
and start tracking false positives. This situation can
occur if there are image patches that are classified
as positive (because they look similar to the robot in
appearance). The N-expert is not able to validate the
results, because the tracker did not provide an output
(since the robot is not visible). Thus, if the detector
identified only one patch as positive, that patch is
considered to be the tracked object. In subsequent
frames, the tracker will lock onto that patch and, in the
worst-case scenario, reinforce the incorrect training.

It is evident from the analysis above that the main
problem with the TLD algorithm is model degrada-
tion due to incorrect training. The PN-experts were
designed, respectively, to reinforce the model when
the classifier fails to identify it and to avoid its
degradation. However, there are situations in which
the available knowledge is not enough to determine
whether to accept or reject a given patch. This paper
proposes the design of an additional N-expert process
capable of identifying false positives by exploiting the
robot’s own odometry.

The proposed N-expert should be able to discard
false positives in those situations when the original
N-expert was not. As a result, the classifier would be
trained with a smaller number of false positives, im-
proving its robustness. In the following, the approach
will be presented using the level of detail used in
Section 4.1. A complete formalization based on the
notation used in [19] is provided in Appendix B.

The algorithm assumes that the setup of the envi-
ronment and the camera intrinsics are known. With
reference to Fig. 3, the camera footprint coordinate
system is obtained by projecting the camera frame onto
the ground plane, with the XY plane parallel to it. This
coordinate system is used for extracting the robot’s 3D
position from its 2D projection on the image plane (it
is assumed that the robot always lies on the ground
plane). The robot reports its pose (robot frame is a
coordinate system affixed to it), relative to odom frame,
whose pose is arbitrary and usually set to the pose the
robot is in when it is turned on. In order to be able to
use odometry data to validate the detector’s output,
the proposed N-expert needs to know the transfor-
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Fig. 3. Coordinate systems involved in a typical setup.
Axes color coding: X red, Y green, Z blue. Yellow lines
represent the available transformation matrices.
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Fig. 4. Time required for the Kalman filter to converge.

mation matrix between odom frame and camera frame.
This matrix can be easily calculated once the robot’s
pose is known in both coordinate systems.

However, orientation in the camera coordinate sys-
tem is hard to measure accurately, as it is estimated
from the robot’s movement. Therefore, data fusion
and transformation matrix estimation are performed
by an extended Kalman filter [37] in order to take
into account both the robot’s kinematic model and
potential errors introduced by the odometry and vi-
sual tracking. The consequence is that, at startup,
the transformation matrix, and thus the proposed
N-expert, is not available, and will be ready only
after the Kalman filter converges. To this aim, before
actually considering the tracking as started, the robot
is automatically moved long enough for the filter to
reliably estimate its orientation in the camera frame.
This process is illustrated in Fig. 4 using measure-
ments from several runs. Initially, the error is rather
high (value depends on the physical position of the
robot w.r.t. to the origin of the coordinate system). As
soon as the target is defined for the visual tracker,
error dramatically drops down, as filter covariance
is low. As the robot starts moving, error fluctuates
since robot’s odometry is projected using a wrong
orientation. After few seconds, error converges to an
acceptable value (around 0.03 m). Based on the above
considerations, it is important (and the algorithm
relies on this assumption) that during the first few
seconds when the robot starts moving, TLD is able to
correctly track it with no false positives.

In Fig. 5, the block diagram of the proposed al-
gorithm is shown. As it can be observed, it is an

Fig. 5. Block diagram of the proposed algorithm. Inputs
are those of TLD, plus odometry and camera calibra-
tion data. The output is the robot’s pose estimated by
the Kalman filter.

extension of the TLD architecture in Fig. 2. Once the
Kalman filter converges, it is able to output the trans-
formation matrix needed to project the robot’s esti-
mated position (as reported by the odometry) onto the
image plane. The estimated position is then converted
into a bounding box by rescaling the initial bounding
box depending on the distance of the robot from the
camera (applying the pinhole camera model).

Considering that the resulting bounding box was
obtained by projecting the (estimated) odometry onto
the image plane using an estimated transformation
matrix, it is very likely that the target is not perfectly
centered in the bounding box. For this reason, it is
not possible to design an odometry-assisted P-expert,
since it would require a much more reliable and
accurate estimate of the robot’s bounding box in the
image plane in order to generate good training data.
A N-expert, on the other hand, does not need exact
knowledge of the robot’s position to be able to discard
most false positives: any match whose distance from
the estimated position is over a threshold can be
labeled as false positive. In fact, by simply knowing
the “area” in which the target is likely to be, it can
discard any false positive that does not overlap that
area. Moreover, the target’s displacement vectors (i.e.,
direction and magnitude of the displacement between
two consecutive frames) in both camera frame and
odom frame can be compared without the need to
know the robot’s position (i.e., the vectors’ origin)3.

The “search area” for the target is thus defined by
its estimated bounding box and the confidence in such

3. The displacement vector in camera frame must first be projected
from the 2D image plane to the 3D ground plane in order to be
comparable to the displacement vector in odom frame (or viceversa).
This is easily accomplished as both camera intrinsics and ground
plane equation are known.
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estimate. Once the robot’s odometry is projected on
the image plane and converted to a bounding box,
the search area estimation component will enlarge the
resulting bounding box by a factor inversely propor-
tional to the Kalman filter’s confidence (covariance)
in its estimate of the transformation matrix. The less
the filter is confident, the bigger the bounding box
will be. This technique ensures that the target is very
likely to be inside the search area at all times.

The proposed N-expert uses the obtained search
area to validate the detector’s output in different
ways. First, any candidate bounding box that does
not overlap the search area is re-labeled as negative.
The label will be used during the learning process
to avoid detecting the same object in the future. Next,
displacement vectors are available, they are compared
with the odometry displacement. A displacement vec-
tor is available when the previous iteration of TLD
produced a bounding box. The displacement vector
is simply the displacement of one of the bounding
box’s corners from the previous frame to the current
one. The displacement vectors of two opposite corners
are compared against those reported by the odome-
try (bounding box size is estimated again with the
pinhole camera model). If the direction or magnitude
of the displacement vectors differ by a set threshold,
the result is re-labeled. This method ensures that
the candidate target is moving consistently with the
odometry readings. The reason for testing two corners
rather than, e.g., only the bounding box center, is
that, in this way, changes in the scale of the candi-
date bounding box can be taken into account. The
thresholds for direction and magnitude are deter-
mined experimentally and depend on the accuracy
of the robot’s odometry and of the Kalman filter’s
underlying kinematic model.

The odometry-assisted N-expert’s output is then fed
to the original PN-experts and continues through the
rest of the pipeline of the original TLD algorithm.

During runtime, it is possible for the tracked object
to be occluded or to fall out of frame. In such cases,
the only data source for the Kalman filter is the
odometry: velocity is integrated to estimate a position,
which, however, will drift over time. This situation
can be identified by the growing covariance of the
Kalman filter, which is an indicator of the filter’s
reliability. If covariance grows larger than a threshold,
the N-expert is disabled completely and the algorithm
reverts to the behavior of the original TLD. If tracking
is correctly recovered by TLD, the Kalman filter will
be able to correct its state estimate, output covariance
will reduce and the odometry-assisted N-expert will
be enabled again. This behavior allows the designed
algorithm to keep tracking the robot when it is not vis-
ible, though accuracy degrades over time with a rate
that depends on the quality of the robot’s odometry
and the accuracy of the Kalman filter’s underlying
model. Continuous tracking is highly desirable for

Fig. 6. High-level architecture of the mixed reality
platform the proposed algorithm was developed for.

the envisaged applications, as it will enable feedback-
based controllers to drive the robot at all times.

It is worth observing that, since the Kalman filter
is updated with the result of the modified TLD algo-
rithm, it can output an updated transformation matrix
and estimated robot pose only after TLD has run.
This implies that, during each iteration, the odometry-
based N-expert is using the transformation matrix
from the previous iteration. Hence, for the proper
working of the designed algorithm it has to be as-
sumed that the transformation matrix drifts slowly
over time, i.e., that the error of the odometry between
consecutive frames is negligible. After performing
data fusion, the estimated global position of the robot
is returned by the Kalman filter. Depending on how
accurate its predictive model is, it is possible to run
it at an arbitrary rate. This fact allows downstream
applications to run decoupled from both the camera’s
and the tracking algorithm’s frame rate.

5 EVALUATION

In this section, experiments that have been carried out
to validate the effectiveness of the devised technique
are reported. In particular, the experimental setup is
first introduced. Afterwards, results of quantitative
measurements performed are reported and discussed.

5.1 Experimental Setup
As it was previously stated, the purpose for develop-
ing the proposed tracking algorithm was to support
robot tracking in mixed reality gaming scenarios. In
particular, the devised algorithm has been integrated
in the platform proposed in [17][18], whose architec-
ture is shown in Fig. 6.

The core system (Fig. 6, left) is implemented in
the Robot Operating System (ROS) [38], and currently
features tracking and control of the robot, and track-
ing of people (players in the playground). Games are
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developed in the Unity game engine4, using a custom
API to interface with the mixed reality gaming system
(Fig. 6, right). The decoupling between the core sys-
tem and the game engine allows the two components
to be run each on a dedicated machine, possibly
in the cloud (in fact, the proposed architecture is
fully aligned with the concept of “connected robotics”
within the larger Internet of Things paradigm [39]).

Robot tracking information, obtained by fusing
camera and odometry data, is passed to a feedback-
based controller. The controller generates the neces-
sary commands to move the robot on target. All that
is required is to set a target position that the robot will
be driven to. Beside the floor-facing camera used to
track the robot, the platform exploits a second camera
(framing the whole gaming area) and the Microsoft’s
Kinect SDK5 to track the players’ body and gestures,
which can be used to implement natural interaction
mechanisms in the game. All of these data sources are
made available within the game engine.

A simple collaborative game was developed to test
the devised tracking method under many critical con-
ditions. Game design followed the guidelines of the
Mechanics, Dynamics, Aesthetics (MDA) framework
[40]. Gameplay examples are shown in Fig. 8–10.

The main aesthetic (i.e., experience) factor the game
wants to transmit is a feeling of closeness and friend-
liness with the robot. As such, the characters of the
game are their real counterparts: a robot and its
human owner. Aesthetic patterns of team accomplish-
ments, team strategy identification and mutual experiences
[41] were deemed the most appropriate, as they instill
a sense of cooperation and teamwork that should
encourage the rise of the main aesthetic. To this end,
the game was designed in such a way that the human
and robot have to work together to be able to win.
Cooperation and team play are dynamic patterns that
come from the mechanics of mutual enemies and mutual
goal. The game proposes a common enemy to both
human and robot players, whose goal is to defeat it.

A sense of friendship with the robot is instilled
by exploiting the mechanics of helplessness and the
rising dynamics of rescue. At the beginning of the
game, the robot character is low on battery (actually,
the physical robot is not, battery level is a simulated
element of the game). Thus, it cannot move on its
own. The only way to make the robot move is for the
player to “tilt” a projected floor they are moving onto
and make the robot roll in the desired direction. For
visualization purposes, the tilting plane is represented
as a grid. The perspective setup of the virtual camera
gives the illusion that the floor is tilting. The player
controls tilt through his or her body position: moving
towards the edge of the playground will tilt the plane
in that direction. By collecting batteries that randomly

4. https://unity3d.com/
5. https://developer.microsoft.com/en-us/windows/kinect

pop up, the robot character gets charged more and
more. On the one hand, the human player should
feel closer to the robot, as through his or her actions
he or she is “recharging” (rescuing) the robot. On the
other hand, thanks to asymmetric abilities (human and
robot player have different abilities) that are enabled
as the battery gets charged, the robot is able to provide
delayed reciprocity by helping the human player with
its newly found powers. The mechanics of asymmetric
abilities also gives rise to team combos, allowing, e.g.,
the player to directly drive the robot towards the
enemy by pointing it using his or her hand. These
elements contribute to the aesthetics of team strategy
identification (e.g., by trying different team combos) and,
when the strategy is successful, team accomplishments.
The various game states are described in Appendix C.

The proposed game presents a challenging envi-
ronment for tracking the robot. First, to display the
tilting plane, the projection covers the whole play-
ground, which may interfere with visual tracking.
Additionally, the batteries the robot can collect are
intentionally drawn on a white background, which
can cause the visual tracking algorithm to lock on false
positives. Furthermore, the robot and the player can
move anywhere within the playground, thus occlu-
sions are quite common. Finally, the robot is driven by
a feedback-based controller (a Proportional Integral
Derivative controller), which requires the estimated
pose to be available at all times, or it will not output
a control effort. A purely visual tracking algorithm
could not, by definition, provide a position estimate
when the robot is occluded. These challenges were de-
signed to test the algorithm against the requirements
laid out in Section 3 under real gaming conditions.

5.2 Data Collection and Analysis

In order to evaluate the performance of the proposed
algorithm as done in the selection phase (Section 3), 10
sequences were recorded during gameplay. The game
instances were run using the proposed algorithm, as
it was expected to be capable to provide the most
reliable tracking and, hence, the best gaming expe-
rience. Afterwards, the sequences were manually la-
beled to construct the ground truth. In addition, both
the odometry and the initial transformation matrix
between camera frame and odom frame were recorded.

Since the proposed algorithm was built upon TLD
(which provided the best performance in the scenario
of interest) and, as shown in Section 2, other tech-
niques are not directly applicable to the considered
setup, a comparative analysis was performed against
original TLD as well as odometry-only tracking by
using the metrics in [20]. Odometry-only tracking is
implemented by projecting odometry data into the
camera frame, using the previously recorded trans-
formation matrix. Results, which were collected by
launching all the algorithms on the recorded game



IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING 11

sessions under the same conditions illustrated in Sec-
tion 3 are given in Fig. 7. Sequences with tracking
results are available for download6.

The proposed algorithm was run and evaluated
in two different modes: a so called “robust” mode
and a “continuous” mode. In robust mode, the final
tracking output is the result of data fusion between
TLD and odometry. If confidence in the result is not
high enough (e.g., because odometry and TLD do not
agree), the algorithm declares that the tracking is lost.
However, if TLD finds a match again, the algorithm
is able to recover (it reverts to pure TLD). In Fig. 7,
results for this mode are referred to as ROB.

Continuous mode was developed in order to im-
prove the experience while playing. In fact, in this
mode the algorithm keeps track of the latest valid
transformation matrix between the camera and the
odometry coordinate systems. The algorithm works
exactly as in robust mode, with the exception that
tracking is never declared as lost. If it is not possible to
determine the robot’s position visually, the algorithm
will output its position as reported by the odometry,
by applying the latest transformation matrix available.
The effect is that, if visual tracking is lost, the reported
position will start to diverge from the robot’s actual
position. However, the output is continuous, which
allows the feedback controller to keep driving the
robot and the player to play the game, even though
not with the best accuracy possible. In Fig. 7, this
mode is referred to as CONT.

As it can be seen by looking at the plots, contin-
uous mode achieves the best performance in terms
of average location error (Fig. 7b), since it always
outputs a position close to the robot. Performance is
slightly worse when considering success rate (Fig. 7a),
because the output bounding box does not overlap
with the ground truth for most of the time. Robust
mode, on the other hand, performs better in terms of
overlap, since the output of the algorithm is the result
of data fusion between the TLD and odometry posi-
tion estimates. Robust mode is able to track a lower
number of frames, but more accurately. Odometry-
only and TLD-only tracking (ODOM and TLD, in
Fig. 7, respectively) achieve the worst performance.
The former shows the same characteristics as the
proposed algorithm in continuous mode, but does not
update the transformation matrix, thus suffering from
a larger drift. The latter is very sensible to occlusions
(once occluded, it is rarely able to recover the correct
target), and false positives.

Fig. 8–10 report several representative frames from
selected gaming sequences. In Fig. 8 it is possible to
see how odometry-only tracking suffers from drift. At
the beginning of the sequence (frame #98), before the
robot starts moving all the algorithms are reporting
the correct position. They are all initialized with the

6. https://goo.gl/9mXHbC

same bounding box and transformation matrix be-
tween odom and camera frame. Then the robot starts
moving, and after just a few frames the odometry-
only tracking (blue box in the figure) drifts off the
target. On the contrary, pure TLD (black) and the
proposed algorithm (red and green) keep tracking
the target accurately. The error that odometry reports
is due to two factors: the uncertainty in the initial
transformation matrix (small orientation errors in the
matrix translate into large position errors), and the
odometry’s intrinsic drift. As said, the former factor
can be easily dealt with by automatically driving the
robot for few second before actually starting the game.

Fig. 9 shows the behavior of the algorithms when
facing a possible false positive. As it can be seen, pure
TLD is locking onto different false positives occurring
at frames #269 and #649. In both cases, the proposed
algorithm keeps tracking the robot correctly, whereas
odometry-only tracking presents the usual drift.

Finally, Fig. 10 illustrates the behavior of the pro-
posed algorithm when dealing with an occlusion.
Before the occlusion occurs (frame #521), the proposed
algorithm is tracking the robot accurately. Odometry-
only tracking is slightly off-target, whereas pure TLD
is reporting that tracking is lost. Throughout the
whole sequence, pure TLD will not be able to recover
tracking. Odometry-only tracking, as it can be ex-
pected, is not affected by occlusions and keeps report-
ing a position with an approximately constant error.
As the robot moves behind the occluding player’s
body from frame #521 to frame #531, the proposed
algorithm keeps tracking its position using the odom-
etry data source. Differently than the odometry-only
tracking, the proposed algorithm keeps updating the
transformation matrix until the visual tracking source
fails. At frame #540 the robot becomes visible again.
As it can be noticed, the position reported by the
proposed algorithm is very close to ground truth.
Finally, at frame #546, the visual tracking source re-
covers the target, thus resetting the cumulated drift
and reporting once again the correct position.

In terms of frame rate, the proposed algorithm can
be tuned depending on actual needs. In general, per-
formance is limited by the frame rate of the camera,
of the modified TLD algorithm (comparable to that of
the original TLD) and of the robot’s odometry. Con-
tinuous mode is entirely decoupled from the visual
tracking algorithm. Therefore, it runs at the frame rate
of the robot’s odometry (∼ 50 Hz for the robot used in
the experiments). It should be pointed out that, even
though continuous mode can run up to the frame rate
of the robot’s odometry, the transformation matrix is
updated at TLD’s frame rate. Between updates, the
algorithm is running purely on odometry data. Robust
mode is tied to TLD’s frame rate, which in turn is
limited by the camera. In the experimental setup, the
limit was the camera, which allowed the algorithm to
run at about ∼ 15 Hz on the considered machine.
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(a) (b)

Fig. 7. Results with the proposed algorithm (ROB and CONT mode), original TLD algorithm and odometry-only
tracking: a) success plot, sorted by AUC, b) precision plot, sorted by precision at 20px error threshold.

(a) (b)

Fig. 8. Frames extracted from the gaming sequences showing the performance of the proposed algorithm (ROB
and CONT mode) compared to the original TLD algorithm and odometry-only tracking: a) correct tracking with
all the algorithms, b) drift experienced with the odometry-only tracking.

(a) (b)

Fig. 9. Frames extracted from the gaming sequences showing the performance of the proposed algorithm (ROB
and CONT mode) compared to the original TLD algorithm and odometry-only tracking: a) and b) TLD is locked
to a false positive, odometry-only tracking is affected by drift (as in Fig. 8).

6 CONCLUSION

This paper presented the design, realization and test-
ing of an online robot tracking algorithm which ex-
ploits data fusion between visual tracking and odom-
etry. The aim was to develop a robust robot tracking
method for a mixed reality gaming platform. The
platform allows human and robot players to play
and interact within a projected environment. This
particular setup presents a set of challenges (in terms
of tracking) that need to be addressed in order to
provide an effective gaming experience.

The proposed algorithm extends the well-known

TLD online visual tracking technique by using the
robot’s own odometry in order to boost performance.
In particular, the devised solution acts as a filter
within the native learning mechanism of TLD, by
validating potential targets against odometry data.
This way, the online learning capabilities of TLD are
improved, as the classifier is trained with a fewer
number of false positives, thus reducing model drift.
Additionally, odometry provides a search window for
the detector to look for potential targets, as opposed
to searching the whole frame, as the original TLD
implementation actually does. Finally, odometry com-
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(a) (b)

(c) (d)

Fig. 10. Frames extracted from the gaming sequences showing the performance of the proposed algorithm
(ROB and CONT mode) compared to the original TLD algorithm and odometry-only tracking: a) all the algorithms
except TLT are tracking the target (with some drift, in the case of odometry-only tracking), b) target is occluded,
odometry-only tracking still works with almost constant displacement, the proposed algorithm keeps tracking
the target using the odometry source, c) target is visible again, tracking obtained with the proposed algorithm
is close to actual robot’s position, d) the visual tracking source recovers the tracking, drift cumulated by the
proposed algorithm is reset and tracking is again on target.

plements visual tracking in case of occlusions or out-
of-frame situations. At the same time, visual tracking
allows to reset drifts introduced by the odometry (e.g.,
due to sensor noise, integration errors, slippage, etc.).

The proposed algorithm proved to outperform both
the original TLD technique and odometry-only track-
ing, confirming the validity of the choices made.

The largely encouraging results motivate further
research aimed to the characteristics of current design.
In fact, at present only a part of TLD native function-
ing is considered, i.e., N-expert learning: the devised
algorithm is programmed only to better discard false
positives, thus reducing incorrect model updates in
the classifier. False negatives could be validated as
well, with a possible increase in tracking performance.
However, a higher accuracy than the one provided
by the odometry would be required. Furthermore,
the algorithm is robust against changes in model
appearance only as much as the original TLD. Simi-
larly, proposed improvements are only effective when
Kalman filter is converging; when it is not (e.g., after
a long occlusion), performance reverts to that of TLD.
Lastly, analysis of the recorded sequences revealed
that the projected environment is the main cause of
failure of the visual tracking algorithm.

For these reasons, future work will include the
addition of depth information as a further data source
to the algorithm, which will open the way to imple-

menting a P-expert process. The N-expert proposed in
this paper could benefit from depth information too,
as it would allow the algorithm to recognize whether
a potential candidate for tracking is in fact a projection
on the floor rather than a solid object. Applicability of
the designed method to other collaborative robotics
domains mentioned in the initial sections of the paper
will be explored as well.
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